
Noname manuscript No.
(will be inserted by the editor)

Multi-Dimensional Top-k Dominating Queries

Man Lung Yiu · Nikos Mamoulis

Abstract The top-k dominating query returnsk data ob-
jects which dominate the highest number of objects in a
dataset. This query is an important tool for decision support
since it provides data analysts an intuitive way for finding
significant objects. In addition, it combines the advantages
of top-k and skyline queries without sharing their disadvan-
tages: (i) the output size can be controlled, (ii) no ranking
functions need to be specified by users, and (iii) the result
is independent of the scales at different dimensions. De-
spite their importance, top-k dominating queries have not
received adequate attention from the research community.
This paper is an extensive study on the evaluation of top-
k dominating queries. First, we propose a set of algorithms
that apply on indexed multi-dimensional data. Second, we
investigate query evaluation on data that are not indexed. Fi-
nally, we study a relaxed variant of the query which consid-
ers dominance in dimensional subspaces. Experiments using
synthetic and real datasets demonstrate that our algorithms
significantly outperform a previous skyline-based approach.
We also illustrate the applicability of this multi-dimensional
analysis query by studying the meaningfulness of its results
on real data.

Keywords: Top-k Retrieval, Preference Dominance, Score
Counting

1 Introduction

Consider a datasetD of points in ad-dimensional spaceRd.
Given a (monotone) ranking functionF : Rd → R, a top-k

Man Lung Yiu
Department of Computer Science, Aalborg University
E-mail: mly@cs.aau.dk

Nikos Mamoulis
Department of Computer Science, University of Hong Kong
E-mail: nikos@cs.hku.hk

query[14,9] returnsk points with the smallestF value. For
example, Figure 1a shows a set of hotels modeled by points
in the 2D space, where the dimensions correspond to (pref-
erence) attribute values; traveling time to a conference venue
and room price. For the ranking functionF = x+y, the top-
2 hotels arep4 andp6. An obvious advantage of the top-k
query is that the user is able to control the number of results
(through the parameterk). On the other hand, it might not
always be easy for the user to specify an appropriate rank-
ing function. In addition, there is no straightforward way for
a data analyst to identify the most important objects using
top-k queries, since different functions may infer different
rankings.

A skyline query[2] retrieves all points which are not
dominated by any other point. Assuming that smaller values
are preferable to larger at all dimensions, a pointp domi-
natesanother pointp′ (i.e.,p � p′) when

(∃ i ∈ [1, d], p[i] < p′[i]) ∧ (∀ i ∈ [1, d], p[i] ≤ p′[i])

wherep[i] denotes the coordinate ofp in thei-th dimension.
Continuing with the example in Figure 1a, the skyline query
returns pointsp1, p4, p6, andp7. [2] showed that the skyline
contains the top-1 result for any monotone ranking function;
therefore, it can be used by decision makers to identify po-
tentially important objects to some database users. A key
advantage of the skyline query is that it does not require the
use of a specific ranking function; its results only depend
on the intrinsic characteristics of the data. Furthermore, the
skyline is not affected by potentially different scales at dif-
ferent dimensions (monetary unit or time unit in the example
of Figure 1a); only the order of the dimensional projections
of the objects is important. On the other hand, the size of
the skyline cannot be controlled by the user and it can be as
large as the data size in the worst case. As a result, the user
may be overwhelmed as she may have to examine numerous
skyline points manually in order to identify the ones that
will eventually be regarded as important. In fact, the skyline

2

may not be used as an informative and concise summary
for the dataset. It is well known that [2]: for a fully corre-
lated dataset, the skyline contains exactly 1 point, which is
not informative about the distribution of other data points;
for a totally anti-correlated dataset, the skyline is the whole
dataset, which is definitely not a concise data summary.

p

x (time to conf. venue)

0.5 1

0.5

1

y (price)

F=x+y

1 p
2

p
3

p
4

p
5

p
6

p
7

p

0.5 1

0.5

1

3

p
1 p

2 p
4

50 points

(a) dataset with 7 hotels (b) dataset with 54 hotels

Fig. 1 Features of hotels

To summarize, top-k queries do not provide an objective
order of importance for the points, because their results are
sensitive to the preference function used. Skyline queries,
on the other hand, only provide a subset of important points,
which may have arbitrary size. To facilitate analysts, who
may be interested in a natural order of importance, accord-
ing to dominance, we propose the following intuitive score
function:

τ(p) = | { p′ ∈ D | p � p′ } | (1)

In words, thescoreτ(p) is the number of points dominated
by pointp. The following monotone property holds forτ :

∀ p, p′ ∈ D, p � p′ ⇒ τ(p) > τ(p′) (2)

Based on theτ function, we can define a natural or-
dering of the points in the database. Accordingly, thetop-
k dominatingquery returnsk points inD with the highest
score. For example, the top-2 dominating query on the data
of Figure 1a retrievesp4 (with τ(p4) = 3) and p5 (with
τ(p5) = 2). This result may indicate to a data analyst (i.e.,
conference organizer) the most popular hotels to the con-
ference participants (considering price and traveling time as
selection factors). Here the popularity of a hotelp is defined
based on over how many other hotels wouldp be preferred,
for any preference function.

As another example on how theτ function is related
to popularity, consider a dataset with 54 hotels, as shown
in Figure 1b. 50 of these points are not shown explicitly;
the figure only illustrates a rectangle which includes all of
them. The top-2 dominating points in this case arep1 (with
τ(p1) = 51) andp2 (with τ(p2) = 50). Even thoughp2

is not a skyline point, it becomes important after the top-1
hotelp1 has been fully booked. The reason is thatp2 is guar-
anteed to be better than at least 50 points, regardless of any

monotone preference ranking function considered by indi-
vidual conference participants. On the other hand, skyline
point p3 may not provide such guarantee; in the worst case,
all conference participants may just be looking for cheap ho-
tels, sop3 is no good at all. A similar observation holds for
the skyline pointp4.

The above examples illustrate that a top-k dominating
query is a powerful decision support tool, since it identi-
fies the most significant objects in an intuitive way. From
a practical perspective, top-k dominating queries combine
the advantages of top-k queries and skyline queries without
sharing their disadvantages. The number of results can be
controlled without specifying any ranking function. In addi-
tion, data normalization is not required; the results are not
affected by different scales or data distributions at different
dimensions.

The top-k dominating query was first introduced by Pa-
padias et al. [24] as an extension of the skyline query. How-
ever, the importance and practicability of the query was not
identified there. This paper is an extensive study of this analy-
sis query. We note that the R-tree (used in [24]) may not be
the most appropriate index for this query; since computing
τ(p) is in fact anaggregatequery, we can replace the R-tree
by anaggregate R-tree(aR-tree) [17,23]. In addition, we ob-
serve that the skyline-based approach proposed in [24] may
perform many unnecessary score countings, since the sky-
line could be much larger thank.

Motivated by these observations, our first contribution
includes two specialized and very efficient methods for eval-
uating top-k dominating queries on a dataset indexed by
an aR-tree. We propose (i) a batch counting technique for
computing scores of multiple points simultaneously, (ii) a
counting-guided search algorithm for processing top-k dom-
inating queries, and (iii) a priority-based tree traversal al-
gorithm that retrieves query results by examining each tree
node at most once. We enhance the performance of (ii) with
lightweight counting, which derives relatively tight upper
bound scores for non-leaf tree entries at low I/O cost. Fur-
thermore, to our surprise, the intuitivebest-firsttraversal or-
der [13,24] turns out not to be the most efficient for (iii) be-
cause of potential partial dominance relationships between
visited entries. Thus, we perform a careful analysis on (iii)
and propose anovel, efficient tree traversal orderfor it. Ex-
tensive experiments show that our methods significantly out-
perform the skyline-based approach of [24].

The above algorithms have been published in the prelim-
inary version of this paper [31], where we also propose top-k
dominating query variants such asaggregatetop-k dominat-
ing queries andbichromatictop-k dominating queries; these
extensions are not further investigated here. Instead, in this
paper, we examine two alternative topics relevant to top-k
dominating queries. The first is the processing of top-k dom-
inating queries on non-indexed data. In certain scenarios

3

(e.g., dynamically generated data), it is not always reason-
able to assume an existing aR-tree index for them a priori. In
view of this, we propose a method that evaluates top-k dom-
inating queries by accessing the (unordered) data only a few
times. As we demonstrate experimentally, this method sig-
nificantly outperforms the best index-based method, which
requires the bulk-loading an aR-tree index before evaluation.
Our second extension over [31] is the proposal and study of
a relaxed form of the top-k dominating query. In this query
variant, theτ(p) score is defined by the number of dimen-
sional subspaces where pointp dominates another pointp′.
As we demonstrate, this query derives more meaningful re-
sults than the basic top-k dominating query.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 discusses the properties
of top-k dominating search and proposes optimizations for
the existing solution in [24]. We then propose eager/lazy ap-
proaches for evaluating top-k dominating queries. Section
4 presents an eager approach that guides the search by de-
riving tight score bounds for encountered non-leaf tree en-
tries immediately. Section 5 develops an alternative, lazy ap-
proach that defers score computation of visited entries and
gradually refines their score bounds when more tree nodes
are accessed. Section 6 presents techniques for processing
top-k dominating queries on non-indexed data. Section 7 in-
troduces the relaxed top-k dominating query and discusses
its evaluation. In Section 8, experiments are conducted on
both real and synthetic datasets to demonstrate that the pro-
posed algorithms are efficient and also top-k dominating
queries return meaningful results to users. Section 9 sum-
marizes our experimental findings and discusses the case of
high dimensional data. Finally, Section 10 concludes the pa-
per.

2 Related Work

Top-k dominating queries include a counting component,
i.e., multi-dimensional aggregation; thus, we review related
work on spatial aggregation processing. In addition, as the
dominance relationship is relevant to skyline queries, we
survey existing methods for computing skylines.

2.1 Spatial Aggregation Processing

R-trees [12] have been extensively used as access methods
for multi-dimensional data and for processing spatial queries,
e.g., range queries, nearest neighbors [13], and skyline
queries [24]. The aggregate R-tree (aR-tree) [17,23] aug-
ments to each non-leaf entry of the R-tree an aggregate mea-
sure of all data points in the subtree pointed by it. It has been
used to speed up the evaluation of spatial aggregate queries,

where measures (e.g., number of buildings) in a spatial re-
gion (e.g., a district) are aggregated.

x
0.5 1

0.5

1

y

e
1 e

2

e
3 e

4

e
5

e
6

e
7

e
13e

9

e
10

e
11

e
12

e
14

e
15 e

16

e
8

e17

e18

e19

e20

W

e
1

e
2

contents of leaf nodes omitted

10

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
11

e
12

e
13

e
14

e
15

e
16

e
17

e
18

e
19

e
20

10 10 10

2 3

3 2

3 2

2 3

3 2

2 3

2 3

3 2

root node

(a) a set of points (b) aCOUNTaR-tree

Fig. 2 aR-tree example

Figure 2a shows a set of points in the 2D space, indexed
by the COUNTaR-tree in Figure 2b. Each non-leaf entry
stores theCOUNTof data points in its subtree. For instance,
in Figure 2b, entrye17 has a count 10, meaning that the sub-
tree ofe17 contains 10 points. Suppose that a user asks for
the number of points intersecting the regionW , shown in
Figure 2a. To process the query, we first examine entries in
the root node of the tree. Entries that do not intersectW are
pruned because their subtree cannot contain any points in
W . If an entry is spatially covered byW (e.g., entrye19),
its count (i.e., 10) is added to the answer without accessing
the corresponding subtree. Finally, if a non-leaf entry inter-
sectsW but it is not contained inW (e.g.,e17), search is
recursively applied to the child node pointed by the entry,
since the corresponding subtree may contain points inside
or outsideW . Note that the counts augmented in the entries
effectively reduce the number of accessed nodes. To evalu-
ate the above example query, only 10 nodes in theCOUNT
aR-tree are accessed but 17 nodes in an R-tree with the same
node capacity would be visited.

2.2 Skyline Computation

Börzs̈onyi et al. [2] were the first to propose efficient exter-
nal memory algorithms for processing skyline queries. The
BNL (block-nested-loop) algorithm scans the dataset while
employing a bounded buffer for tracking the points that can-
not be dominated by other points in the buffer. A point is
reported as a result if it cannot be dominated by any other
point in the dataset. On the other hand, the DC (divide-and-
conquer) algorithm recursively partitions the dataset until
each partition is small enough to fit in memory. After the
local skyline in each partition is computed, they are merged
to form the global skyline. The BNL algorithm was later
improved to SFS (sort-filter-skyline) [8] and LESS (linear
elimination sort for skyline) [11] in order to optimize the
average-case running time.

The above algorithms are generic and applicable for non-
indexed data. On the other hand, [28,16,24] exploit data in-

4

dexes to accelerate skyline computation. The state-of-the-art
algorithm is the BBS (branch-and-bound skyline) algorithm
[24], which is shown to be I/O optimal for computing sky-
lines on datasets indexed by R-trees.

Recently, the research focus has been shifted to the study
of queries based on variants of the dominance relationship.
[22] aims at extracting from the skyline points ak-sized
subset such that it dominates the maximum number of data
points; in other words, the result set cannot contain any non-
skyline point. [20] proposes a data cube structure for speed-
ing up the evaluation of queries that analyze the dominance
relationship of points in the dataset. However, incremental
maintenance of the data cube over updates has not been ad-
dressed in [20]. Clearly, it is prohibitively expensive to re-
compute the data cube from scratch for dynamic datasets
with frequent updates. [6] identifies the problem of com-
puting top-k frequent skylinepoints, where the frequency
of a point is defined by the number of dimensional sub-
spaces. [5] studies thek-dominant skylinequery, which is
based on thek-dominance relationship. A pointp is said
to k-dominate another pointp′ if p dominatesp′ in at least
onek-dimensional subspace. Thek-dominant skyline con-
tains the points that are notk-dominated by any other point.
Whenk decreases, the size of thek-dominant skyline also
decreases. Observe that [22,20,6,5] cannot be directly ap-
plied to evaluate top-k dominating queries studied in this
paper.

Finally, [32,26,27,25] study the efficient computation of
skylines for every subspace; [29] proposes a technique for
retrieving the skyline for a given subspace; [1,15] investi-
gate skyline computation over distributed data; [10,7] de-
velop techniques for estimating the skyline cardinality; [21]
studies continuous maintenance of the skyline over a data
stream; and [4] addresses skyline computation over datasets
with partially-ordered attributes.

3 Preliminary

In this section, we discuss some fundamental properties of
top-k dominating search, assuming that the data have been
indexed by an aR-tree. In addition, we propose an optimized
version for the existing top-k dominating algorithm [24] that
operates on aR-trees.

3.1 Score Bounding Functions

Before presenting our top-k dominating algorithms, we first
introduce some notation that will be used in this paper. For
an aR-tree entrye (i.e., a minimum bounding box) whose
projection on thei-th dimension is the interval[e[i]−, e[i]+],
we denote its lower cornere− and upper cornere+ by

e− = (e[1]−, e[2]−, · · · , e[d]−)

e+ = (e[1]+, e[2]+, · · · , e[d]+)

Observe that bothe− and e+ do not correspond to actual
data points but they allow us to express dominance relation-
ships among points and minimum bounding boxes conve-
niently. As Figure 3 illustrates, there are three cases for a
point to dominate a non-leaf entry. Sincep1 � e−1 (i.e., full
dominance),p1 must also dominateall data points indexed
undere1. On the other hand, pointp2 dominatese+1 but not
e−1 (i.e., partial dominance), thusp2 dominates some, but
not all data points ine1. Finally, asp3 � e+1 (i.e., no domi-
nance),p3 cannot dominate any point ine1. Similarly, the
cases for an entry to dominate another entry are: (i) full
dominance (e.g.,e+1 � e−3), (ii) partial dominance (e.g.,
e−1 � e+4 ∧ e

+
1 � e−4), (iii) no dominance (e.g.,e−1 � e+2).

+

_

p
1

p
3

p
2

e
1

e
2

e
3

e
4

e
5

e
1

e
1

Fig. 3 Dominance relationship among aR-tree entries

Given a tree entrye, whose sub-tree has not been visited,
τ(e+) andτ(e−) correspond to thetightmostlower and up-
per score bounds respectively, for any point indexed under
e. As we will show later,τ(e+) andτ(e−) can be computed
by a search procedure that accesses only aR-tree nodes that
intersecte along at least one dimension. These bounds help
pruning the search space and defining a good order for vis-
iting aR-tree nodes. Later in Sections 4 and 5, we replace
the tight boundsτ(e+) andτ(e−) with loose lower and up-
per bounds for them (τ l(e) andτu(e), respectively). Bounds
τ l(e) andτu(e) are cheaper to compute and can be progres-
sively refined during search, therefore trading-off between
computation cost and bound tightness. The computation and
use of score bounds in practice will be further elaborated
there.

3.2 Optimizing the Skyline-Based Approach

Papadias et al. [24] proposed a Skyline-Based Top-k Dom-
inating Algorithm (STD) for top-k dominating queries, on
data indexed by an R-tree. They noted that the skyline is
guaranteed to contain the top-1 dominating point, since a
non-skyline point has lower score than at least one skyline
point that dominates it (see Equation 2). Thus, STD retrieves
the skyline points, computes theirτ scores and outputs the
point p with the highest score. It then removesp from the

5

dataset, incrementally finds the skyline of the remaining
points, and repeats the same process.

Consider for example a top-2 dominating query on the
dataset shown in Figure 4. STD first retrieves the skyline
pointsp1, p2, andp3 (using the BBS skyline algorithm of
[24]). For each skyline point, a range query is issued to
count the number of points it dominates. After that, we have
τ(p1) = 1, τ(p2) = 4, andτ(p3) = 1. Hence,p2 is reported
as the top-1 result. We now restrict the region of searching
for the next result. First, Equation 2 suggests that the region
dominated by the remaining skyline points (i.e.,p1 andp3)
needs not be examined. Second, the region dominated by
p2 (i.e., the previous result) may contain some points which
are not dominated by the remaining skyline pointsp1 and
p3. It suffices to retrieve the skyline points (i.e.,p4 andp5)
in the constrained (gray) regionM shown in Figure 4. Af-
ter counting their scores using the tree, we haveτ(p4) = 2
andτ(p5) = 1. Finally, we compare them with the scores
of retrieved points (i.e.,p1 andp3) and reportp4 as the next
result.

p

x (time to conf. venue)
0.5 1

0.5

1

y (price)

F=x+y

1 p2

p3

p4

p5

p6 p7

x

0.5 1

0.5

1
y

p2
p3

p1 p6

p7

p4 p5

x
0.5 1

0.5

1
y

e1 e2
e3 e4

e5
e6

e7

e13e9
e10

e11
e12

e14
e15 e16

e8

e17

e18

e19

e20

W

x

0.5 1

0.5

1
y

p2
p3

p1 p6

p7

p4 p5

M

e1 e2 e3

p1 p2 p3 p4 p5 p6 p7 p8 p9

e13 e14

e7 e8 e9

e1 e2 e3

e15

90 100 30

contents omitted

contents omitted

150 30 20

220 200 50

e16 e13 e14 e15e16 e13 e14 e15e16 e13 e14 e15e16

Fig. 4 Constrained skyline

In this section, we present two optimizations that greatly
reduce the I/O cost of the above solution by exploiting aR-
trees. Our first optimization is calledbatch counting. Instead
of iteratively applying separate range queries to compute
the scores of the skyline points, we perform them in batch.
Algorithm 1 shows the pseudo-code of this recursive batch
counting procedure. It takes two parameters: the current aR-
tree nodeZ and the set of pointsV , whoseτ scores are to
be counted. Initially,Z is set to the root node of the tree and
τ(p) is set to 0 for eachp ∈ V . Let e be the current entry
in Z to be examined. As illustrated in Section 3.1, ife is a
non-leaf entry and there exists some pointp ∈ V such that
p � e+ ∧ p � e−, thenp may dominate some (but not guar-
anteed to dominate all) points indexed undere. Thus, we
cannot immediately decide the number of points ine dom-
inated byp. In this case, we have to invoke the algorithm
recursively on the child node pointed bye. Otherwise, for
each pointp ∈ V , its score is incremented byCOUNT(e)
when it dominatese−. BatchCount correctly computes the
τ score for allp ∈ V , at a single tree traversal.

Algorithm 2 is a pseudo-code of the Iterative Top-k Dom-
inating Algorithm (ITD), which optimizes the STD algo-

Algorithm 1 Batch Counting
algorithm BatchCount(NodeZ, Point setV)

1: for all entriese ∈ Z do
2: if Z is non-leaf and∃p ∈ V, p � e+ ∧ p � e− then
3: read the child nodeZ′ pointed bye;
4: BatchCount(Z′, V);
5: else
6: for all pointsp ∈ V do
7: if p � e− then
8: τ(p):=τ(p)+COUNT(e);

rithm of [24]. Like STD, ITD computes the top-k dominat-
ing points iteratively. In the first iteration, ITD computes in
V ′ the skyline of the whole dataset, while in subsequent it-
erations, the computation isconstrainedto a regionM . M
is the region dominated by the reported pointq in the pre-
vious iteration, but not any point in the setV of retrieved
points in past iterations. At each loop, Lines 6–8 compute
the scores for the points inV ′ in batches ofB points each
(B ≤ |V ′|). By default, the value ofB is set to the number
of points that can fit into a memory page. Our second opti-
mization is that we sort the points inV ′ by a space-filling
curve (Hilbert ordering) [3] before applying batch counting,
in order to increase the compactness of the MBR of a batch.
After merging the constrained skyline with the global one,
the objectq with the highestτ score is reported as the next
dominating object, removed fromV and used to compute
the constrained skyline at the next iteration. The algorithm
terminates afterk objects have been reported.

For instance, in Figure 4,q corresponds to point(0, 0)
andV = ∅ in the first loop, thusM corresponds to the
whole space and the whole skyline{p1, p2, p3} is stored in
V ′, the points there are sorted and split in batches and their
τ scores are counted using the BatchCount algorithm. In the
beginning of the second loop,q = p2, V = {p1, p3}, andM
is the gray region in the figure.V ′ now becomes{p4, p5}
and the corresponding scores are batch-counted. The next
point is then reported (e.g.,p4) and the algorithm continues
as long as more results are required.

Algorithm 2 Iterative Top-k Dominating Algorithm (ITD)
algorithm ITD(TreeR, Integerk)

1: V :=∅; q:=origin point;
2: for i := 1 to k do
3: M :=region dominated byq but by no point inV ;
4: V ′:=skyline points inM ;
5: sort the points inV ′ by Hilbert ordering;
6: for all batchesVc of (B) points inV ′ do
7: initialize all scores of points inVc to 0;
8: BatchCount(R.root,Vc);
9: V :=V ∪ V ′;

10: q:=the point with maximum score inV ;
11: removeq from V ;
12: report q as thei-th result;

6

4 Counting-Guided Search

The skyline-based solution becomes inefficient for datasets
with large skylines asτ scores of many points are computed.
In addition, not all skyline points have largeτ scores. Moti-
vated by these observations, we study algorithms that solve
the problem directly, without depending on skyline compu-
tations. This section presents aneagerapproach for the eval-
uation of top-k dominating queries, which traverses the aR-
tree and computes tight upper score bounds for encountered
non-leaf tree entries immediately; these bounds determine
the visiting order for the tree nodes. We discuss the basic al-
gorithm, develop optimizations for it, and investigate by an
analytical study the improvements of these optimizations.

4.1 The Basic Algorithm

Recall from Section 3.1 that the score of any pointp in-
dexed under an entrye is upper-bounded byτ(e−). Based
on this observation, we can design a method that traverses
aR-tree nodes in descending order of their (upper bound)
scores. The rationale is that points with high scores can be
retrieved early and accesses to aR-tree nodes that do not con-
tribute to the result can be avoided.

Algorithm 3 shows the pseudo code of the Simple
Counting-Guided Algorithm (SCG), which directs search by
counting upper bound scores of examined non-leaf entries.
A max-heapH is employed for organizing the entries to be
visited in descending order of their scores.W is a min-heap
for managing the top-k dominating points as the algorithm
progresses, whileγ is thek-th score inW (used for prun-
ing). First, the upper bound scoresτ(e−) of the aR-tree root
entries are computed in batch (using the BatchCount algo-
rithm) and these are inserted into the max-heapH. While
the scoreτ(e−) of H ’s top entrye is higher thanγ (imply-
ing that points with scores higher thanγ may be indexed
undere), the top entry is deheaped, and the nodeZ pointed
by e is visited. If Z is a non-leaf node, its entries are en-
heaped, after BatchCount is called to compute their upper
score bounds. IfZ is a leaf node, the scores of the points
in it are computed in batch and the top-k setW (alsoγ) is
updated, if applicable.

As an example, consider the top-1 dominating query on
the set of points in Figure 5. There are 3 leaf nodes and their
corresponding entries in the root node aree1, e2, ande3.
First, upper bound scores for the root entries (i.e.,τ(e−1) =
3, τ(e−2) = 7, τ(e−3) = 3) are computed by the batch count-
ing algorithm, which incurs 3 node accesses (i.e., the root
node and leaf nodes pointed bye1 ande3). Sincee2 has the
highest upper bound score, the leaf node pointed bye2 will
be accessed next. Scores of entries ine2 are computed in
batch and we obtainτ(p1) = 5, τ(p2) = 1, τ(p3) = 2.
Sincep1 is a point andτ(p1) is higher than the scores of

Algorithm 3 Simple Counting Guided Algorithm (SCG)
algorithm SCG(TreeR, Integerk)

1: H:=new max-heap;W :=new min-heap;
2: γ:=0; . thek-th highest score found so far
3: BatchCount(R.root,{e− | e ∈ R.root});
4: for all entriese ∈ R.root do
5: enheap(H, 〈e, τ(e−)〉);
6: while |H| > 0 andH ’s top entry’s score> γ do
7: e:=deheap(H);
8: read the child nodeZ pointed bye;
9: if Z is non-leafthen

10: BatchCount(R.root,{e−c | ec ∈ Z});
11: for all entriesec ∈ Z do
12: enheap(H, 〈ec, τ(e

−
c)〉);

13: else . Z is a leaf
14: BatchCount(R.root,{p | p ∈ Z});
15: updateW andγ, using〈p, τ(p)〉, ∀p ∈ Z
16: report W as the result;

remaining entries (p2, p3, e1, e3), p1 is guaranteed to be the
top-1 result.

x
0.5 1

0.5

1

y

e
1

e
2

e
3

p
4

p
5

p
6

p
7 p

8

p
9

p
3

p
2

p
1

Fig. 5 Computing upper bound scores

4.2 Optimizations

Now, we discuss three optimizations that can greatly reduce
the cost of the basic SCG. First, we utilize encountered data
points to strengthen the pruning power of the algorithm.
Next, we apply a lazy counting method that delays the count-
ing for points, in order to form better groups for batch count-
ing. Finally, we develop a lightweight technique for deriving
upper score bounds of non-leaf entries at low cost.
The pruner set.SCG visits nodes and counts the scores of
points and entries, based only on the condition that the up-
per bound score of their parent entry is greater thanγ. How-
ever, we observe that points which have been counted, but
have scores at mostγ can also be used to prune early other
entries or points, which are dominated by them.1 Thus, we
maintain a pruner setF , which contains points that (i) have
been counted exactly (i.e., at Line 15), (ii) have scores at
mostγ, and (iii) are not dominated by any other point inF .
The third condition ensures that only minimal information

1 Suppose that a pointp satisfiesτ(p) ≤ γ. Applying Equation 2, if
a pointp′ is dominated byp, then we haveτ(p′) < γ.

7

is kept inF .2 We perform the following changes to SCG in
order to useF . First, after deheaping an entrye (Line 7), we
check whether there exists a pointp ∈ F , such thatp � e−.
If yes, thene is pruned and the algorithm goes back to Line
6. Second, before applying BatchCount at Lines 10 and 14,
we eliminate any entries or points that are dominated by a
point inF .
Lazy counting. The performance of SCG is negatively af-
fected by executions of BatchCount for a small number of
points. A batch may have few points if many points in a
leaf node are pruned with the help ofF . In order to avoid
this problem, we employ alazy countingtechnique, which
works as follows. When a leaf node is visited (Line 13), in-
stead of directly performing batch counting for the pointsp,
those that are not pruned byF are inserted into a setL, with
their upper bound scoreτ(e−) from the parent entry. If, after
an insertion, the size ofL exceedsB (the size of a batch),
then BatchCount is executed for the contents ofL, and all
W , γ, F are updated. Just before reporting the final result
set (Line 16), batch counting is performed for potential re-
sultsp ∈ L not dominated by any point inF and with upper
bound score greater thanγ. We found that the combined ef-
fect of the pruner set and lazy counting lead to 30% I/O cost
reduction of SCG, in practice.
Lightweight upper bound computation. As mentioned in
Section 3.1, the tight upper score boundτ(e−) can be re-
placed by a looser, cheaper to compute, boundτu(e). We
propose an optimized version of SCG, called Lightweight
Counting Guided Algorithm (LCG). Line 10 of SCG (Al-
gorithm 3) is replaced by a call to LightBatchCount, which
is a variation of BatchCount. In specific, when bounds for a
setV of non-leafentries are counted, the algorithm avoids
expensive accesses at aR-tree leaf nodes, but uses entries at
non-leaf nodes to derive looser bounds.

LightBatchCount is identical to Algorithm 1, except that
the recursion of Line 2 is applied whenZ is at least two
levels above leaf nodes and there is a point inV that partially
dominatese; thus, the else statement at Line 5 now refers to
nodes one level above the leaves. In addition, the condition
at Line 7 is replaced byp � e+; i.e.,COUNT(e) is added to
τu(p), even ifp partially dominates entrye.

As an example, consider the three root entries of Fig-
ure 5. We can compute loose upper score bounds forV =
{e−1 , e

−
2 , e

−
3 }, without accessing the leaf nodes. Since,e−2

fully dominatese2 and partially dominatese1, e3, we get
τu(e2) = 9. Similarly, we getτu(e1) = 3 andτu(e3) = 3.
Although these bounds are looser than the respective tight
ones, they still provide a good order of visiting the entries
and they can be used for pruning and checking for termi-
nation. In Section 8, we demonstrate the significant compu-
tation savings by this lightweight counting (ofτu(e)) over
exact counting (ofτ(e−)) and show that it affects very little

2 Note thatF is the skyline of a specific data subset.

the pruning power of the algorithm. Next, we investigate its
effectiveness by a theoretical analysis.

4.3 Analytical Study

Consider a datasetD with N points, indexed by an aR-tree
whose nodes have an average fanoutf . Our analysis is based
on the assumption that the data points are uniformly and in-
dependently distributed in the domain space[0, 1]d, whered
is the dimensionality. Then, the tree heighth and the number
of nodesni at leveli (let the leaf level be0) can be estimated
by h = 1 + dlogf (N/f)e andni = N/f i+1. Besides, the
extent (i.e., length of any 1D projection)λi of a node at the
i-th level can be approximated byλi = (1/ni)1/d [30].

We now discuss the trade-off of lightweight counting
over exact counting for a non-leaf entrye. Recall that the
exactupper bound scoreτ(e−) is counted as the number
of points dominated by its lower cornere−. On the other
hand, lightweight counting obtainsτu(e); an upper bound
of τ(e−). For a givene−, Figure 6 shows that the space
can be divided into three regions, with respect to nodes at
level i. The gray regionM2 corresponds to the maximal
region, covering nodes (at leveli) that arepartially domi-
nated bye−. While computingτ(e−), only the entries which
arecompletely insideM2 need to be further examined (e.g.,
eA). Other entries are pruned after either disregarding their
aggregate values (e.g.,eB , which intersectsM1), or adding
these values toτ(e−) (e.g.,eC , which intersectsM3).

+

_

p1

p3

p2

e1

e2
e3

e4

e5

e1

e1

e

_
M1 M2

M3λ i λ i

λ i

λ i

e_M1
M2

M3

λ i λ i

λ i

λ i

(0,0)

(0,1)

(1,0)

(1,1)

eA

eB

eC

 Fig. 6 I/O cost of computing upper bound

Thus, the probability of accessing a (i-th level) node can
be approximated by the area ofM2, assuming that tree nodes
at the same level have no overlapping. To further simplify
our analysis, suppose that all coordinates ofe− are of the
same valuev. Hence, the aR-tree node accesses required for
computing the exactτ(e−) can be expressed as3:

NAexact(e−) =
h−1∑
i=0

ni · [(1−v+λi)d− (1−v−λi)d] (3)

3 For simplicity, the equation does not consider the boundary effect
(i.e., v is near the domain boundary). To capture the boundary effect,
we need to bound the terms(1 − v + λi) and(1 − v − λi) within the
range[0, 1].

8

In the above equation, the quantity in the square brackets
corresponds to the volume ofM2 (at level i) over the vol-
ume of the universe (this equals to 1), capturing thus the
probability of a node at leveli to be completely insideM2.
The node accesses of lightweight computation can also be
captured by the above equation, except that no leaf nodes
(i.e., at level 0) are accessed. As there are many more leaf
nodes than non-leaf nodes, lightweight computation incurs
significantly lower cost than exact computation.

Now, we compare the scores obtained by exact compu-
tation and lightweight computation. The exact scoreτ(e−)
is determined by the area dominated bye−:

τ(e−) = N · (1− v)d (4)

In addition to the above points, lightweight computation counts
also all points inM2 for the leaf level into the upper bound
score:

τu(e) = N · (1− v + λ0)d (5)

Summarizing, three factorsN , v, andd affect the rela-
tive tightness of the lightweight score bound over the exact
bound.

– WhenN is large, the leaf node extentλ0 is small and
thus the lightweight score is tight.

– If v is small, i.e.,e− is close to the origin and has high
dominating power, thenλ0 becomes less significant in
Equation 5 and the ratio ofτu(e) to τ(e−) is close to 1
(i.e., lightweight score becomes relatively tight).

– As d increases (decreases),λ0 also increases (decreases)
and the lightweight score gets looser (tighter).

In practice, during counting-guided search, entries close
to the origin have higher probability to be accessed than
other entries, since their parent entries have higher upper
bounds and they are prioritized by search. As a result, we
expect that the second case above will hold for most of the
upper bound computations and lightweight computation will
be effective.

5 Priority-Based Traversal

In this section, we present alazyalternative to the counting-
guided method. Instead of computing upper bounds of vis-
ited entries by explicit counting, we defer score computa-
tions for entries, but maintain lower and upper bounds for
them as the tree is traversed. Score bounds for visited en-
tries are gradually refined when more nodes are accessed,
until the result is finalized with the help of them. For this
method to be effective, the tree is traversed with a carefully-
designed priority order aiming at minimizing I/O cost. We
present the basic algorithm, analyze the issue of setting an
appropriate order for visiting nodes, and discuss its imple-
mentation.

5.1 The Basic Algorithm

Recall that counting-guided search, presented in the previ-
ous section, may access some aR-tree nodes more than once
due to the application of counting operations for the visited
entries. For instance in Figure 5, the node pointed bye1 may
be accessed twice; once for counting the scores of points un-
dere2 and once for counting the scores of points undere1.
We now propose a top-k dominating algorithm which tra-
verses each node at most once and has reduced I/O cost.

Algorithm 4 shows the pseudo-code of this Priority-Based
Tree Traversal Algorithm (PBT). PBT browses the tree, while
maintaining (loose) upperτu(e) and lower τ l(e) score
bounds for the entriese that have been seen so far. The nodes
of the tree are visited based on apriority order. The issue of
defining an appropriate ordering of node visits will be elabo-
rated later. During traversal, PBT maintains a setS of visited
aR-tree entries. An entry inS can either: (i) lead to a poten-
tial result, or (ii) be partially dominated by other entries inS
that may end up in the result.W is a min-heap, employed for
tracking the top-k points (in terms of theirτ l scores) found
so far, whereasγ is the lowest score inW (used for pruning).

First, the root node is loaded, and its entries are inserted
into S after upper score bounds have been derived from in-
formation in the root node. Then (Lines 8-18), whileS con-
tains non-leaf entries, the non-leaf entryez with the highest
priority is removed fromS, the corresponding tree nodeZ
is visited and (i) theτu (τ l) scores of existing entries inS
(partially dominatingez) are refined using the contents ofZ,
(ii) τu (τ l) values for the contents ofZ are computed and, in
turn, inserted toS. Note that for operations (i) and (ii), only
information from the current node andS is used; no addi-
tional accesses to the tree are required. Updates and com-
putations ofτu scores are performed incrementally with the
information ofez and entries inS that partially dominateez.
W is updated with points/entries of higherτ l thanγ. Finally
(Line 20), entries are pruned fromS if (i) they cannot lead to
points that may be included inW , and (ii) are not partially
dominated by entries leading to points that can reachW .

It is important to note that, at Line 21 of PBT, all non-
leaf entries have been removed from the setS, and thus (re-
sult) points inW have their exact scores found.

To comprehend the functionality of PBT consider again
the top-1 dominating query on the example of Figure 5. For
the ease of discussion, we denote the score bounds of an en-
try e by the intervalτ?(e)=[τ l(e), τu(e)]. Initially, PBT ac-
cesses the root node and its entries are inserted intoS after
their lower/upper bound scores are derived (see Lines 5–6);
τ?(e1)=[0, 3], τ?(e2)=[0, 9], τ?(e3)=[0, 3]. Assume for now,
that visited nodes are prioritized (Lines 9-10) based on the
upper bound scoresτu(e) of entriese ∈ S. Entrye2, of the
highest scoreτu in S is removed and its child nodeZ is
accessed. Sincee−1 � e+2 ande−3 � e+2 , the upper/lower

9

Algorithm 4 Priority-Based Tree Traversal Algorithm
(PBT)

algorithm PBT(TreeR, Integerk)
1: S:=new set; . entry format inS: 〈e, τ l(e), τu(e)〉
2: W :=new min-heap; . k points with the highestτ l

3: γ:=0; . thek-th highestτ l score found so far
4: for all ex ∈ R.root do
5: τ l(ex):=

P
e∈R.root∧e+

x �e−
COUNT(e);

6: τu(ex):=
P

e∈R.root∧e−x �e+COUNT(e);
7: insertex into S and updateW ;
8: while S contains non-leaf entriesdo
9: removeez : non-leaf entry ofS with the highestpriority;

10: read the child nodeZ pointed byez ;
11: for all ey ∈ S such thate+y � e−z ∧ e−y � e+z do
12: τ l(ey):=τ l(ey) +

P
e∈Z∧e+

y �e−
COUNT(e);

13: τu(ey):=τ l(ey) +
P

e∈Z∧e+
y �e−∧e−y �e+COUNT(e);

14: Sz :=Z ∪ {e ∈ S | e+z � e− ∧ e−z � e+};
15: for all ex ∈ Z do
16: τ l(ex):=τ l(ez) +

P
e∈Sz∧e+

x �e−
COUNT(e);

17: τu(ex):=τ l(ex) +
P

e∈Sz∧e+
x �e−∧e−x �e+COUNT(e);

18: insert all entries ofZ into S;
19: updateW (andγ) by e′ ∈ S whose score bounds changed;
20: remove entriesem from S whereτu(em) < γ and¬∃e ∈

S, (τu(e) ≥ γ) ∧ (e+ � e−m ∧ e− � e+m);

21: report W as the result;

score bounds of remaining entries{e1, e3} in S will not be
updated (the condition of Line 11 is not satisfied). The score
bounds for the pointsp1, p2, andp3 in Z are then computed;
τ?(p1)=[1, 7], τ?(p2)=[0, 3], andτ?(p3)=[0, 3]. These points
are inserted into S, and W={p1} with
γ=τ l(p1)=1. No entry or point inS can be pruned, since
their upper bounds are all greater thanγ. The next non-
leaf entry to be removed fromS is e1 (the tie with e3 is
broken arbitrarily). The score bounds of the existing entries
S={e3, p1, p2, p3} are in turn refined;τ?(e3) remains[0, 3]
(unaffected bye1), whereasτ?(p1)=[3, 6], τ?(p2)=[1, 1], and
τ?(p3) =[0, 3]. The scores of the points indexed bye1 are
computed;τ?(p4)=[0, 0], τ?(p5)=[0, 0], andτ?(p6)=[1, 1] and
W is updated top1 with γ=τ l(p1)=3. At this stage, all points,
except fromp1, are pruned fromS, since theirτu scores are
at mostγ and they are not partially dominated by non-leaf
entries that may contain potential results. Although no point
from e3 can have higher score thanp1, we still have to keep
e3, in order to compute the exact score ofp1 in the next
round.

5.2 Traversal Orders in PBT

An intuitive method for prioritizing entries at Line 9 of PBT,
hinted by theupper bound principleof [19] or thebest-first
ordering of [13,24], is to pick the entryez with the high-
est upper bound scoreτu(ez); such an order would visit the
points that have high probability to be in the top-k dominat-

ing result early. We denote this instantiation of PBT by UBT
(for Upper-bound Based Traversal).

Nevertheless a closer look into PBT (Algorithm 4) re-
veals that the upper score bounds alone may not offer the
best priority order for traversing the tree. Recall that the
pruning operation (at Line 20) eliminates entries fromS,
saving significant I/O cost and leading to the early termina-
tion of the algorithm. The effectiveness of this pruning de-
pends on thelower bounds of the best points (stored inW).
Unless these bounds are tight enough, PBT will not termi-
nate early andS will grow very large.

For example, consider the application of UBT to the tree
of Figure 2. The first few nodes accessed are in the order:
root node,e18, e11, e9, e12. Although e11 has the highest
upper bound score, itpartially dominateshigh-level entries
(e.g., e17 and e20), whose child nodes have not been ac-
cessed yet. As a result, the best-k scoreγ (i.e., the cur-
rent lower bound score ofe11) is small, few entries can be
pruned, and the algorithm does not terminate early.

Thus, the objective of search is not only to (i) examine
the entries of large upper bounds early, which leads to early
identification of candidate query results, but also (ii) elim-
inate partial dominance relationships between entries that
appear inS, which facilitates the computation of tight lower
bounds for these candidates. We now investigate the factors
affecting the probability that one node partially dominates
another and link them to the traversal order of PBT. Leta
and b be two random nodes of the tree such thata is at
level i and b is at levelj. Using the same uniformity as-
sumptions and notation as in Section 4.3, we can infer that
the two nodesa andb not intersect along dimensiont with
probability4:

Pr(a[t] ∩ b[t] = ∅) = 1− (λi + λj)

a andb have a partial dominance relationship when they in-
tersect along at least one dimension. The probability of be-
ing such is:

Pr(
∨

t∈[1,d]

a[t] ∩ b[t] 6= ∅) = 1− (1− (λi + λj))d

The above probability is small when the sumλi +λj is min-
imized (e.g.,a andb are both at low levels).

The above analysis leads to the conclusion that in order
to minimize the partially dominating entry pairs inS, we
should prioritize the visited nodes based on their level at the
tree. In addition, between entries at the highest level inS,
we should choose the one with the highest upper bound, in
order to find the points with high scores early. Accordingly,
we propose an instantiation of PBT, called Cost-Based Tra-
versal (CBT). CBT corresponds to Algorithm 4, such that,

4 The current equation is simplified for readability. The probability
equals 0 whenλi + λj > 1.

10

at Line 9, the non-leaf entryez with the highest level is re-
moved fromS and processed; if there are ties, the entry with
the highest upper bound score is picked. In Section 8, we
demonstrate the advantage of CBT over UBT in practice.

5.3 Implementation Details

A straightforward implementation of PBT may lead to very
high computational cost. At each loop, the burden of the al-
gorithm is the pruning step (Line 20 of Algorithm 4), which
has worst-case cost quadratic to the size ofS; entries are
pruned fromS if (i) their upper bound scores are belowγ
and (ii) they are not partially dominated by any other entry
with upper bound score aboveγ. If an entryem satisfies (i),
then a scan ofS is required to check (ii).

In order to check for condition (ii) efficiently, we use a
main-memory R-treeI(S) to index the entries inS having
upper bound score aboveγ. When the upper bound score
of an entry drops belowγ, it is removed fromI(S). When
checking for pruning ofem at Line 20 of PBT, we only need
to examine the entries indexed byI(S), as only these have
upper bound scores aboveγ. In particular, we may not even
have to traverse the whole indexI(S). For instance, if a
non-leaf entrye′ in I(S) does not partially dominateem,
then we need not check for the subtree ofe′. As we verified
experimentally, maintainingI(S) enables the pruning step
to be implemented efficiently. In addition toI(S), we tried
additional data structures for accelerating the operations of
PBT (e.g., a priority queue for popping the next entry from
S at Line 9), however, the maintenance cost of these data
structures (as the upper bounds of entries inS change fre-
quently at Lines 11-13) did not justify the performance gains
by them.

6 Query Processing on Non-indexed Data

This section examines the evaluation of top-k dominating
queries on non-indexed data, assuming that data points are
stored in random order in a disk fileD.

As discussed in [31], a practically viable solution is to
first bulk-load an aR-tree (e.g., using the algorithm of [18])
from the dataset and then compute top-k dominating points
using the algorithms proposed in Sections 4 and 5. The bulk-
loading step requires externally sorting the points, which is
known to scale well for large datasets. However, external
sorting may incur multiple I/O passes over data.

Our goal is to compute the top-k dominating points with
only a constant number (3) of data passes, by adopting the
filter-refinement framework. The first pass is thecounting
pass, which employs a memory grid structure to keep track
of point count in cells, while scanning over the data. This
structure is then used to derive lower/upper bound scores of

points in the next pass. The second pass is thefilter pass,
which applies pruning rules to discard unqualified points
and keep the remaining ones in a candidate set. Therefine-
ment pass, being the final pass, performs a scan over the data
in order to count the exactτ scores of all candidate points.
Eventually, the top-k dominating points are returned.

In Section 6.1, we present the details of the counting
pass. We investigate different techniques for the filter pass
in Sections 6.2 and 6.3; these techniques trade-off efficiency
(i.e., CPU time at the filter step) for filter effectiveness (i.e.,
size of the candidate set). Finally, Section 6.4 discusses the
final, refinement pass of the algorithm.

6.1 The counting pass

The first step of the algorithm defines a regular
multi-dimensional grid over the space and performs a lin-
ear scan to the data to count the number of points in each
grid cell. Such a 2-dimensional histogram (with4× 4 cells)
is shown in Figure 7a. To ease our discussion, each grid cell
is labeled asgij . While scanning the points, we increase the
counters of the cells that contain them, but do not keep the
visited points in memory. In this example, at the end of scan,
we haveCOUNT(g11)=0 andCOUNT(g12)=10. We adopt the
following convention so that each point contributes to the
counter of exactly one cell. In case a point (e.g.,p1) falls on
the common border of multiple cells (e.g.,g23 andg33), it
belongs to the cell (e.g.,g33) with the largest coordinates.

x

y

p
1

p
2

10
g

14
g

24

g
13

g
12

g
11

g
23

g
22

g
21

g
34

g
33

g
32

g
31

g
44

g
43

g
42

g
41

p
3

10

10

10

10 10

0 10

10

10

10

10

10

10

10

10

 x

y

: 40µ u
: 30µ u

: 20µ u
: 10µ u

: 80µ u
: 60µ u

: 40µ u
: 20µ u

: 120µ u
: 90µ u

: 60µ u
: 30µ u

: 150µ u
: 120µ u

: 80µ u
: 40µ u

φ : 10

φ : 20 φ : 50

φ : 30

φ : 80

φ : 50

φ : 20φ : 10

(a) Point counts of cells (b) Derived values of cells

x

y

p
7

g
24

g
12

g
23

g
22

g
21

g
32

g
42

p
5

p
4

p
6

 x

y

p
11

g
31

p
14

p
17

p
23

p
26

p
29

(c) Tightening of score bounds (d) Points in the same cell

Fig. 7 Using the grid in the filter step,k=2

11

After the counting pass, and before the filter pass begins,
we can derive lower/upper bound scores of the cells from
their point counts, by using the notations of Section 3.1. This
enables us to determine fast the cells that cannot contain top-
k dominating points. Given a grid cellg, its upper bound
scoreτu(g) is the total point count of cells it partially or
totally dominates.

τu(g) =
∑

gy∈G∧g−�g+
y

COUNT(gy)

In Figure 7b, the cellg33 dominatesg33, g43, g34, andg44,
so we haveτu(g33)=40. The lower bound scoreτ l(g) of g
is the total point count of cells itfully dominates.

τ l(g) =
∑

gy∈G∧g+�g−y

COUNT(gy)

For instance,g33 fully dominatesg44 so we obtainτ l(g33)=10
(not shown in the figure).

Besides score bounds, pruning can also be achieved with
the help of the dominance property. From Equation 2, we
observe that, a point cannot belong to the result if it is domi-
nated byk other points. Thus, we define the dominated count
g.φ of the cellg as the total point count of cells fully domi-
natingg.

g.φ =
∑

gy∈G∧g+
y �g−

COUNT(gy)

For example,g32 is fully dominated byg11 andg21, so we
get g32.φ=0+10=10. Clearly, a cell withgij .φ ≥ k cannot
contain any of the top-k results.

Let k = 2 in the example of Figure 7b. We proceed to
determine the cells that cannot contain query results. These
include cells with zero count (e.g.,g11) and cells having
gij .φ ≥ k (e.g.,g23). In order to obtain the valueγ (lower
bound score of top-k points), we enumerate the remaining
cell(s) in descending order of theirτ l scores, until their total
point count reachesk. Since the cellg12 contains 10 (≥ k)
points and itsτ l score is 60, we setγ = 60. Obviously,
cells (e.g.,g14) whose upper score bounds belowγ = 60
can be pruned. The remaining cells (containing potential re-
sults) are colored as gray in Figure 7b.

6.2 Coarse-grained Filter

During, the second (filter) pass, the algorithm scans the data
again and determines a set of candidate points for the top-
k dominating query. The first method we propose for the
filter pass is calledcoarse-grained filter(CRS). CRS scans
the database and uses the score bounds of grid cells and the
dominance property (of Equation 2) to prune points. CRS
is described by Algorithm 5. Each cellg is coupled with a
candidate setg.C, for maintaining candidate points that fall

in g (this is done only for cellsg that are not pruned after
the counting pass). Initially, we have no information about
the detailed contents of the cells. However, using the lower
score boundsτ l of the cells and their cardinalities, we can
initializeγ; thek-th highestτ l score of the top-k dominating
candidates. In other words, we assume that each candidate
has the maximum coordinates in its container cellg (worst
case) and useτ l(g) as its lower bound. The algorithm then
performs a linear scan over the datasetD at Lines 4–16. For
the pointp being currently examined, we initialize its upper
boundτu(p) anddominated countp.φ using the correspond-
ing values of its container cellgp.

Algorithm 5 Coarse-grained Filter Algorithm (CRS-Filter)
algorithm CRS-Filter(DatasetD, Integerk, GridG)

1: for all cell g ∈ G do
2: g.C:=new set; . candidate set of the cell
3: γ:=thek-th highestτ l score of cells inG; . for each cellg ∈ G,

COUNT(g) instances of the scoreτ l(g) are considered
4: for all p ∈ D do . filter scan
5: letgp be the grid cell ofp;
6: τu(p):=τu(gp); p.φ:=gp.φ;
7: for all cellsgz ∈ G such thatg−z � g+p ∧ g+z � g−p do
8: for all p′ ∈ gz .C such thatp′ � p do
9: p.φ:=p.φ+ 1;

10: if p.φ ≥ k then
11: ignore further processing for the pointp;
12: for all cellsgz ∈ G such thatg−p � g+z ∧ g+p � g−z do
13: for all p′ ∈ gz .C such thatp � p′ do
14: p′.φ:=p′.φ+ 1;
15: if p′.φ ≥ k then
16: removep′ from gz .C;
17: if τu(p) ≥ γ andp.φ < k then
18: insertp into gp.C;

In the loop of Lines 7–11, we search for candidate points
p′ that dominatep and have already been read in memory.
For each such occurrence, the valuep.φ is incremented. Due
to the presence of the dominated countgp.φ of the grid cell,
it suffices to traverse only the cells that partially dominate
the cell ofp (as opposed to all cells). Wheneverp.φ reaches
k, p.φ needs not be incremented further (and the loop exits);
in this casep cannot be a top-k dominating result.

In the loop of Lines 12–16, we search for candidate points
p′ that are dominated byp and have already been read in
memory. Thep′.φ of each such pointp′ is incremented; and
the point is pruned from the candidate set whenp′.φ reaches
k. Note that Lines 12–16 need not be executed whenp.φ
is (at least)k. The reason is that any existing candidatep′

which is dominated byp must have also been dominated by
thek dominators ofp and therefore already been pruned in
a previous iteration.

At Lines 15–16, we insert the current pointp into the
candidate setgp.C of its cell gp, only when itsτu(p) score
is aboveγ and itsp.φ value is less thank.

12

6.3 Fine-grained Filter

CRS simply sets the score bounds of candidate points to
those of their cells. Since each cell may contain a large num-
ber of points, their score bounds are not tight, weakening
the filter effectiveness of CRS. In this section, we develop
a fine-grained solution (FN) that tightens the score bounds
of candidate points gradually. This way, more unqualified
points having low scores can be eliminated from the search
early.
Tightening the score bounds of points.Consider the filter
step during the processing of the top-2 dominating query
(i.e.,k=2) on Figure 7c. Suppose that, the pointsp4, p5, p6

are existing candidates (they have already been read during
the filter pass), and the next point to be processed isp7.

The first technique is to tighten score bounds by using
the current pointp7 and existing candidate pointsp4, p5, p6.
First of all, we setτ l(p7) = 40 andτu(p7) = 90, by us-
ing score bounds ofp7’s cell g22. To tighten score bounds
of existing candidates, we traverse the cells (i.e.,g12, g22,
g21) that partially dominateg22. Sincep4 dominatesp7, we
incrementτ l(p4). On the other hand,p5 andp6 do not dom-
inatep7 so theirτu scores are decremented. To tighten score
bounds of the current pointp7, we traverse the cells (e.g.,
g22, g32, g42, g23, g24) that are partially dominated byg22.
As p7 dominatesp6, we incrementτ l(p7). In addition, the
dominated count ofp6 now becomes 2 (≥ k) so it is re-
moved from the local candidate setg22.C.

A second technique that our filter algorithm uses to tighten
score bounds is by utilizing bounds of candidate points that
have not already been pruned. Assume in Figure 7d that, the
point p17 is visited after pointsp11 and p14 (intermediate
points likep12 have been pruned). In this case,τ l(p17) can
be tightened tomax{τ l(p17), τ l(p11), τ l(p14)}. As another
example, suppose that the pointp29 is visited after pointsp23

andp26. Then, the upper bound score ofp29 can be tightened
to min{τu(p29), τu(p23), τu(p26)}.
Writing disk partitions. We observe that the pruning effec-
tiveness of the algorithm can be significantly improved if we
are able to identify points with high scores early. To achieve
this, we modify the counting pass (described in Section 6.1)
as follows. Each grid cellg is allocated a memory partition
(at least one page) to store the accessed points that fall in the
cell. Whenever the memory becomes full, the largest mem-
ory partition is flushed into its corresponding disk partition
g.D (i.e., a sequential file). At the end of the counting pass,
remaining points in memory are flushed into their respective
disk partitions. This modification costs an additional writing
pass over the data, yet it permits us to access the disk parti-
tions using different orderings (in the subsequent filter and
refinement passes).
Algorithm. Algorithm 6 presents the details of our Fine-
grained Filter Algorithm (FN-Filter). A min-heapW is used

to keep track ofk points with the highestτ l scores seen so
far andγ is set to thek-th score inW . Like in the CRS-
Filter, we first determine thek-th highest lower bound score
γ from theτ l scores and point counts of grid cells. Then,k
dummy pairs having the scoreγ are inserted intoW . The
setS contains the grid cells whose disk partitions have yet
to be visited. Initially, all grid cells are inserted intoS.

Algorithm 6 Fine-grained Filter Algorithm (FN-Filter)
algorithm FN-Filter(DatasetD, Integerk, GridG)

1: γ:=thek-th highestτ l score of cells inG; . for each cellg ∈ G,
COUNT(g) instances of the scoreτ l(g) are considered

2: W :=new min-heap; . k points with the highestτ l

3: insertk dummy pairs〈NULL, γ〉 intoW ;
4: S:=new set; . set of grid cells
5: for all cell g ∈ G do
6: g.C:=new set; . candidate set of the cell
7: letg.D be the disk partition ofg;
8: insertg into S;
9: while S is non-emptydo

10: removeg: the cell inS with the highestpriority;
11: if τu(g) < γ and¬∃gz ∈ G, (τu(gz) ≥ γ) ∧ (g+z �

g− ∧ g−z � g+) then
12: ignore further processing for the disk partitiong.D;
13: for all p ∈ g.D do . scan over points in disk partitiong.D
14: τ l(p):=τ l(g); τu(p):=τu(g); p.φ:=g.φ;
15: δ.l:=−1; δ.u:=|D|; δ.φ:=−1;
16: for all cell gz ∈ G such thatg−z � g+ ∧ g+z � g− do
17: for all p′ ∈ gz .C do . existing candidates in memory
18: if p′ � p then
19: τ l(p′):=τ l(p′) + 1; p.φ:=p.φ+ 1;
20: δ.u:=min{ δ.u, τu(p′) };
21: δ.φ:=max{ δ.φ, p′.φ };
22: else
23: τu(p′):=τu(p′)− 1;

24: for all cell gz ∈ G such thatg− � g+z ∧ g+ � g−z do
25: for all p′ ∈ gz .C do . existing candidates in memory
26: if p � p′ then
27: τ l(p):=τ l(p) + 1; p′.φ:=p′.φ+ 1;
28: δ.l:=max{ δ.l, τ l(p′) };
29: else
30: τu(p):=τu(p)− 1;

31: τ l(p):=max{ τ l(p), δ.l }; τu(p):=min{ τu(p), δ.u };
32: p.φ:=max{ p.φ, δ.φ+ 1 };
33: if τ l(p) > γ andp.φ < k then
34: updateW (andγ), by 〈p, τ l(p)〉;
35: if τu(p) ≥ γ andp.φ < k then
36: insertp into g.C;
37: updateW (andγ) by points whoseτ l scores> γ;
38: remove pointsp′′ ∈ gy .C (wheregy ∈ G) satisfying the

conditionp′′.φ ≥ k or τu(p′′) < γ;

At Line 10, we pick the grid cellg from S with the
highestpriority value, which will be elaborated shortly. In
case the cell has upper bound scoreτu(g) below γ and it
is not partially dominated by any other grid cellgz with
τu(gz) ≥ γ, the disk partitiong.D of g is ignored. The rea-
son is that (i)g may not contain any top-k point and (ii)
its contribution to top-k candidates has already been cap-
tured in their upper/lower bounds. Otherwise, at Lines 9–
38, a scan is performed over the points ing.D. At Line 14,

13

we set the score bounds and dominated count of the cur-
rent pointp to that of its cellgp. At Lines 16–23, we tra-
verse the candidates in the cells that are partially dominat-
ing gp in order to update score bounds. This is done only for
cells whose partitions have been loaded before. Similarly,
at Lines 24–30, we traverse the candidates in cells partially
dominated bygp, in order to tighten the score bounds of the
current pointp. Meanwhile, we record the value of: (i)δ.l,
the maximumτ l score of points dominated byp (ii) δ.u, the
minimumτu score of points dominatingp, and (iii) δ.φ, the
maximum dominated countp′.φ of pointsp′ dominatingp.
These values are then used to update the score bounds and
the dominated count of the current pointp. In caseτ l(p) is
greater thanγ, we update the top-k points inW . If τu(p) is
at leastγ, then we insertp into the local candidate set of its
grid cell. At Lines 37–38, existing candidate points having
τ l scores aboveγ are used to updateW , and points withτu

scores belowγ are pruned.
Order of searching disk partitions. We now investigate
concrete orderings for accessing disk partitions, at Line 10
of the FN-Filter algorithm. We first suggest thescanline or-
deringas a reference, which accesses cellsg in ascending or-
der of the value:SLV (g) =

∑d
i=1(Ti(g)− 1) ·Ai−1 where

A is the number of divisions per dimension andTi(g) =
A · g[i]+/ς (assuming domain as[0, ς]d). For instance, the
value ofA is 4 in Figure 7a, and we haveSLV (g31) =
(3 − 1) · 1 + (1 − 1) · 4 = 2. Disk partitions of cells are
visited in the order:g11, g21, g31, g41, g12, g22, · · · . This
ordering is independent of score bounds of cells.

Another ordering we consider is theupper bound score
ordering, which visits the cells in descending order of their
upper bound scores. In the example of Figure 7b, the cells
will be visited in the order:g11, g21, g12, g22, · · · . This or-
dering allows us to identify early points with high scores.
However, it may delay accessing cells that have low upper
bound, but partially dominate those with high upper bounds.
This delays the tightening of loose bounds and, in turn, the
pruning of points.

Finally, we investigate apartial dominance elimination
ordering, which takes partial dominance relationships among
the partitions into account. We pick the cell (say,ga) with the
highest upper bound score, that partially dominates some
unvisited cells. In casega has not been visited before, we
access its disk partition. Then, we access partitions of all
unvisited cellsgb that are partially dominated byga, in de-
scending order of their upper bound scores. The above pro-
cedure repeats until the cells are exhausted. For instance, in
Figure 7b, we first visit the cellg21, and then visit the cells
partially dominated by it in descending upper bound score
order:g22, g31, g23, g41, g24. Next, we visit the cellg12, and
unseen cells partially dominated by it:g13, g32, g14, g42.

According to these orderings, we denote the instantia-
tions of the fine-grained method as follows: FNS (with scan-

line ordering), FNU (with upper bound score ordering), and
FNP (with partial dominance elimination ordering).

6.4 The refinement pass

After completing the filter pass, we obtain a setC of can-
didate points, which have potential to be the actual results.
In the refinement pass, a linear scan is performed over the
datasetD; each pointp′ ∈ D is compared against each can-
didatep ∈ C and the score ofp is incremented whenp
dominatesp′. This straightforward implementation requires
|D| · |C| dominance comparisons and becomes expensive
even for moderate-sized candidate set.

In order to accelerate the refinement pass, we take ad-
vantage of the lower score bounds of grid cells. Suppose
that p7 is a candidate point in Figure 7c. Since it falls in
the cellg22, we set the lower bound score ofp7 to τ l(p7) =
τ l(g22) = 40. While scanning overD in the refinement pass,
we need not compare each pointp′ ∈ D with the candidate
p7. Only pointsp′ in cells that are partially dominated by
g22 (i.e., g22, g32, g42, g23, g24) have to be compared with
p7.

Algorithm 7 is the pseudo-code of the grid-based re-
finement algorithm.G represents the grid obtained from the
counting pass. Each grid cellg ∈ G is associated with a
local candidate setg.C, for storing candidates (from the fil-
ter pass) that falls into the cellg. The valueγ is set to the
k-th highestτ l score of all candidates (assuming that their
score bounds are obtained from the filter pass). At Line 3,
we check if a cellg hasτu score belowγ and it is not par-
tially dominated by any cellgz having some candidate point.
If so, the cell is marked asirrelevantas it cannot influence
the top-k result. At Line 5, the lower bound scoreτ l(p) of
each candidatep ∈ g.C is reset toτ l(g). Then, a scan is per-
formed over the datasetD. In case the cellgp′ of the current
point p′ ∈ D is irrelevant, the pointp′ is discarded imme-
diately without further processing. At Lines 11–13, only the
cells partially dominatingp′ need to be considered. Every
candidatep in such a cell is compared withp′, and its score
τ l(p) is incremented whenp dominatesp′. Eventually, the
k candidate points with highest scores are returned as the
query results.

The above refinement algorithm is generic in the sense
that it does not utilize disk partitions of cells (created in
FN-Filter). To optimize its performance, we replace the lin-
ear scan at Line 7 by a promising order of accessing disk
partitions of cells (e.g., starting with partitions that are par-
tially dominated by the candidate with the highest upper
bound score). Nevertheless, this optimization technique can-
not be applied if the filter step is performed by the CRS-
Filter, which does not build disk partitions of points for cells.

14

Algorithm 7 Grid-based Refinement Algorithm
algorithm GridRefinement(DatasetD, Integerk, GridG)

1: γ:=thek-th highestτ l score of candidates in cells ofG;
2: for all cell g ∈ G do
3: if τu(g) < γ and¬∃gz ∈ G, (|gz .C| > 0) ∧ (g+z �
g− ∧ g−z � g+) then

4: mark the cellg asirrelevant;
5: for all p ∈ g.C do
6: τ l(p):=τ l(g); . reset lower bound score

7: for all p′ ∈ D do
8: letgp′ be the grid cell ofp′;
9: if gp′ is irrelevant then

10: ignore further processing for pointp′;
11: for all cell g ∈ G such thatg− � g+

p′ ∧ g
+ � g−

p′ do
12: for all p ∈ g.C such thatp � p′ do
13: τ l(p):=τ l(p) + 1;

14: return k points in
S

g∈G g.C with the highestτ l scores;

7 Relaxed Top-k Dominating Query

In this section, we study a relaxed variant of the top-k dom-
inating query. Section 7.1 presents the motivation and defin-
ition of this query. We discuss adaptations of our tree-based
algorithms for evaluating this query in Sections 7.2, 7.3, 7.4.

7.1 Motivation

While the scoreτ(p) models nicely the intuitive importance
of a pointp, the dominance requirement may be too strict
in particular data distributions, where all points may have
similar scores. Table 1 shows the coordinate values of three
points in the 3-dimensional space. Since each point does not
dominate any other point in the dataset, we obtainτ(p1) =
τ(p2) = τ(p3) = 0. In this case, we cannot identify the
most “important” point from the dataset.

Point p p[1] p[2] p[3]

p1 1 2 3
p2 3 1 4
p3 4 3 2

Table 1 Example of points in the 3-dimensional space

To avoid this problem, we propose to relax the dom-
inance requirement as follows. Given two pointsp, p′ ∈
D, we define the setω(p, p′) of dimensions such thatp is
smaller than (i.e., preferable to)p′ along these dimensions:

ω(p, p′) = { i | i ∈ [1, d] ∧ p[i] < p′[i] } (6)

Then, we defineψ(p, p′) = 2|ω(p,p′)|−1 (i.e., the number of
non-empty dimensional subsets ofω(p, p′)). Asp dominates
p′ with respect to each of theseψ(p, p′) dimensional subsets,
we define therelaxed scoreof a pointp as:

τr(p) =
∑
p′∈D

ψ(p, p′)

The relaxed top-k dominating queryreturnsk points in the
datasetD with the highestτr score.

As an example, we considerτr scores of points in Table
1. By comparingp1 with other points, we getω(p1, p2)={1, 3}
andω(p1, p3)={1, 2}. Thus, we haveτr(p1) = (22 − 1) +
(22 − 1) = 6. Similarly, we can obtainτr(p2) = (21 − 1) +
(22 − 1) = 4 andτr(p3) = (21 − 1) + (21 − 1) = 2. Now,
we are able to rank the three points based on their dominance
scores (e.g.,p1 is the top-1 point in the dataset). In Section
8, we demonstrate that this relaxed query is appropriate for
search in datasets with missing values.

Regarding the definition ofψ(p, p′), we use the number
2|ω(p,p′)|−1 of dimensional subsets, as opposed to the num-
ber of dimensions inω(p, p′). The rationale is that, a point
should be assigned a very high weight if it dominates oth-
ers in a large number of dimensions. For example, consider
two pointsp1 andp2, such thatp1 dominates10 points, each
along 10 dimensions, andp2 dominates9 points, each along
11 dimensions. Intuitively, althoughp2 dominates fewer points,
p2 should have higher score thanp1 because more combi-
nations of dimensions are involved in the dominance rela-
tionships. The score functionψ(p, p′) captures exactly this
intuition. On the other hand, if the value|ω(p, p′)| is used as
a replacement ofψ(p, p′) in the definition ofτr(p), thenp1

appears better thanp2, violating the above intuition.
It fell to our attention that the relaxed top-k dominat-

ing query shares some similarities with the concept of top-k
frequent skyline points in dimensional subsets [6]. The ma-
jor difference of our work from [6] is that we do not con-
sider skylinepoints only. The dimensional subsetω(p, p′)
contributes to the relaxed scoreτr(p) of p, even whenp is
not a skyline point inD with respect toω(p, p′). In addi-
tion, [6] emphasizes on approximate result computation but
we focus on exact evaluation of our relaxed query over aR-
trees. Unlike thek-dominant skyline query [5], our relaxed
query does not require any apriori value of the subspace size.

7.2 Adaptation of Skyline-Based Approach

In this section, we discuss the adaptation of the skyline-
based approach (in Section 3.2) for processing the relaxed
top-k dominating query. In particular, we study the modi-
fications of the followings: (i) the dominance property of
Equation 2, and (ii) the BatchCount procedure (Algorithm
1), which counts the exact scores for a set of points.
Monotone property for the relaxed score.First of all, we
prove that the monotone property holds for the relaxed score
τr as well. This property, expressed by Equation 7, is not
only essential to the skyline-based approach, but also im-
portant for other tree-based solutions.

∀ p, p′ ∈ D, p � p′ ⇒ τr(p) > τr(p′) (7)

15

The proof is as follows. Consider any pointa ∈ D such
that a 6= p and a 6= p′. Sincep dominatesp′, we have
ω(p′, a) ⊆ ω(p, a). As a result,a contributes toτr(p) at
least as much as it contributes toτr(p′). In addition to that,
p′ contributes zero toτr(p′) (becausep′ does not dominate
itself in any dimension), butp′ contributes at least1 to τr(p)
(i.e., ω(p, p) ≥ 1) becausep � p′. As a result, we obtain
τr(p) > τr(p′).
Exact score counting.Next, we study how to compute the
exactτr score of a point, by using the aR-tree. We proceed
to present the relevant notations in the context of the relaxed
score. Given two (non-leaf) entriese, e′ of the tree, we de-
fine ωl(e, e′) as the minimal set of dimensions such thate
always dominatese′, andωu(e, e′) as the maximal set of
dimensions such thate potentially dominatese′:

ωl(e, e′) = { i | i ∈ [1, d] ∧ e[i]+ < e′[i]− }

ωu(e, e′) = { i | i ∈ [1, d] ∧ e[i]− < e′[i]+ }

As a shorthand notation, we defineψl(e, e′) andψu(e, e′) as
(2|ω

l(e,e′)|−1) and(2|ω
u(e,e′)|−1) respectively. In our sub-

sequent discussion, these values are used to derive lower/upper
bound scores fore. Note that,ωl(e, e′) andωu(e, e′) are
equal if and only ife does not intersecte′ along any di-
mension. Otherwise,ωl(e, e′) is a proper subset ofωu(e, e′).
Observe that the above notations are applicable for pointsp
andp′ as well, by replacinge by p (ande′ by p′).

We modify BatchCount (Algorithm 1) as follows so that
it can be used to compute theτr values of points (instead of
their τ values). First, the sub-conditionp � e+ ∧ p � e− at
Line 2 is replaced byψu(p, e) > ψl(p, e). Second, Lines 7–
8 are replaced by the statement
τr(p):=τr(p) + ψl(p, e) · COUNT(e)

As an example, we apply the above technique to com-
pute theτr score for the pointp0 in Figure 8a, which also
shows the other points/entries to be visited in the aR-tree.
Initially, the valueτr(p0) is set to zero. The detailed steps
are elaborated in Figure 8b. When a point (say,p3) is en-
countered, we simply incrementτr(p0) by ψ(p0, p3). The
same is repeated for any non-leaf entry (say,e2) satisfying
ψl(p0, e2)=ψu(p0, e2), except that its count valueCOUNT(e2)
is taken into account. In case a non-leaf entry (say,e4) has
different values forψl(p0, e4) andψu(p0, e4), its child node
will be visited.

7.3 Adaptation of Counting-Guided Search

We proceed to elaborate the adaptation of the counting-guided
search (e.g., SCG, LCG) for the relaxed query. According
to Equation 7, the monotone property still holds for the re-
laxed score. This enables us to eliminate unqualified entries
by using the pruner set (see Section 4.2). In addition, the

p
0

p
3

p
1

e
2

e
3

e
4

e
5

e
6

p
2

Entry Action on τr(p0)

p1 add 0
p2 add (21-1)
p3 add (22-1)
e2 add (21-1)COUNT(e2)

e3 add (22-1)COUNT(e3)

e4 visit its child node
e5 add (21-1)COUNT(e5)

e6 visit its child node

(a) The case of a point (b) Derivation ofτr(p0)

Fig. 8 Exact computation of theτr value for a point

technique for counting exactτr scores of points (discussed
in Section 7.2) can be reused for SCG and LCG.

Recall that SCG computes upper bounds of non-leaf en-
tries (at Line 10). Due to the monotone property of Equa-
tion 7, the tight upper bound score of an entrye is taken as
τr(e−). In the example of Figure 10a, the lower corner of
e1 is e−1 and the valueτr(e−1) is a tight upper bound score
for any point indexed under the subtree ofe1. This value
(i.e., τr(e−1)) can be obtained by applying the exact count-
ing technique described in Section 7.2.

Following the uniformity assumption and the notations
from Section 4.3, we now analyze the cost of computing the
exactτr(e−) value for a non-leaf entrye. With respect to
tree nodes at leveli, the space is decomposed into two re-
gions, as shown in Figure 9. The regionM (in gray) fully
contains the nodes whose parent entriese′ satisfy the con-
dition ψu(e, e′) > ψl(e, e′); whereas the white region in-
tersects all other nodes. By translating the area ofM to the
access cost, the aR-tree node accesses for computing the ex-
actτr(e−) can be expressed as:

NArelax
exact(e

−) =
h−1∑
i=0

ni · [d(2λi)d−1 − (d− 1)(2λi)d] (8)

Unlike Equation 3, the cost in Equation 8 is independent
of the location ofe− is the space. Also, this cost is always
greater than or equal to the cost in Equation 3.

e
_

M

λ i λ i

λ i

λ i

(0,0)

(0,1)

(1,0)

(1,1)

eA

eB

eC

Fig. 9 I/O cost of computing upper bound

Lightweight upper bound score counting. In contrast to
SCG, LCG utilizes a lightweight counting technique in order
to obtain upper bound scores of non-leaf entries with low
cost (see Section 4.2). We now present a modification of this

16

technique for deriving an upper bound scoreτu
r (e) for the

entry e such that: (i) the computation requires no accesses
to leaf nodes (thus saving significant cost), and (ii)τu

r (e)
always upper bounds the exactτr(e−). The access cost of
this lightweight technique is given by Equation 8, except
that leaf nodes (at level 0) are ignored.

Figures 10a,b exemplify how to obtain the valueτu
r (e1)

for the entrye1. The technique is the same as the one for
computing the exactτr(e−1) value, except that level-1 en-
tries (i.e., pointing to leaf nodes) are handled in another
way. For the sake of demonstration, suppose that all en-
tries shown in Figure 10a are level-1 entries. For any en-
countered level-1 entry (say,ez), we incrementτu

r (e1) by
ψu(e1, ez) · COUNT(ez), regardless of theψl(e1, ez) value.

+

_

e
1

e
2

e
3

e
4

e
5

e
1

e
1

e
6

Entry Action on τu
r (e1)

e1 add (22-1)COUNT(e2)

e2 add (21-1)COUNT(e2)

e3 add (22-1)COUNT(e3)

e4 add (22-1)COUNT(e4)

e5 add (21-1)COUNT(e5)

e6 add (21-1)COUNT(e6)

(a) The case of an entry (b) Derivation ofτu
r (e1)

Fig. 10 Lightweight computation of theτu
r value of an entry

7.4 Adaptation of Priority-Based Traversal

In this section, we propose a priority-based traversal solu-
tion, called RelaxedPBT (Algorithm 8), for processing the
relaxed query. The setS, the min-heapW , and the valueγ
have the same interpretation as in PBT (Algorithm 4). The
major differences of RelaxedPBT from PBT are: (i) initial-
ization of score bounds (Line 4–7), (ii) adjustment of score
bounds (Lines 11–17), and (iii) elimination of unqualified
entries (Line 20). As we will see later, several operations of
the algorithm rely on the following property:

Property 1 Consider two (non-leaf) entriese ande′ of the
tree and a binding integer valueα. If ψl(e, e′) = ψu(e, e′) =
α, thenψ(p, p′) = α for anyp ∈ e, p′ ∈ e′.

Proof Whenψl(e, e′) equals toψu(e, e′), ωl(e, e′) is iden-
tical toωu(e, e′). In this case,e ande′ do not intersect along
any dimension. Combining this fact with the bounding prop-
erty of entries, we haveω(p, p′) = ωl(e, e′) = ωu(e, e′), for
anyp ∈ e, p′ ∈ e′. As a result, we obtainψ(p, p′) = α.

RelaxedPBT begins by examining entries in the root node
of the tree and deriving their lower/upper bound scores based
on only entries in the root node. In each iteration (of the loop

at Lines 8–20), a non-leaf entryez is selected fromS accord-
ing to apriority order (see Section 5.2). The child node (say,
Z) of ez is then read from the disk.

At Lines 11–13, we update score bounds for existing
entriesey in S, by comparing them againstez. By Prop-
erty 1, we need not adjust the score bounds ofey when
ψu(ey, ez) = ψl(ey, ez). In case ofψu(ey, ez) > ψl(ey, ez),
the score contribution ofez to ey is replaced by those of en-
tries inZ. Based on the same logic, Lines 14–17 are used to
adjust score bounds of entriesex in Z.

Next, we insert entries ofZ into the setS and update the
top-k results inW with entries (inS) having lower bound
scoreτ l

r(e) aboveγ. At Line 20, an entryem is removed
from S when (i) its upper bound scoreτu

r (em) is belowγ,
and (ii) it cannot be used to adjust score bounds of any other
entry inS with upper bound score aboveγ. The loop contin-
ues untilS does not contain any no non-leaf entries. Finally,
W is returned as the result.

Algorithm 8 Variant of PBT for the relaxed query
algorithm RelaxedPBT(TreeR, Integerk)

1: S:=new set; . entry format inS: 〈e, τ l
r(e), τu

r (e)〉
2: W :=new min-heap; . k points with the highestτ l

r

3: γ:=0; . thek-th highestτ l
r score found so far

4: for all ex ∈ R.root do
5: τ l

r(ex):=
P

e∈R.root ψ
l(ex, e) · COUNT(e);

6: τu
r (ex):=

P
e∈R.root ψ

u(ex, e) · COUNT(e);
7: insertex into S and updateW ;
8: while S contains non-leaf entriesdo
9: removeez : non-leaf entry ofS with the highestpriority;

10: read the child nodeZ pointed byez ;
11: for all ey ∈ S such thatψu(ey , ez) > ψl(ey , ez) do
12: τ l

r(ey):=τ l
r(ey) − ψl(ey , ez) · COUNT(ez) +

P
e∈Z ψ

l(ey , e) · COUNT(e);
13: τu

r (ey):=τu
r (ey) − ψu(ey , ez) · COUNT(ez) +

P
e∈Z ψ

u(ey , e) · COUNT(e);

14: Sz :=Z ∪ { e ∈ S | ψu(ez , e) > ψl(ez , e) };
15: for all ex ∈ Z do
16: τ l

r(ex):=τ l
r(ez) − ψl(ez , ez) · COUNT(ez) +

P
e∈Sz

ψl(ex, e) · COUNT(e);
17: τu

r (ex):=τu
r (ez) − ψu(ez , ez) · COUNT(ez) +

P
e∈Sz

ψl(ex, e) · COUNT(e);

18: insert all entries ofZ into S;
19: updateW (andγ) by e′ ∈ S whose score bounds changed;
20: remove entriesem from S whereτu

r (em) < γ and¬∃e ∈
S, (τu

r (e) ≥ γ) ∧ (ψu(e, em) > ψl(e, em));

21: report W as the result;

8 Experimental Evaluation

In this section, we experimentally evaluate the performance
of the proposed algorithms. All algorithms in Table 2 were
implemented in C++ and experiments were run on a Pentium
D 2.8GHz PC with 1GB of RAM. For fairness to the STD al-
gorithm [24], it is implemented with the spatial aggregation
technique (discussed in Section 2.1) for optimizing counting

17

operations on aR-trees. In Section 8.1 we present an exten-
sive experimental study for the efficiency of the algorithms
with synthetically generated data. Section 8.2 studies the
performance of the algorithms on real data and demonstrates
the meaningfulness of top-k dominating points. Section 8.3
investigates the efficiency of our solutions for processing
top-k dominating queries on non-indexed data. Section 8.4
presents the experimental study for the relaxed top-k domi-
nating query.

Name Description
STD Skyline-Based Top-k Dominating Algorithm [24]
ITD Optimized version of STD (Sec. 3.2)
SCG Simple Counting Guided Algorithm (Sec. 4)
LCG Lightweight Counting Guided Algorithm (Sec. 4)
UBT Upper-bound Based Traversal Algorithm (Sec. 5)
CBT Cost-Based Traversal Algorithm (Sec. 5)

Table 2 Description of the algorithms

8.1 Experiments with Synthetic Data

Data generation and query parameter values.We pro-
duced three categories of synthetic datasets to model dif-
ferent scenarios, according to the methodology in [2]. UI
contains datasets where point coordinates are random val-
uesuniformly and independently generatedfor different di-
mensions. CO contains datasets where point coordinates are
correlated. In other words, for a pointp, its i-th coordi-
natep[i] is close top[j] in all other dimensionsj 6= i. Fi-
nally, AC contains datasets where point coordinates areanti-
correlated. In this case, points that are good in one dimen-
sion are bad in one or all other dimensions. Table 3 lists the
range of parameter values and their default values (in bold
type). Each dataset is indexed by an aR-tree with 4K bytes
page size. We used an LRU memory buffer whose default
size is set to 5% of the tree size.

Parameter Values
Buffer size (%) 1, 2,5, 10, 20

Data size,N (million) 0.25, 0.5,1, 2, 4
Data dimensionality,d 2, 3, 4, 5
Number of results,k 1, 4,16, 64, 256

Table 3 Range of parameter values

Lightweight counting optimization in Counting-Guided
search. In the first experiment, we investigate the perfor-
mance savings when using the lightweight counting heuris-
tic in the counting-guided algorithm presented in Section 4.
Using a default uniform dataset, for different locations of
a non-leaf entrye−, (after fixing all coordinates ofe− to
the same valuev), we compare (i) node accesses of com-
puting the exactτ(e−) with that of computing a conser-
vative upper boundτu(e) using the lightweight approach

and (ii) the difference between these two bounds. Figure
11a shows the effect ofv (i.e., location ofe−) on node ac-
cesses of these two computations. Clearly, the lightweight
approach is much more efficient than the exact approach.
Their cost difference can be two orders of magnitude when
e− is close to the origin. Figure 11b plots the effect ofv
on the value of upper bound score. Even though lightweight
computation accesses much fewer nodes, it derives a score
that tightly upper bounds the exact score (τu(e) is only 10%
looser thanτ(e−)). Summarizing, the lightweight approach
is much more efficient than the exact approach while still
deriving a reasonably tight upper bound score.

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000

n
o
d
e
 a

c
c
e
s
s
e
s

value

Exact
Light

(a) Node accesses

0e0

2e5

4e5

6e5

8e5

1e6

 0 2000 4000 6000 8000 10000

u
p
p
e
r

b
o
u
n
d
 s

c
o
re

value

Exact
Light

(b) Upper bound score

Fig. 11 The effect ofv, UI, N =1M, d = 3

Orderings in Priority-Based Traversal. In Section 5.2, we
introduced two priority orders for selecting the next non-leaf
entry to process at PBT: (i) UBT chooses the one with the
highest upper bound score, and (ii) CBT, among those with
the highest level, chooses the one with the highest upper
bound score. Having theoretically justified the superiority
of CBT over UBT (in Section 5.2), we now demonstrate this
experimentally. For the default top-k dominating query on a
UI dataset, we record statistics of the two algorithms during
their execution. Figure 12a shows the value ofγ (i.e., the
best-k score) for both UBT and CBT as the number of loops
executed. Note that in UBT/CBT, each loop (i.e., Lines 8–20
of Algorithm 4) causes one tree node access. Sinceγ rises
faster in CBT than in UBT, CBT has higher pruning power
and thus terminates earlier. Figure 12b plots the size ofS

(i.e., number of entries in memory) with respect to the num-
ber of loops. The size ofS in CBT is much lower than that

18

in UBT. Hence, CBT requires less CPU time than UBT on
book-keeping the information of visited entries and negli-
gible memory compared to the problem size. Both figures
show that our carefully-designed priority order in CBT out-
performs the intuitive priority order in UBT by a wide mar-
gin.

0e0

2e5

4e5

6e5

8e5

1e6

 0 1000 2000 3000 4000 5000 6000 7000

g
a
m

m
a

loop

UBT
CBT

(a) Value ofγ

 0

 2000

 4000

 6000

 8000

 0 1000 2000 3000 4000 5000 6000 7000

s
iz

e
 o

f
S

loop

UBT
CBT

(b) Size ofS

Fig. 12 The effect of ordering priorities, UI,N =1M, d = 3

Comparison of all algorithms and variants thereof. We
now compare all algorithms and their variants (STD, ITD,
SCG, LCG, UBT, CBT) for the default query parameters on
UI, CO, and AC datasets (Figure 13). In this and subsequent
experiments, we compile the I/O and CPU costs of each al-
gorithm, by charging 10ms I/O time per page fault, and show
their I/O-CPU cost-breakdown. ITD performs much better
than the baseline STD algorithm of [24] (even though STD
operates on the aR-tree), due to the effectiveness of the batch
counting and Hilbert ordering techniques for retrieved (con-
strained) skyline points. LCG and CBT significantly outper-
form ITD, as they need not compute the scores for the whole
skyline, whose size grows huge for AC data. Note that the
optimized version of counting-guided search (LCG) outper-
forms the simple version of the algorithm that computes ex-
act upper bounds (SCG) by a wide margin. Similarly, for
priority-based traversal, CBT outperforms UBT because of
the reasons explained in the previous experiment. Observe
that the best priority-traversal algorithm (CBT) has lower
I/O cost than optimized counting-guided search (LCG), since
CBT accesses each node at most once but LCG may access
some nodes more than once during counting operations.

time (s)

ITD

SCG
LCG

STD

UBT

CBT

I/O CPU

UI
dataset

CO AC
0

500

1000

1500

2000

0

200

400

600

800

1000

ITD

SCG

LCG

STD

UBT

CBT

ITD

SCG

LCG

STD

UBT

CBT

0

20

40

60

Fig. 13 Query cost (k = 16,N =1M, d = 3)

In remaining experiments, we only compare the best al-
gorithms from each gender (ITD, LCG, and CBT), for a
wide range of query and system parameter values. First, we
study the effect of the buffer on the performance of the al-
gorithms. Figure 14 shows the cost of the algorithms as a
function of buffer size (%). Observe that the costs of LCG
and CBT with the smallest tested buffer (1% of the tree size)
are still much lower than that of ITD with the largest buffer
size (20%). Since CBT accesses each tree node at most once,
its cost is independent of the buffer. Clearly, CBT outper-
forms its competitors for all tested buffer sizes. We note that
the memory usage (for storing visited tree entries) of ITD,
LCG, and CBT for UI data are 0.03%, 0.02%, 0.96% of the
tree size, respectively, and are further reduced by 30% for
CO data. For AC data the corresponding values are 2.72%,
0.11%, and 1.48%. Besides, their memory usage increases
slowly with k and rises sublinearly withN . Even atd = 5,
their memory usage is only two times of that atd = 3.

We also investigated the effect ofk on the cost of the al-
gorithms (see Figure 15). In some tested cases of Figure 15a,
the cost of ITD is too high for the corresponding bar to fit in
the diagram; in these cases the bar is marked with a “≈” sign
and the actual cost is explicitly given. Observe that LCG
and CBT outperform ITD in all cases. Ask increases, ITD
performs more constrained skyline queries, leading to more
counting operations on retrieved points. CBT has lower cost
than LCG for UI data because CBT accesses each tree node
at most once. For CO data, counting operations in LCG be-
come very efficient and thus LCG and CBT have similar
costs. On the other hand, for AC data, there is a wide perfor-
mance gap between LCG and CBT.

Figure 16 plots the cost of the algorithms as a function of
the data dimensionalityd. Again, ITD is inferior to its com-
petitors for most of the cases. Asd increases, the number of
skyline points increases rapidly but the number of points ex-
amined by LCG/CBT increases at a slower rate. Again, CBT
has lower cost than LCG for all cases. Figure 17 investigates
the effect of the data sizeN on the cost of the algorithms.
WhenN increases, the number of skyline points increases
considerably and ITD performs much more batch counting

19

buffer (%)

ITD

CBTLCG

0

100

200

300

400

500

1 2 5 10 20

time (s)

I/O

CPUITD ITD ITD

ITD

CBTLCG CBTLCG CBTLCG CBTLCG

buffer (%)

ITD

CBT
LCG

time (s)

I/O

CPUITD

ITD

ITD
ITD

CBT
LCG

CBTLCG CBTLCG CBTLCG

0

20

40

60

80

1 2 5 10 20
buffer (%)

ITD

CBT

LCG

time (s)

I/O

CPU

ITD ITD

ITD

ITD

CBT

LCG

CBT

LCG

CBT

LCG

CBT

LCG

0

100

200

300

400

500

600

1 2 5 10 20

(a) UI (b) CO (c) AC

Fig. 14 Cost vs. buffer size (%),k = 16,N =1M, d = 3

k

ITD

CBT
LCG

time (s)

I/O

CPU

ITD

ITD

ITD ITD

CBTLCG CBT
LCG CBT

LCG
CBT

LCG

0

100

200

300

400

500

1 4 16 64 256

~
~ ~

~
1068 3477

 k

ITD

CBTLCG

time (s)

I/O

CPU

ITD
ITD

ITD

ITD

CBTLCG CBTLCG
CBT

LCG

CBT

LCG

0

20

40

60

80

1 4 16 64 256
k

ITD

CBT

LCG

time (s)

I/O

CPU

ITD ITD

ITD

ITD

CBT

LCG

CBT

LCG

CBT

LCG

CBT

LCG

0

200

400

600

800

1000

1 4 16 64 256
(a) UI (b) CO (c) AC

Fig. 15 Cost vs.k,N =1M, d = 3

d
ITD

time (s)

I/O

CPU

ITD

ITD ITD

CBTLCG CBTLCG
CBT

LCG CBT

LCG

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5

~
~

2023 ~
~

5421

d

ITD

time (s)

I/O

CPU

ITD

ITD ITD

CBTLCG
CBTLCG

CBT

LCG

CBT

LCG211 563

0

20

40

60

80

100

120

140

2 3 4 5

~
~ ~

~

d

ITD

time (s)

I/O

CPU

ITD
ITD ITD

CBT

LCG

CBT

LCG

CBT

LCG

CBT

LCG

1514 13294

0

100

200

300

400

500

600

2 3 4 5

~
~ ~

~

(a) UI (b) CO (c) AC

Fig. 16 Cost vs.d,N =1M, k = 16

N (million)

ITD

time (s)

I/O

CPU

ITD

ITD

ITD

CBTLCG CBTLCG CBT
LCG

CBT

LCG

605 1261

0

100

200

300

400

500

0.25 0.5 1 2 4

ITD

CBT

LCG

~
~

~
~

N (million)

ITD

time (s)

I/O

CPU

ITD

ITD

ITD

CBTLCG
CBTLCG

CBTLCG

CBTLCG

ITD

CBT
LCG

0

20

40

60

80

0.25 0.5 1 2 4
N (million)

ITD

time (s)

I/O

CPU

ITD

ITD
ITD

CBT

LCG

CBT

LCG

CBT

LCG

CBT

LCG

1103 2297

ITD

CBT

LCG

0

100

200

300

400

500

600

0.25 0.5 1 2 4

~
~

~
~

(a) UI (b) CO (c) AC

Fig. 17 Cost vs.N , d = 3, k = 16

operations than LCG. Also, the performance gap between
LCG and CBT widens.

8.2 Experiments with Real Data

Datasets.We experimented with three real multi-dimensional
datasets:FC5, NBA6, andBASEBALL7. FC contains 581012
forest land cells (i.e., data objects), having four attributes:
horizontal distance to hydrology (hh), vertical distance to
hydrology (vh), horizontal distance to roadways (hr), and

5 Forest cover dataset, UCI KDD Archive. http://kdd.ics.uci.edu
6 NBA Statistics v2.0. http://basketballreference.com
7 The Baseball Archive v5.3. http://baseball1.com/statistics

horizontal distance to fire points (hf). For FC, small values
are preferable to large ones at all dimensions.NBAcontains
regular season statistics of 19112 NBA players (i.e., data ob-
jects). In order for the query to be meaningful, only few
important attributes are selected for NBA players: games
played (gp), points (pts), rebounds (reb), and assists (ast).
BASEBALLconsists of statistics of 36898 baseball pitchers
(i.e., data objects). Similarly, few important attributes are
chosen for baseball pitchers: wins (w), games (g), saves (sv),
and strikeouts (so). In the last two datasets, large values are
preferable for all dimensions and each player is uniquely
identified by his/her name and year.

Performance Experiment. Table 4 shows the cost of the
algorithms on two largest datasets (FC andBASEBALL) for

20

different values ofk, by fixing the buffer size to 5% of the
tree size. Observe that the cost of ITD becomes prohibitively
expensive at high values ofk. Clearly, CBT has the low-
est cost and the performance gap between the algorithms
widens ask increases.

time (seconds)
FC BASEBALL

k ITD LCG CBT ITD LCG CBT
1 262.3 162.0 62.0 4.6 13.0 0.9
4 413.0 166.6 69.7 9.4 16.5 1.8
16 814.2 204.2 78.9 22.8 18.4 2.5
64 2772.7 282.2 99.4 69.7 22.8 3.5
256 9942.1 523.0 176.4 271.1 38.6 5.9

Table 4 Query cost vs.k, real datasets

Meaningfulness of top-k dominating query results. Ta-
ble 5 shows the dominating scores and the attribute values
of the top-5 dominating players in theNBAandBASEBALL
datasets. Readers familiar with these sports can easily verify
that the returned results match the public view of super-star
players. Although the ranking of objects by theirτ -scores
may not completely match with every personalized rank-
ing suggested by individuals, a top-k dominating query at
least enables them to discover some representative “top” ob-
jects without any specific domain knowledge. In addition,
we note that some of the top-k results do not belong to
the skyline. For example, theNBA player “Kevin Garnett
/ 2002” is the top-3 result, even though he is dominated by
the top-1 result (i.e., not a skyline point). Similarly, the top-4
BASEBALLpitcher is dominated by the top-2. These players
could not be identified by skyline queries.

Score NBA Player / Year gp pts reb ast
18585 Wilt Chamberlain / 1967 82 1992 1952 702
18299 Billy Cunningham / 1972 84 2028 1012 530
18062 Kevin Garnett / 2002 82 1883 1102 495
18060 Julius Erving / 1974 84 2343 914 462
17991 Kareem Abdul-Jabbar / 1975 82 2275 1383 413

Score BASEBALL Pitcher / Year w g sv so
34659 Ed Walsh / 1912 27 62 10 254
34378 Ed Walsh / 1908 40 66 6 269
34132 Dick Radatz / 1964 16 79 29 181
33603 Christy Mathewson / 1908 37 56 5 259
33426 Lefty Grove / 1930 28 50 9 209

Table 5 Top-5 dominating players

In general, various approaches could be applied to mea-
sure themeaningfulnessof query results. Yet, there is no
standardized notion for capturing the meaningfulness of re-
sults. We regard theτ score as a reasonable, obvious, and
quantitative measure of the result meaningfulness; due to
the rationale that, each individual top-k dominating player
is guaranteed to overqualify a large number of other players
(in other teams). However, we are not advocating theτ score
as the best possible measure of result meaningfulness.

As an alternative choice of result meaningfulness, we
also measure the number of distinct data points dominated
by the query result set [22], on real datasets. For theNBA
dataset, the top-1, top-2, and top-5 (dominating) query re-
sults dominate respectively 97.24%, 98.13%, and 98.80% of
distinct points in the dataset. For theBASEBALLdataset, the
top-1, top-2, and top-5 (dominating) query results dominate
respectively 93.93%, 94.88%, and 98.67% of data points. It
turns out that, some points in the result set are well separated
from the others, causing the overall result set to dominate a
substantial number of distinct data points.

8.3 Experiments with Non-indexed Data

In this section, we evaluate the performance of our proposed
solutions for top-k dominating queries on non-indexed data.
We use CRS to denote the version of our algorithm with
uses the CRS-filter in the filter pass. The version using the
FN-Filter has variants with different search orderings in the
filter step: (i) FNS, with the sweep-line ordering, (ii) FNU,
with the upper bound score ordering, and (iii) FNP, with the
partial-dominance reduction ordering. As a reference, we
compare these methods with CBT, which is the best aR-tree
based algorithm. In order to apply CBT, we need to bulk-
load the aR-tree from the data first, so we include the cost of
the tree creation in its overhead.

Note that the I/O accesses of our non-indexed solutions
(and the bulk-loading stage before CBT) are mostly sequen-
tial (with negligible random disk page accesses). Each se-
quential page access is charged 1ms I/O time. For instance,
CRS performs three full read passes over data. Each fine-
grained solution (i.e., FNS, FNU, FNP) performs one full
read pass and one full write pass in the in the counting pass,
and two partial read passes (i.e., some partitions are not ac-
cessed in filter and refinement steps). For fairness to CBT,
we assume that the main memory is large enough for the aR-
tree bulk-loading stage to complete in two full read passes
and two full write passes.

Figure 18 illustrates the cost breakdown of our proposed
methods on non-indexed data, for default parameter values
on UI, CO, and AC datasets. Each bar is decomposed into
filter CPU time, refinement CPU time, and the total sequen-
tial I/O time (of all steps/passes). For CBT, sequential I/O
time indicates its cost in the bulk-loading stage, whereas its
filter time represents the total query evaluation time (i.e.,
CPU time and random I/O time) using the aR-tree. Due to
the bulk-loading stage, CBT is more expensive than most
of our non-indexed methods, especially for the UI dataset.
CRS is a coarse-grained solution so its filter step is cheap;
however, many candidates are produced and the refinement
step is expensive. In particular, its computational time is
high for the AC dataset, because of the huge candidate size.
On the other hand, the fine-grained solutions (FNS, FNU,

21

FNP) have robust performance across different data distrib-
utions because they tighten score bounds of existing candi-
dates while reading new points in the filter step.

time (s)

CBT

dataset

seq. I/O filter CPU refine CPU

CRS

FNS
FNU

FNP

CBT CBT
CRS

CRS

FNS

FNS

FNU

FNU

FNP FNP

UI CO AC
0

20

40

60

80

0

10

20

30

40

0

20

40

60
344~

~

Fig. 18 Query cost on non-indexed data (k = 16,N =1M, d = 3)

We proceed to examine the filter effectiveness of the
proposed non-indexed solutions. Specifically, we measure
the candidate size|C| and the top-k lower bound scoreγ
(known so far) at the end of the filter step. Both of them pro-
vide the user early insight about the results. Table 6 shows
the values of|C| andγ, obtained by our methods, on differ-
ent data distributions. As a comparison, we include into the
last row the number of results and the actual top-k score. In
summary, FNP has the best filter effectiveness, followed by
FNS, FNU, and CRS. Since CRS relies mainly on the dom-
inance property to prune unqualified points, it can hardly
reduce the candidate size for the AC dataset. FNU is a fine-
grained solution and performs tightening of score bounds
for candidate points in the filter step; thus, it is more effec-
tive than CRS. However, FNU visits the disk partitions in
descending order of their upper bound scores, and it shares
the same drawback as its tree-based counterpart UBT (see
Section 8.1). Interestingly, the visiting order of FNS is inde-
pendent of the underlying data distributions, yet it is more
effective than FNU. The FNP method, with our carefully-
designed visiting order, leads to extremely low candidate
sizes|C| and tight top-k lower bound scoreγ. In particu-
lar, for the UI data, the candidate set of FNP is exactly the
same as the final result set andγ is only 0.002% lower than
the actual top-k score. Therefore, we recommend FNP as the
best non-indexed solution for top-k dominating queries.

UI CO AC
Method |C| γ |C| γ |C| γ

CRS 616 669651 522 841191 34575 10773
FNS 411 821608 125 991319 135 91530
FNU 466 762140 154 990137 2864 89452
FNP 16 960650 93 992488 48 123315

Results 16 960670 16 994637 16 123462

Table 6 Candidate size|C| and top-k scoreγ, (k = 16, N =1M,
d = 3)

We then investigate the progressiveness of our
non-indexed solutions. During the execution of an algorithm,
the top-k lower bound scoreγ (known so far) provides the

user an early and rough picture over the actual score. Figure
19 plots theγ value of the algorithms (CBT, FNS, FNP) as
a function of time (including both I/O time and CPU time).
Observe that both FNS and FNP acquire highγ value early
at 10–15s. Since the application of CBT on non-indexed
data requires aR-tree bulk-loading, it starts obtaining high
γ value only after 25s. In summary, both FNS and FNP al-
low the user to attain early a tight lower bound estimate of
the actual top-k score.

8.4 Experiments with the Relaxed Query

Performance Experiment.Figure 20 shows the cost of our
algorithms for the relaxed top-k dominating query on UI,
CO, and AC datasets, with the default parameter values. In
general, CBT has the best performance and it is stable for
different data distributions. Since ITD and LCG access some
tree node multiple times (through different counting oper-
ations), they become expensive for processing the relaxed
query, especially on the AC dataset. In contrast, CBT reads
each tree node at most once and adjusts score bounds of ex-
isting entries incrementally.

time (s) I/O CPU

UI

dataset

CO AC

ITD

0

100

200

300

400

500

0

5

10

15

20

25

30

0

500

1000

1500

2000

2500ITD

ITD

LCG

LCG
LCG

CBT

CBT

CBT

Fig. 20 Query cost of relaxed query (k = 16,N =1M, d = 3)

Data Analysis on Real Data with Missing Values.In real-
life, the data may have missing values, either inherently, or
introduced by the data owner in purpose. This may happen,
for example, in an attempt to avoid leakage of sensitive val-
ues. Another example is that the data owner chooses to pub-
lish a “trial” dataset with missing values and only reveals the
original dataset to the client upon purchase.

We now demonstrate the robustness of the relaxed query
on a real dataset with missing values. Specially, for each tu-
ple in theNBAdataset, an attribute is randomly chosen and
its value is set toNULL. The resulting dataset is called the
NBAmiss dataset. Since our algorithms operate on aR-tree
indexed data, eachNULL value in the tree needs to be re-
placed by the worst value. Table 7 shows the relaxed top-
16 dominating players on theNBAmiss dataset. The results
are then compared with the top-70 dominating points on the
original datasetNBA. For instance, the 4-th point inNBAmiss

is the 7-th point inNBA; the 5-th point inNBAmiss is marked
as “—”, meaning that it is outside the top-70 inNBA. It turns

22

0e0

2e5

4e5

6e5

8e5

1e6

 0 10 20 30 40 50 60 70

g
a
m

m
a

time (s)

CBT
FNS
FNP

0e0

2e5

4e5

6e5

8e5

1e6

 0 5 10 15 20 25 30 35

g
a
m

m
a

time (s)

CBT
FNS
FNP

0e0

1e5

2e5

 0 5 10 15 20 25 30 35 40 45 50

g
a
m

m
a

time (s)

CBT
FNS
FNP

(a) UI (b) CO (c) AC

Fig. 19 Top-k scoreγ vs. time,N =1M, k = 16

out that, the relaxed query is able to retrieve a decent num-
ber of meaningful results, even though in the presence of
many missing values inNBAmiss. The robustness of the re-
laxed query is explained by the fact that the contribution of
a score component is less restrictive in the (relaxed)τr func-
tion than in the (original)τ function.

τr rank original rank NBA Player / Year
onNBAmiss onNBA

1 2 Billy Cunningham / 1972
2 — —
3 4 Julius Erving / 1974
4 7 Kevin Garnett / 2004
5 — —
6 6 Don Adams / 1975
7 44 John Havlicek / 1970
8 — —
9 9 Julius Erving / 1973
10 — —
11 48 Rogera Brown / 1969
12 — —
13 12 Larry Bird / 1980
14 62 Billy Cunningham / 1969
15 — —
16 59 Kevin Garnett / 2001

Table 7 Relaxed top-16 dominating players on theNBAmiss dataset

9 Discussion

In this section, we present the summary of our experimental
results and discuss the scalability of the proposed techniques
for high dimensional data.
Summary of Experimental Results.Regarding the process-
ing of top-k dominating queries on aR-tree indexed data, our
performance experiments suggest that CBT has stable per-
formance across different data distributions. Also, it has the
best performance for the case of relaxed top-k dominating
queries. Thus, it is recommended for evaluating top-k dom-
inating queries on indexed data.

In case the data is not indexed, the FNP method out-
performs its competitors and it has robust performance for
different data distributions. In addition, its processing cost

is better than the best index-based approach (CBT), if the
latter includes the cost of bulk-loading the index.
High Dimensional Data. Recall that, in Equation 1, the
score of pointp is defined by the number of pointsp′ domi-
nated byp. When the dimensionality of the problem is high,
the dominance condition becomes too restrictive and even
the top points may have low scores. Consequently, there may
not exist a distinctive top object having much higher scores
than the rest, implying that the top-k dominating query is
not meaningful, due to the dimensionality curse. In order to
produce meaningful results, we consider only low dimen-
sion data (from 2 to 5) in our experiments. In addition, both
our indexed and non-indexed algorithms become inefficient
for high dimensional data.

To extend the applicability of top-k dominating analysis
for high dimensional data, we introduce the relaxed top-k
dominating query, which is able to capture “partial” domi-
nance relationships among the data points. Thus, meaning-
ful top-k results can be obtained from the relaxed query
over high dimensional data. Still, our techniques proposed
in Section 7 operate on multi-dimensional indexes or grids,
which degenerate at high dimensionality. As part of our fu-
ture work, we will focus on the development of efficient so-
lutions for the relaxed query over high dimensional data.

10 Conclusion

In this paper, we studied the interesting and important prob-
lem of processing top-k dominating queries on
multi-dimensional data. Although the skyline-based algo-
rithm in [24] is applicable to the problem, it suffers from
poor performance, as it unnecessarily examines many sky-
line points. This motivated us to develop carefully-designed
solutions that exploit the intrinsic properties of the problem
for accelerating query evaluation. First, we proposed ITD,
which integrates the algorithm of [24] with our optimization
techniques (batch counting and Hilbert ordering). Next, we
developed LCG, a top-k dominating algorithm that guides
search by computing upper bound scores for non-leaf en-
tries, and utilizes a lightweight (i.e., I/O-inexpensive) tech-

23

nique for computing upper bound scores. Then, we proposed
I/O efficient algorithm CBT that accesses each node at most
once. The effectiveness of our optimizations (lightweight
counting technique in LCG and traversal order in CBT) were
analyzed theoretically.

In addition to algorithms that apply on indexed data, we
also propose a methodology for evaluating top-k dominating
queries over non-indexed data that are stored in a sequential
file. Our method can compute the query result within three
passes over the data. In the first pass, a grid-histogram is
computed to capture the distribution of the points. The grid
is used to derive three types of bounds for multi-dimensional
regions, which are helpful to determine a set of candidate
top-k points during the second pass. In the third and final
pass, the dominance scores of the candidates are counted
exactly to derive the final result. We proposed and compared
variants for the second (filter) pass of the algorithm.

The final contribution of the paper is the proposal of a
relaxed version of the top-k dominating query, where the
dominance relationships between points in all dimensional
subspaces are considered. The score of a point is determined
by summing the number of points it dominates from all sub-
spaces. We exemplified and showed experimentally the flex-
ibility of this query compared to the strict version of the
problem. In addition, we showed how the proposed algo-
rithms can be adapted to solve this relaxed top-k dominating
query.

Acknowledgement

This work was supported by grant HKU 7149/07E from Hong
Kong RGC.

References

1. W.-T. Balke, U. G̈untzer, and J. X. Zheng. Efficient Distributed
Skylining for Web Information Systems. InEDBT, 2004.

2. S. B̈orzs̈onyi, D. Kossmann, and K. Stocker. The Skyline Opera-
tor. In ICDE, 2001.

3. A. R. Butz. Alternative Algorithm for Hilbert’s Space-Filling
Curve. IEEE Trans. Comput., C-20(4):424–426, 1971.

4. C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified Computation of
Skylines with Partially-Ordered Domains. InSIGMOD, 2005.

5. C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. Find-
ing k-Dominant Skylines in High Dimensional Space. InSIG-
MOD, 2006.

6. C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. On
High Dimensional Skylines. InEDBT, 2006.

7. S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust Cardinality and
Cost Estimation for Skyline Operator. InICDE, 2006.

8. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Pre-
sorting. InICDE, 2003.

9. R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algo-
rithms for Middleware. InPODS, 2001.

10. P. Godfrey. Skyline Cardinality for Relational Processing. In
FoIKS, 2004.

11. P. Godfrey, R. Shipley, and J. Gryz. Maximal Vector Computation
in Large Data Sets. InVLDB, 2005.

12. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. InSIGMOD, 1984.

13. G. R. Hjaltason and H. Samet. Distance Browsing in Spatial Data-
bases.TODS, 24(2):265–318, 1999.

14. V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A
System for the Efficient Execution of Multiparametric Ranked
Queries. InSIGMOD, 2001.

15. Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline Queries
Against Mobile Lightweight Devices in MANETs. InICDE,
2006.

16. D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries. InVLDB, 2002.

17. I. Lazaridis and S. Mehrotra. Progressive Approximate Aggre-
gate Queries with a Multi-Resolution Tree Structure. InSIGMOD,
2001.

18. S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A
Simple and Efficient Algorithm for R-Tree Packing. InICDE,
1997.

19. C. Li, K. C.-C. Chang, and I. F. Ilyas. Supporting Ad-hoc Ranking
Aggregates. InSIGMOD, 2006.

20. C. Li, B. C. Ooi, A. Tung, and S. Wang. DADA: A Data Cube for
Dominant Relationship Analysis. InSIGMOD, 2006.

21. X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky: Efficient
Skyline Computation over Sliding Windows. InICDE, 2005.

22. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Stars: The k
Most Representative Skyline Operator. InICDE, 2007.

23. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP Op-
erations in Spatial Data Warehouses. InSSTD, 2001.

24. D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive Skyline
Computation in Database Systems.TODS, 30(1):41–82, 2005.

25. J. Pei, A. W.-C. Fu, X. Lin, and H. Wang. Computing Compressed
Multidimensional Skyline Cubes Efficiently. InICDE, 2007.

26. J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the Best Views of
Skyline: A Semantic Approach Based on Decisive Subspaces. In
VLDB, 2005.

27. J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao,
J. X. Yu, and Q. Zhang. Towards Multidimensional Subspace Sky-
line Analysis.TODS, 31(4):1335–1381, 2006.

28. K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline
Computation. InVLDB, 2001.

29. Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient Computation of
Skylines in Subspaces. InICDE, 2006.

30. Y. Theodoridis and T. K. Sellis. A Model for the Prediction of
R-tree Performance. InPODS, 1996.

31. M. L. Yiu and N. Mamoulis. Efficient Processing of Top-k Domi-
nating Queries on Multi-Dimensional Data. InVLDB, 2007.

32. Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Effi-
cient Computation of the Skyline Cube. InVLDB, 2005.

