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Abstract—People counting provides valuable information on
population mobility and human dynamics, which plays a critical
role for intelligent crowd control and retail management. Recent-
ly, people counting has been achieved via radio-frequency signals
as human presence can influence the propagation of wireless
signals, from which the information of the moving crowd can be
extracted. However, most of the existing studies using wireless
signals only apply to the scenario when people keep moving all
the time. Besides, they require labour-intensive training phase
for building the counting model.

In the Wi-Count system, we take another approach, which is
to count the people passing by the doorway with COTS WiFi
devices. It can not only detect the passing direction, but also
identify the number of people even when multiple persons pass
by concurrently without regulating passing behavior and pre-
trained counting model. The passing direction is recognized by
modeling the effects of the bi-directional passing behavior on
the phase difference of WiFi signals. In addition, the number of
passing people is obtained through an enhanced signal separation
algorithm for providing precise counting result. Extensive exper-
iments show the average accuracy on passing direction detection
and passing people counting are about 95% and 92% respectively.

I. INTRODUCTION

Driven by the developing human sensing technologies, the
environment becomes more intelligent for sensing and observ-
ing human presence, which helps to ensure sufficient resource
allocation and customized services. People counting provides
essential information for various applications and services,
e.g., crowd control for big events and marketing investigation
for retail sales. In particular, indoor activities require precise
people counting for analyzing the crowd behavior, such as the
visiting rush hours, so that they can discover more potentials
in the marketing and drive the business to grow.

Current practices towards people counting are mainly re-
alized in two ways, which are (1) counting people in the
certain area, and (2) counting people passing by the doorway.
On top of the above two means, existing techniques make
use of infrared sensors, cameras, devices and radio-frequency
signals for people counting. Infrared sensors [1], [2] deployed
at the doorway count the entering or exiting people based
on the assumption that people are moving through one by
one under certain time interval. So, it cannot count multiple
people passing by freely. Vision-based approach [3], [4] counts
people by image object detection. While its performance can
be weakened by object overlapping, poor lighting conditions
and dead zones. It also raises the privacy concern among

the massive customers for capturing their figures. For the
device-based approach [5]–[7], in which devices (e.g., mobile
phones or RFID tags) shall be distributed or carried, requires
active participation from the crowd. This could result in the
reluctance among people for being counted. Recent advances
in wireless human sensing witness the potential for using
wireless signals, such as WiFi [8]–[10], RFID [11] and UWB
radar [12] for human sensing and people counting. However,
these works are based on the premise that all the human objects
would keep moving all the time, which is unable to be met in
practice. Thus, the counting result can only provide a rough
estimate on the number of people, and it cannot be applied to
scenarios where most of the people do not move frequently. In
addition, they need extensive training phase for building the
counting model which can be difficult for being adaptive to
different environments.

In this paper, we propose the Wi-Count, to realize peo-
ple counting in a non-intrusive, low-cost and accurate way
by counting the people passing by the doorway: (1) Non-
intrusive: Wi-Count leverages the effects of the passing be-
havior on the propagation of wireless signals to detect human
presence, so it does not require people to carry any devices.
It allows the human object to pass by freely without active
cooperation for the counting process. (2) Low-cost: Wi-Count
saves the cost on devices and labour resources. On the one
hand, it only relies on the existing indoor WiFi infrastructure.
On the other hand, it does not require labour-intensive training
phase for building the people counting model. (3) Accurate:
Wi-Count is not only capable of precisely detecting the bi-
directional passing behavior for the single person, but also
counting the number of people when multiple persons pass by
the doorway at the same time.

Counting people passing by the doorway can be achieved by
analyzing the phase information in the received WiFi signals.
When people passing by, the human body, as a reflector, could
influence the propagation of wireless signals from the trans-
mitter to the receiver. To detect the binary moving direction,
i.e., entering and exiting, we model the passing behavior with
respect to the change of phase information. The phase infor-
mation can be extracted from the Channel State Information
(CSI), which is available on many commercial WiFi devices.
By performing theoretical analysis on the change of phase
information, we find that there are distinctive patterns on the
phase difference series for the entering and exiting behavior.



To identify the number of passing people, we treat each person
as independent reflectors, as they are different in shape and
walking habit. Then, the Independent Component Analysis
(ICA) algorithm is applied on the phase difference series of
all the subcarriers to reveal how many walking components
are involved, which indicate the number of people.

However, to achieve precise counting results, several chal-
lenges are remained to be solved. First of all, the phase infor-
mation extracted from the COTS WiFi devices suffers from
different sources of noises, including phase difference ambi-
guity and random noises. This makes the observed passing
pattern unclear and inconsistent for further analysis. Second,
the human body is not a fixed-shape reflector while walking.
It can result in fluctuations in the received phase information,
which causing troubles for extracting the pattern for passing
direction detection. Furthermore, the phase information on
some subcarriers can be interfered by adjacent subcarries,
leading to an ineffective result for using the signal separation
algorithm to identify the number of multiple passing people.

To address the above challenges, calibration on the phase
difference series is first performed to obtain clear phase
information. To eliminate the phase difference ambiguity, we
apply clustering algorithm on the phase difference time series
to recover the original phase difference information. To remove
the adverse effects of random noises and signal fluctuations
for passing direction detection, we apply Savitzky-Golay filter
[13] on the phase difference series for noise reduction. In
order to enhance the performance of the signal separation
algorithm for identifying the number of passing people, we
transform the phase difference series of all the subcarriers into
an input matrix. Afterwards, the input matrix is preprocessed
through Principal Component Analysis (PCA) to remove the
interference and correlation among adjacent subcarriers for
achieving a more precise counting result.

Extensive experiments show the average accuracy on pass-
ing direction detection and passing people counting are about
95% and 92% respectively.

The main contributions of our work are as follows:

• We propose Wi-Count, a non-intrusive, low-cost and ac-
curate approach for people counting with the COTS WiFi
devices. It only relies on the existing WiFi infrastructure
and counts the human object without constraints on the
moving behavior and labour-intensive model training.

• We present a model for detecting the bi-directional mov-
ing behavior based on the phase difference of WiFi signal.
The moving direction can be recognized from the pattern
of phase difference series.

• We apply source separation techniques for counting the
multiple persons passing by concurrently, so that we can
provide more accurate result for people counting and
detailed information for observing the crowd behavior.

II. RELATED WORK

There are various practices and studies into the problem
of indoor people counting. Current works can be classified

into four categories: (1) infrared-based approach; (2) vision-
based approach; (3) device-based approach and (4) RF-based
approach. In this section, we discuss the existing work on
people counting with respect to the above four categories.

A. Infrared-based Approach

Infrared-based approach counts the people by detecting
whether the light beam is blocked by people. Generally,
multiple sets of infrared sensors are deployed for detecting
the entering or existing directions passing by the door [1],
[2]. However, they are only applicable to the single-person
passing scenario, which means that they cannot tell the exact
number of people when two or more people come across the
beam at the same time. Thus, barriers are usually set around
the door to allow only one person passing at a time, leading
to extra deployment cost and inconvenience for the people.

B. Vision-based Approach

Vision-based approach uses pattern recognition techniques,
e.g., face [3] and head-shoulder detection [4], [14], to count
human objects. Much work has been done to improve comput-
er vision techniques for human detection [15]. Since people
can dress up in different styles, many studies try to improve
the robustness of the human detection algorithms with the
help of machine learning. However, the dead zones and object
overlapping still lead to the ineffectiveness for vision-based
approach to get accurate counting result. In addition, people
are reluctant to be captured by cameras everywhere, which
could intrude their privacy without being notified.

C. Device-based Approach

Device-based approach realizes people counting by the
means of spreading devices or sensors in the crowd, e.g., RFID
tags [16] or mobile phones [5]–[7]. Audio signals, Bluetooth
and WiFi connection information are all used for tracking and
counting the crowd in indoor and outdoor environment. On
the one hand, the device-based approach raises the cost on
people counting by allocating large number of devices. On
the other hand, it requires people’s active participation by
operating the devices so that they can be detected, such as
open the Bluetooth link or run a specific app.

D. RF-based Approach

Recently, RF-based human sensing has seen great potentials
and possibilities on various applications, including localiza-
tion, activity and gesture recognition and vital sign monitoring.
Many kinds of wireless signals, such as WiFi [8]–[10], RFID
[11] and UWB radar [12], have been leveraged for people
counting. Since the presence of human object can affect the
propagation of the wireless signals in the air, human sensing
can be realized without attaching any sensor on the body. Due
to the multipath effects of wireless signals, the moving object
can still influence the propagation of the wireless signals even
if they are in the none line-of-sight areas.

Existing work using RF signals for people counting lever-
ages the RSS or CSI of the wireless signals to learn the



relationship between the number of moving people and the
variation in the wireless signals. Researchers in [17] deploy
wireless sensor networks and estimate the rough crowd density
based on the RSS with clustering algorithm. In [8], they count
the people walking between the WiFi transmitter and receiver
based on the RSS measurements. [9] finds out the monotonic
relationship between the CSI measurements and the number
of moving people in the certain area and count the crowd with
Grey Verhulst Model. [18] proposes to derive the number of
people through the statistical distribution of CSI measurements
and applies semi-supervised regression algorithm to obtain the
counting result. In [11], dozens of RFID tags are attached to
the wall for counting the moving people.

The common limitation of the above methods is that they
can only work when the human objects in the certain area keep
moving, so the estimated results could be inaccurate when
people have less mobility. Furthermore, they require extensive
training phase for building the counting model which requires
calibration for being adaptive to different indoor environments.
Our work also utilizes the wireless signals, i.e., WiFi, but from
a different angle, which is to count the people passing by
the doorway and convert this information as the number of
people inside the certain areas. We can detect the bi-directional
passing behavior and identify the exact number of passing
human objects, so that to achieve precise counting result and
obtain more information on human dynamics.

III. MODEL FOR PASSING PEOPLE COUNTING BASED ON
WIFI PHASE DIFFERENCE

This section first introduces preliminary knowledge for the
Channel State Information of WiFi signals, and then performs
theoretical analysis on the effects of the passing behavior to
the propagation of wireless signals. Afterwards, a model is
built for detecting the bi-directional passing behavior based
on the phase difference time series.

A. Preliminaries on CSI

In modern wireless network, the whole network spectrum is
divided into orthogonal subcarriers using Orthogonal Frequen-
cy Division Multiplexing (OFDM). The PHY layer informa-
tion, Channel State Information, underlying in each subcarrier
reflects the linear combined effects, e.g., reflection and scatter-
ing of the wireless signals along different propagation paths.
Thus, the CSI can be represented as follows [19]:

H(f, t) =

n∑
i=1

ai(f, t) · e−jψ(f,t), (1)

where f denotes the central frequency of each subcarrier,
n is the number of propagation paths. |ai(f, t)| and ψ(f, t)
represent the amplitude and phase values respectively. For m
subcarriers, the CSI matrix for a given period is

H = [H(f1, t), H(f2, t), ...,H(fm, t)]. (2)

In our work, we use the phase information for passing
people counting. The phase information ψ(f, t) captured by
the COTS network interface card, e.g., Intel 5300, contains the

timing and phase offset [20], [21]. As a result, the measured
ψ̂j for the subcarrier j can be expressed as

ψ̂j = ψj + 2π · fj · αj + βj + Z, (3)

in which ψj is the real phase, αj and βj are the timing
and phase offset caused by Carrier Frequency Offset (CFO),
Sampling Frequency Offset (SFO) and Packet Detection Delay
(PDD). βj is a constant value for the same NIC and Z denotes
the minor random noises in the phase values. The phase errors
in ψ̂j make it difficult to observe the real effects of the passing
behavior from the phase information, so we need to remove
those phase deviations for further use.

B. Model for Counting Passing People

In terms of the propagation of wireless signals, there are
different multipaths traveling from the transmitter (Tx) to the
receiver (Rx) except for the Line-of-Sight (LoS) path, due to
the presence of multiple reflectors in the environment. As
illustrated in Fig. 1(a), there are LoS path and multipaths
reflected by the Reflector 1 and Reflector 2. For the ith path,
the phase shift can be represented as

ψi = {li/λ} mod 2π, (4)

where li is the length of propagation path, λ is the wavelength
of the wireless signal. Suppose that Reflector 2 is a moving
object, then the received wireless signals consist of static
propagation paths (Ps) and dynamic paths (Pd). Therefore,
the overall phase change ψ in the received signals is the
combination of static and dynamic shift of the phase values.

ψ = {
∑
i∈Ps

ls +
∑
i∈Pd

ld

λ
} mod 2π (5)

To detect the bi-directional passing behavior of the human
object, we employ one transmitting antenna and two receiving
antennas, which are available on commercial WiFi devices,
and use the phase difference between the two receiving anten-
nas to indicate the passing direction. As shown in Fig. 1(b), the
transmitting and receiving antennas are horizontally displayed,
and the distance between Rx1 and Rx2 is d. Then, the phase
difference ψ21 between Rx1 and Rx2 can be formulated as

ψ21 = ψ2 − ψ1 = {Ls2 + Ld2
λ

− Ls1 + Ld1
λ

} mod 2π

= { (Ls2 − Ls1) + (Ld2 − Ld1)

λ
} mod 2π

= {L0 + d · sinθ
λ

} mod 2π,

(6)

where Ls =
∑
i∈Ps

ls, Ld =
∑
i∈Pd

ld. L0 is the difference
between Ls1 and Ls2 , representing the static phase shift caused
by the static propagation paths, and the difference for the
length of dynamic paths between the two receivers is mainly
induced by the moving targets, which is d·sinθ, where θ is the
angle of arrival of the wireless signals reflected by the human
object to the two receiving antennas. However, the measured
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Fig. 1. (a) Propagation of wireless signals in indoor environment. (b) Model of applying phase difference for passing direction detection (c) Deployment of
WiFi transmitter and receivers.

phase information includes several sources of errors, so the
reported phase difference ψ̂21 is formulated as

ψ̂21 = ψ̂2 − ψ̂1

= ψ21 + 2πf ·∆α+ ∆β + ∆Z.
(7)

For the above equation, ∆α equals to zero, as the two
receiving antennas on the same NIC card use the same clock
and same down-converter frequency. So, 2πf · ∆α can be
removed, then ψ̂21 can be shortened as

ψ̂21 = ψ21 + ∆β + ∆Z

= {L0 + d · sinθ
λ

+ ∆β + ∆Z} mod 2π.
(8)

In Eq. (8), ∆β is a constant value for the same NIC and
∆Z is the random noise with minor influence on the phase
values. So, the change in the phase difference mainly resides
in d · sinθ. When the human object moves towards left, i.e.,
entering the area, θ will increase within the range (0, π/2).
If we let d approximate to the wavelength of the wireless
signal, then the phase difference between Rx1 and Rx2 will
monotonically increase as d · sinθ goes up. Conversely, θ will
decrease from π/2 to 0 when the human object moves to the
right, i.e. exiting the area, making the phase difference decline.
Therefore, we can identify the bi-directional passing behavior
via the increasing and decreasing trend in the phase difference.

To verify the proposed model, we deploy WiFi devices in
indoor environment as shown in Fig. 1(c). The transmitter and
receivers are displaced horizontally in the entrance/exit area,
with one-meter distance apart. The two receiving antennas
are placed 12cm apart from each other since the wavelength
of 2.4GHz WiFi signals is around 12.5cm. The receiving
antennas are equipped with directional antennas, orienting to
the entrance/exit area, to avoid the disturbance of other moving
objects on the received signals in the environment. We plot the
phase difference when the person enters and exits the room
in Fig. 2(a)-(b). The presence of the four separate time series
is caused by the four-way phase ambiguity, which will be
removed later. Despite of this, we can observe that there is an
increasing trend in the phase difference series for the entering
behavior, and a decreasing trend for the exiting behavior.

IV. OVERVIEW OF WI-COUNT

The proposed system, Wi-Count, consists of three modules,
i.e., phase collection and calibration, bi-directional passing be-
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Fig. 2. Raw phase difference for (a) entering the door and (b) exiting the
door. Phase difference after phase ambiguity removal for (c) entering the door
and (d) exiting the door.

havior recognition and identification of the number of people
passing by. The overview of the system is depicted in Fig. 3.

In the first module, the phase information is extracted
from the CSI measurements along with the phase difference
time series between two receiving antennas. Then, the phase
ambiguity will be removed with cluster-based algorithm, i.e.,
k-means, for the recovery of the original phase difference
series, which will be articulated in the next section.

For the second module, the aim is to recognize the entering
and existing direction. As the phase difference involves ran-
dom noises and fluctuations caused by the periodic moving
legs, it is first smoothed to get the general trend for the pattern
extraction. For the settings in Fig. 1(c), if there is an increasing
trend in the phase difference series, then the human object is
entering the room. By contrast, the human object is exiting the
room if the pattern presents a decreasing trend. We calculate
the derivatives of the smoothed phase difference and detect
the presence of local maximum or minimum to recognize the
increasing and decreasing pattern.

To obtain an accurate counting result, we need to consider
the multi-person scenario and count the number of people
when multiple persons enter or exit the room concurrently.
Multi-person scenario is quite common in shopping malls or
exhibitions, where people would like to hang out with their
friends. Capturing this information also provides opportunities
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for group detection and human dynamics analysis. To count
the number of passing people, we treat each of the human
objects passing by the doorway together as an individual
component that affects the propagation of the wireless signals.
Then, the overall received signals are the linear combination
of the effects from different components. To provide enough
input source signals, the phase difference series from all
the subcarriers are regarded as different observations and
leveraged for the formation of the input matrix. Then, the
Independent Component Analysis (ICA) is applied on the
input matrix to separate each component.

V. SYSTEM DESIGN

In this section, we first preprocess the raw phase difference
time series and then detect the moving direction with the
calibrated phase difference time series based on the proposed
model. At last, we perform multi-person passing identification
to count the concurrent passing people.

A. Phase Ambiguity Removal

For existing COTS wireless network interface card, the four-
way phase ambiguity causes the real phase difference to be
θ, θ + π/2, θ − π/2 or θ − π for 2.4GHz wireless signals
[22] (5GHz wireless signals have two-way phase ambiguity).
In Fig. 2(a)-(b), the real phase difference is separated into
four groups with π/2 spacing. One way to retrieve the real
phase difference is to compare the difference between two
consecutive phase values. If the difference is around π/2 or
π, then it is expected to experience a phase shift and we can
add the corresponding shift to the current phase to retrieve the
original phase value. However, there are many outliers and
noises in the phase difference, making the above approach
ineffective in dealing with the phase ambiguity.

Here, we apply clustering algorithm to address the above
problem. We gather certain amount of phase difference sam-
ples, for example, 100 samples and apply k-means clustering
algorithm on them. For the four-way phase ambiguity, there
would be four clusters with the spacing of each cluster’s
centroid to be π/2. Then, we sort the four centroids and choose
the highest one as the baseline so that the samples in the
other three clusters can add π/2, π and 3π/2 respectively;
and then they can be integrated into a single time series.
The recovered phase difference series after phase ambiguity
removal are shown in Fig. 2(c)-(d).
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Fig. 4. Phase difference series after denoising for (a) entering behavior and
(b) exiting behavior. Derivatives on the phase difference series of (c) entering
segment and (d) exiting segment

B. Bi-directional Passing Behavior Recognition

In Fig. 2(c)-(d), the raw series of the phase difference
exhibit specific patterns for entering and exiting behavior.
However, the human body is not a flat reflector with fixed
shape while walking; leg movement also affects the wireless
signals periodically, leading to fluctuations in the received
signals. In order to extract the increasing and decreasing trend
from the phase difference, we first apply Savitzky-Golay filter
[13] on the phase difference. Savitzky-Golay filter is based on
the least-squares polynomial approximation, which can smooth
noises and maintain the contour of the time series. Here, we set
the polynomial order as 3 and the length of frame as 50. The
filtered phase difference series are illustrated in Fig. 4(a)-(b).

Then, a threshold is set to segment out the phase difference
series affected by the moving behavior. As in Fig. 4(a)-(b), the
series between the two vertical dashed lines are the affected
series. To detect the increasing and decreasing trend from the
phase difference series, we first calculate the first derivative
of each sample points and smooth the derivatives with median
filter. Then, the presence of peak or valley in the first derivative
will be detected. Fig. 4(c)-(d) shows the smoothed derivatives
of the affected series. The peak in the Fig. 4(c) corresponds
to the increasing trend, while the valley in Fig. 4(d) reveals
the decreasing trend. After finding out the specific pattern in
the phase difference, we can detect whether the human object
is entering or exiting the room.

C. Multi-Person Passing Identification

When multiple persons enter the room together, there is
a similar pattern, an increasing trend as the single-person
scenario. However, to get accurate counting result, we need
to identify how many people are passing by the door at the
same time. In fact, multi-person scenario is quite common in
shopping malls and other indoor places where people can hang
out with their friends. By identifying the multi-person passing
behavior, it can also help to observe group behavior and human
dynamics. Thus, after recognizing the passing direction, we
need to figure out the exact number of passing people.



0 5 10
Time

0

0.5

1
Original series

0 5 10
Time

0

0.5

1
First component

0 5 10
Time

0

0.5

1
Second component

0 5 10
Time

0

0.5

1
Third component

0 5 10
Time

0

0.5

1
Fourth component

0 5 10
Time

0

0.5

1
Fifth component

2 4 6 8 10 12
Time

0

0.5

1

Original series

2 4 6 8 10 12
Time

0

0.5

1
First component

2 4 6 8 10 12
Time

0

0.5

1
Second component

2 4 6 8 10 12
Time

0

0.5

1
Third component

2 4 6 8 10 12
Time

0

0.5

1
Fourth component

2 4 6 8 10 12
Time

0

0.5

1
Fifth component

(a)

(b)

2 4 6 8 10
Time

-0.2

0

0.2

0.4

0.6

0.8
Original series

2 4 6 8 10
Time

0

0.5

1
First component

2 4 6 8 10
Time

0

0.5

1
Second component

2 4 6 8 10
Time

0

0.5

1
Third component

2 4 6 8 10
Time

0

0.5

1
Fifth component

2 4 6 8 10
Time

0

0.5

1
Fourth component

(c)
Fig. 5. Separated components when (a) one person enters the door; (b) two persons enter the door and (c) three persons enter the door.

Theoretically, we can treat each human object as indepen-
dent reflectors to the wireless signals. The overall received
wireless signals are the linear combination of different sources
of reflected signals. Although some people would walk closely
with each other, their moving behavior can still result in
distinctive effects on the reflected signals as human objects
are different in shape and walking habits. Previous work has
leveraged the gait difference for human identification using
wireless signals [23], [24], indicating that wireless signals
can reveal different walking patterns. Therefore, we apply
source separation techniques on the phase difference series
to see how many separated sources are affecting the wireless
signals. Here, we decompose the phase difference series with
Independent Component Analysis (ICA) [25].

For the source separation problem, its target is to separate
the mixed signals into individual sources. To separate n
sources from the mixed signals, there must be at least n
observations as the input. Denote x = [x1, x2, ..., xn] as the
input and s = [s1, s2, ..., sm] as the source signals, then
the mixed input signals can be represented as the linear
combination of the source signals: x = As. A new matrix W
is created to represent the estimated source signals as follows:
ŝ = Wx,W = A−1. Then, by estimating W, we can obtain
the separated source signals ŝ. However, we only have one set
of transceivers to get the phase difference series, while there
would be two or more people passing by the door. To get
enough source signals, we use the phase difference of multiple
subcarriers as different source signals. For the Intel 5300 NIC,
it can report 30 subcarriers. We assume that no more than five
people could pass by concurrently due to the space limitation,
so we only need to retrieve five components as the outputs of
ICA. We then transform the phase difference series of all the
30 subcarriers into an input matrix with size 30 ∗ k (k is the

number of sample points). The input matrix x is:

x =


∆ψ1,1 ∆ψ1,2 ... ∆ψ1,k

∆ψ2,1 ∆ψ2,2 ... ∆ψ2,k

... ... ... ...
∆ψ30,1 ∆ψ30,2 ... ∆ψ30,k

 (9)

Intuitively, the more sources of observation are captured,
the better separation result can be attained. However, due to
the hardware imperfection in the COTS WiFi devices, some of
the subcarriers contain noises and interferences from adjacent
carriers. A possible way is to apply smoothing algorithms to
denoise the input matrix, but the side effect is that the minor
changes in the signals caused by multiple persons’ moving
behavior will be removed as well. Besides, since the carrier
frequency difference between two consecutive subcarriers is
quite small, we need to consider the effect of the correlation
among different subcarriers on the result of ICA.

To enhance the performance of ICA, we leverage Principal
Component Analysis to discard the dimensions with less
dominance by analyzing the eigenspace [26]. Furthermore, we
can also remove the pair-wise dependency among subcarriers.
Denote the eigenvectors of the covariance matrix of the input
matrix as R, so that RT (x∗xT )R = Λ, where Λ is the diagonal
matrix of eigenvalues. The smallest q eigenvalues indicate the
noise space En, and we discard the eigenvectors in Rn and only
employ the eigenvectors Rs in the signal space Es as the input
for ICA. The eigenvectors whose eigenvalues account for less
than 5% of the sum of all eigenvalues are discarded. Then,
the estimated source signals can be derived as: ŝ = W ∗ RTs .

Here, we apply the FastICA algorithm which can perform
ICA efficiently on the preprocessed input matrix [27]. For
the estimation of W, FastICA employs the approximation
of negentropy to maximize the nongaussianity, which is a



Fig. 6. Average difference among all the difference between consecutive
values for difference number of passing people

measure of independency among different sources. For the
input parameter of the FastICA algorithm, we set the number
of separated components to be five owing to the upper limit of
the number of people. As an example, we show three sets of
separated sources in Fig. 5 with different numbers of people
entering the room. For the raw phase difference series, there
are more variations in the signals for more passing people.
For one-person case (Fig. 5(a)), the first component reflects
the entering behavior, while others are all noises. For the two-
person case (Fig. 5(b)), the first component is the general
trend of entering behavior, the second one reveals the walking
behavior of the second human object. Similarly, when there
are three human objects, the separated sources will have three
effective components representing the entering and walking
behavior, as shown in Fig. 5(c). Therefore, we can count the
number of passing people by detecting effective components
from the separated components.

The way to determine how many effective components exist
comes from the observation that the points in the effective
component are consistent with each other, while the random
noises are distributed out-of-order. So, the difference between
two consecutive points of effective components is smaller than
that of the noises. We add all the difference between two
consecutive points and obtain the average value. The average
differences for effective components and random noises are
shown in Fig. 6. It shows that the average difference of effec-
tive components is much smaller than that of random noises.
As there is always one effective component, we use it as the
benchmark (Dbase), if the difference of other components (i)
meets the requirement Di > α · Dbase, then the components
would be regarded as random noises. Here, the parameter α
is set to be 3 empirically. Then, the number of people is the
number of the effective components.

VI. EVALUATION

In this section, we first introduce the deployment of Wi-
Count and the data collection phase. Then the evaluation
metrics are given for passing direction detection and number
of passing people identification, and the counting performance
is evaluated under different settings and scenarios.

A. Deployment and Data Collection

To evaluate the performance of our approach, we implement
our system with commercial off-the-shelf devices, i.e., a TP-
Link wireless router, a laptop equipped with Intel 5300 NIC.

Rx1 Rx2Tx

Fig. 7. Wi-Count deployment in real environment

There are three antennas on the Intel 5300 NIC, we only
use the first two as the receivers and the antenna on the TP-
Link wireless router is regarded as the transmitter. They are
horizontally placed around the doorway with 1-meter distance.
The CSI information is extracted through the CSI tool [28]
which modifies the firmware under Linux system for exposing
the CSI information.

We collect phase difference series under the above de-
ployment in real environments. Figure 7 shows examples of
the deployment environment of our system. We recruit 8
volunteers, including 5 males and 3 females, and make them
enter and exit the rooms back and forth. They are required
to move with different walking speeds, i.e., slow, normal and
fast walking. For the multi-person scenario, they enter and
exit the room in two group patterns, i.e., one after another or
side by side. We spent around 20 days distributed in three
months for the data collection phase. While collecting the
phase information, the sampling rate is set to be 100p/s,
200p/s and 400p/s respectively.

B. Evaluation Metrics

To evaluate the performance on passing direction detection
and number of passing people identification, the following
metrics are defined accordingly.

Evaluation on Passing Direction Detection: There are two
possible results for detecting the passing direction, which
are entering and exiting. We define the accuracy of passing
direction detection as the ratio between all the correct instances
and the total number of instances for each case.

Evaluation on Multi-Person Passing Identification: To e-
valuate the performance of the source separation method on
counting the number of people passing by, we define the
error of multi-person counting as the difference between the
estimated number of people and the real number of people,
and the accuracy of multi-person counting as the percentage
of the correctly identified instances over the total number of
instances for different number of passing people.

C. Passing Direction Detection

The performance of passing direction detection is evaluated
with different scenarios, i.e., walking speed, sampling rate and
number of people under two environments. In the following,
the accuracy on passing direction detection will be discussed
in detail in terms of the impact of walking speed, sampling
rate and the number of people.



1) Impact of walking speed: Volunteers are asked to enter
or exit the doorway with different walking speeds, including
slow (about 0.7m/s), normal (about 1m/s) and fast (about
1.3m/s) walking. The accuracy of passing direction detection
with different walking speeds is shown in Fig. 8(a). The
average accuracy among the three walking speeds is around
94%. The detection accuracy of slow and normal walking
speeds is quite similar with each other, while walking with
faster speed can lead to more detection failure. This is because
that the effective time series will be less affected by the
moving behavior when the object is moving too fast and
the corresponding time span will be shorter which makes the
extraction of the signal trend suffer from more disturbance.

2) Impact of sampling rate: In addition to the walking
speed, we also investigate the impact of different sampling
rates on the accuracy of passing direction detection. In fact,
the sampling rate is relevant to the walking speed. If the
sampling rate is too low, the effective time series of the
passing behavior will be too short to be detected. By contrast,
if the sampling rate is too high, then it can lead to more
noises in the wireless signals. Figure 8(b) depicts the accuracy
on passing direction detection under different sampling rates,
which are 100 packets per second (p/s), 200p/s and 400p/s. It
shows that the sampling rate of 200p/s can achieve the best
performance with around 95.5% detection accuracy. In our
case, the distance between the transmitter and two receivers is
about 1 meter. The sampling rate can be adaptively adjusted
with the change on the distance, like applying higher sampling
rate on longer distance scenario.

3) Impact of the number of people: The above experiments
are done with a single human object. Other than the single-
person scenario, we also explore the effect of the number of
people on the performance of passing direction detection. The
result is shown in Fig. 8(c) for 2, 3 and 4 human objects
moving in or out the door together. Although the accuracy
on passing direction detection drops with the rising of the
number of people, the result is still above 90%. More people
passing by the door induces more variations in the wireless
signals owing to the superposition of multiple human objects
as the reflector and various walking patterns, leading to more
misinterpretation on the pattern of the phase difference.

D. Multi-People Passing Identification

To evaluate the performance on people counting, both the
estimation error on the number of people and the overall
accuracy are calculated. Besides, we investigate the impact of
the PCA for the preprocessing of the input matrix to ICA, the
impact of the threshold for identifying effective components
and the group passing patterns on the counting result.

1) Impact of α: In the previous section, we set a threshold
α for identifying the effective components. Here, we try to find
out the optimal value of α. The value of α is iterated from
1 to 5 with the interval of 0.5, and the accuracy on counting
passing people is shown in Fig. 9(a). The accuracy goes up
when α changes from 1 to 2.5, and then experiences slight
fluctuation and reaches the highest peak when α is 3. Then,

(a) (b)

(c)

Fig. 8. Accuracy on passing direction detection with different (a) walking
speeds; (b) sampling rates and (c) number of people

（a）

（b） （c）

Fig. 9. Performance on multi-person passing identification (a) with difference
α; (b) with and without PCA and (c) with different group patterns

the accuracy decreases sharply after 4. From Fig. 6, we can
also draw the similar conclusions, the possible range for α is
between 2 to 4. Therefore, α is set to be 3 from empirical
observation and experiments.

2) Impact of PCA: To enhance the performance of ICA for
estimating the number of passing people, we employ principal
component analysis for preprocessing the input matrix. We
compare the counting performance with and without PCA, and
the result is shown in Fig. 9(b). With PCA, around 90% of the
counting result is correct, while the percentage goes down to
around 80% when the PCA is not applied. This implies that
simply using all the 30 subcarriers as the input matrix has
some adverse effects on the result since some subcarriers are
more vulnerable to noises rather than the moving behavior.

3) Impact of group passing pattern: Next, we investigate
how our counting method goes with different group passing
patterns. Volunteers are required to enter or exit the door with
two patterns, which are one by one and side by side. For the
one-by-one pattern, they are close to each other with around
0.5m spacing. While for the side-by-side pattern, there is less
vertical space among them. The error for the counting result is



illustrated in Fig. 9(c), which tells that there are more errors on
the estimation of the number of people when they are passing
side-by-side. This is due to the reason that, they may have less
distinctive vibrations on the wireless signals. However, since
people cannot completely copy other’s moving behavior, our
method can still figure out the exact number of people passing
by for most of the cases (85%).

VII. DISCUSSION

The presence of moving human objects will influence the
propagation of wireless signals. Therefore, we discuss the
effects of the surrounding human activities on the counting re-
sult. Directional antennas are employed, and the displacement
of the transmitter and receivers are only targeted at the passing
human object. Hence, the effects of the surrounding changes
will be lowered to the least. We allow several volunteers to
walk around in the room to see its effects on the wireless
signals received by the two antennas. Experiments are done
to evaluate the performance of passing direction detection and
multi-person passing identification. The average accuracy is
still around 90% for bi-directional passing detection and the
percentage of identifying the correct number of people is about
86%, indicating a decent performance with the surrounding
human activities.

VIII. CONCLUSION

In this paper, we propose a passing people counting system,
Wi-Count using WiFi signals. The number of people is counted
when human objects pass by the doorway in a low-cost,
accuracy and non-intrusive manner. Wi-Count can be deployed
with the existing indoor WiFi infrastructure, and people can be
detected without active participation and carrying any devices.
We present a physical model to represent the effects of the
bi-directional passing behavior on the wireless signals with
respect to the phase information. So, the passing direction can
be recognized by the specific pattern in the phase information.
Wi-Count not only detects the passing direction but also
counts the number of people when multiple persons pass
by concurrently through an enhanced counting algorithm,
so that to provide more precise counting results. Extensive
experiments verify the correctness of the physical model and
the performance of our people counting approach. The average
accuracy on passing direction detection and passing people
counting are around 95% and 92% respectively, and the system
is robust to the surrounding moving human objects.
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