EPARS: Early Prediction of At-risk Students with Online and Offline Learning Behaviors

Yu Yang^{1*}, Zhiyuan Wen¹, Jiannong Cao¹, Jiaxing Shen¹, Hongzhi Yin², and Xiaofang Zhou²

¹ Department of Computing, The Hong Kong Polytechnic University, HK SAR, China ² School of ITEE, The University of Queensland, Australia

* Email: csyyang@comp.polyu.edu.hk

Outline

- Background & Motivations
- Problem Statement of At-risk Student Early Prediction
- Data Collection & Overview
- Challenges in At-risk Student Early Prediction
- Methodologies
 - Statistical analysis
 - Multi-scale Bag-of-Regularity
 - Social Homophily Embedding
- Experiments & Results
- Conclusion

Background

- Students at risk (STAR) refer to students requiring temporary or ongoing intervention for achieving academic success^[1].
 - Gradually fail to sustain their studies and then drop out
- Raising public concern of dropout, depression, suicide etc.
- Diverse factors cause students being at-risk.
 - Poor academic performance
 - Family problems
 - Financial stress
 - Social barriers

•

. . .

[1] Richardson, V.: At-risk student intervention implementation guide. The Education and Economic Development Coordinating Council At-Risk Student Committee p. 18 (2005)

- 3

Motivations

Early prediction of STAR offer the opportunity to timely intervene.

- University usually identifies STAR by their academic performance.
 - Too late for interventions.

- Existing works predict STAR from either online or offline learning behaviors.
 - Hardly capture the whole learning processes in a comprehensive manner.
 - Unsatisfactory accuracy in STAR early prediction.

Problem Statement

- STAR are students whose average Grade Point Average (GPA) is below 2.0 in a semester.
 - When a student has a GPA below 2.0, he/she will be put on academic probation in the following semester.
 - If a student cannot pull his/her GPA up to 2.0 or above in the semester, he/she will be dropped out.
- Problem formulation of STAR early prediction

Given:

- Students' click operations in the Blackboard (online learning traces)
 - Students' library check-in records (offline learning traces)

Objective: Identify STAR as accurate and early as possible in a semester

Data Collection & Overview

Data Collection

- Click-stream data with timestamps in the Blackboard
- Library check-in logs
- GPA

Data Scope

- All 15,503 undergraduate students in the whole university
- 2016 to 2017 academic year

Table 1. Data Overview.

	Semester 1		Semester 2	
	STAR	Other Std	STAR	Other Std
Population	391	15,112	225	$15,\!278$
# click-stream logs in LMS	$2,\!225,\!605$	95,949,014	1,019,134	70,874,428
Avg. # click-stream logs	$5,\!692.0844$	$6,\!349.1936$	4,529.4844	$4,\!638.9860$
Avg. # click-stream logs in first 2 weeks	301.4041	399.9502	243.0400	284.4368
Avg. # click-stream logs in last 2 weeks	526.6522	545.4346	336.9133	304.7331
# library check-in	14,045	636, 353	6,245	517,557
Avg. $\#$ library check-in	35.9207	42.1091	27.7556	33.8760
Avg. # library check-in in first 2 weeks	1.7877	2.3303	1.3889	1.8424
Avg. # library check-in in last 2 weeks	2.9834	3.3760	2.3444	2.4547

Challenges

Data density imbalance

- Offline learning records (library check-in) are much sparser than online learning traces (click-stream traces in the Blackboard).
- The overall behavior representation will be easily dominated by the online learning behavior in fusion.

Data insufficiency

- Students, especially STAR, are usually inactive at the beginning of a semester.
- The behavior traces are far from enough for accurate early prediction of STAR.

- 7 -

- Label imbalance
 - The number of STAR is far less than that of normal students.
 - STAR prediction is an extreme label-imbalance classification problem.

Observations

Study routines

- Good students usually follow their study routines periodically and show clear regularities of learning patterns.
- Study routines of STAR are disorganized leading to irregular learning patterns.

Social homophily

- Students tend to have social tie with others who are similar to them.
- At-risk students had more dropout friends^[2].

[2] Ellenbogen, S., Chamberland, C.: The peer relations of dropouts: a comparative study of at-risk and not at-risk youths. Journal of adolescence 20(4), pp. 355-367 (1997)

Framework of EPARS

- 9 -

Statistical Analysis by ANOVA

Findings from the ANOVA test

- STAR use the Blackboard less than the normal students
- STAR check the announcement and lectures' information more than normal students
- STAR go to the library less than the normal students at the beginning of a semester
- STAR prefer more to go to the library after business hours

Table 2. Results of the ANOVA test.

Features	P-value	F-value	Mean STAR	Mean Others
# LMS Login	0.0020	9.5112	127.4987	144.8043
# LMS Logout	0.0000	34.5301	8.9318	20.1348
# Check announcement	0.0158	5.8311	41.4436	36.8361
# Course access	0.7328	0.1165	4.2677	4.5667
# Grade center access	0.7694	0.0859	10.5486	10.2108
# Discussion board access	0.0020	9.5951	11.7979	19.2444
# Group access	0.0209	5.3385	13.2782	20.1268
# Check personal info	0.0000	16.7953	0.2283	1.6585
# Check lecturer info	0.0000	106.1638	9.7297	5.5440
# Journal page access	0.0199	5.4191	0.2283	1.6585
# Lib check-in	0.0700	3.2829	42.8163	47.3589
# Lib check-in in the morning	0.0001	14.7133	7.0367	9.4206
# Lib check-in in the afternoon	0.0023	9.3196	27.0604	31.9419
# Lib check-in after midnight	0.0000	43.9327	4.0105	1.6927
# Lib check-in before exam months	0.0123	6.2740	33.9265	39.0143
# Lib check-in at the first month	0.0004	12.5447	8.4724	10.6052

- 10 -

Multi-scale Bag-of-Regularity

- Construct a binary sequence from students' sequential behavior traces
 - Mark as 1 if the learning behavior appears, i.e. go to the library, log-in the LMS
- Multi-scale behavior pattern sampling
 - Subsequences of length $\ell = 2 + (s 1) \times z$ centered on nonzero elements
 - $s \in \{1, 2, ..., S\}$ is the scale.
 - *z* is the step-size between scales.
 - All zero subsequences are excluded for overcoming the sparsity problems
- Bag-of-Regularity
 - Treat all possible behavior patterns excluding all-zeros one as a bag.
 - Count the number of occurrences of every sampled behavior pattern.

Embedding Social Homophily

- Modeling social relationship by constructing a co-occurrence network from the library check-ins
 - Intuitions: If students are friends, they are more likely to learn together.
 - Co-occurrence: The time difference of the library check-in between two students is less than a threshold δ .
 - Distinguish familiar strangers: # co-occurrence in the library is more than a threshold σ .
- Embedding social homophily by Node2Vec
 - Constrains: The features of students who have similar social connections should be close

A part of the constructed cooccurrence network with $\sigma = 5$.

Experiment Protocol

Experiment Setting

- Predicting STAR at the end of every week in the semester using the data collected from the beginning of the semester to time making prediction.
- Under 5-fold cross-validation setting and repeat 10 times.
- Report the average results obtained by the Gradient Boosting Decision Tree.

Evaluation metrics

- AUC: Areas under the ROC curve
- ACC-STAR: The amount of true positive predictions divided by the total number of STAR
- Baselines
 - SF: statistical significant features by ANOVA testing
 - DA: SF + data augmentation
 - DA-SoH: SF + data augmentation + social homophily embeddings
 - DA-Reg: SF + data augmentation + regularity features

Results of STAR Early Prediction

- 14 -

Evaluation of Data Augmentation

- SMOTE achieves the best STAR prediction accuracy
 - Increases the number of minority samples
 - Enriches the diversity of the training set

	# STAR after DA per fold	# Normal Std. after DA per fold	AUC	ACC-STAR
No DA	305	11295	0.8342	0.5526
Random Under-sampling	305	305	0.8211	0.5316
Random Over-sampling	11295	11295	0.8458	0.5645
SMOTE	11295	11295	0.8684	0.7237

Sensitivity of Maximum Scale

- EPARS achieves the best performance when maximum scale S = 4.
 - Regularity patterns of the scale 5 to 7 can be synthesized by the scale of 2 to 4.
 - Regularity features will dramatically become sparse when S > 4.

Co-occurrence Parameters Sensitivity

Results of Testing Time Difference Threshold

• Testing time difference threshold δ for determining co-occurrence

δ	Ave # edges per week	AUC	ACC-STAR
10 seconds	14263	0.8699	0.5921
30 seconds	39386	0.8684	0.7273
60 seconds	77318	0.8576	0.6316

Results of Testing Linking Threshold

• Testing linking threshold σ for filtering familiar strangers

σ	AUC	ACC-STAR
2 times	0.8684	0.7237
3 times	0.8615	0.6184
4 times	0.8554	0.5658
5 times	0.8122	0.5395

Conclusion

- A novel algorithm EPARS for early predicting STAR.
 - Extract students' learning regularity patterns and social homophily from online and offline learning behaviors.
- A multi-scale bag-of-regularity method to extract regularity features from sequential learning behaviors.
 - Robust for sparse data
- Embedding social homophily from a co-occurrence network constructed from library check-ins.
 - Supplement the lack of behavior traces for STAR
- EPARS is accurate in STAR early prediction
 - 14.62% ~ 38.22% accuracy improvement to the baselines even in the first week of a semester

