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Multi-Dimensional Top- k& Dominating Queries

Man Lung Yiu - Nikos Mamoulis

Abstract The top4 dominating query returng data ob- query[14,9] returnsk points with the smallest' value. For
jects which dominate the highest number of objects in a@xample, Figure 1a shows a set of hotels modeled by points
dataset. This query is an important tool for decision supporin the 2D space, where the dimensions correspond to (pref-
since it provides data analysts an intuitive way for findingerence) attribute values; traveling time to a conference venue
significant objects. In addition, it combines the advantageand room price. For the ranking functidgh= x+y, the top-

of top+ and skyline queries without sharing their disadvan-2 hotels arep, andpg. An obvious advantage of the tdp-
tages: (i) the output size can be controlled, (ii) no rankingquery is that the user is able to control the number of results
functions need to be specified by users, and (iii) the resulithrough the parametds). On the other hand, it might not

is independent of the scales at different dimensions. Dealways be easy for the user to specify an appropriate rank-
spite their importance, top-dominating queries have not ing function. In addition, there is no straightforward way for
received adequate attention from the research communitg data analyst to identify the most important objects using
This paper is an extensive study on the evaluation of toptop-k queries, since different functions may infer different
k dominating queries. First, we propose a set of algorithmsankings.

that apply on indexed multi-dimensional data. Second, we A skyline query[2] retrieves all points which are not
investigate query evaluation on data that are not indexed. Fdominated by any other point. Assuming that smaller values
nally, we study a relaxed variant of the query which consid-are preferable to larger at all dimensions, a pgirdomi-

ers dominance in dimensional subspaces. Experiments usingtesanother poing’ (i.e.,p = p’) when

synthetic and real datasets demonstrate that our algorithms

s?/gnificantly outperform a previous skyline-based apgroach. (i€ Ld, pli] <p') A(Vie[Ld, pli] <)
We also illustrate the applicability of this multi-dimensional wherep[i] denotes the coordinate pfin thei-th dimension.
analysis query by studying the meaningfulness of its resultgontinuing with the example in Figure 1a, the skyline query
on real data. returns pointg, p4, ps, andp-. [2] showed that the skyline
contains the tog-result for any monotone ranking function;
therefore, it can be used by decision makers to identify po-
tentially important objects to some database users. A key
advantage of the skyline query is that it does not require the
) use of a specific ranking function; its results only depend
1 Introduction on the intrinsic characteristics of the data. Furthermore, the
skyline is not affected by potentially different scales at dif-
ferent dimensions (monetary unit or time unit in the example
of Figure 1a); only the order of the dimensional projections
of the objects is important. On the other hand, the size of
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Consider a datas@ of points in ad-dimensional spack?.
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may not be used as an informative and concise summaiyonotone preference ranking function considered by indi-
for the dataset. It is well known that [2]: for a fully corre- vidual conference participants. On the other hand, skyline
lated dataset, the skyline contains exactly 1 point, which igoint p3; may not provide such guarantee; in the worst case,
not informative about the distribution of other data points;all conference participants may just be looking for cheap ho-
for a totally anti-correlated dataset, the skyline is the wholdels, sops is no good at all. A similar observation holds for
dataset, which is definitely not a concise data summary. the skyline poinip,.

The above examples illustrate that a toglominating

1 = ; " . o .
4 p 1,Ops query is a powerful decision support tool, since it identi-
Y (price) 7 © Opz ] fies the most significant objects in an intuitive way. From
- » oPs i | a practical perspective, tap-dominating queries combine
087~ p, 07 05 | 50 points | the advantages of top-queries and skyline queries without
4 9 i L | sharing their disadvantages. The number of results can be
_ AN 1lp, ~ T . . . . .
1 pexey. 0P P; 175 °p, v, C_ontrolled Wlthout. sp(_eC|f)_/|ng any rankmg function. In addi-
S B tion, data normalization is not required; the results are not
. 0% 1 05 1 affected by different scales or data distributions at different
X (time to conf. venue) dimensions
dataset with 7 hotel b) dataset with 54 hotel ' I o
(2) dataset wi oleis (b) dataset wi oleis The top4 dominating query was first introduced by Pa-
Fig. 1 Features of hotels padias et al. [24] as an extension of the skyline query. How-

, , . .. ever, the importance and practicability of the query was not
To summarize, topk—querles'do not provide an objective identified there. This paper is an extensive study of this analy-
order' pf importance for the pomt;, because thel'r results args query. We note that the R-tree (used in [24]) may not be
sensitive to the preference .functlon used.'SkyIme queriegpe most appropriate index for this query; since computing
on _the other hand, only prow_de a subse.t_ of important p0|nts7,(p) is in fact anaggregatequery, we can replace the R-tree
which may have arb|trary size. To faC|I_|tate analysts, Wh()oy anaggregate R-tre@R-tree) [17, 23]. In addition, we ob-
may be interested in a natural order of importance, accordsg e that the skyline-based approach proposed in [24] may
ing tq dominance, we propose the following intuitive Scoreperform many unnecessary score countings, since the sky-
function: line could be much larger than
rp)=|{peD|p>=p}] (1) Motivated by these observations, our first contribution
includes two specialized and very efficient methods for eval-
In words, thescorer (p) is the number of points dominated yating topx dominating queries on a dataset indexed by
by pointp. The following monotone property holds for an aR-tree. We propose (i) a batch counting technique for
, , , computing scores of multiple points simultaneously, (i) a
Vpp €D prp = 7)) > 7(0) 2) counting-guided search algorithm for processing zajsm-
Based on ther function, we can define a natural or- inating queries, and (iii) a priority-based tree traversal al-
dering of the points in the database. Accordingly, the-  gorithm that retrieves query results by examining each tree
k dominatingquery returns: points inD with the highest node at most once. We enhance the performance of (ii) with
score. For example, the top-2 dominating query on the datéghtweight counting which derives relatively tight upper
of Figure la retrievep, (with 7(ps) = 3) andps (with ~ bound scores for non-leaf tree entries at low 1/O cost. Fur-
7(ps) = 2). This result may indicate to a data analyst (i.e.,thermore, to our surprise, the intuitibest-firstraversal or-
conference organizer) the most popular hotels to the corfler [13,24] turns out not to be the most efficient for (iii) be-
ference participants (considering price and traveling time agause of potential partial dominance relationships between
selection factors). Here the popularity of a hotés defined ~ Visited entries. Thus, we perform a careful analysis on (iii)
based on over how many other hotels woplde preferred, and propose aovel, efficient tree traversal ordéor it. Ex-
for any preference function. tensive experiments show that our methods significantly out-
As another example on how the function is related perform the skyline-based approach of [24].
to popularity, consider a dataset with 54 hotels, as shown The above algorithms have been published in the prelim-
in Figure 1b. 50 of these points are not shown explicitly;inary version of this paper [31], where we also proposeitop-
the figure only illustrates a rectangle which includes all ofdominating query variants such aggregateop-k dominat-
them. The top-2 dominating points in this case gréwith  ing queries anthichromatictop-k dominating queries; these
7(p1) = 51) andpy (with 7(p2) = 50). Even thouglp,  extensions are not further investigated here. Instead, in this
is not a skyline point, it becomes important after the top-1paper, we examine two alternative topics relevant toiop-
hotelp; has been fully booked. The reason is thais guar-  dominating queries. The first is the processing of kajm-
anteed to be better than at least 50 points, regardless of amating queries on non-indexed data. In certain scenarios



(e.g., dynamically generated data), it is not always reasorwhere measures (e.g., number of buildings) in a spatial re-

able to assume an existing aR-tree index for them a priori. Igion (e.g., a district) are aggregated.

view of this, we propose a method that evaluatesitajom-

inating queries by accessing the (unordered) dataonlyafew ¥ e, ________ " __

times. As we demonstrate experimentally, this method sig-

nificantly outperforms the best index-based method, which ﬁ 5
0%

requires the bulk-loading an aR-tree index before evaluationo._ 3
Our second extension over [31] is the proposal and study of eio

a relaxed form of the to-dominating query. In this query Healea ) ffese [ e [l
variant, ther(p) score is defined by the number of dimen- . e" e“‘ w (67 ‘ej w (f“‘i'zw
sional subspaces where pojntiominates another poipt. es tos contents o eaf modes omited
As we demonstrate, this query derives more meaningful re- (a) a set of points (b) EOUNTBR-tree
sults than the basic top-dominating query. Fig. 2 aR-tree example

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 discusses the properties Figure 2a shows a set of points in the 2D space, indexed
of top-k dominating search and proposes optimizations foby the COUNTaR-tree in Figure 2b. Each non-leaf entry
the existing solution in [24]. We then propose eager/lazy apstores theCOUNTof data points in its subtree. For instance,
proaches for evaluating top-dominating queries. Section in Figure 2b, entry;; has a count 10, meaning that the sub-
4 presents an eager approach that guides the search by diee ofe;; contains 10 points. Suppose that a user asks for
riving tight score bounds for encountered non-leaf tree enthe number of points intersecting the regidn, shown in
tries immediately. Section 5 develops an alternative, lazy apg-igure 2a. To process the query, we first examine entries in
proach that defers score computation of visited entries antthe root node of the tree. Entries that do not inter$gcire
gradually refines their score bounds when more tree nodgsuned because their subtree cannot contain any points in
are accessed. Section 6 presents techniques for processing If an entry is spatially covered by (e.g., entrye;o),
top-+ dominating queries on non-indexed data. Section 7 inits count (i.e., 10) is added to the answer without accessing
troduces the relaxed tap-dominating query and discusses the corresponding subtree. Finally, if a non-leaf entry inter-
its evaluation. In Section 8, experiments are conducted osectsWW but it is not contained il (e.g.,e;7), search is
both real and synthetic datasets to demonstrate that the pnecursively applied to the child node pointed by the entry,
posed algorithms are efficient and also foglominating  since the corresponding subtree may contain points inside
queries return meaningful results to users. Section 9 sunwer outsidell. Note that the counts augmented in the entries
marizes our experimental findings and discusses the case effectively reduce the number of accessed nodes. To evalu-
high dimensional data. Finally, Section 10 concludes the paate the above example query, only 10 nodes inGQRJNT
per. aR-tree are accessed but 17 nodes in an R-tree with the same

node capacity would be visited.

root node
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2 Related Work 2.2 Skyline Computation

Top-k dominating queries include a counting componentgsrzsinyi et al. [2] were the first to propose efficient exter-
I.e., multi-dimensional aggregation; thus, we review relateghal memory algorithms for processing skyline queries. The
work on spatial aggregation processing. In addition, as thgNL (block-nested-loop) algorithm scans the dataset while
dominance relationship is relevant to skyline queries, wemploying a bounded buffer for tracking the points that can-
survey existing methods for computing skylines. not be dominated by other points in the buffer. A point is
reported as a result if it cannot be dominated by any other
point in the dataset. On the other hand, the DC (divide-and-
2.1 Spatial Aggregation Processing conquer) algorithm recursively partitions the dataset until
each partition is small enough to fit in memory. After the
R-trees [12] have been extensively used as access methddsal skyline in each partition is computed, they are merged
for multi-dimensional data and for processing spatial queriety form the global skyline. The BNL algorithm was later
e.g., range queries, nearest neighbors [13], and skylinenproved to SFS (sort-filter-skyline) [8] and LESS (linear
queries [24]. The aggregate R-tree (aR-tree) [17,23] augelimination sort for skyline) [11] in order to optimize the
ments to each non-leaf entry of the R-tree an aggregate meaverage-case running time.
sure of all data points in the subtree pointed by it. It has been The above algorithms are generic and applicable for non-
used to speed up the evaluation of spatial aggregate queriésgdexed data. On the other hand, [28,16,24] exploit data in-



dexes to accelerate skyline computation. The state-of-the-art et = (e[l]",e[2]T, -, e[d]T)
algorithm is the BBS (branch-and-bound skyline) algorithm
[24], which is shown to be I/O optimal for computing sky- Obse“’? that both™ ande™ do not correqund to actua}l
lines on datasets indexed by R-trees. da_ta points but they allow us t_o express do_mmance relation-
Recently, the research focus has been shifted to the stu&;r("ps among. points gnd minimum bounding boxes conve-
of queries based on variants of the dominance relationshiﬂ'e_mly' As F.|gure 3 illustrates, there_ are thr?e_cases for a
[22] aims at extracting from the skyline pointskasized pomt. to dominate a non-leaf e.ntry. Singe > ‘1 (|.§., full
subset such that it dominates the maximum number of da&omlnance)pl must also dominatall data points indexed
On the other hand, poipt, dominates:;” but not

points; in other words, the result set cannot contain any noanderel'

skyline point. [20] proposes a data cube structure for spee(Ti_ (e, partia_l do_minan_ce), thus, domJirna_tes SOme, k_)Ut
ot all data points ire;. Finally, asps % e (i.e., no domi-

ing up the evaluation of queries that analyze the dominanc _ 7 -
relationship of points in the dataset. However, incrementarllance)’p?’ cannot dommate.any point iey. Similarly, thg
maintenance of the data cube over updates has not been &gses for an entr}r/ to d‘lm'”f"_‘te anpther ehtry are: (i) full
dressed in [20]. Clearly, it is prohibitively expensive to re-df’m'”"’}{‘ce J(re'g'ﬁ %__63 ). (i _partlal domlrlance+(e.g.,
compute the data cube from scratch for dynamic datasefs =~ ¢4 /€1 # ¢4). (iii) no dominance (e.gs; # e3).

with frequent updates. [6] identifies the problem of com-

puting top-k frequent skylingooints, where the frequency P,
of a point is defined by the number of dimensional sub- ? °© ’
spaces. [5] studies thiedominant skylinequery, which is €l
based on th&-dominance relationship. A point is said e
to k-dominate another point if p dominates’ in at least €y
one k-dimensional subspace. Thedominant skyline con- 1 9P
tains the points that are nbtdominated by any other point. r,° A
Whenk decreases, the size of thedominant skyline also
decreases. Observe that [22,20,6,5] cannot be directly a
plied to evaluate top dominating queries studied in this

pape.r. . . Given a tree entry, whose sub-tree has not been visited,
Finally, [32,26,27,25] study the efficient computation of 7(e*) andr(e~) correspond to théightmostiower and up-

sky!ine; for every_subspace;_ [29] proposes a techr?ique T(Her score bounds respectively, for any point indexed under
retrieving the skyline for a given subspace; [1,15] investi-, A< \ve will show latery () andr (e~ ) can be computed

gaie skyline_\ computatiqn oyer distribut_ed data;_ [1(_)'7] deby a search procedure that accesses only aR-tree nodes that
velop techniques for estimating the skyline cardinality; [21]intersecte along at least one dimension. These bounds help

studies continuous maintenanpe of the skyline over a da uning the search space and defining a good order for vis-
stream; and [4] addresses skyline computation over datasq{%g aR-tree nodes. Later in Sections 4 and 5, we replace
with partially-ordered attributes.

P—i—g. 3 Dominance relationship among aR-tree entries

the tight bounds-(e™) andr(e™) with loose lower and up-
per bounds for themr{(e) andr*(e), respectively). Bounds
3 Preliminary 7!l(e) andr¥(e) are cheaper to compute and can be progres-
sively refined during search, therefore trading-off between
In this section, we discuss some fundamental properties gfomputation cost and bound tightness. The computation and
top-k dominating search, assuming that the data have beaise of score bounds in practice will be further elaborated
indexed by an aR-tree. In addition, we propose an optimizethere.
version for the existing tof-dominating algorithm [24] that
operates on aR-trees.
3.2 Optimizing the Skyline-Based Approach
3.1 Score Bounding Functions Papadias et al. [24] proposed a Skyline-Based Admm-

. S . , inating Algorithm (STD) for topk dominating queries, on
Before presenting our top-dominating algorithms, we first data indexed by an R-tree. They noted that the skyline is

introduce some notation that will be used in this paper. For . o : )
: - . guaranteed to contain the tdpdominating point, since a
an aR-tree entry (i.e., a minimum bounding box) whose

L . . ) non-skyline point has lower score than at least one skyline
projection on thé-th dimension is the intervak[i]—, e[i] 1], yine p y

we denote its lower comer and upper corner b point that dominates it (see Equation 2). Thus, STD retrieves
pp y the skyline points, computes theirscores and outputs the

e” = (e[l]7,el2] 7, ,e[d]7) point p with the highest score. It then removedrom the



dataset, incrementally finds the skyline of the remainingAlgorithm 1 Batch Counting
points, and repeats the same process. algorithm BatchCount(NodeZ, Point set)
Consider for example a top-dominating query on the 1 forall entriese € Z do

A . - . : if Zisnon-leafandip € V,p = eT A — then
dataset shown in Figure 4. STD first retrieves the skyline 5. read the child néodzf pginteed byel') re

points p;, p2, andps (using the BBS skyline algorithm of  4: BatchCountg’, V);
[24]). For each skyline point, a range query is issued to5:  else
count the number of points it dominates. After that, we have®: forall pointsp € v do
. : if p = e~ then
7(p1) = 1, 7(p2) = 4, andr(ps3) = 1. Hencep, is reported . (p):=7(p)*COUNTe);

as the top-1 result. We now restrict the region of searching :
for the next result. First, Equation 2 suggests that the region

dominated by the remaining skyline points (i;e.,andps) ) , i
needs not be examined. Second, the region dominated ngm 0f [24]. Like STD, ITD computes the top-dominat-

s (i.e., the previous result) may contain some points whict points iteratively. In the first iteration, ITD computes in
are not dominated by the remaining skyline poiptsand V' the skyline of the whole dataset, while in subsequent it-

ps. It suffices to retrieve the skyline points (i.e4 andps) grat|ons, Fhe computa’uon Eonsirainedo a “‘?9'°”M- M
in the constrained (gray) regial shown in Figure 4. Af- is the region dominated by the reported pajrin the pre-

ter counting their scores using the tree, we hage) = 2 vious iteration, but not any point in the sit of retrieved
and7(ps) = 1. Finally, we compare them with the scores points in past iterations. At each loop, Lines 6—-8 compute

: : : the scores for the points i’ in batches ofB points each
of retrieved points (i.ep; andps) and repor, as the next
result P (-8 p3) Porps (B < |V']). By default, the value oB is set to the number

of points that can fit into a memory page. Our second opti-
mization is that we sort the points i’ by a space-filling
curve (Hilbert ordering) [3] before applying batch counting,
in order to increase the compactness of the MBR of a batch.
After merging the constrained skyline with the global one,
the objecty with the highestr score is reported as the next
dominating object, removed from and used to compute
the constrained skyline at the next iteration. The algorithm
L B AR terminates aftek objects have been reported.

For instance, in Figure 4; corresponds to poin), 0)
andV = o in the first loop, thusM corresponds to the
whole space and the whole skylifg;, p2, p3} is stored in

In this section, we present two optimizations that greatly. , . o .
reduce the 1/O cost of the above solution by exploiting aR—V , the points there are sorted and split in batches and their

trees. Our first optimization is calldzhtch countinglnstead g;ﬁ?\r:lz agi fhoeugéiixjﬁ%thf Ba“‘:j“i"{“ nt alg}oglt:(;nMIn the
of iteratively applying separate range queries to compute. tghe rg redion in the fi ?J,r;/gmow_be]c): g rﬁ Se 5{ |
the scores of the skyline points, we perform them in batch, gray reg : gure: P4, Ps

and the corresponding scores are batch-counted. The next

Algorithm 1 shows the pseudo-code of this recursive batch " " : .
. ) oint is then reported (e.gn4) and the algorithm continues
counting procedure. It takes two parameters: the current ar:

tree nodeZ and the set of point¥, whoser scores are to as long as more results are required.
be counted. InitiallyZ is set to the root node of the tree and
7(p) is set to O for each € V. Lete be the current entry Algorithm 2 Iterative Topxz Dominating Algorithm (ITD)
in Z to be examined. As illustrated in Section 3.1¢ifs a  algorithm ITD(Tree R, Integerk)

non-leaf entry and there exists some pgint V such that ~ + f‘g'rzf':q'l:tc(’)”’f';opo'm’

p = et Ap# e, thenp may dominate some (but not guar- M:=region dominated by but by no point in’;

anteed to dominate all) points indexed undeiThus, we

[N
Y ) O

4
wn

Fig. 4 Constrained skyline

2:
3
4: V’:=skyline points inM;
cannot immediately decide the number of pointg idlom- 25 fSOft Itlhg DOlhntS W’fby Hilbert Qrde/rl(r;g;
inated byp. In this case, we have to invoke the algorithm 7 or ?nitia"’llitzcezﬁ/gforg)og(ggitst'sn"‘; tg o
recursively on the child node pointed by Otherwise, for g BatchCountg.root,V,): T
each pointp € V, its score is incremented BPOUNTe) 9 V=V UV
when it dominates . BatchCount correctly computes the 10:  ¢:=the point with maximum score i’
T score for allp € V, at a single tree traversal. 11: remove fromV;
. . . : report g as thei-th result;
Algorithm 2 is a pseudo-code of the Iterative Tojpom-

inating Algorithm (ITD), which optimizes the STD algo-




4 Counting-Guided Search Algorithm 3 Simple Counting Guided Algorithm (SCG)
algorithm SCG(TreeR, Integerk)

The skyline-based solution becomes inefficient for datasets: H:=new max-heapiy’:=new min-heap;

with large skylines as scores of many points are computed. 2 7=9; _ > thek-th highest score found so far
o . . . 3: BatchCountR.root,{e~ | e € R.root});

In addition, not all skyline points have largescores. Moti- 4. tor all entriese € R.root do

vated by these observations, we study algorithms that solv&:  enheapH, (e, r(e~)));

the problem directly, without depending on skyline compu- 6: while |H| > 0 andH’s top entry’s score>  do

tations. This section presentseagerapproach forthe eval- 7:  e:=deheapH); _

uation of topk dominating queries, which traverses the aR- gf read the child nodé pointed bye;

if Z is non-leafthen

tree and computes tight upper score bounds for encountergg. BatchCountg.root,{e; | e € Z});

non-leaf tree entries immediately; these bounds determingt. for all entriese. € Z do

the visiting order for the tree nodes. We discuss the basic al2: enheaf¥d, (e, 7(ec )));

gorithm, develop optimizations for it, and investigate by an13:  else > Zis a leaf

BatchCountR.root,{p | p € Z});
15: updatéV and~, using{p, 7(p)),Vp € Z

16: report W as the result;

analytical study the improvements of these optimizations.

4.1 The Basic Algorithm

remaining entriesi, ps3, e1, €3), p1 IS guaranteed to be the

Recall from Section 3.1 that the score of any pginin-
top-1 result.

dexed under an entry is upper-bounded by(e~). Based
on this observation, we can design a method that traverses

~

aR-tree nodes in descending order of their (upper bound) 7 e,

scores. The rationale is that points with high scores can be - Ps

retrieved early and accesses to aR-tree nodes that do not con- i %ﬁ P,

tribute to the result can be avoided. 0.5 OO e,
Algorithm 3 shows the pseudo code of the Simple i P2 » 3,7 »d

Counting-Guided Algorithm (SCG), which directs search by 1, PP Py, ’

counting upper bound scores of examined non-leaf entries. .

A max-heapH is employed for organizing the entries to be 05 1

visited in descending order of their scoréig.is a min-heap Fig. 5 Computing upper bound scores
for managing the tog- dominating points as the algorithm

progresses, while is the k-th score inW¥ (used for prun-

ing). First, the upper bound score& ™) of the aR-tree root o

entries are computed in batch (using the BatchCount algdt-2 Optimizations

rithm) and these are inserted into the max-héapwWhile
the scorer(e™) of H's top entrye is higher thany (imply-
ing that points with scores higher thgnmay be indexed

Now, we discuss three optimizations that can greatly reduce
the cost of the basic SCG. First, we utilize encountered data

undere), the top entry is deheaped, and the néipointed points to strengthen the pruning power of the algorithm.
by e is visited. If Z is a non-leaf node, its entries are en- N€Xt, We apply alazy counting method that delays the count-

heaped, after BatchCount is called to compute their uppé:Pg for points, in order to fqrm betjcergroups_ for batch cpgnt-
score bounds. I¥Z is a leaf node, the scores of the points'ng' Finally, we develop a lightweight technique for deriving

in it are computed in batch and the tasetV (alsos) is upper score bounds of_n_on—leaf entries at low cost.
updated, if applicable. The pruner set. SCG visits nodes and counts the scores of
As a|:1 example, consider the top-1 dominating query orpoints and entries, based only on the condition that the up-

the set of points in Figure 5. There are 3 leaf nodes and theff€" Pound score of their parent entry is greater tharow-
corresponding entries in the root node age e, andes. ever, we observe that points which have been counted, but

First, upper bound scores for the root entries (i-éey ) = havg scores at mostcan also be _used to prune early other
3,7(e5) = 7,7(e5) = 3) are computed by the batch count- entries or points, which are domlna}ted by théffhu;, we

ing algorithm, which incurs 3 node accesses (i.e., the rodi'@intain a pruner set, which contains points that (i) have
node and leaf nodes pointed byandes). Sincee, has the been counted exactly (i.e., at Line 15), (ii) have scores at

highest upper bound score, the leaf node pointed,byill ~ MOStY and (iii) are not dominated by any other pointiin
be accessed next. Scores of entrieg-rare computed in The third condition ensures that only minimal information

batch and we obtaim(p1) = 5, 7(p2) = 1, 7(ps3) = 2. 1 Suppose that a poiptsatisfiesr(p) < ~. Applying Equation 2, if
Sincep; is a point andr(p;) is higher than the scores of a pointp’ is dominated by, then we have (p’) < .
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is kept inF.2 We perform the following changes to SCG in the pruning power of the algorithm. Next, we investigate its
order to usd. First, after deheaping an enirLine 7), we  effectiveness by a theoretical analysis.

check whether there exists a pojnge F', such thap >~ e

If yes, thene is pruned and the algorithm goes back to Line

6. Second, before applying BatchCount at Lines 10 and 144.3 Analytical Study

we eliminate any entries or points that are dominated by a

pointin F. Consider a datasé? with N points, indexed by an aR-tree
Lazy counting. The performance of SCG is negatively af- whose nodes have an average fanbuur analysis is based
fected by executions of BatchCount for a small number o the assumption that the data points are uniformly and in-
points. A batch may have few points if many points in adependently distributed in the domain spétd]”, whered

leaf node are pruned with the help Bt In order to avoid is the dimensionality. Then, the tree heighand the number
this problem, we employ tzy countingtechnique, which of nodesn; at leveli (let the leaf level b@®) can be estimated
works as follows. When a leaf node is visited (Line 13), in-by & = 1 + [log;(N/f)] andn; = N/ f**'. Besides, the
stead of directly performing batch counting for the pojts  €xtent (i.e., length of any 1D projection) of a node at the
those that are not pruned Byare inserted into a sét, with  i-th level can be approximated By = (1/n;)'/* [30].

their upper bound scorge~) from the parent entry. If, after We now discuss the trade-off of lightweight counting
an insertion, the size df exceeds? (the size of a batch), ©OVer exact counting for a non-leaf entey Recall that the
then BatchCount is executed for the contentd.pfind all ~ €xactupper bound score(e™) is counted as the number
W, ~, F are updated. Just before reporting the final resul®f points dominated by its lower corner. On the other
set (Line 16), batch counting is performed for potential re1and, lightweight counting obtains’(e); an upper bound
sultsp € L not dominated by any point iff and with upper  Of 7(e™). For a givene™, Figure 6 shows that the space
bound score greater than We found that the combined ef- €an be divided into three regions, with respect to nodes at
fect of the pruner set and lazy counting lead to 30% I/0 costevel i. The gray region}/; corresponds to the maximal
reduction of SCG, in practice. region, covering nodes (at levél that arepartially domi-
Lightweight upper bound computation. As mentioned in  nated bye™. While computingr(e™ ), only the entries which
Section 3.1, the tight upper score boun@~) can be re- arecompletely insidé//> need to be further examined (e.g.,
placed by a looser, cheaper to compute, boutgt). We e ). Other entries are pruned after either disregarding their
propose an optimized version of SCG, called Lightweighddgregate values (e.g.z, which intersects\/;), or adding
Counting Guided Algorithm (LCG). Line 10 of SCG (Al- these valuesto(e™) (e.g.,ec, which intersects\/;).

gorithm 3) is replaced by a call to LightBatchCount, which
is a variation of BatchCount. In specific, when bounds for a
setV of non-leafentries are counted, the algorithm avoids
expensive accesses at aR-tree leaf nodes, but uses entries at E
non-leaf nodes to derive looser bounds.

LightBatchCount is identical to Algorithm 1, except that
the recursion of Line 2 is applied whéii is at least two
levels above leaf nodes and there is a poift ithat partially
dominates; thus, the else statement at Line 5 now refers to 0.0) 1.0)
nod_es one level above the Ieayes. In addltlor_1, the cond|tlogig. 6 /O cost of computing upper bound
at Line 7 is replaced by > e*; i.e., COUNTe) is added to

7"(p), even ifp partially dominates entry. Thus, the probability of accessingath level) node can
As an example, consider the three root entries of Fighe approximated by the arealf,, assuming that tree nodes

ure 5. We can compute loose upper score bound$’fer 4t the same level have no overlapping. To further simplify

{er, ey, e5}, without accessing the leaf nodes. Sineg,  our analysis, suppose that all coordinates: ofare of the

fully dominatese, and partially dominates,,e;, we get  same value. Hence, the aR-tree node accesses required for

T"(e2) = 9. Similarly, we getr*(e1) = 3 and7"(e3) = 3. computing the exact(e~) can be expressedas

Although these bounds are looser than the respective tight

ones, they still provide a good order of visiting the entries 3 ho! J J

and they can be used for pruning and checking for termilY Aevact(€7) = Z"l A= +2) = (1 =v=A)T (3)

nation. In Section 8, we demonstrate the significant compu- =0

tation savings by this lightweight counting (ef(e)) over 3 For simplicity, the equation does not consider the boundary effect

exact counting (of (¢~ )) and show that it affects very little (i.e., v is near the domain boundary). To capture the boundary effect,
we need to bound the ternis — v + ;) and(1 — v — ;) within the

2 Note thatF is the skyline of a specific data subset. range[o, 1].

(0.1)

M,




In the above equation, the quantity in the square brackets.1 The Basic Algorithm

corresponds to the volume dfl; (at leveli) over the vol-

ume of the universe (this equals to 1), capturing thus th&®ecall that counting-guided search, presented in the previ-
probability of a node at levelto be completely insidd/,.  ous section, may access some aR-tree nodes more than once
The node accesses of lightweight computation can also lstue to the application of counting operations for the visited
captured by the above equation, except that no leaf nodemtries. For instance in Figure 5, the node pointed;bhyay

(i.e., at level 0) are accessed. As there are many more lebg accessed twice; once for counting the scores of points un-
nodes than non-leaf nodes, lightweight computation incursleres; and once for counting the scores of points uneer

significantly lower cost than exact computation. We now propose a top-dominating algorithm which tra-
Now, we compare the scores obtained by exact compurerses each node at most once and has reduced I/O cost.

tation and lightweight computation. The exact scofe™) Algorithm 4 shows the pseudo-code of this Priority-Based

is determined by the area dominatedeby. Tree Traversal Algorithm (PBT). PBT browses the tree, while

e )= N-(1—0v) @) maintaining (loose) uppet“(e) and lower 7!(e) score
bounds for the entriesthat have been seen so far. The nodes
In addition to the above points, lightweight computation counfsthe tree are visited based op@ority order. The issue of
also all points inA/;, for the leaf level into the upper bound defining an appropriate ordering of node visits will be elabo-
score: rated later. During traversal, PBT maintains asef visited
u aR-tree entries. An entry ifi can either: (i) lead to a poten-
(e) = N - (L=v+ )" (5) tial result, or (ii) be partially dominated by other entriessin
Summarizing, three facto®’, v, andd affect the rela- that may end up in the resull/ is a min-heap, employed for
tive tightness of the lightweight score bound over the exactracking the topk points (in terms of their! scores) found
bound. so far, whereas is the lowest score iii” (used for pruning).
— When N is large, the leaf node extent, is small and First, the root node is loaded, and its entries are inserted
thus the lightweight score is tight. into S gfte_r upper score bounds ha_ve been derived from in-
— If vis small, i.e.e~ is close to the origin and has high formation in the root node. Then (Lines 8-18), whileon-

dominating power, thet, becomes less significant in tai_ns_ nqn-leaf entries, the non-leaf en&rzywi_th the highest

Equation 5 and the ratio of“(e) to 7(¢~) is close to 1 Priority is removed fromS, the corresponding tree node

(i.e., lightweight score becomes relatively tight). is visited and (i) ther (™) scores of existing entries if
_ Asdincreases (decreases),also increases (decreases) (Partially dominating:. ) are refined using the contentsf

and the lightweight score gets looser (tighter). (ii) 7 (r%) values for the contents &f are computed and, in
turn, inserted t&5. Note that for operations (i) and (i), only

In practice, during counting-guided search, entries Clos?nformation from the current node arfilis used: no addi-
to the 0”9"‘ haye highgr probability.to be accgssed tharﬁonal accesses to the tree are required. Updates and com-
other entries, since thel.r pgrent entries have higher Upp‘Torut.’:ltions ofr* scores are performed incrementally with the
bounds and they are prioritized by search. As a result, Weo mation ofe, and entries ir that partially dominate, .
expect that the second case above will hold for most of they ;¢ updated with points/entries of higherthan-. Finally
upper bound computations and lightweight computation Wi"(Line 20), entries are pruned frofhif (i) they cannot lead to

be effective. points that may be included W, and (ii) are not partially
dominated by entries leading to points that can rddch
5 Priority-Based Traversal It is important to note that, at Line 21 of PBT, all non-

leaf entries have been removed from theSeand thus (re-

In this section, we presentazyalternative to the counting- sult) points ini¥’ have their exact scores found.

guided method. Instead of computing upper bounds of vis- To comprehend the functionality of PBT consider again
ited entries by explicit counting, we defer score computathe top-1 dominating query on the example of Figure 5. For
tions for entries, but maintain lower and upper bounds fothe ease of discussion, we denote the score bounds of an en-
them as the tree is traversed. Score bounds for visited etry e by the intervalr, (e)=[7(e), 7%(e)]. Initially, PBT ac-
tries are gradually refined when more nodes are accessarksses the root node and its entries are insertedsirtiver

until the result is finalized with the help of them. For this their lower/upper bound scores are derived (see Lines 5-6);
method to be effective, the tree is traversed with a carefullys, (e1)=[0, 3], 7 (e2)=[0, 9], 7« (e3)=[0, 3]. Assume for now,
designed priority order aiming at minimizing I/O cost. We that visited nodes are prioritized (Lines 9-10) based on the
present the basic algorithm, analyze the issue of setting awpper bound scores‘(e) of entriese € S. Entry es, of the
appropriate order for visiting nodes, and discuss its implehighest score* in S is removed and its child nod# is
mentation. accessed. Since; ¥ e ande; ¥ ef, the upper/lower



Algorithm 4 Priority-Based Tree Traversal Algorithm ing result early. We denote this instantiation of PBT by UBT

(PBT) (for Upper-bound Based Traversal).
algorithm PBT(TreeR, Integerk) _ l Nevertheless a closer look into PBT (Algorithm 4) re-

1. S:=new set, >entry formatinS: (e, 7'(e),7"(¢))  yeals that the upper score bounds alone may not offer the
2: W:=new min-heap; > k points with the highest! best priorit der for t . the t R Il that th
3: v:=0; > the k-th highestr! score found so far es .prlorl y or. er tor raversmg . ? ree. ec?‘ at the
4: forall e, € R.root do pruning operation (at Line 20) eliminates entries fréhn

5 T%%)PZeeR.mom%ef COUNTe); saving significant I/O cost and leading to the early termina-
6. (€)= R rootner ot COUNTE); tion of the algorithm. The effectiveness of this pruning de-
7: inserte; into § and updatéy’; pends on théower bounds of the best points (storedTir).

8: while S contains non-leaf entriain _ - Unless these bounds are tight enough, PBT will not termi-
9: removee: non-leaf entry ofS with the highespriority; t | & will I

10: read the child nodg pointed bye.; nate early anc wi grqw very arge_. )

11:  forall ey, € Ssuchthat) ¥ e, Aey = ef do For example, consider the application of UBT to the tree
12: H(ey):=1! (ey) + > cezned e~ COUNTE); of Figure 2. The first few nodes accessed are in the order:
13: T(ey) =T (ey) + Xoe pret po pes s ot COUNTE); root node,e;s, €11, €9, e12. Althoughe;; has the highest
14 S.=ZUfecS|ef fe Nes = et} upper bound score, fartially glomlnateshlgh-level entries

15:  forall e, € Z do (e.g.,e17 andey), whose child nodes have not been ac-
16: m(ea) = (ez) + X g net s - COUNTe); cessed yet. As a result, the bésscorey (i.e., the cur-

17: T (ex): =T (€2) + 2ees.net e nes e+ COUNTE); rent lower bound score af;;) is small, few entries can be
18:  insert all entries of into S; pruned, and the algorithm does not terminate early.

19:  updateV (andvy) by e’ € S whose score bounds changed; Thus, the objective of search is not only to (i) examine
20: remove entries,, from S wheret¥(e,,) < v and—3Je €

the entries of large upper bounds early, which leads to early
identification of candidate query results, but also (i) elim-
inate partial dominance relationships between entries that
appear inS, which facilitates the computation of tight lower
bounds for these candidates. We now investigate the factors

updated (the condition of Line 11 is not satisfied). The scoré‘ﬁeCting the probability that one node partially dominates

bounds for the point; , ps, andps in Z are then computed: another and link them to the traversal order of PBT. &et
7 (p1)=[1, 7], 74 (p2)=[0, 3], andr, (ps)=[0, 3]. These points andb be two random nodes of the tree such thas at

level : andb is at levelj. Using the same uniformity as-
sumptions and notation as in Section 4.3, we can infer that

S, (t%(e) >v) A (et #emNe™ = e;;);
21: report W as the result;

score bounds of remaining entriés,, e5} in S will not be

are inserted into S, and W={p;} with
v=r!(p1)=1. No entry or point inS can be pruned, since . : i .
their upper bounds are all greater thanThe next non- the two_ _nodesz andb not intersect along dimensidgnwith
leaf entry to be removed fror§ is e; (the tie withes is probability*:

broken arbitrarily). The score bounds of the existing entries
S={es,p1,p2, ps} are in turn refinedr, (e3) remains|0, 3

(unaffected by1), whereas:, (p1)=[3, 6], 7.(p2)=[1, 1], and 4 andb have a partial dominance relationship when they in-
7+(p3) =[0, 3]. The scores of the points indexed by are  tersect along at least one dimension. The probability of be-
computedy. (p4)=[0, 0], 7.(p5)=[0, 0], andr.(ps)=[1, 1] and  ing such is:

W is updated te; with y=7!(p;)=3. At this stage, all points,

except fromp,, are pruned frond, since theirr* scores are Pr( \/ alt) Nb[t] # @) =1 — (1 — (A + \)))?

at mosty and they are not partially dominated by non-leaf te[1,d]

entries that may contain potential results. Although no point o o

from e5 can have higher score than, we still have to keep | '€ @bove probability is small when the suim-A; is min-

es, in order to compute the exact scoremf in the next Mized (€.g.a andb are both at low levels). _
round. The above analysis leads to the conclusion that in order

to minimize the partially dominating entry pairs i we
should prioritize the visited nodes based on their level at the
tree. In addition, between entries at the highest leved,in
we should choose the one with the highest upper bound, in
order to find the points with high scores early. Accordingly,
we propose an instantiation of PBT, called Cost-Based Tra-
versal (CBT). CBT corresponds to Algorithm 4, such that,

Pr(alt] Nb[t] = @) =1 — (A + A;)

5.2 Traversal Orders in PBT

An intuitive method for prioritizing entries at Line 9 of PBT,
hinted by theupper bound principl®f [19] or thebest-first
ordering of [13,24], is to pick the entry, with the high-

est upper bound scor€' (e ); such an order would visit the 4 The current equation is simplified for readability. The probability
points that have high probability to be in the tblominat-  equals 0 when; + ; > 1.
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at Line 9, the non-leaf entry, with the highest level is re- points in the next pass. The second pass isfittex pass
moved fromS and processed,; if there are ties, the entry withwhich applies pruning rules to discard unqualified points
the highest upper bound score is picked. In Section 8, wand keep the remaining ones in a candidate set.rafiee-
demonstrate the advantage of CBT over UBT in practice. ment passbeing the final pass, performs a scan over the data
in order to count the exaat scores of all candidate points.
Eventually, the tops dominating points are returned.

5.3 Implementation Details In Section 6.1, we present the details of the counting

. . ) pass. We investigate different techniques for the filter pass
A straightforward implementation of PBT may lead to V€Y in Sections 6.2 and 6.3; these techniques trade-off efficiency

high computational cost. At each loop, the burden of the al(i.e., CPU time at the filter step) for filter effectiveness (i.e.,

gorlthm 'S the pruning steg (Ll_ne 20hof A_Ig;rltgm 4)’ which size of the candidate set). Finally, Section 6.4 discusses the
as worst-case cost quadratic to the sizeSpentries are final, refinement pass of the algorithm.

pruned fromS if (i) their upper bound scores are below
and (ii) they are not partially dominated by any other entry
with upper bound score above If an entrye,,, satisfies (i),
then a scan of is required to check (ii).

In order to check for condition (ii) efficiently, we use a
main-memory R-tred(S) to index the entries ir$ having
upper bound score above When the upper bound score
of an entry drops below, it is removed from/(S). When
checking for pruning oé,,, at Line 20 of PBT, we only need
to examine the entries indexed BYS), as only these have
upper bound scores aboyeln particular, we may not even
have to traverse the whole ind€XS). For instance, if a
non-leaf entrye’ in I(S) does not partially dominate,,,
then we need not check for the subtree/ofAs we verified

6.1 The counting pass

The first step of the algorithm defines a regular
multi-dimensional grid over the space and performs a lin-
ear scan to the data to count the number of points in each
grid cell. Such a 2-dimensional histogram (witkx 4 cells)

is shown in Figure 7a. To ease our discussion, each grid cell
is labeled ag;;. While scanning the points, we increase the
counters of the cells that contain them, but do not keep the
visited points in memory. In this example, at the end of scan,

. L . we haveCOUNTg;1)=0 andCOUNTy;2)=10. We adopt the
expen.mentally, mamte.w.ung(S) enab_lgs the prunlng. step following convention so that each point contributes to the
to be implemented efficiently. In addition 14.S), we tried counter of exactly one cell. In case a point (exg),falls on

additional data structures for accelerating the operations %e common border of multiple cells (€.gg; and gss), it
-923 33)»

PBT (e.g., a priority queue for popping the next entry from | h I ith the | ;
S at Line 9), however, the maintenance cost of these datte)le ongs to the cell (e.ggss) with the largest coordinates.

structures (as the upper bounds of entrie§'iohange fre- v

guently at Lines 11-13) did not justify the performance gains|
by them. 10 0 0| 7 0 A0 |30 (120 |ut 10
S1g 1824 |8 8w $:20 | 9:50 | $:80
| ' gBlO . 10 gP, 10 ’ 0 1" 80 /;‘::1600 ;;’i:;t)o #;_:523
6 Query Processing on Non-indexed Data H_ P P ' ‘
p,° 1120090 (60 |ut: 30
. . . . . . 8,210 85 10 I 10 8 10 ¢:10 | 9:20
This section examines the evaluation of toglominating e o 150
queries on non-indexed data, assuming that data points are, 0 |, 10 e, 10lg, 10 ' o
stored in random order in a disk fife. - R N
As discussed in [31], a practically viable solution is to (a) point counts of cells (b) Derived values of cells
first bulk-load an aR-tree (e.g., using the algorithm of [18]) » y
from the dataset and then compute fodominating points
using the algorithms proposed in Sections 4 and 5. The bulkt 85 ,
loading step requires externally sorting the points, which is ° o P
known to scale well for large datasets. However, externa 823 3 Pr
sorting may incur multiple 1/0O passes over data. p, p,oop6 o o
Our goal is to compute the toppdominating points with Bz © 8 18 |8 Pas
only a constant number (3) of data passes, by adopting the p° P20
filter-refinement framework. The first pass is theunting 821 bar
pass which employs a memory grid structure to keep track ! ) N . *
(c) Tightening of score bounds (d) Points in the same cell

of point count in cells, while scanning over the data. This
structure is then used to derive lower/upper bound scores &fg. 7 Using the grid in the filter steg=2
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After the counting pass, and before the filter pass beginsn ¢ (this is done only for cellg that are not pruned after
we can derive lower/upper bound scores of the cells fronthe counting pass). Initially, we have no information about
their point counts, by using the notations of Section 3.1. Thishe detailed contents of the cells. However, using the lower
enables us to determine fast the cells that cannot contain topeore bounds’ of the cells and their cardinalities, we can
k dominating points. Given a grid cedl, its upper bound initialize v; thek-th highest-! score of the top: dominating
scoret¥(g) is the total point count of cells it partially or candidates. In other words, we assume that each candidate

totally dominates. has the maximum coordinates in its container geflvorst
case) and use'(g) as its lower bound. The algorithm then
T(g)= Y COUNTy,) performs a linear scan over the dataBedt Lines 4—16. For
9,€GNg™ =gy the pointp being currently examined, we initialize its upper

boundr*(p) anddominated count.¢ using the correspond-

In Figure 7b, the celys3 dominatesyss, g3, gas, andgas, . ) .
d s Y33, a3, 934, ANAGas, g a1es of its container cef.

so we haver“(gs3)=40. The lower bound scoré (g) of g
is the total point count of cells fully dominates.

Algorithm 5 Coarse-grained Filter Algorithm (CRS-Filter)

Tl(g) = Z COUNTy,) algorithm CRS-Filter(DataseD, Integerk, Grid G)
9y EGAG*H =gy 1. forall cellg € G do
' T 2: g.C:=new set; > candidate set of the cell

For instanceyss fully dominatesy,, so we obtain(g33)=10 3 'y:=thek-th_highestr’ score of c:éls ig; v for each cely € G,
(not shown in the figure). COUNTy) instances of the score (g) are considered

. . . 4 forall pe Ddo > filter scan
Besides score bounds, pruning can also be achieved with: ety be the grid cell of;

the help of the dominance property. From Equation 2, weé:  7%(p):=r%(gp); p-6:=gp-¢;
observe that, a point cannot belong to the result if it is domi-7:  forall cellsg. € G such thay: - g; A g # g, do

nated byk other points. Thus, we define the dominated count® for le¢?’;})€¢gi§_3”Ch thap' - p do

g-¢ of the cellg as the total point count of cells fully domi- 1q. if p.6 > k then
natingg. 11: ignore further processing for the pojnt
b= COUN 12:  forall cellsg. € G suchthay, = gF A gy # gz do
99 Z+ B Tgy) 13: forall p’ € g..C such thap = p’ do
9yEIGNGy =g 14: ple=plo+ 1
For examplegs, is fully dominated byg;; andgs;, so we ig ifp'.¢ >k tf]ef" .
get gs2.¢=0+10=10. Clearly, a cell witly;;.¢ > k cannot o removep” from g...C';
. fth | 17: if 7%(p) > v andp.¢ < k then
contain any of the tog-results. 18- insertp into g,.C;

Let £ = 2 in the example of Figure 7b. We proceed to
determine the cells that cannot contain query results. These

include cells with zero count (e.ggs1) and cells having In the loop of Lines 7—11, we search for candidate points
9ij-¢ = k (€.9.,g23). In order to obtain the value (lower w4t Gominatey and have already been read in memory.
bound score of to@- points), we enumerate the remaining g4 each such occurrence, the vaiugis incremented. Due
cell(s) in descending order of theif scores, until their total to the presence of the dominated cogni of the grid cell
point count .realchek. Since the celby» contains 10 £ k) it gffices to traverse only the cells that partially dominate
points and its7" score is 60, we set = 60. Obviously, g ce| ofp (as opposed to all cells). Wheneyes reaches

cells (e.g.,914) whose upper score bounds belaw= 60 ;. ., ; heeds not be incremented further (and the loop exits);
can be pruned. The remaining cells (containing potential reg, this case cannot be a topi-dominating result.

sults) are colored as gray in Figure 7b. . . .
ults) gray in Figu Inthe loop of Lines 12-16, we search for candidate points

p’ that are dominated by and have already been read in
6.2 Coarse-grained Filter memory. They'.¢ of each such point’ is incremented; and
the point is pruned from the candidate set wien reaches

During, the second (filter) pass, the algorithm scans the dafa Note that Lines 12-16 need not be executed when
again and determines a set of candidate points for the tops (at least)k. The reason is that any existing candidate

k dominating query. The first method we propose for thewhich is dominated by must have also been dominated by
filter pass is calledoarse-grained filte(CRS). CRS scans thek dominators op and therefore already been pruned in
the database and uses the score bounds of grid cells and #@revious iteration.

dominance property (of Equation 2) to prune points. CRS At Lines 15-16, we insert the current poimtinto the

is described by Algorithm 5. Each cellis coupled with a  candidate seg,,.C' of its cell g,,, only when itst*(p) score
candidate sej.C, for maintaining candidate points that fall is abovey and itsp.¢ value is less thah.
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to keep track of points with the highest! scores seen so
far and~ is set to thek-th score inWW. Like in the CRS-
CRS simply sets the score bounds of candidate points tBilter, we first determine the-th highest lower bound score
those of their cells. Since each cell may contain a large numy from ther! scores and point counts of grid cells. Thén,
ber of points, their score bounds are not tight, weakeninglummy pairs having the scorgare inserted intd?. The
the filter effectiveness of CRS. In this section, we develofset.S contains the grid cells whose disk partitions have yet
a fine-grained solution (FN) that tightens the score bound be visited. Initially, all grid cells are inserted infb

of candidate points gradually. This way, more unqualified
points having low scores can be eliminated from the searcf!gorithm 6 Fine-grained Filter Algorithm (FN-Filter)
early. algorithm FN-Filter(DataseD, Integerk, Grid G)

. . . . . . v:=thek-th highestr! score of cellsirg; > for each cely € G,
Tightening the score bounds of pointsConsider the filter gOUN@) insgt]ances of the score (g) are considered v

step during the processing of the top-2 dominating query2: w:=new min-heap; > k points with the highest!
(i.e., k=2) on Figure 7c. Suppose that, the pointsps, ps 3: insertk dummy pair NULL,~) into W;

6.3 Fine-grained Filter

are existing candidates (they have already been read durmé ;Z :r:;f"g(jf;;e G do > setof grid cells

the filter pass), and the next point to be processes.is 6. g.Ci=new set: > candidate set of the cell
The first technique is to tighten score bounds by using7:  letg.D be the disk partition of;

the current poinp; and existing candidate points, ps, pg. &  insertginto s;

i l _ u _ _ 9: while S is non-emptydo
First of all, we set’(pr) = 40 and*(py) = 90, by us 10:  removey: the cell inS with the highespriority;

ing score bounds of’s cell g. To tighten score bounds 11. i ru(g) < yand—3g. € G, (ru(g.) > 1) A (oF ¥
of existing candidates, we traverse the cells (igg:, g22, g~ Agz > gt)then

g21) that partially dominate,,. Sincep, dominatep,, we 12 ignore further processing for the disk partitiom;
increment:! (p4). On the other hangh; andpg do not dom- 13: for aIlI P e giD dp . I>-303n oyer ppints_in disk partitionD
inatep; so theirr* scores are decremented. To tighten scor%g 571(?:));:17- a(gu)_,:‘Tpl(p;-;; 7(5;) p.0i=g.0;

bounds of the current point;, we traverse the cells (e.g., 16: ell 0. € G such tha

for all cellg, € G suchthayz > gt Agd £ g~ do
go2, g32, Ja2, o3, goq) that are partially dominated hyso. 17: forall p’ € g..C do > existing candidates in memory

As p; dominatesps, we increment-!(p;). In addition, the 185 if p’ ?]Zt.h_erz] / o .
dominated count ofs now becomes 2 k) so it is re- %g; 57_15{’:2;;{(?3 +T};£;‘f'}‘_p'¢’+ L
moved from the local candidate sgb.C'. 21: 5.¢:=max{ 5~¢>77 v} '

A second technique that our filter algorithm uses to tight€: else

Tu(p/)::Tu(p/) _ 1‘
for all cell g, € G such thay™ > gF A gt 3 gz do
forall p’ € g,.C do 1> existing candidates in memory
if p = p’ then

score bounds is by utilizing bounds of candidate points that>:
have not already been pruned. Assume in Figure 7d that, t 4f
point p,7 is visited after pointg;; andpy, (intermediate .
points likep;» have been pruned). In this casé(p,7) can  27: T (p):=rt(p) + 1; p’ .p:=p
be tightened tanax{7!(p17), 7' (p11), 7" (p14)}. As another 28 d.l:=max{ 8.1, 7' (p') };
example, suppose that the paing is visited after pointgo; 2% else

"o+ 1,

. 30: U(p):=r"(p) — 1,
andps. Then, the upper bound scoremgf, can be tightened 31: o (p):=ma>:{ (ﬁ)(p; ;f)}_ o (p):=min{ 7% (p), S }:
to min{7*(p29), 7 (p23), 7" (p26) }- 32: p.di=max{ p.§, 5.6 +1};

Writing disk partitions. We observe that the pruning effec- 33:
tiveness of the algorithm can be significantly improved if we3%:
are able to identify points with high scores early. To achiev§5f

this, we modify the counting pass (described in Section 6.1 2

as follows. Each grid cel is allocated a memory partition 3g:

if 7{(p) > v andp.¢ < k then
updateV’ (andv), by (p, 7' (p));
if 7%(p) > v andp.¢ < k then
insertp into g.C;
updatg¥ (and~) by points whose! scores> ~;
remove pointy”’ € g,.C (whereg, € G) satisfying the

(at least one page) to store the accessed points that fall in the conditionp”.¢ > k or 7% (p"") < 7;

cell. Whenever the memory becomes full, the largest mem-
ory partition is flushed into its corresponding disk partition

At Line 10, we pick the grid celly from S with the

g.D (i.e., a sequential file). At the end of the counting passhighestpriority value, which will be elaborated shortly. In
remaining points in memory are flushed into their respectivease the cell has upper bound scotdg) below y and it
disk partitions. This modification costs an additional writingis not partially dominated by any other grid cgll with
pass over the data, yet it permits us to access the disk parti*(g.) > ~, the disk partition;.D of g is ignored. The rea-
tions using different orderings (in the subsequent filter andon is that ()¢ may not contain any tog-point and (ii)

refinement passes).

its contribution to topk candidates has already been cap-

Algorithm. Algorithm 6 presents the details of our Fine- tured in their upper/lower bounds. Otherwise, at Lines 9—
grained Filter Algorithm (FN-Filter). A min-heal isused 38, a scan is performed over the pointg)if®. At Line 14,
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we set the score bounds and dominated count of the culine ordering), FNU (with upper bound score ordering), and
rent pointp to that of its cellg,. At Lines 16-23, we tra- FNP (with partial dominance elimination ordering).

verse the candidates in the cells that are partially dominat-

ing g, in order to update score bounds. This is done only for

cells whose partitions have been loaded before. Similarly,

at Lines 24-30, we traverse the candidates in cells partiallg.4 The refinement pass

dominated by, in order to tighten the score bounds of the

current pointp. Meanwhile, we record the value of: @)l,  After completing the filter pass, we obtain a sétbf can-

the maximumr! score of points dominated by(ii) 6.u, the  didate points, which have potential to be the actual results.
minimum7* score of points dominating, and (iii) 5.4, the  In the refinement pass, a linear scan is performed over the
maximum dominated count.¢ of pointsp’ dominatingp.  datase; each poinp’ € D is compared against each can-
These values are then used to update the score bounds afidatep € C and the score op is incremented whep

the dominated count of the current pojntin caser!(p) is  dominates’. This straightforward implementation requires
greater thany, we update the tog-points inW. If 7%(p)is  |D| - |C| dominance comparisons and becomes expensive
at leasty, then we inserp into the local candidate set of its even for moderate-sized candidate set.

grid cell. At Lines 37-38, existing candidate points having  |n order to accelerate the refinement pass, we take ad-
7! scores above are used to updaté’, and points with*  yantage of the lower score bounds of grid cells. Suppose
scores below are pruned. that p; is a candidate point in Figure 7c. Since it falls in
Order of searching disk partitions. We now investigate the cellgy, we set the lower bound scoref to 7 (p;) =
concrete orderings for accessing disk partitions, at Line 16(g,,) = 40. While scanning oveP in the refinement pass,

of the FN-Filter algorithm. We first suggest theanline or-  we need not compare each pajtitc D with the candidate
deringas a reference, which accesses ggifsascending or-  p,. Only pointsp’ in cells that are partially dominated by
der of the valueSLV (g) = Z?zl(ﬂ(g) —1)- A"t where gy, (i.€., g2, g32, g12, g3, go4) have to be compared with

A is the number of divisions per dimension afiflg) =  py.

A - gli]* /s (assuming domain &8, <]?). For instance, the Algorithm 7 is the pseudo-code of the grid-based re-
value of A is 4 in Figure 7a, and we hav€LV(g31) =  finement algorithmg represents the grid obtained from the
(3—1)-1+(1—1)-4 = 2. Disk partitions of cells are counting pass. Each grid cejl € G is associated with a
visited in the orderygi1, g21, gs1, ga1, 912, 922, ---. ThiS  |ocal candidate set.C, for storing candidates (from the fil-
ordering is independent of score bounds of cells. ter pass) that falls into the cejl The valuey is set to the

Another ordering we consider is thgper bound score k-th highestr! score of all candidates (assuming that their
ordering which visits the cells in descending order of their score bounds are obtained from the filter pass). At Line 3,
upper bound scores. In the example of Figure 7b, the cellge check if a celly hast* score belowy and it is not par-
will be visited in the orderyi1, g21, 912, g22, - - -. This or- tially dominated by any celj. having some candidate point.
dering allows us to identify early points with high scores.|f so, the cell is marked aisrelevantas it cannot influence
However, it may delay accessing cells that have low uppethe top# result. At Line 5, the lower bound scoré(p) of
bound, but partially dominate those with high upper boundseach candidatg € ¢.C is reset tar!(g). Then, a scan is per-
This delays the tightening of loose bounds and, in turn, théormed over the datasé. In case the celj,, of the current
pruning of points. pointp’ € D is irrelevant the pointp’ is discarded imme-

Finally, we investigate partial dominance elimination diately without further processing. At Lines 11-13, only the
ordering which takes partial dominance relationships amongells partially dominating’ need to be considered. Every
the partitions into account. We pick the cell (say) withthe  candidatep in such a cell is compared witti, and its score
highest upper bound score, that partially dominates some (p) is incremented whep dominatesy’. Eventually, the
unvisited cells. In case, has not been visited before, we k& candidate points with highest scores are returned as the
access its disk partition. Then, we access partitions of afjuery results.
unvisited cellsg, that are partially dominated hy,, in de- The above refinement algorithm is generic in the sense
scending order of their upper bound scores. The above préhat it does not utilize disk partitions of cells (created in
cedure repeats until the cells are exhausted. For instance, N-Filter). To optimize its performance, we replace the lin-
Figure 7b, we first visit the celf2;, and then visit the cells ear scan at Line 7 by a promising order of accessing disk
partially dominated by it in descending upper bound scorgartitions of cells (e.g., starting with partitions that are par-
order:gss, g31, 923, a1, g24. Next, we visit the cely2, and  tially dominated by the candidate with the highest upper
unseen cells partially dominated by g3, ga2, g14, ga2- bound score). Nevertheless, this optimization technique can-

According to these orderings, we denote the instantianot be applied if the filter step is performed by the CRS-
tions of the fine-grained method as follows: FNS (with scan+ilter, which does not build disk partitions of points for cells.
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Algorithm 7 Grid-based Refinement Algorithm Therelaxed topk dominating queryeturnsk points in the
algorithm GridRefinement(Datas@®, Integerk, Grid G) datase® with the highestr,. score.
1: ~v:=thek-th highestr! score of candidates in cells 6f As an example, we consider scores of points in Table
2: forall cellg € G do . . . _
3 ifru(g) < yand—3g. € G, (g.C| > 0) A (oF ¥ 1. By comparing; with other points, we get(p1, p2)={1, 3}
9= Ags > g*) then andw(p1, p3)={1,2}. Thus, we have,(p;) = (22 — 1) +
4: mark the cely asirrelevant (22 — 1) = 6. Similarly, we can obtain,.(pz) = (2! — 1) +
5 forallp € g.C do (22 —1) =4 andr,.(p3) = (2! — 1) + (2' — 1) = 2. Now,
6 ’ ():=r"(9); > reset lower bound score - \q 416 ghle to rank the three points based on their dominance
; for ?é'tg /ebftﬂg rid cel o scores (e.gp: is the top-1 point in the dataset). In Section
9 i 9:’7 isirrelevantthen 8, we demonstrate that this relaxed query is appropriate for
10: ignore further processing for poipft; search in datasets with missing values.
11:  forall cellg € Gsuchthay™ - g, Ag™ g, do Regarding the definition af(p, p’), we use the number
12: forall p € g.C such thap - p' do 2lw(r.2) — 1 of dimensional subsets, as opposed to the num-
13: 7t (p):le(p) +1;

ber of dimensions iw(p, p’). The rationale is that, a point
should be assigned a very high weight if it dominates oth-
ers in a large number of dimensions. For example, consider
two pointsp; andp,, such thap; dominated 0 points, each
along 10 dimensions, angd dominate$) points, each along

In this section, we study a relaxed variant of the togem- 11 dimensions. Intuitively, althougb, dominates fewer points,

inating query. Section 7.1 presents the motivation and defir2 should have higher score than because more combi-

ition of this query. We discuss adaptations of our tree-basetﬂat'orr:.s of1c_jr|]men5|on? arc:. mvoIvc?d n tthe dommatrl\cctahrela—
algorithms for evaluating this query in Sections 7.2, 7.3, 7.4/0NSNIPS. The score func 'O‘P(p’p ) cap ure/s exactly this
intuition. On the other hand, if the valle(p, p')| is used as

a replacement ofy(p, p’) in the definition ofr,.(p), thenp,

7.1 Motivation appears better than, violating the above intuition.
It fell to our attention that the relaxed tdpdominat-

While the score-(p) models nicely the intuitive importance ing query shares some similarities with the concept ofitop-
of a pointp, the dominance requirement may be too strictfrequent skyline points in dimensional subsets [6]. The ma-
in particular data distributions, where all points may haveor difference of our work from [6] is that we do not con-
similar scores. Table 1 shows the coordinate values of thregder skyline points only. The dimensional subsetp, p’)
points in the 3-dimensional space. Since each point does noontributes to the relaxed scorg(p) of p, even wherp is

14: retun k points in{J, g g-C with the highest-! scores;

7 Relaxed Topk. Dominating Query

dominate any other point in the dataset, we obtdim ) =  not a skyline point inD with respect tow(p, p’). In addi-
T(p2) = 7(p3) = 0. In this case, we cannot identify the tion, [6] emphasizes on approximate result computation but
most “important” point from the dataset. we focus on exact evaluation of our relaxed query over aR-
_ trees. Unlike thé:-dominant skyline query [5], our relaxed
Point p 7’[11] 1”[22] p?] query does not require any apriori value of the subspace size.
Z; 3 1 4
D3 4 3 2
Table 1 Example of points in the 3-dimensional space 7.2 Adaptation of Skyline-Based Approach

To avoid this problem, we propose to relax the dom-IN this section, we discuss the adaptation of the skyline-
inance requirement as follows. Given two poipts) € based approaph (in Section 3.2) for processing the rela>.<ed
D, we define the seb(p, ') of dimensions such that is top-k dominating query. In particular, we study the modi-

smaller than (i.e., preferable tp) along these dimensions: ications of the followings: (i) the dominance property of
Equation 2, and (ii) the BatchCount procedure (Algorithm

wip,p)={ilie[l,d A pli| <pi} (6) 1), which counts the exact scores for a set of points.
Monotone property for the relaxed score.First of all, we
prove that the monotone property holds for the relaxed score
7. as well. This property, expressed by Equation 7, is not
only essential to the skyline-based approach, but also im-
portant for other tree-based solutions.

Then, we define)(p, p’) = 2l«@»)l _1 (i.e., the number of
non-empty dimensional subsets.d(p, p’)). Asp dominates
p’ with respect to each of thegép, p’) dimensional subsets,
we define theelaxed scoref a pointp as:

() =Y ¢(pp)

oD Vp,p' €D, p-p = 7(p) >7(p) )
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The proof is as follows. Consider any poiate D such Py Entry Action on 7, (po)
thata # p anda # p’. Sincep dominatesp’, we have )  © p1 add 0
w(p',a) € w(p,a). As a result,a contributes tor,.(p) at p2 add (2-1)
least as much as it contributes#q(p’). In addition to that, Poi | e, | ’;Z’ 204 (Sfif)é%f,),\%)
p’ contributes zero ta,.(p’) (becausg’ does not dominate L op es | add (B-1)COUNTes)
itself in any dimension), byt’ contributes at leastto 7..(p) °Pp, e, ? e4 visit its child node
(i.e.,w(p,p) > 1) because > p'. As a result, we obtain E es add (2 -1)COUNTes)
7(p) > 7(p). : €6 visit its child node

Exact score counting.Next, we study how to compute the (a) The case of a point (b) Derivation 6f(po)
exactr,. score of a point, by using the aR-tree. We proceedig. 8 Exact computation of the,. value for a point

to present the relevant notations in the context of the relaxed

score. Given two (non-leaf) entriese’ of the tree, we de-
fine w'(e,€’) as the minimal set of dimensions such that
always dominates’, andw®(e,e’) as the maximal set of
dimensions such thatpotentially dominates’:

technique for counting exaet scores of points (discussed
in Section 7.2) can be reused for SCG and LCG.

Recall that SCG computes upper bounds of non-leaf en-
tries (at Line 10). Due to the monotone property of Equa-

e,y ={iliel,d A e[i* <[]} tion 7, the tight upper bound score of an entrig taken as
’ ’ 7-(e7). In the example of Figure 10a, the lower corner of
Wi(e,e) = {ilie[Ld A eli]” <]t} e1 Is e; and the valuer,.(e] ) is a tight upper bound score

for any point indexed under the subtreeegf This value
As a shorthand notation, we defifé(e, ¢’) andiy* (e, ¢’) as  (i.e., 7.(e7)) can be obtained by applying the exact count-
(21« (el — 1) and (2!« ()| — 1) respectively. In our sub- ing technique described in Section 7.2.
sequent discussion, these values are used to derive lower/uppeFollowing the uniformity assumption and the notations
bound scores foe. Note that,w!(e,e’) andw®(e,e’) are  from Section 4.3, we now analyze the cost of computing the
equal if and only ife does not intersect’ along any di- exactr,.(e™) value for a non-leaf entrg. With respect to
mension. Otherwisey' (e, ¢') is a proper subset af“(e, ¢’).  tree nodes at level the space is decomposed into two re-
Observe that the above notations are applicable for ppints gions, as shown in Figure 9. The regid# (in gray) fully
andp’ as well, by replacing by p (ande’ by p’). contains the nodes whose parent entefesatisfy the con-

We modify BatchCount (Algorithm 1) as follows so that dition /“(e,e’) > v!(e,e’); whereas the white region in-

it can be used to compute thgvalues of points (instead of tersects all other nodes. By translating the area/ato the
their 7 values). First, the sub-conditign~- e™ Ap # e~ at  access cost, the aR-tree node accesses for computing the ex-
Line 2 is replaced by (p, ) > 1'(p, e). Second, Lines 7— actr,.(e~) can be expressed as:

8 are replaced by the statement 1
7(p):=7-(p) +¢'(p, e) - COUNTe) NAZ S (e7) =Y ng - [d2X)"" = (d—1)(2)\)%] (8)
As an example, we apply the above technique to com- s

pute ther, score for the poinp, in Figure 8a, which also Unlike Equation 3. th t in Equation 8 is ind dent
shows the other points/entries to be visited in the aR-tree;"'K€ Equation 3, Ihe Cost In Equation © Is independen

Initially, the valuer.(po) is set to zero. The detailed steps of the location ofe™ is the space. Also, th.'s cost is always
are elaborated in Figure 8b. When a point (gay, is en- greater than or equal to the cost in Equation 3.

countered, we simply increment(po) by v (po, ps). The GEIN : )
same is repeated for any non-leaf entry (say,satisfying : [ |
P! (po, €2)=1%(po, e2), except that its count vallBOUNTe, ) ! !
is taken into account. In case a non-leaf entry (sayhas !
different values for! (pg, e4) andy(po, e4), its child node A4

,,,,,,,,,,,,,,,,,,,,,,,,

will be visited. M 14

7.3 Adaptation of Counting-Guided Search 00 : (1.0)

Fig. 9 I/O cost of computing upper bound
We proceed to elaborate the adaptation of the counting-guided

search (e.g., SCG, LCG) for the relaxed query. Accordind.ightweight upper bound score counting.In contrast to

to Equation 7, the monotone property still holds for the re-SCG, LCG utilizes a lightweight counting technique in order

laxed score. This enables us to eliminate unqualified entrie® obtain upper bound scores of non-leaf entries with low
by using the pruner set (see Section 4.2). In addition, theost (see Section 4.2). We now present a modification of this
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technique for deriving an upper bound scefee) for the  atLines 8-20), a non-leaf entey is selected fron$ accord-

entry e such that: (i) the computation requires no accessemg to apriority order (see Section 5.2). The child node (say,

to leaf nodes (thus saving significant cost), andfjf{e) = Z) of e, is then read from the disk.

always upper bounds the exagte~). The access cost of At Lines 11-13, we update score bounds for existing

this lightweight technique is given by Equation 8, exceptentriese, in .S, by comparing them against. By Prop-

that leaf nodes (at level 0) are ignored. erty 1, we need not adjust the score bounds:pfwvhen
Figures 10a,b exemplify how to obtain the valtjle;) — ¢%(ey, e.) = ¢(ey, e;). Incase ofp™(ey, e.) > Y (ey, €.),

for the entrye;. The technique is the same as the one fotthe score contribution aof, to e, is replaced by those of en-

computing the exact,.(e; ) value, except that level-1 en- triesinZ. Based on the same logic, Lines 14-17 are used to

tries (i.e., pointing to leaf nodes) are handled in anotheadjust score bounds of entriesin Z.

way. For the sake of demonstration, suppose that all en- Next, we insert entries of into the setS and update the

tries shown in Figure 10a are level-1 entries. For any entop-k results int¥ with entries (inS) having lower bound

countered level-1 entry (say,), we increment-“(e;) by  scorer!(e) abovey. At Line 20, an entrye,, is removed

Y¥(ey,e.) - COUNTe,), regardless of the!(e;,e.) value.  from S when (i) its upper bound scor€'(e,,) is below~,

and (ii) it cannot be used to adjust score bounds of any other

entry in.S with upper bound score abowe The loop contin-

e, m Entry Action on 77 (1) ues untilS does not contain any no non-leaf entries. Finally,

er o add (Z-1)COUNTe) W is returned as the result.
add (Z2-1)COUN - -
¢ . Zz add §2-1;COUN%Z§§ Algorithm 8 Variant of PBT for the relaxed query
- 4 eq add (2-1)COUNTe,) algorithm RelaxedPBT(Tre, Integerk)
e .
1 €5 add (Z-1)COUNTes) 1. S:=new set; > entry format inS: (e, 7%(e), % (e))
| s add (Z-1)COUNTeg) 2: W:=new min-heap; > k points with the highest!

e, 5 3: 4:=0; > the k-th highestr! score found so far

4: forall e; € R.root do
(a) The case of an entry (b) Derivationf (e1) 5. 1l(ex): =X e R.root Y€z, €) - COUNTe);
) ) ) ] 6: T:‘t(em):zzeeRmoot P¥(ez, e) - COUNTe);
Fig. 10 Lightweight computation of the¥ value of an entry 7 inserte,, into S and updatév’;

8: while S contains non-leaf entriedo

9: removee: non-leaf entry ofS with the highespriority;
10: read the child nodg pointed bye.;
11: for all e, € S such that)®(ey,e.) > ¥l(ey,e,) do

14 Adaptation of Priorly-Based Traverse! 12: Tr(ey)=rl(ey) — Wl(ey,ez) - COUNTe:) +
Y ez ¥(ey,e) - COUNTe);
In this section, we propose a priority-based traversal solul®: Ti(e,)=ri(e,) — wi(eyes) - COUNTe.) +

> ez ¥ (ey, ) - COUNTe);
. S.=ZU{ee€S|u(es,e) > Vl(es,e) };
forall e, € Z do

tion, called RelaxedPBT (Algorithm 8), for processing the
relaxed query. The sét, the min-heagV’, and the valuey

have the same interpretation as in PBT (Algorithm 4). Theye: Tl(eg)i=rl(es) — l(es,es) - COUNTes) +
major differences of RelaxedPBT from PBT are: (i) initial- > g ¢'(ez,e) - COUNTe);
ization of score bounds (Line 4-7), (ii) adjustment of scorel’: T (ez): =T (ez) — P¥(es,ez) - COUNTer) +

bounds (Lines 11-17), and (iii) elimination of unqualified Lees, ¥!(ex,€) COUNTe);

niri Line 20). As we will later. several ration fi insert all entries of into S;
entries (Line 20). As we see later, several operations o 9: updatel’ (andv) by e’ € S whose score bounds changed,;

the algorithm rely on the following property: 20:  remove entries,, from S wherer%(en) < v and—3e €

. , S, (T(e) 2 7) A (¥*(e,em) > Yl (e, em));
Property 1 Consider two (non-leaf) entriesande’ of the 5. report W as the result;

tree and a binding integer valaelf 1! (e, ') = 1" (e, e’) =
a, theny(p,p’) = aforanyp € e, p’ € €.

Proof Whent! (e, e’) equals tay(e, e’), w'(e, e') is iden- _ .
tical tow (e, ¢'). In this caseg ande’ do not intersect along 8 Experimental Evaluation
any dimension. Combining this fact with the bounding prop-
erty of entries, we have(p, p’) = w'(e,e’) = w¥(e, e’), for
anyp € e, p’ € ¢’. As aresult, we obtaig(p, p') = a.

In this section, we experimentally evaluate the performance
of the proposed algorithms. All algorithms in Table 2 were
implemented in C++ and experiments were run on a Pentium
RelaxedPBT begins by examining entries in the root nodp 2.8GHz PC with 1GB of RAM. For fairness to the STD al-
of the tree and deriving their lower/upper bound scores basegbrithm [24], it is implemented with the spatial aggregation
on only entries in the root node. In each iteration (of the loogechnique (discussed in Section 2.1) for optimizing counting
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operations on aR-trees. In Section 8.1 we present an exteand (ii) the difference between these two bounds. Figure
sive experimental study for the efficiency of the algorithmslla shows the effect af (i.e., location ofe~) on node ac-

with synthetically generated data. Section 8.2 studies theesses of these two computations. Clearly, the lightweight
performance of the algorithms on real data and demonstratepproach is much more efficient than the exact approach.
the meaningfulness of top-dominating points. Section 8.3 Their cost difference can be two orders of magnitude when
investigates the efficiency of our solutions for processing~ is close to the origin. Figure 11b plots the effectwof
top-k dominating queries on non-indexed data. Section 8.4n the value of upper bound score. Even though lightweight
presents the experimental study for the relaxedit@immi-  computation accesses much fewer nodes, it derives a score

nating query. that tightly upper bounds the exact scor&(e) is only 10%
. looser tharr(e™)). Summarizing, the lightweight approach
Name _ Description , l is much more efficient than the exact approach while still
STD | Skyline-Based Top-k Dominating Algorithm [24]

) Oplimized version of STD (Sec. 3.2) deriving a reasonably tight upper bound score.

SCG Simple Counting Guided Algorithm (Sec. 4)

LCG | Lightweight Counting Guided Algorithm (Sec. 4
UBT | Upper-bound Based Traversal Algorithm (Sec.|5)
CBT Cost-Based Traversal Algorithm (Sec. 5) 1500

Table 2 Description of the algorithms

2000

Exact —o—
Tight ——

=

node accesses
o
o
o

o
=]
]

8.1 Experiments with Synthetic Data

. ‘
0 <
0 2000 4000 6000 8000 10000
value

Data generation and query parameter valuesWe pro-
duced three categories of synthetic datasets to model dif- 1o

ferent scenarios, according to the methodology in [2]. Ul e
contains datasets where point coordinates are random val- 8e5
uesuniformly and independently generatfea different di-
mensions. CO contains datasets where point coordinates are
correlated In other words, for a poinp, its i-th coordi-
natepli] is close top[j] in all other dimensiong # i. Fi-

nally, AC contains datasets where point coordinatesaatie
correlated In this case, points that are good in one dimen- .
sion are bad in one or all other dimensions. Table 3 lists the 0 000 4000 6000 8000 10000
range of parameter values and their default values (in bold (b) Upper bound score

type). Each dataset is indexed by an aR-tree with 4K bytes
page size. We used an LRU memory buffer whose defauft
size is set to 5% of the tree size.

(a) Node accesses

@
o

@
o

uppeLboundgcore

2e5

0e0

ig. 11 The effect ofv, Ul, N =1M, d = 3

Orderings in Priority-Based Traversal. In Section 5.2, we

Parameter Values introduced two priority orders for selecting the next non-leaf
Buffer size (%) 1,2,510,20 entry to process at PBT: (i) UBT chooses the one with the
gattaj!zezv (_m'"'lc_’tr;; 0'252' 2'54'1'52* 4 highest upper bound score, and (i) CBT, among those with
ata aimensionali , 3, 4, . . A
Number of resultss | 1. 4,16, 64, 256 the highest level, chooses the one with the highest upper

bound score. Having theoretically justified the superiority
of CBT over UBT (in Section 5.2), we now demonstrate this
experimentally. For the default topdominating query on a
Lightweight counting optimization in Counting-Guided Ul dataset, we record statistics of the two algorithms during
search. In the first experiment, we investigate the perfor-their execution. Figure 12a shows the valueyofi.e., the
mance savings when using the lightweight counting heurisbest% score) for both UBT and CBT as the number of loops
tic in the counting-guided algorithm presented in Section 4executed. Note thatin UBT/CBT, each loop (i.e., Lines 8-20
Using a default uniform dataset, for different locations ofof Algorithm 4) causes one tree node access. Sindses

a non-leaf entrye—, (after fixing all coordinates of~ to  faster in CBT than in UBT, CBT has higher pruning power
the same value), we compare (i) node accesses of com-and thus terminates earlier. Figure 12b plots the siz§ of
puting the exactr(e~) with that of computing a conser- (i.e., number of entries in memory) with respect to the num-
vative upper bound*(e) using the lightweight approach ber of loops. The size of in CBT is much lower than that

Table 3 Range of parameter values
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in UBT. Hence, CBT requires less CPU time than UBT on time (s) ol/o mCPU .

book-keeping the information of visited entries and negli-20007 . 60 100071

gible memory compared to the problem size. Both figureslsoo’ A . 800 1 ||

show that our car_e_fully-gieslgned pr|0r|ty order in CBT out- will sco 600 || m™

performs the intuitive priority order in UBT by a wide mar- 1000 1 1D

gin UBT 400 SCG

. 500 4 | | TP 20 LCG
HSCG UBT LCG || cBT 200 ﬂ UBT
nkEd=ig 0L n e’

166 M ggj 0 o 0 o 0 e dataset
8¢5 Fig. 13 Query costk = 16, N =1M, d = 3)

In remaining experiments, we only compare the best al-
2e5 gorithms from each gender (ITD, LCG, and CBT), for a
wide range of query and system parameter values. First, we
0 1000 2000 300?00p4000 5000 6000 7000 study the effect of the buffer on the performance of the al-
(2) Value ofy gorithms. Figure 14 shows the cost of the algorithms as a
— function of buffer size (%). Observe that the costs of LCG
- and CBT with the smallest tested buffer (1% of the tree size)
6000 are still much lower than that of ITD with the largest buffer
size (20%). Since CBT accesses each tree node at most once,
4000 its cost is independent of the buffer. Clearly, CBT outper-
forms its competitors for all tested buffer sizes. We note that
2000 the memory usage (for storing visited tree entries) of ITD,
LCG, and CBT for Ul data are 0.03%, 0.02%, 0.96% of the
0 ‘ tree size, respectively, and are further reduced by 30% for
0 000 2000 3008 1000 5000 6000 7000 CO data. For AC data the corresponding values are 2.72%,
(b) Size ofs 0.11%, and 1.48%. Besides, their memory usage increases
slowly with k& and rises sublinearly wittv. Even atd = 5,
their memory usage is only two times of thatiat 3.

8000

==

UB
CB

siz

Fig. 12 The effect of ordering priorities, Uly =1M, d = 3

We also investigated the effect bfon the cost of the al-

Comparison of all algorithms and variants thereof. We . . .
now compare all algorithms and their variants (STD, ITD gorithms (see Figure 15). In some tested cases of Figure 15a,
’ 'the cost of ITD is too high for the corresponding bar to fit in

SCG, LCG, UBT, CBT) for the default query parameters on ) L . -
Ul, CO, and AC datasets (Figure 13). In this and subsequert1rt-‘e diagram; in these cases the bar is marked wita'afgn

experiments, we compile the /0 and CPU costs of each aend the actual cost is explicitly given. Observe that LCG

gorithm, by charging 10ms I/O time per page fault, and shov?nd CBT outperform ITD in all cases. Asincreases, ITD

their 1/0-CPU cost-breakdown. ITD performs much betterperfor_ms more (_:onstralned_ skyline quernes, leading to more
: : counting operations on retrieved points. CBT has lower cost
than the baseline STD algorithm of [24] (even though STD
) than LCG for Ul data because CBT accesses each tree node
operates on the aR-tree), due to the effectiveness of the batc . . )
. . . . - at most once. For CO data, counting operations in LCG be-
counting and Hilbert ordering techniques for retrieved (con- . .
. . . L come very efficient and thus LCG and CBT have similar
strained) skyline points. LCG and CBT significantly outper- . .
costs. On the other hand, for AC data, there is a wide perfor-
form ITD, as they need not compute the scores for the wholtranance ab between LCG and CBT
skyline, whose size grows huge for AC data. Note that the gap '
optimized version of counting-guided search (LCG) outper-  Figure 16 plots the cost of the algorithms as a function of
forms the simple version of the algorithm that computes exthe data dimensionality. Again, ITD is inferior to its com-
act upper bounds (SCG) by a wide margin. Similarly, forpetitors for most of the cases. Asncreases, the number of
priority-based traversal, CBT outperforms UBT because ofkyline points increases rapidly but the number of points ex-
the reasons explained in the previous experiment. Obsenamined by LCG/CBT increases at a slower rate. Again, CBT
that the best priority-traversal algorithm (CBT) has lowerhas lower cost than LCG for all cases. Figure 17 investigates
I/0 cost than optimized counting-guided search (LCG), sincthe effect of the data siz& on the cost of the algorithms.
CBT accesses each node at most once but LCG may accéshen N increases, the number of skyline points increases

some nodes more than once during counting operations. considerably and ITD performs much more batch counting
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Fig. 17 Costvs.N,d = 3,k = 16

operations than LCG. Also, the performance gap betweehorizontal distance to fire pointsf]. For FC, small values

LCG and CBT widens.

8.2 Experiments wi

Datasets We experimented with three real multi-dimensionaBASEBALLconsists of statistics of 36898 baseball pitchers
datasetsFC®, NBAS, andBASEBALL. FC contains 581012 (i.e., data objects). Similarly, few important attributes are

ith Real Data

are preferable to large ones at all dimensidBA contains

regular season statistics of 19112 NBA players (i.e., data ob-
jects). In order for the query to be meaningful, only few
important attributes are selected for NBA players: games

played @p), points pts), rebounds reb), and assistsasi).

forest land cells (i.e., data objects), having four attributeschosen for baseball pitchers: wing)( gamesd), savesgy),

horizontal distance to hydrologynl), vertical distance to and strikeoutsqg). In the last two datasets, large values are

hydrology {h), horizontal distance to roadwayhr}, and preferable for all dimensions and each player is uniquely

5 Forest cover dataset, UCI KDD Archive. http://kdd.ics.uci.edu
6 NBA Statistics v2.0. http://basketballreference.com

7 The Baseball Archive v5.3. http://baseballl.com/statistics

Performance Experiment. Table 4 shows the cost of the
algorithms on two largest dataseESJ andBASEBALI). for

identified by his/her name and year.



20

different values of, by fixing the buffer size to 5% of the As an alternative choice of result meaningfulness, we
tree size. Observe that the cost of ITD becomes prohibitivelalso measure the number of distinct data points dominated
expensive at high values @f Clearly, CBT has the low- by the query result set [22], on real datasets. ForNB&

est cost and the performance gap between the algorithnalataset, the top-1, top-2, and top-5 (dominating) query re-
widens ask increases. sults dominate respectively 97.24%, 98.13%, and 98.80% of
distinct points in the dataset. For tBASEBALLdataset, the
top-1, top-2, and top-5 (dominating) query results dominate

time (seconds)

FC BASEBALL X )
k M T LCG 1 BT T D T LCG T CBT respectively 93.93%, 94.88%, and 98.67% of data points. It
1 262.3 | 162.0| 62.0 46 | 130 | 09 turns out that, some points in the result set are well separated
4 413.0 | 166.6 | 69.7 94 | 165 | 138 from the others, causing the overall result set to dominate a

16 814.2 | 204.2 | 78.9 228 | 184 | 25
64 || 2772.7| 282.2 | 99.4 69.7 | 22.8 3.5
256 || 9942.1| 523.0| 176.4|| 271.1 | 38.6 5.9

Table 4 Query cost vsk, real datasets 8.3 Experiments with Non-indexed Data

substantial number of distinct data points.

Meaninaful f took dominai Its. T In this section, we evaluate the performance of our proposed
eaningluiness of topx dominaling query resulis. fa- o4 igng for topk dominating queries on non-indexed data.

ble 5 shows the dominating scores and the attribute valuqﬁ/e use CRS to denote the version of our algorithm with
of the top-5 dominating players in tiBAandBASEBALL ses the CRS-filter in the filter pass. The version using the

datasets. Readers familiar with these sports can easily veri N-Filter has variants with different search orderings in the

that the returned results match the public view of super-staf, .. step: (i) FNS, with the sweep-line ordering, (i) FNU,

players. Although the ranklng_ of objects by thel-!scores with the upper bound score ordering, and (i) FNP, with the
may not completely match with every personalized rank-

. ted by individual tdodominati ‘ partial-dominance reduction ordering. As a reference, we
INg suggested by Individua’s, a dpelominating q_uef‘y a" compare these methods with CBT, which is the best aR-tree
least enables them to discover some representative “top Ote)'ased algorithm. In order to apply CBT, we need to bulk-

Jects V\t”tht?]mt any Spe?”;'ﬁ d:)maln k;:ov:;ledget. tl)n Iadd'tlon’load the aR-tree from the data first, so we include the cost of
we note that some of the tap+esults do not belong to the tree creation in its overhead.

the skyline. For example, theBA player “Kevin Garnett Note that the I/O accesses of our non-indexed solutions

/2002"s the tOP_S result even thoggh h.e 'S dominated b)fand the bulk-loading stage before CBT) are mostly sequen-
the top-1 res_ult (|.e_., nota_skylme point). Similarly, the tOp'4tial (with negligible random disk page accesses). Each se-
BASIdEBA;LtI)'pIJ.[gheI.E ((Jljot;nlnitelz_d by the_top-2. These playersquential page access is charged 1ms I/O time. For instance,
could not be identified by skylin€ querIes. CRS performs three full read passes over data. Each fine-
Score NBA Player ] Year o0 | pts b T ast grained solution (i.e., FNS, FNU, FNP) performs one full

18585 | Wilt Chamberiain 71967 | 82 | 1992 | 1952 | 702 | 'ead pass and one full write pass in the in the counting pass,

18299 | Billy Cunningham /1972 | 84 | 2028 | 1012 | 530 | and two partial read passes (i.e., some partitions are not ac-

18062 Kevin Garnett / 2002 82 | 1883 | 1102 | 495 | cessed in filter and refinement steps). For fairness to CBT,
18060 Julius Erving /1974 | 84 | 2343 | 914 | 462 | \ye gssume that the main memory is large enough for the aR-
17991 | Kareem Abdul-Jabbar /1975 82 | 2275 | 1383 | 413 | 00 pyik-loading stage to complete in two full read passes
Score | BASEBALL Pitcher/Year | w g SV S0 and two full write passes.

34659 Ed Walsh / 1912 27 | 62 10 | 254 Figure 18 illustrates the cost breakdown of our proposed
34378 Ed Walsh /1908 40 | 66 6 | 269 | methods on non-indexed data, for default parameter values
34132 Dick Radatz / 1964 16| 79 | 29 | 181 | op yl, CO, and AC datasets. Each bar is decomposed into

33603 | Christy Mathewson /1908 | 37 56 5 259
33426 Lefty Grove / 1930 28 50 9 209

Table 5 Top-5 dominating players

filter CPU time, refinement CPU time, and the total sequen-
tial I/O time (of all steps/passes). For CBT, sequential /0O
time indicates its cost in the bulk-loading stage, whereas its
In general, various approaches could be applied to mediter time represents the total query evaluation time (i.e.,
sure themeaningfulnes®f query results. Yet, there is no CPU time and random /O time) using the aR-tree. Due to
standardized notion for capturing the meaningfulness of rethe bulk-loading stage, CBT is more expensive than most
sults. We regard the score as a reasonable, obvious, andf our non-indexed methods, especially for the Ul dataset.
guantitative measure of the result meaningfulness; due t6RS is a coarse-grained solution so its filter step is cheap;
the rationale that, each individual tépedominating player however, many candidates are produced and the refinement
is guaranteed to overqualify a large number of other playerstep is expensive. In particular, its computational time is
(in other teams). However, we are not advocatingrtbeore  high for the AC dataset, because of the huge candidate size.
as the best possible measure of result meaningfulness.  On the other hand, the fine-grained solutions (FNS, FNU,
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FNP) have robust performance across different data distribhiser an early and rough picture over the actual score. Figure

utions because they tighten score bounds of existing candi-9 plots they value of the algorithms (CBT, FNS, FNP) as

dates while reading new points in the filter step. a function of time (including both I/O time and CPU time).
Observe that both FNS and FNP acquire higbalue early

Dseq. VO Bfilier CPU. & refine CPU at 10-15s. Since the application of CBT on non-indexed

time (s)

40 401 07 B data requires aR-tree bulk-loading, it starts obtaining high

cr CBT g ar| | 7 value only after 25s. In summary, both FNS and FNP al-
601 s 307 FNS ENU FNP 4 | PP low the user to attain early a tight lower bound estimate of
wl s 'S me 5] NS PNU the actual topk score.

H H ] 1L
20 10
0 0 0 amset 8.4 Experiments with the Relaxed Query
Ul co AC

Fig. 18 Query cost on non-indexed data£ 16, N =1M, d = 3) Performance Experiment.Figure 20 shows the cost of our

. ] ] algorithms for the relaxed top-dominating query on Ul,
We proceed to examine the filter effectiveness of thesg, and AC datasets, with the default parameter values. In
proposed non-indexed solutions. Specifically, we measurgeneral, CBT has the best performance and it is stable for
the candidate sizg”| and the topk lower bound score;  iferent data distributions. Since ITD and LCG access some
(known so far) at the end of the filter step. Both of them proyee node multiple times (through different counting oper-
vide the user early insight 'about the results. Table 6_Sh°""§tions), they become expensive for processing the relaxed
the values ofC'| and~, obtained by our methods, on differ- 4,6y "especially on the AC dataset. In contrast, CBT reads

ent data distributions. As a comparison, we include into th%ach tree node at most once and adjusts score bounds of ex-
last row the number of results and the actual kogzore. In isting entries incrementally.

summary, FNP has the best filter effectiveness, followed by

FNS, FNU, and CRS. Since CRS relies mainly on the dom-ime ¢s) OVO ©CPU

inance property to prune unqualified points, it can hardly sy - 309 m 25007 1D

reduce the candidate size for the AC dataset. FNU is a fine; | © 25 20004 I

grained solution and performs tightening of score bounds 20

for candidate points in the filter step; thus, it is more effec- " | 5 7

tive than CRS. However, FNU visits the disk partitions in 201 104 o 10007 LCG
descending order of their upper bound scores, and it shareso - LG cpr S ﬂ 500 ﬂ

the same drawback as its tree-based counterpart UBT (seg, [ 0 B jataset
Section 8.1). Interestingly, the visiting order of FNS is inde- u €o Ac

pendent of the underlying data distributions, yet it is moreFig. 20 Query cost of relaxed query & 16, N =1M, d = 3)

effective than FNU. The FNP method, with our carefully-

designed visiting order, leads to extremely low candidatdata Analysis on Real Data with Missing Valuesin real-
sizes|C| and tight topk lower bound scorey. In particu- life, the data may have missing values, either inherently, or
lar, for the Ul data, the candidate set of FNP is exactly théntroduced by the data owner in purpose. This may happen,
same as the final result set ands only 0.002% lower than for example, in an attempt to avoid leakage of sensitive val-
the actual topk score. Therefore, we recommend FNP as thé/€s. Another example is that the data owner chooses to pub-

best non-indexed solution for tdpdominating queries. lish a “trial” dataset with missing values and only reveals the
original dataset to the client upon purchase.
Ul CO AC We now demonstrate the robustness of the relaxed query
Method |C| ¥ |C| 5 |C| v

on a real dataset with missing values. Specially, for each tu-
CRS || 616 | 669651 || 522 | 841191 || 34575 | 10773 : . :
ENS 711 871608 125 1 991319 135 | 91530 ple in the_NBAdataset, an attnbutg is randomly chosen and
FNU 466 | 7621401 154 | 990137 || 2864 | 89452 its value is set totNULL The resultlng dataset is called the
FNP 16 | 960650 | 93 | 9924881 48 | 123315| NBA,;ss dataset. Since our algorithms operate on aR-tree
Results || 16 | 960670] 16 | 994637] 16 | 123462] indexed data, eacNULL value in the tree needs to be re-
Table 6 Candidate sizeC| and topk scorey, (k = 16, N =1M,  placed by the worst value. Table 7 shows the relaxed top-
d=3) 16 dominating players on theBA,,,;;; dataset. The results
are then compared with the top-70 dominating points on the
We then investigate the progressiveness of oupriginal dataselNBA Forinstance, the 4-th point MBA,,; s
non-indexed solutions. During the execution of an algorithmis the 7-th point ifNBA the 5-th pointirNBA,,,; s is marked
the top4 lower bound score (known so far) provides the as“—", meaning that it is outside the top-70NiBA It turns
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Fig. 19 Top-k scorey vs. time,N =1M, k = 16

out that, the relaxed query is able to retrieve a decent nunis better than the best index-based approach (CBT), if the
ber of meaningful results, even though in the presence datter includes the cost of bulk-loading the index.

many missing values iNBA,,;ss. The robustness of the re- High Dimensional Data. Recall that, in Equation 1, the
laxed query is explained by the fact that the contribution ofscore of poin is defined by the number of poings domi-

a score component is less restrictive in the (relaxednc-  nated byp. When the dimensionality of the problem is high,

tion than in the (original) function. the dominance condition becomes too restrictive and even
_ the top points may have low scores. Consequently, there may
OnTl\TlBraA’lk_ | Or'gmgf”k NBA Player/ Year not exist a distinctive top object having much higher scores
T 5 Billy Cunningham / 1972 than the rest, implying that the tdpdominating query is
2 — — not meaningful, due to the dimensionality curse. In order to
3 4 Julius Erving / 1974 produce meaningful results, we consider only low dimen-
4 ’ Kevin Garnett/ 2004 sion data (from 2 to 5) in our experiments. In addition, both
2 E Bon Ad;ns/1975 our ipdexgd anc_l non-indexed algorithms become inefficient
7 YV John Haviicek 7 1970 for high dimensional data.
8 — — To extend the applicability of tog-dominating analysis
9 9 Julius Erving / 1973 for high dimensional data, we introduce the relaxed kop-
10 — — dominating query, which is able to capture “partial” domi-
E 48 Rogera Brown / 1969 nance relationships among the data points. Thus, meaning-
13 I Larry Bird / 1980 ful top-k results can be obtained from the relaxed query
14 62 Billy Cunningham / 1969 over high dimensional data. Still, our techniques proposed
15 — — in Section 7 operate on multi-dimensional indexes or grids,
16 59 Kevin Garnett / 2001 which degenerate at high dimensionality. As part of our fu-

Table 7 Relaxed top-16 dominating players on tiBA,,;ss dataset  ture work, we will focus on the development of efficient so-
lutions for the relaxed query over high dimensional data.

9 Discussion 10 Conclusion

In this section, we present the summary of our experimentdh this paper, we studied the interesting and important prob-
results and discuss the scalability of the proposed techniquésm of processing topg- dominating queries on
for high dimensional data. multi-dimensional data. Although the skyline-based algo-
Summary of Experimental Results Regarding the process- rithm in [24] is applicable to the problem, it suffers from
ing of top+4 dominating queries on aR-tree indexed data, oupoor performance, as it unnecessarily examines many sky-
performance experiments suggest that CBT has stable pdine points. This motivated us to develop carefully-designed
formance across different data distributions. Also, it has theolutions that exploit the intrinsic properties of the problem
best performance for the case of relaxed ktogeminating  for accelerating query evaluation. First, we proposed ITD,
queries. Thus, it is recommended for evaluating kaem-  which integrates the algorithm of [24] with our optimization
inating queries on indexed data. techniques (batch counting and Hilbert ordering). Next, we
In case the data is not indexed, the FNP method outdeveloped LCG, a tog-dominating algorithm that guides
performs its competitors and it has robust performance fosearch by computing upper bound scores for non-leaf en-
different data distributions. In addition, its processing costries, and utilizes a lightweight (i.e., I/0O-inexpensive) tech-
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nique for computing upper bound scores. Then, we proposed..
I/O efficient algorithm CBT that accesses each node at most
once. The effectiveness of our optimizations (Iightweightlz'
counting technique in LCG and traversal order in CBT) were; 3.
analyzed theoretically.

In addition to algorithms that apply on indexed data, wel4-
also propose a methodology for evaluating togeminating
queries over non-indexed data that are stored in a sequentigj.
file. Our method can compute the query result within three
passes over the data. In the first pass, a grid-histogram is
computed to capture the distribution of the points. The gri
is used to derive three types of bounds for multi-dimensiong| ;.
regions, which are helpful to determine a set of candidate
top-k points during the second pass. In the third and final

pass, the dominance scores of the candidates are countst

exactly to derive the final result. We proposed and compared
variants for the second (filter) pass of the algorithm. 19.
The final contribution of the paper is the proposal of a
relaxed version of the top-dominating query, where the
dominance relationships between points in all dimensionajq_
subspaces are considered. The score of a point is determined
by summing the number of points it dominates from all sub22:
spaces. We exemplified and showed experimentally the ﬂe>§—3
ibility of this query compared to the strict version of the
problem. In addition, we showed how the proposed algo24.
rithms can be adapted to solve this relaxedkamminating
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