
Privacy-preserving and Efficient Multi-keyword
Search Over Encrypted Data on Blockchain

Shan Jiang∗, Jiannong Cao∗, Julie A. McCann†, Yanni Yang∗, Yang Liu‡, Xiaoqing Wang‡, Yuming Deng‡
∗The Hong Kong Polytechnic University, Hong Kong, China

†Department of Computing, Imperial College London, London, UK
‡Alibaba Group Holding Limited, Hangzhou, China

{cssjiang, csjcao, csynyang}@comp.polyu.edu.hk, jamm@imperial.ac.uk, {lionel.ly, robin.wxq, yuming.dym}@alibaba-inc.com

Abstract—Recent research has demonstrated searchable
blockchains that not only provide reliable search over encrypted
distributed storage systems but ensure privacy is preserved.
Yet, current solutions focus on single-keyword search over
encrypted data on the blockchain. To extend such approaches
to multi-keyword scenarios, they essentially perform a single-
keyword search for multiple times and take the intersection of
the results. However, such extensions suffer from privacy and
efficiency issues. In particular, the service peers, which process
the search requests, will be aware of the intermediate results,
which include the data associated with each of the encrypted
keywords. Moreover, these multiple traversals incur long delays
in performing the search requests one after another with an extra
cost in calculating the intersection of multiple sets. Finally, the
service peers will charge the data owner a lot for writing the
vast intermediate results to the smart contract. In this paper, we
propose a bloom filter-enabled multi-keyword search protocol
with enhanced efficiency as well as privacy preservation. In the
protocol, a low-frequency keyword selected by a bloom filter will
be used to filter the database when performing a multi-keyword
search operation. Because the keyword is of low frequency,
the majority of the data will be excluded from the result,
which reduces the computational cost significantly. Moreover, we
propose to use pseudorandom tags to facilitate completing each
search operation in only one round. In this way, no intermediate
results are generated, and the privacy is preserved. Finally, we
implement the protocol in a local simulated blockchain network
and conduct extensive experiments. The results indicate that
our multi-keyword search protocol outperforms the traditional
method with an average of 14.67% less time delay and 59.96%
less financial cost.

Index Terms—Blockchain, symmetric searchable encryption,
smart contract

I. INTRODUCTION

Nowadays, enterprises tend to store their data in data centers
rather than locally due to the increasing demands for storage
and computation resource [1]. Because there can be sensitive
information, e.g., trade-union membership and health-related
records, and even the data center and be malicious, the data
is typically encrypted before outsourcing. The encryption, in
turn, hinders data utilization, e.g., frequent search operations.
Therefore, we need to bring out the technology of searchable
symmetric encryption (SSE).

SSE is a technique enabling searching over encrypted data,
in which the data owners encrypt not only the data but the
search requests as well [2]. By this means, the data center

knows nearly nothing about the data. However, the data center
is assumed to be technically curious but honest in this field [3].
In practice, the data center has the potential to be malicious
and deviate from the predefined protocol, e.g., to return only
part of the result to save computational resources. Hence,
reliability issues arise.

To deal with the reliability issue, the research community
has proposed verifiable searchable encryption, in which the
data center attaches some flag bits to the result [4]. Upon
receiving the result from the data center, the data owners can
decode the flag bits to verify the correctness of the result.
However, it requires noticeable computational resources for
the data owners to decode the flag bits [5]. It is preferable to
outsource as many computational tasks as possible to the end
devices, especially those with limited battery.

Recently, blockchain technology [6] [7] shows its potential
to solve the reliability issue. In these schemes, the blockchain,
a distributed ledger maintained by a trustless peer-to-peer
network, serves as the data center. The encrypted data with
indexes, which is stored in the blockchain and smart contract
[8], is used to implement the functions of data storage and data
search. Since all the operations are completed by all the nodes
in the network, the correctness of the result can be guaranteed
as long as the majority of the nodes are honest [9].

Existing blockchain-based searchable encryption schemes
[10] [11] focus only on single-keyword search. They can be
extended to multi-keyword scenarios by performing a single-
keyword search for multiple times and taking the intersection
of the results. However, such extensions suffer from privacy
and efficiency issues. In particular, the intermediate results,
i.e., the data associated with each individual keyword, will
be exposed to the service peers. Such data leakage raises the
privacy issue. Moreover, the service peers have to handle the
single-keyword search requests one after another. Since some
keywords can appear in the majority or even all the data, the
computational cost to handle such keywords multiple times
seems a substantial burden. The large amount of intermediate
results also leads to a significant financial cost since they are
written to the smart contract by the service peers. After the
results for all the keywords are calculated, the service peers
have to calculate the intersection of the results, which demands
an extra computational cost.

In this paper, we design a privacy-preserving and effi-
cient data management system with the functions of database
setup, dynamic update, and multi-keyword search. The original
database to be outsourced is defined as a set of identifier-
keyword pairs. That is, there are several keywords associated
with each of the identifiers. After setting the database up, the
data owner can add or delete some identifier-keyword pairs
dynamically. Meanwhile, the data owner can query all the
identifiers that are associated with a set of keywords. The data
center is a blockchain network composed of multiple service
peers which rent out their computational resources to earn
monetary rewards. Inside the blockchain, smart contracts are
deployed to fulfill the data services. Because smart contracts
are automated programs executed by all the service peers, the
data services can be provided with reliability. Furthermore,
SSE is employed in smart contracts to preserve privacy.
Finally, we propose a bloom filter-enabled multi-keyword
search protocol, which reduces the time delay and financial
cost remarkably. Next, we discuss the challenges in designing
our system and the proposed approaches to overcome them.

The first challenge is to set up an encrypted database without
violating the cost limit rule in smart contracts [12]. That is,
the service peers contribute their computational resources to
maintain the state of the smart contracts. Such work is not free
since each operation in the smart contract, e.g., adding two
numbers and storage to the local disks, takes certain costs. To
guarantee the validity of a smart contract, the cost for a single
transaction is bounded, which is called the cost limit rule. In
the setup phase, a large number of encrypted data is outsourced
to the service peers. In particular, for each identifier-keyword
pair, a reversed and encrypted keyword-identifier pair and a
tag to support multi-keyword search will be generated in our
algorithm. To prevent the setup operation from violating the
cost limit rule, we devise a way to estimate the number of bytes
that will be generated for each identifier-keyword pair and
calculate the number of encrypted data that can be contained
in a single transaction. Then, we slice the encrypted database
based on the calculation to comply with the cost limit rule.
Finally, the encrypted keyword-identifier pairs and the tags are
randomly shuffled to prevent data leakage.

The second challenge lies in designing a time- and finance-
efficient protocol for multi-keyword search. As discussed
previously, the existing approaches are inefficient in terms of
time delay and financial cost due to the large number of in-
termediate results. In this paper, we design our multi-keyword
search protocol based on the insight that the appearance times
of the majority of the keywords are low in the database.
First, we generate a tag for each identifier-keyword pair in
the setup phase. Meanwhile, we build a bloom filter to record
all the high-frequency keywords in the database. In the multi-
keyword search phase, we use the bloom filter to find a low-
frequency keyword from the search request and use it to filter
the database. Note that most of the keywords will be excluded
from the result since the selected keyword is of low frequency.
Finally, we use the tag of each identifier-keyword pair to check
whether each candidate identifier meets the search request.

II. PRIVACY-PRESERVING AND EFFICIENT DATA
MANAGEMENT VIA BLOCKCHAIN

A. System Overview
There are two actors in the blockchain-based data manage-

ment system, i.e., service peer and data owner. The service
peers are individual nodes in the blockchain network who are
renting out computational resources to earn monetary rewards.
Data owners are the service requesters who want to outsource
their data and later enjoy content update and search services.

There are four kinds of actions that can happen between
the two actors, i.e., setup, addition, deletion, and search. The
formal definition of each action is described as follows.

• Setup. The data owner outsources a database W =
{(idi, wi)|i = 1, 2, · · · , l}, a list of l identifier-keyword
pairs to the service peers. Each idi ∈ {0, 1}µ is a string
of certain length while each wi ∈ {0, 1}∗ is a string of
uncertain length. In the later sections, we will use l, m,
and n to notate the number of identifier-keyword pairs,
keywords, and identifiers respectively.

• Addition. The data owner adds a set of identifier-keyword
pairs {id,Wa} to the database W , where Wa is a set of
keywords.

• Deletion. The data owner deletes a set of identifier-
keyword pairs {id,Wd} from the database W , where Wa

is a set of keywords.
• Search. The data owner sends Ws = {w1, w2, · · · , wk}

to the service peers to find out all the identifiers ids such
that there exists w ∈Ws and (id, w) ∈W .

data owner

encrypted data

and operations

write data

read result

smart contract

blockchain network

confirm

transactions

blockchain

Fig. 1. System Overview

The flowchart of the actions is demonstrated in Fig. 1. When
the data owners perform the operations of setup, addition,
deletion, or search, they will send one or more transactions
containing the encrypted data and operations to the service
peers. The service peers process the transactions and pack
the transactions into the blockchain. After the transaction is
confirmed into the blockchain, the service peers will perform
the operations which write data to the smart contract. Finally,
the data owners can get the results according to the state of
the smart contract.

We design privacy-preserving and reliable protocols to fulfill
the four actions described in the following subsections1. Be-

1The protocols of addition and deletion are omitted due to page limit.

Algorithm 1 Initialization
Service Peers on Initializing the Smart Contract:

1: Allocate a dictionary Dori

2: Allocate two sets Sdel and Stag
3: Allocate two lists Flag and Result
4: Set balance to be B, the money deposited by data owner

fore the illustration of the four actions, we first demonstrate
the initialization of the smart contract as shown in Alg. 1. The
smart contract stores five variables, a dictionary Dori, two sets
two sets Sdel and Stag , and two lists Flag and Result for
future usage, in which Dori is to store encrypted keyword-
identifier pairs, Sdel and Flag are to support dynamic update
of the database, Stag is to support multi-keyword search, and
Result is used for storage of the search result. Finally, the
balance of the smart contract is set to be B, which is the
money deposited by the data owner. The operations cannot
cost more than B in the future.

B. Database Setup

After initializing the smart contract, the data owner can set
the database up as shown in Alg. 2. The data owner aims to
store a set of identifier-keyword pairs. First, the data owner
generates four secret keys K, K+, K−, and KT . The four
secret keys are all of size λ, which is an adjustable security
parameter. Then, for each keyword w, derives two keys K1

and K2 are derived from a predefined pseudorandom function
(PRF) [13] F and the secret key K. The key K1 is to derive
pseudorandom labels for the keywords while the key K2 is to
encrypt the identifiers. Using the keyword w, we can get all
the identifiers that are associated with w, which is notated
as a set Ww. Afterward, we iterate the identifiers id over
Ww. For each id, the PRF F is applied to a counter c using
the key K1 to generate a pseudorandom label l. Meanwhile,
we use K2 to encrypt id using K2 and get the encrypted
identifier d. Then, we add the keyword-identifier pair (l, d)
to a list L. To summarize, we reverse each identifier-keyword
pair to an encrypted keyword-identifier pair and store the result
in a list L. Besides this, we generate a unique tag for each
identifier-keyword pair (id, w) by applying the PRF F over
w and id sequentially using the secret key KT . The tags are
accumulated into the list Ltag . Note that the tags are used for
the multi-keyword search.

The data owner has to send the database to the service peers
after encryption. However, the encrypted database has to be
sliced before sending due to the cost limit rule in the smart
contract. Generally, each operation in smart contract takes a
specific cost, and there is a cost limit for each transaction sent
to the smart contract. As a result, the number of data that can
be attached for each transaction is limited. In our protocol, the
data generated for each identifier-keyword pair is designed to
be bounded, i.e., a keyword-identifier pair and a tag. The size
of the keyword-identifier pair and the tag will be fixed, e.g.,
512 bits and 256 bits respectively, if the PRF F is fixed, e.g.,
HMAC-SHA256 [14].

Algorithm 2 Setup
Data Owner on Setting W up:

1: K ← {0, 1}λ
2: K+ ← {0, 1}λ
3: K− ← {0, 1}λ
4: KT ← {0, 1}λ
5: Allocate two lists L and Ltag
6: Allocate two local dictionaries Dcount and Dkey

7: count ← 0
8: for each keyword w ∈W do
9: K1||K2 ← F (K,w)

10: KT
w ← F (KT , w)

11: c ← 0
12: for each id ∈Ww do
13: l ← F (K1, c)
14: d ← Enc(K2, id)
15: c ← c+ 1
16: tag ← F (KT

w , id)
17: Append (l, d) to L
18: Append tag to Ltag
19: if count ≥ δ then
20: Shuffle L and Ltag randomly
21: Send (SETUP, L, Ltag) to the service peer
22: count ← 0
23: Empty L and Ltag
24: end if
25: end for
26: cw ← Get(Dkey, w)
27: if cw = ⊥ then cw ← 0 end if
28: Set(Dkey, w, cw + c)
29: end for
30: Sort all the keywords w ∈W according to Get(Dkey, w)

in descending order to get a list of keywords Ws

31: Allocate a list bf of α 0/1 bits initialized to be all 0
32: for each keyword w in the first β percentage of Ws do
33: bf ← (H(w) | bf)
34: end for
35: Send (SETUP, L, Ltag) to the service peer
36: Store K, K+, K−, KT , bf , and Dcount locally
Service Peers on Receiving (SETUP, L, Ltag):
37: Add all the elements (li, di) in L to the dictionary Dori

with l as the key and d as the value
38: Add all the elements in Ltag to the set Stag

As a result, we can calculate the maximum number δ of
identifier-keyword pairs that can be handled in one transaction.
Assume that the PRF F digests message into δf bits and the
number of bits that can be stored in a single transaction to be
δt. Then, the value of δ should be bδt/(3δf)c. In this paper, at
most 10KB can be stored in a transaction and HMAC-SHA256
is used as the PRF. As a result, δt equals 80, 000, δf equals
256, and δ is calculated to be 104. When the counter reaches δ,
we shuffle the lists L and Ltag , and send a transaction of setup
containing them to the service peer. The reason for shuffling

L and Ltag is to prevent the service peers from inferring any
information related to the data. For example, L and Ltag are
in the same order with regard to each identifier-keyword pair.
After sending each setup transaction, the counter will be reset
to be 0 and that lists L and Ltag will be emptied. Note that
there are additional operations related to the bloom filter bf ,
which will be explained in the later subsections.

From the perspective of the service peers, they are receiving
several transactions of setup together with two lists L and
Ltag . For each transaction, they enumerate the elements (li, di)
in the list L and add it into the dictionary Dori with li as the
key and di as the vale. Afterward, they store all the elements
in Ltag to the set Stag in the smart contract. We can see
that the data is stored in the smart contract with unordered
data structures, i.e., dictionary and set. Therefore, the setup
protocol is immune to the order of the transactions received,
which is a notable feature.

C. Multi-keyword Search

In the above subsections, we demonstrate the protocols of
setup, addition, and deletion, which enables dynamic, reliable,
and privacy-preserving storage and update of the data. In this
subsection, we demonstrate the protocol for multi-keyword
search upon the encrypted database.

To begin with our approach, we introduce the way to build
the bloom filter which includes the keywords that frequently
appear in the database. In Alg. 2, we create a dictionary Dkey

to count the appearance time of each keyword, where the
appearance time of a keyword w is defined to be:

F (w,W) = |{(idi, w)|(idi, w) ∈W}|

A keyword is defined to be high-frequency in a database
W if it is in the first β percentage when sorting {w|w ∈W}
in non-increasing order according to the appearance times. A
keyword is defined to be low-frequency in W if it is not high-
frequency in W .

For each high-frequency keyword w in W , we use a hash
function H to hash w into an α-bit 0/1 string H(w) and apply
bitwise OR operation to bf using H(w). In this way, bf is
a bloom filter containing all the keywords of high frequency.
Note that α and β are parameters that should be fine-tuned to
make the bloom filter efficient. A large value of α increases
the storage burden for the data owner while decreases the
false positive rate when judging whether a keyword of high
frequency. On the other hand, a large value of β increases the
false positive rate while reduces the cost if true positive. In
this paper, we set α and β to be 8, 000 and 10% respectively,
which is enough to handle a database of up to 9.1M identifier-
keyword pairs.

After setting the bloom filter up, the data owner can use
it to find an arbitrary low-frequency keyword among the
k keywords in the search request. If the hash value of a
keyword does not equal to the result of applying bitwise AND
operation to itself with bf , then the keyword must be low-
frequency. If such a low-frequency keyword is found, we swap
it with the first keyword in the multi-keyword search request;

Algorithm 3 Search
Data Owner on Searching (w1, w2, · · · , wk) upon W :

1: for k ← 1 to k do
2: h ← H(wi)
3: if (h & bf) 6= h then
4: Swap w1 and wi
5: Break
6: end if
7: end for
8: K1||K2 ← F (K,w1)
9: K+

1 ||K
+
2 ← F (K+, w1)

10: K−
1 ← F (K−, w1)

11: for i← 2 to k do KT
i ← F (KT , wi) end for

12: Send (SEARCH,K1,K2,K
+
1 ,K

+
2 ,K

−
1 ,K

T
2 , · · · ,KT

k) to
the service peer

Service Peers on Receiving (SEARCH,K1,K2,K
+
1 ,K

+
2 ,K

−
1 ,

KT
2 , · · · ,KT

k):
13: res ← ∅
14: for c← 0 to ∞ do
15: l ← F (K1, c)
16: d ← Get(Dori, l)
17: if d = ⊥ then Break end if
18: res ← res ∪ {Dec(K2, d)}
19: end for
20: for c← 0 to ∞ do
21: l ← F (K+

1 , c)
22: d ← Get(Dori, l)
23: if d = ⊥ then Break end if
24: res ← res ∪ {Dec(K+

2 , d)}
25: end for
26: for each id ∈ res do
27: delid ← F (K−

1 , id)
28: if delid ∈ Sdel then res← res \ {id}
29: else for i← 2 to k do
30: if F (KT

i , id) /∈ Stag then
31: res← res \ {id}
32: Break
33: end if
34: end for end if
35: end for
36: Result ← res

otherwise, there is no low-frequency keyword among the k
keywords, and the first keyword will remain high-frequency.
Note that we will not make the first keyword to be high-
frequency if it is low-frequency before the operation since no
true negative judgment happens a bloom filter.

Now, it comes to the phase of generating encrypted search
request by the data owner. The data owner will take the secret
keys K, K+, and K− to generate three pseudorandom labels
K1, K+

1 , and K−
1 and two symmetric keys K2 and K+

2 for
the first keyword w1. Meanwhile, a tag will be generated for
each keyword ki, where i ranges from 2 to k, using the secret
key KT . In this way, an encrypted search request containing

three pseudorandom labels, two symmetric keys, and k − 1
tags will be generated and sent to the service peers.

On receiving a search request from the data owner, the
service peers will start with the first keyword and get a set
of candidate identifiers. In particular, they traverse Dori in
the smart contract using the pseudorandom K1 and K+

1 in
sequence. Then, the service peers accumulate all the counters
that exist in the key field of Dori after encryption using K1

or K+
1 . Afterward, the service peers add the identifiers after

decryption corresponding to each of the accumulated counters
using the corresponding symmetric key. Finally, we deal with
the deletion set and the other k − 1 keywords at the same
time. For each of the identifiers id after decryption, we check
whether the encrypted result of id using the pseudorandom
deletion label K−

1 is in the set of Sdel and whether any of the
k − 1 tags after applying PRF F to id is not in the tag list
Stag . If any of the two conditions hold, id will be excluded
from the result.

Finally, we analyze the time delay and financial cost for the
traditional method and our method. In the traditional method,
it takes O(l) and generates O(n) identifiers for each single-
keyword search request. Then, it takes an extra O(k ·n · log n)
time to calculate the intersection of k sets, each of which
is of size O(n). Since the writing operations dominate the
financial cost for a smart contract [15], we approximate the
financial cost as the number of identifiers in the intermediate
and final results. Hence, the time delay and financial overhead
are O(k · l+k ·n · log n) and O(k ·n) respectively. In terms of
our method, it takes O(l) to use the first keyword to filter the
database. Then, β ·n identifiers will be generated and verified
through k − 1 tags, which takes O(k · β · n) time. Therefore,
the time overhead for our approach is O(l + k · β · n). In
the experiments, we figure that β can be as small as 10%,
which reduce the time complexity remarkably. The financial
cost overhead is O(n) since only the final result will be written
to the smart contract.

III. EXPERIMENTAL RESULT

We implement the operations of database setup, dynamic
update, and multi-keyword search in python 2.7 with the PRF
implemented by HMAC-SHA256 in the PYCRYPTODOME
package and the bloom filter implemented by the PYBLOOM
package [16]. We run both the data owner and the service peers
on laptops running Ubuntu 16.04.5 with 16GB RAM and two
Intel i7-6500U cores. The service peers form a local simulated
blockchain network, accept the request from the data owner,
and run the smart contract. To focus on the performance of
our protocol, we set the block generation time to be 0, which
means the influence of the complex network topology is not
taken into consideration.

After setting up the experimental environment, we conduct
extensive experiments on the Eron email dataset [17], which
consists of 517K emails. The original database is generated
from the dataset as follows. Each email is treated as a new
identifier id, and each word after lowercasing in the email is
treated as a keyword associated with id. By this means, we

get a database consisting of 517K identifiers, 622K distinct
keywords, and 9.1M identifier-keyword pairs.

A. Single-keyword Search

0 100 200 300 400 500
4

8

10

12

14

16

6

Number of identifiers in the result

S
ea

rc
h

 t
im

e
in

 s
ec

o
n

d
s

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

S
ea

rc
h

 t
im

e
p

er
 i

d
en

ti
fi

er
 i

n
 s

ec
o

n
d

s

0 100 200 300 400 500
Number of identifiers in the result

(a) Search time v.s. #identifiers (a) Search time per identifier v.s. #identifiers

Fig. 2. Single-keyword search

In the single-keyword search operation, the time consump-
tion at the data owner side can be neglected since only
several operations of symmetric encryption are involved. At
the service peer side, it needs to traverse the dictionary Dori

twice and write the data to the local state. We conduct
experiments on searching keywords with various appearance
times. The result is shown in Fig. 2. We can see that 5.12s
is needed when there is no matched identifier, which is the
time to traverse the dictionary Dori. Moreover, it takes 15.10s
when all the identifiers are associated with the keyword. The
search time per identifier decreases as the number of identifiers
in the result increases. The reason is that a large number of
identifiers can average the time to traverse the dictionary.

B. Multi-keyword Search

Number of keywords in search request

N
u

m
b

er
 o

f
st

o
re

d
 i

d
en

ti
fi

er
s

(x
1
0

5
)

0

0.5

1.0

1.5

2.0

2.5

3.0

Trad. method

Our method

2 3 4 5 6 7
15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

Number of keywords in search request

S
ea

rc
h

 t
im

e
in

 s
ec

o
n

d
s

2 3 4 5 6 7

(a) Search time v.s. #keywords (b) #stored identifiers v.s. #keywords

Trad. method

Our method

Fig. 3. Time evaluation for multi-keyword search

We conduct experiments for multi-keyword search over
traditional method and our method for the number of keywords
ranging from 2 to 7. The traditional method, or the intersection
method, is to apply single-keyword search multiple times and
take the intersection of the results as the final result. In our
method, we set β to be 10 since no more than 0.05% keywords
appears in at least 10% identifiers after analysis. We run the
experiments for 50 times and the comparison results in terms
of time and financial overhead are shown in Fig. 3. Note that

extreme cases, e.g., all the keywords are of high frequencies,
are included in the experiments because the keywords are
randomly generated.

In terms of time overhead, the intersection method is
significantly affected by the number of keywords since the
intersections of more sets should be calculated when the
number of keywords increases. For our method, the time to
execute a multi-keyword search does not vary too much as
the number of keywords increases. The reason is that there
will be few candidate identifiers after filtering the database
using the first keyword. Moreover, only one operation of tag
comparison will be added to the computational burden in case
of one more keyword. On average, our method outperforms
the intersection method by 14.67% in terms of time efficiency.

In terms of financial overhead, the major financial cost
for search operation lies in data storage because data storage
dominates the cost compared to other operations. Therefore,
we treat the number of identifiers that are written to the state
of the smart contract as the financial cost. For the intersection
method, the number of stored identifiers increases about 60%
when the number of keywords increases from 2 to 5 and re-
mains nearly unchanged for 5 and more keywords. The reason
is that there will be few identifiers with the same 5 or more
keywords. The financial cost of our method decreases when
the number of keywords increases since we call the smart
contract and write the result only once. Besides, the number
of eligible identifiers decreases when the number of filtering
keywords increase. On average, our method outperforms the
intersection method by 59.96% concerning financial cost.

IV. RELATED WORK

Searchable symmetric encryption is a technique to enable
privacy-preserving and secure search over encrypted data be-
tween client and server [2]. The research community has been
devoted this area for enabling dynamic operations [18], sup-
porting boolean queries [3], and extending to graph database
[19]. However, none of these research works considers dis-
honest servers. Verifiable searchable encryption has the same
target as SSE while considering the dishonest servers. The
researchers enable the client-side verification by introducing
verifiable hash table [5]. Nevertheless, the client is assumed
to be honest in their works. Moreover, the client takes non-
negligible efforts to verify the results from the servers. In
recent years, the research community introduces blockchain to
searchable encryption to solve the dishonesty issues of both
the client and server [9] [10] [11] [20]. However, they focus
on the financial fairness between the miners in blockchain and
the clients and suffer from privacy and efficiency issues when
extended to multi-keyword search.

V. CONCLUSION

In this paper, we propose a blockchain-based data manage-
ment system with functions of privacy-preserving and efficient
database setup, dynamic update and multi-keyword search.
The technique to divide the encrypted database into several

pieces in the protocols is general for other blockchain appli-
cations. The key contribution lies in enabling multi-keyword
search over encrypted database on blockchain and improving
its efficiency in terms of time delay and financial cost. To do
so, we propose to use a bloom filter to find out a low-frequency
keyword and filter the encrypted database using the keyword,
which significantly narrows down the searching space. The
future work can be tuning the parameters in the bloom filter
to further enhance efficiency.

VI. ACKNOWLEDGMENT

This work is supported by Alibaba Innovative Research
(AIR) Program with project number H-ZG6N and Hong
Kong RGC Research Impact Fund (RIF) with project number
R5034-18.

REFERENCES

[1] B. Hayes, “Cloud computing,” Communications of the ACM, vol. 51,
no. 7, pp. 9–11, 2008.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in IEEE S&P, 2000, pp. 44–55.

[3] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in Springer EUROCRYPT, 2017,
pp. 94–124.

[4] X. Liu, G. Yang, Y. Mu, and R. Deng, “Multi-user verifiable search-
able symmetric encryption for cloud storage,” IEEE Transactions on
Dependable and Secure Computing (TDSC), 2018.

[5] R. Bost, “
∑

oϕoς: Forward secure searchable encryption,” in ACM CCS,
2016, pp. 1143–1154.

[6] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
Bitcoin Project White Paper, pp. 1–9, 2008.

[7] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “Blochie:
a blockchain-based platform for healthcare information exchange,” in
IEEE SMARTCOMP, 2018, pp. 49–56.

[8] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[9] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable and fair
realization,” in IEEE INFOCOM, 2018, pp. 792–800.

[10] Y. Zhang, R. Deng, X. Liu, and D. Zheng, “Outsourcing service fair
payment based on blockchain and its applications in cloud computing,”
IEEE Transactions on Services Computing (TSC), 2018.

[11] C. Cai, J. Weng, X. Yuan, and C. Wang, “Enabling reliable keyword
search in encrypted decentralized storage with fairness,” IEEE Transac-
tions on Dependable and Secure Computing (TDSC), 2018.

[12] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Springer POST, 2017, pp. 164–186.

[13] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” Journal of the ACM (JACM), vol. 33, no. 4, pp. 792–807,
1986.

[14] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for
message authentication,” RFC, vol. 2104, pp. 1–11, 1997.

[15] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security
of blockchain systems,” Future Generation Computer Systems (FGCS),
2017.

[16] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable
bloom filters,” Information Processing Letters, vol. 101, no. 6, pp. 255–
261, 2007.

[17] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” in Springer ECML, 2004, pp. 217–226.

[18] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in ACM CCS, 2012, pp. 965–976.

[19] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “Grecs: Graph
encryption for approximate shortest distance queries,” in ACM CCS,
2015, pp. 504–517.

[20] L. Chen, W.-K. Lee, C.-C. Chang, K.-K. R. Choo, and N. Zhang,
“Blockchain based searchable encryption for electronic health record
sharing,” Future Generation Computer Systems (FGCS), 2019.

