
The VLDB Journal (2010) 19:585–602
DOI 10.1007/s00778-010-0181-y

REGULAR PAPER

Path prediction and predictive range querying in road network
databases

Hoyoung Jeung · Man Lung Yiu · Xiaofang Zhou ·
Christian S. Jensen

Received: 3 June 2009 / Revised: 3 December 2009 / Accepted: 22 February 2010 / Published online: 19 May 2010
© Springer-Verlag 2010

Abstract In automotive applications, movement-path
prediction enables the delivery of predictive and relevant
services to drivers, e.g., reporting traffic conditions and gas
stations along the route ahead. Path prediction also enables
better results of predictive range queries and reduces the loca-
tion update frequency in vehicle tracking while preserving
accuracy. Existing moving-object location prediction tech-
niques in spatial-network settings largely target short-term
prediction that does not extend beyond the next road junction.
To go beyond short-term prediction, we formulate a network
mobility model that offers a concise representation of mobil-
ity statistics extracted from massive collections of historical
object trajectories. The model aims to capture the turning pat-
terns at junctions and the travel speeds on road segments at
the level of individual objects. Based on the mobility model,
we present a maximum likelihood and a greedy algorithm
for predicting the travel path of an object (for a time dura-
tion h into the future). We also present a novel and efficient

H. Jeung (B)
School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
e-mail: hoyoung.jeung@epfl.ch

M. L. Yiu
Department of Computing, Hong Kong Polytechnic University,
Kowloon, Hong Kong
e-mail: csmlyiu@comp.polyu.edu.hk

X. Zhou
School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia
e-mail: zxf@itee.uq.edu.au

C. S. Jensen
Department of Computer Science,
Aalborg University, Aalborg, Denmark
e-mail: csj@cs.aau.dk

server-side indexing scheme that supports predictive range
queries on the mobility statistics of the objects. Empirical
studies with real data suggest that our proposals are effective
and efficient.

Keywords Road network database · Path prediction ·
Predictive range query ·Mobility statistics

1 Introduction

We are witnessing a rapid proliferation of mobile location-
based services that deliver services to a user depending on
the user’s current location. Such services are enabled by
positioning technologies such as GPS and cellular networks.
Simply recognizing the user’s current location is not good
enough because the user needs time to plan and react. Pre-
diction of the user’s longer-term movement (e.g., 10 min in
advance) with reasonable accuracy is very important to a
broad range of services. This enables the services to report
relevant traffic conditions and upcoming points of interest
(POIs) such as gas stations. Likewise, actionable advertise-
ments, e.g., for restaurants, should be surfaced ahead of time
so that the user has plenty time to react. Path prediction also
helps avoid distracting the user with irrelevant contents. In
addition, it improves the quality of query results in some
applications [7].

Different models for predicting the future position of a
moving object have been proposed in the literature; however,
they only offer accurate route predictions in the short term. A
simple prediction model represents an object’s future loca-
tion by a linear function of time, based on the most recently
reported location and velocity of the object. This represen-
tation is typically adopted in the context of indexing [13,25]
because it is compact, easy to obtain, and reduces the amounts

123

586 H. Jeung et al.

of updates compared with constant functions of time. How-
ever, this model does not offer accurate predictions beyond
the short term. Figure 1a illustrates that linear predictions
suffer from the fork dilemma for path prediction in a road
network. The model fails to predict the object’s movement
at the intersection A, and its predictions (e.g., F) may well
fall outside the road network.

A more complex, non-linear prediction model, the recur-
sive motion function (RMF) [26], achieves better predictions
by finding a curve that best fits the last few reported loca-
tions of a moving object. This model, however, still suffers
from the fork dilemma and fails to predict sudden direction
changes (i.e., turns).

Figure 1b illustrates the application of the two prediction
models to a real driver’s travel 1 min into the future in a real
road network. The actual route followed is shown in black.
Both the linear model (gray dotted curve) and RMF (dark dot-
ted curve) follow the object’s recent motions and predict that
the object will move toward the East; the routes they predict
are obtained as shortest paths from the current location to
corresponding predicted locations (map-matched). Clearly,
both models fail to predict the sharp turn made by the object.

This paper proposes an approach that enables the accurate
prediction of the route ahead of a moving object whose move-
ment is constrained to a road network. In real life, the tra-
jectories of pedestrians and vehicles most of the time exhibit
regular patterns [10,16]. By taking into account an object’s
historical movement in a road network, we are able to accu-
rately predict when and where the object will make a turn at
an intersection.

The benefits of our approach to route prediction are three-
fold. First, it enables accurate computation of the predic-
tive path query that predicts an object’s future route up to a
given time h. This allows location-based services to utilize
the user’s route ahead. Second, it enables accurate process-
ing of the predictive range query, which identifies the objects
that will fall inside a region R at h time units into the future.
It is important for predicting traffic and congestion. Third,
the proposed prediction model can be applied to reduce the
communication cost of tracking moving objects.

The paper studies the effects of the prediction model on
the accuracy of query results, quantifying the accuracy of the

(a) fork dilemma (b) predicted routes

2

1

3

Fig. 1 Example of path prediction on road network

model as the distance and the similarity between the predicted
path and the actual (future) path. It also studies the effects of
the model on the frequency of location updates (i.e., the com-
munication cost). An accurate prediction model helps reduce
the frequency the location updates since the client needs not
inform the server of its location as long as it follows the pre-
dicted path (which is known to the server and the client). The
paper also develops an efficient server-side indexing struc-
ture for managing the mobility statistics of the objects and
for efficiently processing predictive range queries.

The paper’s contributions can be summarized as follows:

– A network mobility model that concisely represents the
mobility statistics of an object, consisting of (i) turning
patterns at road junctions and (ii) mined travel speed on
roads.

– A maximum likelihood and a greedy algorithm for pre-
dicting the future travel path of an object moving in a
road network.

– A novel and efficient server-side indexing technique for
managing mobility statistics of the objects and evaluat-
ing predictive range queries.

– A comprehensive experimental evaluation that encom-
passes several prediction models using real datasets.

The rest of the paper is organized as follows. Section 2 cov-
ers related work, and Sect. 3 formally defines the problem
addressed. Section 4 presents the network mobility model
along with two path prediction algorithms for road-network
constrained moving objects. Section 5 introduces an index-
ing technique that utilizes the mobility statistics of moving
objects for answering predictive range queries. Section 6
presents the results of extensive experimental studies of path
prediction and query processing using real road networks and
real datasets of moving-object trajectories. Section 7 offers
conclusions.

2 Related work

We first review location prediction techniques and associated
predictive query processing techniques for objects moving
in Euclidean space. We then cover existing techniques for
tracking and predicting moving objects constrained by a road
network.

2.1 Path prediction in euclidean space

Moving-object location prediction models can be classified
into two types: (i) linear motion functions [13,14,22,24,25,
28] and (ii) non-linear functions [1,26]. Given the location
lc and velocity vc of an object at time tc, the object’s location

123

Path prediction and predictive range querying in road network databases 587

at a later time h is predicted by the linear function l(h) =
lc + vc · (h − tc).

Non-linear motion functions capture an object’s move-
ments by more complex mathematical equations and gen-
erally achieve higher prediction accuracy than the simple
linear model. For example, the recursive motion function
(RMF) [26] derives the best fitting matrix-based function,
defined by coefficients that reflect the object’s several most
recent locations (e.g., five). It is able to capture recent trends
of an object’s movement type (e.g., curves) for improving the
prediction accuracy. RMF is good at capturing smooth and
non-linear motions but incapable of predicting turns at road
junctions (e.g., vehicles turning left or right).

The above motion functions fail to provide reasonable
predictions for network-constrained objects because the pre-
dicted locations tend to fall outside of the network. They also
all exhibit the fork dilemma as shown in Fig. 1, as well as they
cannot capture sudden turns at road junctions (e.g., vehicles
turning left, right, or making a u-turn).

Jeung et al. [15] propose a hybrid prediction model that uti-
lizes both motion functions and object movement patterns for
prediction. In this model, the motion functions are employed
when any pattern satisfying a query condition is unavailable,
thus creating the problems exhibited by the motion functions.

A predictive range query [18,21,22,25–28,31] asks for
the objects that will appear in a given spatial region R at
a future time h. Most existing predictive query processing
methods employ linear motion functions for moving objects,
so their results are not accurate as large h values.

Figure 2 illustrates two moving objects o1 and o2, and the
time-parameterized rectangle (gray color) indexing them in
a TPR-tree [25]. Suppose that the current time value is 1.
The bounding rectangle expands with h, according to the
maximum speeds of objects known at the time value 1. In
the figure, the predictive range query with region R at future
time h = 3 would retrieve the object o1, based on its linear
motion function. However, o1 should not be a result, as its
actual location at the future time h = 3 indeed is outside R.

Fig. 2 An example of predictive range query processing

Moving objects on a road network (e.g., o1, o2) tend to turn
at road junctions in the future, rendering linear predictions
inaccurate in the long term. This motivates us to develop
a more accurate prediction model, in order to improve the
accuracy of predictive queries.

2.2 Path prediction in road networks

In order for a server to track the locations of objects in spatial
networks with guaranteed accuracy at low communication
cost, various techniques exist that govern the communica-
tion between the server and the moving clients [8,29]. These
techniques assume that the server and a client share a predic-
tion of the client’s future movement. The client then issues
an update when the deviation between its true position and
the predicted one reaches the accuracy bound, upon which a
new prediction is formed. The predictions utilized by these
techniques usually cause the clients to issue updates every
time they pass a road junction. In contrast, this paper’s focus
is on determining the road segments along which an object
will travel beyond the next junction.

In other related work, Brilingaite et al. [5,6] predict the
route of a moving object by comparing the current time and
location of the object with all historical routes recorded pre-
viously for the object along with information about when
they were used. This proposal appears to not scale well for a
large trajectory database. Kim et al. [17] propose a path pre-
diction method for road-network constrained moving objects
as in this paper. However, they assume that the objects’ des-
tinations are known. This assumption does not hold in our
setting.

A graph of cellular automata (GCA) can be used to model
a road network by decomposing each road segment into
a fine-grained sequence of cells. An object’s movement is
viewed as a sequence of transitions between cells [17].
Ding et al. [9] model a road network as a dynamic graph and
the moving objects as moving graph points. However, these
approaches both suffer from the fork dilemma and cannot
make accurate predictions beyond a road junction.

Machine learning techniques [3,30] have also been applied
to the problem of predicting object movement in road net-
works. The focus is here on developing effective learning
models (e.g., utilizing neural networks and Markov models);
little attention is given to providing mechanisms for estimat-
ing the path of an object or its location at a specific future
time.

In the context of a wireless cellular communication net-
works, methods [19,23] are available that aim to predict the
next cell to be visited by a moving object by using signal
strengths from the wireless base stations. However, cells may
span many square miles and usually contain many different
road segments, rendering the predictions too coarse grained
for our purposes.

123

588 H. Jeung et al.

The work most relevant to this paper’s is the PLM pre-
diction model [16,20]. In a pre-processing phase, historical
trajectories of an object are used to formulate a probabilis-
tic model for capturing the object’s turning behavior at road
junctions.

Figure 3 illustrates an object’s actual path and the path pre-
dicted by the PLM model for a predictive time of h = 2 min,
starting from the location q.

Next, the system defines a circle based on q, the value
h, and the speed limit of the road segment of q. Intersect-
ing the circle with the road segments, we obtain a set of exit
points in the network (i.e., the small circles in the figure). By
performing a depth-first graph search starting at q, we obtain
a path from q to each exit point. The probability of each
path is computed by multiplying the turning probabilities at
all road junctions along a path. The path with the highest
probability is the predicted path.

This approach has two drawbacks. First, it may return
an inaccurate predicted path. A depth-first search is per-
formed without considering the turning probabilities at
road junctions. As a result, the predicted path is generally
not an intuitive route for a driver (e.g., as suggested in
Fig. 3). Although a predicted path has the highest proba-
bility among all paths to an exit point, it is not guaranteed to
be the path that maximizes the probability to an exit point.
Furthermore, the search range of PLM is based on the Euclid-
ean distance obtained by multiplying the time h by the max-
imum speed of the object’s current road segment. However,
depending on the road segments traveled, the speed of the
object may deviate significantly from this maximum speed.
The object may not actually be able to reach any of the exit
points by time h, or it might even move beyond the large
circle.

Second, the method can incur high computational cost
during the prediction process since it needs to compute all
exit points by intersecting the circular range with the set
of road segments. For typical values of h, the number of
exit points is high, implying a high computational cost. For

Fig. 3 An example of the PLM method

instance, h = 2 yields 96 exit points in Fig. 3. As a result,
considering all possible paths to the exit points is a costly
proposition.

3 Problem setting

In this section, we formally define a road network as well
as the distance measures and queries considered; we end by
introducing the system architecture. Table 1 offers the nota-
tion that is introduced in this section and that will be used
throughout the paper.

3.1 Road network model and distance notions

A road network is an undirected, weighted graph G = (V, E,

W, A), where V is a set of vertices, E is a set of edges (among
vertices in V), W is a function that maps each edge to a
weight (i.e., length of road segment), and A is a function that
maps each edge to a set of descriptive attribute values.

Table 2 shows an example of the information maintained
for edges. A may capture descriptive attributes such as speed
limits for the road segments.

In the network model, a tuple p = (e, d) represents a
location in the network that falls on the edge e = (vi , v j)

at the distance d from vi . Let W (e) be the weight (length)

Table 1 Summary of notations

Symbol Meaning

e = (vi , v j) Edge connecting two vertices vi and v j
d Distance from a position on e = (vi , v j) to vi

t Time value

p = (e, d, t) Time stamped network position

h Prediction time length

D(p, q) Network distance between network positions p, q

DL (p, v) Distance from a position p to a vertex v

DP (ci , c j) Prediction distance from grid cell ci to c j

S(e), W (e) Estimated travel speed and weight of edge e

M(v), MR(v) Mobility and reverse mobility statistics for v

Table 2 Description examples of edges

Edge End vertices Weight (length) Speed limit
ei (vi , v j) W (ei) A(ei)

e1 (v1, v2) 70.2 60

e2 (v2, v3) 70.8 80

e3 (v1, v4) 100.1 40

e4 (v2, v4) 20.6 60

e5 (v4, v5) 50.3 60

123

Path prediction and predictive range querying in road network databases 589

of edge e. Then the location of vertices vi and v j can be
represented as (e, 0) and (e, W (e)), respectively.

We proceed to define the notions of distance over a road
network. The network distance D(v, v′) between two ver-
tices v and v′ is defined as the length of the shortest path
between v and v′, i.e., as the sum of the weights associated
with the edges that make up the path.

Given a location p = (e, d) on e = (vi , v j), its distance
from vi is defined as DL(p, vi) = d. Similarly, its distance
from v j is defined as DL(p, v j) = W (e)− d.

Given network positions p and p′ on the edges (vi , v j)

and (vi ′ , v j ′), respectively, we define their network distance
as

D(p, p′) = min
a∈{i, j},b∈{i ′, j ′}

(DL(p, va)+ D(va, vb)

+ DL(vb, p′))

The network trajectory of an object o is a sequence of
timestamped locations ot = (e, d, t) ordered ascendingly on
t , where t is the timestamp. Table 3 lists four examples of
network trajectories.

3.2 Predictive queries

We proceed to define two types of predictive queries along
with error metrics for measuring the quality of a prediction
model.

Definition 1 Given the location qc = (e, d, tc) of an object
(at the current time tc), its next vertex to be visited, and a
prediction time length h, the predictive path query returns
a path of the object within the time interval [tc, tc + h].

Since our network model is undirected, we obtain the direc-
tion that the query object is heading to from the next vertex
to be visited.

We consider two error measures for the predictive path
query, namely distance error and path similarity. Let qact be
the actual location of the object at time tc + h (which will
become known only in the future), and let qpred be the loca-
tion of the object in the predicted path at time tc+h (returned
by a prediction model). We define the distance error of the
prediction model (for the query) as D(qact , qpred), i.e., the
network distance between qact and qpred .

Table 3 Examples of network trajectories

Trajectory ID Sequence of network locations

1 (e1, 10.4, t1), (e1, 30.5, t2), (e2, 20.1, t3)

2 (e1, 20.2, t2), (e1, 35.9, t3)

3 (e3, 70.8, t1), (e5, 15.3, t2), (e5, 50.2, t3)

4 (e1, 40.6, t1), (e1, 30.1, t2), (e2, 20.7, t3)

In some cases, the distance error is small while the pre-
dicted path is very different from the actual path. To capture
this, we also take into account the path similarity. Let Eact be
the set of edges that the actual path from qc to qact contains,
and let E pred be the set of edges that the predicted path from
qc to qpred contains.

We define the precision and recall as follows:

Pre(Eact , E pred) = |Eact ∩ E pred |
|E pred |

Rec(Eact , E pred) = |Eact ∩ E pred |
|Eact |

By combining the two, we measure the path similarity as the
F1-score [4] of the prediction model:

F1(Eact , E pred)= 2·Pre(Eact , E pred)·Rec(Eact , E pred)

Pre(Eact , E pred)+Rec(Eact , E pred)

Note that merely counting the number of common edges
between an actual path and a predicted path is not effective in
capturing cases where a predicted path has a predicted path
has a very large number of edges that contain most edges of
the actual path, while the actual path is short, and the two
paths are dissimilar.

Next, we define the second type of predictive query:

Definition 2 Given a set of objects O (each with its location
as of the current time tc and its next vertex to be visited),
a spatial region R, and a prediction time length h, the pre-
dictive range query returns the set of objects in region R at
time tc + h.

We also measure the quality of a predictive range query
result with the F1-score. Let Sact be the actual set of objects
in R at time tc+h (know only in the future), and let Spred be
the predicted set of objects in R at time tc + h (returned by
the prediction model). The F1-score for the predictive range
query then becomes:

F1(Sact , Spred) = 2 · Pre(Sact , Spred) · Rec(Sact , Spred)

Pre(Sact , Spred)+ Rec(Sact , Spred)

Our objective is to design prediction models for objects
moving in road networks that minimize the distance error
and maximize the F1-score of query results. In addition, the
prediction model should be conducive to efficient computa-
tion.

3.3 Architecture and supported functionality

Our proposed solution assumes a standard client–server
architecture, encompassing a location-based service pro-
vider (LBS). The LBS has two functionalities: (i) tracking
the locations of its mobile clients (objects) and (ii) process-
ing queries (e.g., predictive path and range queries).

123

590 H. Jeung et al.

Table 4 Supported operations and their quality measures

Operation Quality measure

Predictive path query Distance error, path similarity (F1-score)

Predictive range query F1-score

Location tracking Location update frequency

Given a distance error threshold ε (a system parameter),
the LBS and the clients implement a location tracking method
[8] such that the location of each object maintained at the
server is guaranteed to be within distance ε of its actual cur-
rent location. For this purpose, both the client and the server
share the same prediction model. Each client is equipped with
a GPS device and reports its current location q to the LBS
when the distance between its actual current location and
its predicted location (by the prediction model) reaches ε.
Observe that the prediction model plays a crucial role in loca-
tion tracking. We measure the frequency of location updates
in order to capture the quality of the prediction model. An
accurate path prediction model will substantially reduce the
frequency of location updates from the client.

Table 4 summarizes the operations supported by our pro-
posed solution, as well as their corresponding quality mea-
sures.

4 Client-side prediction

We first present a network mobility model that aims to capture
driving patterns. Based on the network mobility model, we
then present a Maximum Likelihood and a Greedy algorithm
for predicting the travel path of an object, without knowing
the object’s destination.

4.1 Network mobility model

To predict the path of a moving object, we introduce a prac-
tical estimation model for predicting two key factors, the
directions in which the object will turn at junctions and the
travel speeds on the road segments.

4.1.1 Turning patterns at road junctions

Vehicles exhibit turning patterns at road junctions. For exam-
ple, a regular commuter driving to work usually turns in par-
ticular directions at certain junctions. After loading goods
from factories, delivery trucks may make specific turns at
junctions in order to enter highways. These patterns serve as
important background information and help us address the
fork dilemma.

As an example, Fig. 4 shows the trajectories of an object
over four days. On three of those days, the object made the

Fig. 4 Typical turning patterns at road junctions

same turn at the junction v1. In case the query object is now
traveling on segment e1 towardv1, we predict that it will again
make the same turn. Likewise, when the object is moving on
e2 toward v2, it has the highest probability of turning left
(2

3), the second highest of turning right (1
3), and the lowest of

going straight (0). These values, we term individual mobility
statistics.

Motivated by the above observations, we propose a net-
work mobility model that models the turning patterns of
objects at junctions by means of probabilities. Let deg(v)

be the degree of a vertex v. The predictions of a turn at any
degree-1 vertex (i.e., a dead-end) and any degree-2 vertex
(i.e., no turning options) are straightforward. Thus, we con-
sider only vertices with a degree above 2 (i.e., junctions) in
the sequel.

To extract statistics from the historical trajectories, we first
define the support count of a pair of adjacent edges:

Definition 3 Let Du be a set of (historical) network trajec-
tories (of the user u). Given two adjacent edges ei � e j , we
define the support τ(Du, ei � e j) as the number of trajec-
tories in Du that contain ei � e j .

Given two edges ei and e j incident to the vertex v, we
define the transition probability from ei to e j as:

M(v)[ei , e j] = τ(Du, ei � e j)
∑

ek
τ(Du, ei � ek)

(1)

Note that our transition probabilities on v are built purely
based on the histories of the objects that passed through v,
while some previous work (e.g., the PLM method [16]) con-
siders the degree of the vertex deg(v) when defining transi-
tion probabilities. One advantage of our approach over the
previous approaches is that only non-zero entries in M(v)

need to be kept, whereas the previous approaches need to
keep deg(v) · (deg(v)− 1) entries, which is the worst-case
size in our definition.

In Eq. 1, a small denominator value (e.g., 1) could lead to
a high transition probability M(v)[ei , e j], which may mis-
lead the prediction process. As in association rule mining [2],
we therefore specify two system parameters: (i) support
threshold sthr and (ii) confidence threshold cthr . A transition
probability M(v)[ei , e j] is said to be valid if it satis-
fies both conditions: (i) τ(Du, ei � e j) ≥ sthr and (ii)

123

Path prediction and predictive range querying in road network databases 591

M(v)[ei , e j] ≥ cthr . Otherwise, the value M(v)[ei , e j]
is regarded as zero and is not stored in the system. For
example, in Fig. 4, the user’s individual mobility statistics at
v2 are computed as: M(v2)[e2, e3] = 1

3 ,M(v2)[e2, e4] =
2
3 ,M(v2)[e5, e3] = 1

1 .
We expect that M captures the specific behavior of a

particular user and tends to provide accurate predictions.
Nevertheless, some entries of M(v) may still be empty. For
example, in Fig. 4, all entries of the form M(v2)[e4, ∗] are
empty. In case the query object reaches v2 from road segment
e4, we cannot determine which road segment (e.g., e2, e3, or
e5) the object will travel next. To complement such “empty”
entries, we define the notion of reverse mobility statistics
MR(v)[ei , e j]:

MR(v)[ei , e j] = τ(Du, e j � ei)
∑

ek
τ(Du, ek � ei)

(2)

In the example of Fig. 4, we obtain MR(v2)[e4, e2] = 2
2 .

These reverse mobility statistics reflect the object’s move-
ment tendency to a certain extent. Suppose that a driver leaves
home and visits a new place where the driver has never been.
The driver then is likely to go back home with the same
route, because the driver may not want to take roads that she
does not know. In this example, the reverse mobility statistics
serve as good supports for the prediction of routes, rather than
selecting random directions on road junctions. In later sec-
tions, we will utilize these reverse mobility statistics (Eq. 2)
for best-effort prediction, in case mobility statistics (Eq. 1)
are unavailable.

4.1.2 Travel speed estimation

Another important aspect of the prediction problem is to pre-
dict the future speed of an object. The challenge is that an
object seldom maintains a constant travel speed; its speed
is influenced by various factors, including the road network
and the traffic volume.

Considering an edge e, a natural idea is to mine the
average historical travel speed S∗(e) from the trajectory data-
set Du (of the user) by examining the speeds of the sub-
trajectories that correspond to edge e. As a complication,
S∗(e) is undefined if no such trajectories exist. We may then
derive the travel speed S(e) on edge e by utilizing the edge
attributes introduced in Sect. 3. The specific design of for-
mulas for computing these speeds is beyond the scope of this
paper; the transportation research literature offers proposals.
Here, we give a heuristic example of modeling S(e) using its
speed limit A(e) and a coefficient α (a system parameter).
Thus, the travel speed S(e) on a road segment e is defined as:

S(e) =
{

S∗(e) if S∗(e) exists
A(e) · α otherwise

In the experimental study, we compare the effects of dif-
ferent travel speed function on the prediction accuracy: (i)
the mined speed S∗(e), (ii) the maximum speed (i.e., α = 1),
and (iii) the half maximum speed (i.e., α = 1

2).

4.2 Maximum likelihood path prediction

In this section, we develop a prediction algorithm that deter-
mines the predicted path purely based on the probability
values stored in the M(v)[ei , e j]. In case of an empty
M(v)[ei , e j] entry, we set M(v)[ei , e j] to the default value

1
deg(v)−1 as previous studies do [16,20]. This means that each
outgoing edge e j has the same probability of being traveled
next. Note that we do not use the reverse mobility statistics
MR(v)[ei , e j] here.

4.2.1 Foundation

Let P : v1 � v2 � · · · � vk be a path (i.e., a consecutive
sequence of vertices), where ei is the edge between vertices
vi and vi+1. We define the travel probability of the path P
as follows:

Pr(P) =
k−1∏

i=1

M(vi)[ei , ei+1] (3)

We now define the concept of maximum travel probability
path:

Definition 4 The path P : v1 � v2 � · · · � vk is said to
be the maximum travel probability path between the verti-
ces vs and ve, if vs = v1, vk = ve, and the value Pr(P) is
maximized among all possible paths between vs and ve.

The following lemma states an interesting property about
maximum travel probability path P , namely that every sub-
path of P must also be a maximum travel probability path in
its own right.

Lemma 1 Maximum travel probability path property
Given two vertices vs(= v1) and ve(= vk), let P: v1 � v2 �
· · · � vk be the maximum travel probability path between
them. It follows that for any vertices vi and v j (i < j), the
path P ′ : vi � vi+i � · · · � v j is the maximum travel
probability path between vi and v j .

Proof For the sake of contradiction, assume that there exists
i, j (i < j) and a path P ′′ : vi � · · · � v j such that
Pr(P ′′) > Pr(P ′). By using the path P ′′, we construct
a new path P∗ such that P∗: v1 � · · · � vi−1 � P ′′ �
v j+1 � · · · � vk . Thus, we have Pr(P∗) = Pr(P)/Pr(P ′)·
Pr(P ′′) > Pr(P). �	

123

592 H. Jeung et al.

4.2.2 Prediction algorithm

We proceed to present the Maximum Likelihood algorithm
for path prediction. According to Lemma 1, once a path is
known to be a maximum travel probability path, any frag-
ment of the path is also a maximum travel probability path.
This implies that we can find the maximum travel probability
path by conquering the fragments (i.e., sub-paths) gradually,
using a bottom up approach.

This idea can be realized by employing the best-first graph
search. Specifically, we define the evaluation function for the
best-first search as the total probability of a given sub-path.
We then always choose the sub-path having the highest score
from the function, at every step forward in the graph search.
This approach is similar to how shortest path algorithms work
and thus has the same time complexity (see Table 5) as gen-
eral shortest path computation.

Despite having the highest value, the maximum travel
probability may become small when the path becomes long.
However, the algorithm uses only the probabilities as relative
values for selecting the best path for prediction—the abso-
lute values are not given significance. Therefore, the travel
probabilities carry different semantics from the probability of
“correctness” that a user actually follows the maximum travel
probability path. This correctness probability is reflected by
path similarity defined in Sect. 3. We show that the path
similarity for this algorithm is reasonably high in our exper-
iments (Sect. 6), regardless of the absolute maximum travel
probability values involved.

Algorithm 1 shows the pseudo-code of the Maximum
Likelihood algorithm. The user specifies a current location l
and a prediction time h. In addition, the algorithm takes the
network graph G and the mobility statistics M as inputs. The
result of the algorithm is a predicted path P , i.e., a sequence
of timestamped locations on the network. In Lines 1–3, we
set the current edge ecur to the edge on which l resides, and
we set the current vertex vcur to be the vertex ahead. The
expected travel time h′ on the current edge is also computed.

In Lines 4–7, we also initialize V that describes the vis-
ited vertices, which is registering the last vertex in order
to avoid u-turns. We then compose an initial entry for the
priority queue that includes edges, a sequence of edges vis-
ited, vcur , the vertex being approached, p, the total proba-
bility of the current sub-path (edges), and h′, the expected
travel time so far. Note that the priority of the entries in the
queue Q is imposed by the total probability p associated with
edges.

In Line 9, a queue entry that has the highest probabil-
ity is picked first, which is the key difference from the
PLM method. In Lines 13–16, the algorithm then determines
whether the entry q’s travel time is no smaller than the given
prediction time. If so, the predicted path is composed and
returned.

Algorithm 1 Maximum likelihood (G, l, h,M)
Input: graph G, current location l = (e, d, t), prediction length h,

network mobility model M
Output: a predicted path P (i.e. timestamped network locations)
1: ecur ← l.e
2: vcur ← end vertex of ecur , being approached by the object
3: expected travel time h′ ← DL (l,vcur)

S(ecur)
4: visited vertices V ← register the other end vertex of ecur from vcur
5: predicted edge sequence edges ← append ecur
6: path probability p← 1.0
7: priority queue Q ← push an entry {edges, vcur , p, h′}
8: while Q �= ∅ do
9: pop an entry q (with the highest path probability) from Q
10: V ← register q.vcur
11: ecur ← the last edge of q.edges
12: vcur ← q.vcur
13: if q.h′ ≥ h then
14: P ← convert q.edges to network positions, except ecur
15: P ← append (ecur , W (ecur)− S(ecur) · (q.h′ − h), l.t + h)
16: return P
17: edge set Enext ← incident edges to vcur , except ecur
18: for each enext ∈ Enext do
19: vnext ← the other end vertex of enext from vcur
20: if vnext is not registered in V , and deg(vnext) �= 1 then
21: a new priority queue entry q ′ ← copy q
22: if deg(vcur) > 2 then
23: q ′.p← q ′.p ×M(vcur)[ecur , enext]
24: q ′.edges ← append enext
25: q ′.vcur ← vnext
26: q ′.h′ ← q ′.h′ + W (enext)

S(enext)

27: insert q ′ into Q

In Lines 18–27, the queue entry is updated by consider-
ing neighbor edges of the current one, unless the end ver-
tex of each neighbor has not yet been visited. Due to the
“if” statement in Line 20, the algorithm never enters a cycle.
In addition, the algorithm never follows a path that goes to
a dead-end (i.e., deg(vnext) = 1 in Line 20). Such a path
will have the same probability no matter how many itera-
tions occur, while the probabilities of other paths will keep
decreasing due to multiplication. This would otherwise pre-
vent selecting a proper (long) path, especially for long-term
predictions. For example, suppose that there are two paths
P1 : v1 � v2 and P2 : v1 � v3 � v4 � · · · � vk , where v2 is
a dead-end and P2 is the actual path that an object follows.
Since the number of vertices involved in P2 is greater than
for P1, the travel probability for P2 is likely to be lower than
that for P2 due to the high number of probability multiplica-
tion caused by the vertices in P2. Thus, if the algorithm was
to accept dead-ends, this would decrease the probability that
the actual path P2 would be selected as the predicted path.

Next, a new entry q ′ for Q is composed. If a fork dilemma
occurs on the current vertex (i.e., deg(vcur) > 2), its path
probability is updated (Line 23). The algorithm then updates
each element of the new entry, and the entry is pushed to
the priority queue. The entry may be processed in the next

123

Path prediction and predictive range querying in road network databases 593

iteration if it has the highest probability among all existing
entries in Q.

4.2.3 Example

Figure 5 exemplifies the Maximum Likelihood algorithm
with an object’s current location at l, the vertex that this
object is approaching being v1, and prediction length h = 5.

First, we estimate the expected travel time (h′) from the
location l to the vertex v1. If h′ is smaller than the given
prediction time h, we transit to the next edge having the
highest probability. Since M(v1)[e1, e2] > M(v1)[e1, e5],
we select e2 and recompute h′ for that edge after including
the travel time of the visited edges. Until v2, the value for h′
is still smaller than h, but M(v2) is not available. Hence, the
probability for each next possible edge is assigned equally
(i.e., 0.5).

So far, the probabilities for both sub-paths e1 � e2 � e3

and e1 � e2 � e4 are 0.55 ·0.5=0.275, and that for sub-path
e1 � e5 is 0.45. Therefore, the Maximum Likelihood method
examines the sub-path e1 � e5 instead of further investigat-
ing the previous sub-paths, since e1 � e5 has the highest path
probability (i.e., 0.45) among all passible sub-paths that have
been examined. At v5, no fork–dilemma occurs; thus, the pro-
cess passes on to e6, and the probability of e1 � e5 � e6 is
the same. Next, it considers the probabilities for sub-paths
e1 � e5 � e6 � e7 and e1 � e5 � e6 � e8, which are
0.45 · 1.0 · 0.4 = 0.18 and 0.45 · 1.0 · 0.6 = 0.27, respec-
tively.

These probabilities are smaller than the probability of e1 �
e2 � e3(e4); hence we are now back to the consideration of
the sub-paths e1 � e2 � e3 and e1 � e2 � e4. While the
h′ value for e1 � e2 � e3 is still smaller than h, that for
e1 � e2 � e4 is greater than h. Finally, we compute the fore-
casted location on edge e4 and return e1 � e2 � e4 as the
predicted path.

Fig. 5 An example of maximum likelihood path prediction

4.2.4 Comparison with PLM

It is instructive to compare the features of Maximum
Likelihood and PLM. The main advantage of Maximum
Likelihood over PLM is that Maximum Likelihood guaran-
tees that the returned path maximizes the travel probability
over all possible paths. In contrast, PLM is restricted to return
a path that belongs to the set of paths traversed by the depth-
first search. Therefore, the selected path is not necessarily the
one with the maximum travel probability across all possible
paths.

In addition, Maximum Likelihood considers the travel
speed and network distance of each road segment, whereas
PLM computes the exit points based on the Euclidean dis-
tance and the maximum travel speed of the segment of the
starting location, which may yield a distance that does not
approximate well how far the object can actually travel.

The Maximum Likelihood algorithm avoids unnecessary
computations, as it terminates as soon as it determines that no
other path with higher probability (at prediction time h) can
be found. PLM attempts to find all possible paths to every
exit point, without considering the probability. Notice that the
number of exit points becomes very large when h is large.

4.3 Greedy path prediction

While the Maximum Likelihood algorithm returns a path
guaranteed to have the highest probability, its performance
may not scale well for long-term prediction. When the pre-
diction length h is long, the search space of the graph for
Maximum Likelihood becomes large, which yields many of
sub-paths to be compared. This may limit the utility of Max-
imum Likelihood for applications that need high efficiency.

Motivated by this, we develop a path prediction algorithm
named Greedy that achieves high efficiency and low memory
use, while facilitating near-maximum probability. The core
idea of Greedy is also based on Lemma 1. Assuming that all
vertices have mobility statistics, we can find the maximum
probability path by progressively selecting a next edge having
the highest transition probability of each vertex, instead of
considering all other possible sub-paths. In practice, however,
the assumption does not always hold, and a problem arises
when Greedy faces at a vertex whose mobility statistics are
unavailable. While Maximum Likelihood can examine the
next “future” vertices and use them for making a decision on
the current vertex, Greedy lacks this ability.

We consider two alternative means of addressing this
problem. First, we take into account reverse mobility statis-
tics for the selection of the next edge. Although the reverse
probabilities carry different semantics, they still reflect the
driving patterns of individuals. Second, in case the reverse
mobility statistics are also unavailable, we select as the next
edge having the smallest deviation angle from the object’s

123

594 H. Jeung et al.

current travel direction, which is derived from the object’s
initial position and the current position. People generally
drive to certain destinations, and they are likely to prefer
to move in the general directions of the destinations. While
our work assumes that the destination of an object is not
given, the current travel direction reflects the ultimate direc-
tion to the (unknown) final destination. Hence, the current
direction may serve as a better means of making a decision
than selecting the next edge at random.

Based on the above ideas, we presents the pseudo-code of
Greedy in Algorithm 2. The query inputs, the return value,
and the initialization of variables in Lines 1–3 are the same
as those in Algorithm 1.

In the loop in Lines 4–20, we traverse the graph iteratively
until the expected travel time h′ exceeds the given prediction
length h. In case of a dead-end road (i.e., deg(vcur) = 1),

Algorithm 2 Greedy (G, l, h,M)
Input: graph G, current location l = (e, d, t), prediction length h,

network mobility model M
Output: a predicted path P (i.e. timestamped network locations)
1: ecur ← l.e
2: vcur ← end vertex of ecur , being approached by the object
3: expected travel time h′ ← DL (l,vcur)

S(ecur)

4: while h′ < h do
5: P ← append (ecur , W (ecur), l.t + h′)
6: if deg(vcur) = 1 then
7: replace the time of P’s last position with l.t + h
8: return P
9: else if deg(vcur) = 2 then
10: enext ← an edge incident to vcur , except ecur
11: else if deg(vcur) > 2 then
12: if M(vcur) exists then
13: enext ← ei with the highest M(vcur)[ecur , ei]
14: else if MR(vcur) exists then
15: enext ← ei with the highest MR(vcur)[ecur , ei]
16: else
17: enext ← ei with the most similar travel direction
18: vcur ← the other end vertex of enext from vcur
19: ecur ← enext
20: h′ ← h′ + W (ecur)

S(ecur)

21: P ← append (ecur , W (ecur)− S(ecur) · (h′ − h), l.t + h)
22: return P

the algorithm terminates and returns a corresponding loca-
tion on the edge as the final prediction position (Lines 6–8).
This differs from how Algorithm 1 works, since Maximum
Likelihood does not capture any position on dead-end roads
as a predicted location. When the degree of vcur is 2, there is
only one adjacent edge for transition, and thus the algorithm
transits to that edge (Lines 9–10).

In Lines 11–17, the algorithm handles the fork dilemma,
as it predicts where the object will turn at the junction vcur .
It first attempts to utilize the mobility statistics M(vcur); in
case these are unavailable, it determines whether any reverse
mobility pattern (MR(vcur)) exists. If this is also unavail-
able, it selects the edge having the smallest deviation angle
from the object’s current travel direction among all possible
edges.

From Lines 18 to 20, the current edge ecur , vertex vcur ,
and travel time are updated for the next iteration. After com-
pleting the loop, the final location is computed according to
the travel time, and the predicted path is returned.

4.3.1 Comparison with maximum likelihood and PLM

Maximum Likelihood and PLM keep all candidate (sub)paths
produced from the graph traversal until the best path is
selected at the times when the algorithms terminate. In con-
trast, Greedy selects the most probable edge in every itera-
tion and does not consider the other edges (subpath) after the
selection. Therefore, Greedy requires less storage and visits
much fewer vertices during its graph traversal. This promises
high efficiency and scalability for large road network graphs.

Table 5 compares the time complexity of each path pre-
diction method. We also offer practical comparisons among
the methods in our experimental study (Fig. 11).

4.3.2 Example

Figure 6 illustrates an example of the greedy path predic-
tion method. The query object is currently traveling on e1

toward v1. Since a fork dilemma occurs (i.e., deg(v1) > 2),
Greedy examines the mobility statistics of v1, which contains

Table 5 Time complexities of
prediction methods Method Time Complexity

Greedy O(|VP |), |VP | is the number of vertices in a path

Maximum likelihood O(|E ′|log|V ′|) with a binary heap for priority queue or O(|E ′| + |V ′|log|V ′|)
with a Fibonacci heap, where |E ′|(|V ′|) is the number of edges (vertices)
within the range that a query object can travel for h

PLM O(|E∗| + |V ∗|) for depth-first search, as well as O(|E |) (or O(log|E |) with a
spatial index) for exit Point computation, where |E | is the total number of
Edges, and |E∗|(|V ∗|) is the number of edges (vertices) inside the exit point
area. Typically, |E∗|(|V ∗|)
 |E ′|(|V ′|)

123

Path prediction and predictive range querying in road network databases 595

Fig. 6 An example of greedy path prediction

the probabilities for traveling among the next edges (shown
in bold edges in the r1 area of Fig. 6). In this example,
M(v1)[e1, e2] is assumed to have the highest probability,
and the prediction process transits to e2. Next, the method
passes over to e3 (i.e., there is exactly one choice between e2

and e3). A fork dilemma then occurs at junction v2, where
no mobility information is available. In this case, we find
the edge that has the smallest deviation angle from the travel
direction (line l in the figure). Thus, edge e5 is then chosen
as the next predicted edge. After that, the reverse mobility
statistics of v3 are applied to find the most probable travel
direction within the r2 area of the figure because M(v3) is
unavailable. Eventually, Greedy arrives at e7 as the final edge
in the predicted path.

5 Server-side query processing

In this section, we present a novel indexing method based
on the Greedy prediction for supporting efficient processing
of predictive range queries on the server side, e.g., “which
objects will be in a given query region 10 min from now?”

Specifically, we first present the assumed system architec-
ture and the theoretical background for the index; then con-
crete description of the indexing and query processing follow.
Note that existing spatiotemporal indexes such as TPR-trees
are specifically designed for the indexing of linear functions
and are not applicable here.

5.1 Preliminaries

5.1.1 System architecture

We assume a standard client–server architecture. Each client
shares the road network and the Greedy prediction algorithm
with the server. To guarantee the same prediction between
the clients and the server, they synchronize on the mobility
statistics as follows:

For each vertex v with mobility statistics, the client sends
its most probable turning pattern (i.e., max(M(v)[ei , ∗]) or
max(MR(v)[ei , ∗]), where ei is an incident edge of v) to

the server. This operation is performed only once, during
initialization. The client subsequently updates the mobility
statistics on the server only when any of its most probable
turning patterns is changed since the last update. In practice,
these typical turning patterns for an individual are unlikely
to change frequently.

The server stores the reported patterns on vertex v from all
clients in its mobility statistics Ms(v)[ei , e j , O], where O
is a set of clients, each of which reports M(v)[ei , e j] as the
most probable turning pattern from ei . Therefore, the maxi-
mum number of entries on a vertex v is (deg(v)−1)·deg(v).
As the number of objects maintained by the system increases,
the server needs to store only larger numbers of objects’ iden-
tifiers, i.e., O of Ms(v)[ei , e j , O], which can be compressed
with various techniques (e.g., a bitmap).

The storage requirement for mobility statistics on the
server side is affected by both the spatial network size and the
number of objects. We cover the theoretical maximum num-
ber of pattern entries and the actual storage consumptions
from large amounts of trajectory data in our experiments
(Table 8).

5.1.2 Foundation

We first discuss the simple case of considering only one
object. Let h(P) be the total travel time of a path P pre-
dicted by Greedy.

Definition 5 Given two vertices v and v′, their prediction
distance DP (v, v′) is defined as:

DP (v, v′)=
⎧
⎨

⎩

h(P) if there exists a path P :v1 �· · ·� vk
such that v=v1 and v′ =vk

∞ otherwise

(4)

Given network positions p and p′ on the edges (vi , v j) and
(vi ′ , v j ′), respectively, we define their prediction distance as:

DP (p, p′) = min
a∈{i, j},b∈{i ′, j ′}

(
DL(p, va)

S(vi , v j)
+ DP (va, vb)

+ DL(vb, p′)
S(vi ′ , v j ′)

)

.

Let C be a grid that partitions the coverage region of a
road network into m×n cells, and let V (c) be a function that
returns a set of network positions that are spatially within the
cell c ∈ C .

Given two cells c ∈ C and c′ ∈ C , their prediction dis-
tance DP (c, c′) is defined as:

DP (c, c′) = min
p∈V (c),p′∈V (c′)

DP (p, p′).

Lemma 2 is easy to establish based on the above defini-
tions. It will be used as the key filter for our indexing method
in the following section. Consider the case where multiple

123

596 H. Jeung et al.

objects contributing to its own value DP (c, c′); only the min-
imum one is stored at the server. If DP (c, c′) is greater than a
given prediction length h, any of the objects currently resid-
ing on c cannot reach c′ within h. Therefore, the objects on
c are safely pruned for identifying the objects that will be in
c′ after h.

Lemma 2 Prediction distance filter Given two cells c
and c′ and a prediction length h, if DP (c, c′) > h then
DP (p, p′) > h holds for all p ∈ V (c), p′ ∈ V (c′).

Likewise, we can adopt the Euclidean distance for prun-
ing objects that cannot travel to c′ within h. Let DE (c, c′) be
the minimum Euclidean distance between two cells c ∈ C
and c′ ∈ C , and let Smax (G) be the maximum travel speed
among all edges in a graph G. Then, the following lemma
holds:

Lemma 3 Euclidean distance filter Given two cells c and
c′ and a prediction length h,
if DE (c,c′)

Smax (G)
> h, then DP (p, p′) > h holds for all p ∈ V (c),

p′ ∈ V (c′).

Proof The Euclidean distance does not exceed the sum of
weights along any path between c and c′, and Smax (G)

is no smaller than any travel speed on an edge along the
paths. Thus, DP (c, c′) ≥ DE (c,c′)

Smax (G)
. If DE (c,c′)

Smax (G)
> h then

DP (c, c′) > h must hold. Hence, we obtain DP (p, p′) > h
by Lemma 2. �	

5.2 The prediction distance table

The core idea underlying our indexing technique, named the
prediction distance table, is to pre-compute the prediction
distances between all pairs of cells by performing the Greedy
path prediction a priori and then use these distances for prun-
ing objects in an initial filtering step during the query pro-
cessing.

5.2.1 Index construction and maintenance

In a pre-processing phase, we partition the region covered by
the road network into a regular grid C consisting of m × n
cells. We then select a cell c ∈ C and retrieve all edges that
intersect the border of c. For each such edge, we execute
Greedy with h = ∞ in the direction toward the outside of c
until the prediction meets either the network boundary or a
dead-end road. This way, we obtain a sequence of cells that
Greedy has passed. We record the travel time from one cell to
another among the cells obtained from the sequence, while
preserving the order of the sequence. We repeat this process-
ing for every cell in C for each object (since each object may
have a different Greedy path due to different mobility statis-
tics). We store only the minimum value of the travel times for

(a)

(b)

(c)

(d)

Fig. 7 Storage scheme and a query processing example

each [ci , c j], i.e., DP (ci , c j). Therefore, each value for a pair
of cells [ci , c j] represents the minimum travel time from ci to
c j among all objects, with respect to the Greedy prediction.

The above process yields a set of index entries of the form
[ci , c j , h′], where h′ = DP (ci , c j) (Fig. 7a). We then hash
each entry on its destination cell (i.e., c j) (Fig. 7b). Each
data in the hash table points to a B+-tree-like sorted con-
tainer, where the key value of the container is h′, and the data
value is the origin cell of the index entry (Fig. 7c).

Theoretically, the number of index entries can reach m ·
n(m · n − 1), where m(n) is the number of rows (columns)
in the data partition. In practice, the number of entries is far
below the theoretical bound, for the following reasons:

– Most pairs of adjacent cells have connections (i.e., com-
mon edges), meaning that the value of h′ for the cells is
0. We index h′ in order to be able to prune any entry that
has h′ > h. If h′ has value 0, it has no pruning power, so
we do not store it.

– In practice, many objects reach only a small part of the
network. Due to the locality of prediction paths, not every
pair of cells is connected, with respect to the Greedy path
prediction. Thus, many empty entries should result from
such cells.

It is worth noticing that the size of the index depends only
on the granularity of the cells; it is independent of the number
of objects.

When a client o reports a new turning pattern M(v)[ei ,

e j], we perform the pre-computation process only for o, from
the edge ei . We then update the index entry information if
any DP (ci , c j) computed for o is smaller than the existing
one. When a client reports a change of its most probable
turning pattern, we first perform the pre-computation pro-
cess with old pattern information and remove or update rele-
vant entries if necessary. We then repeat the same process as
the new pattern update. As mentioned, turning patterns of an
individual typically do not change often, and thus the update
operation will be infrequent.

5.2.2 Predictive range query processing

We present two different filtering techniques for process-
ing predictive range queries. The first method, Euclidean

123

Path prediction and predictive range querying in road network databases 597

Distance Filter (EDF), is based on Lemma 3. The key idea
is that it prunes objects that are further away than the Euclid-
ean distance an object can travel during a given prediction
length h at the highest travel speed. Specifically, let Smax (G)

be the maximum travel speed in a road network G. Then the
maximum travel distance is Smax (G) ·h. Any objects in cells
beyond this boundary can be pruned safely based on Lemma 3
(e.g., the dark gray cells in Fig. 7d).

The second filtering method, prediction distance fil-
ter (PDF), utilizes the prediction distance table. Based on
Lemma 2, we can quickly identify the objects that cannot
reach the query cells within a given prediction length. For
instance, in Fig. 7d, we first find three candidate cells c3, c4,
and c5 that have query cell c2 as travel destination by access-
ing the hash table (Fig. 7b). We then scan the sorted container
from the beginning and find c4 since the prediction distance
h′ of [c2, c4] is smaller than the given h = 5. However, this
search terminates as soon as it meets h′ = 6 (i.e., DP (c2, c3))
because its value exceeds h. Finally, we prune the objects in
cells c3 and c5 without further inspection. Note that the search
bound of PDF is usually much tighter than that of EDF (the
dark gray area in Fig. 7d) because EDF uses the fastest speed
with the Euclidean distance.

Algorithm 3 outlines the pseudo-code of PDF. Lines 3–4
find the entries whose destination cells belong to the given
query window. In Lines 5–7, the algorithm reports the objects
within the origin cells as candidates; however, this process
runs only for the entries whose prediction distances are
smaller than h (Lines 6–7). Finally, we report the objects
that are in the query cells and their neighbors (Lines 8–10)
because the index does not store prediction distances for
neighbor cells.

Algorithm 3 Prediction distance filter (G, O, T, R, h)
Input: graph G, a set of objects O , prediction distance table T

query window R, prediction length h
Output: a set of candidate objects Ocand
1: Ocand ← ∅
2: Q ← all intersecting cells with R
3: for each cell q ∈ Q do
4: sorted container Tq ← T .find(q)

5: if Tq exists then
6: for each entry e ∈ Tq such that e.h′ ≤ h do
7: Ocand ← Ocand ∪ o ∈ O within e.originCell
8: Q′ ← Q ∪ neighbor cells of Q
9: for each cell q ′ ∈ Q′ do
10: Ocand ← Ocand ∪ o ∈ O within q ′
11: return Ocand

6 Experiments

The objective of the experimental study is twofold. First, we
compare the performance of client-side prediction among
our proposals and competitors, summarized in Table 6. Sec-

ond, we investigate the performance of the server-side query
processing.

We note that both Linear-A* and RMF-A* in Table 6 are
built upon prediction models designed for free-space moving
objects. Since they may still have some potential for predict-
ing network-constrained moving objects, we cover them in
the experimental study.

6.1 Datasets and experimental settings

We experiment with real datasets in order to contend with
real world phenomena. We use two real trajectory datasets
and their corresponding road networks. Table 7 summarizes
their details.

– Aalborg [12]: GPS logs from 20 cars collected over
several months in Aalborg in a project that investigated
driver response to speeding alerts issued by in-car
devices.

– Copenhagen [11]: Positions from 192 private cars were
logged every second over a 1-year period, in a project
that studied the feasibility of road pricing in Copenhagen.
This substantial dataset contains 114,393 trajectories.

– Road networks: Each road segment has a length (i.e.,
weight) and a speed limit, and each vertex has spatial
coordinates.

As defined in Sect. 3, the prediction accuracy of each
method can be measured in two ways: (i) the network distance

Table 6 Prediction methods for comparison

Category Method Description

Our MaxLike Maximum likelihood [Sect. 4.2]

Proposals Greedy [Sect. 4.3]

PLM Most relevant work [16] to ours

Competitors Linear-A* Adoption of linear prediction [25]

RMF-A* Adoption of non-linear prediction [26]

Table 7 Trajectory datasets and road networks

Dataset name Aalborg Copenhagen

Trajectory data

Objects 20 192

Trajectories 4,542 114,393

Total positions 1,236,324 43,896,907

Road networks

Edges 45,598 115,467

Vertices 36,125 85,309

Coverages (km) 43.9× 48.2 54.5× 43.2

123

598 H. Jeung et al.

between a predicted location and its corresponding actual
location and (ii) the path similarity between the edges in the
predicted path and those in the corresponding actual query
trajectory. The F1-score is used to represent the edge simi-
larity.

The query workload consists of 300 trajectories randomly
chosen from the trajectory dataset. For each query trajec-
tory, we take a position as the current location and then per-
form predictions with different prediction length h. Next,
we set the current location to be 10 time units after the last
one and repeat the same prediction process. We keep sliding
the current location and execute the predictions throughout
the query trajectory. The prediction errors are recorded by
the two measurements, and we average the errors across the
whole query workload. To be fair, we exclude the query work-
load from the trajectory dataset during the mobility pattern
discovery.

Since there are not sufficiently many trajectories that
exceed 30 min in Aalborg, we perform the prediction tests
using h values up to 10 min for this dataset.

All the prediction methods are implemented in the C++
language, and the prediction experiments are run on a com-
puter with an Intel Xeon 2.4 GHz processor and 4 GB of
main memory. Our index, i.e., the prediction distance table,
uses a memory-based implementation, as well as all mobility
statistics discovered from the datasets are stored in the main
memory.

6.2 Client-side prediction performance

In the first set of experiments, we compare the prediction
errors of our methods with that of their competitor PLM [16].
In addition, we include two variants of prediction methods
for objects in Euclidean space that are based on linear [25]
and non-linear [26] prediction models. These variants first
predict a location at a given query time and then apply a
map-matching algorithm to the predicted location for obtain-
ing a network position. A* shortest path search is applied to
compute the predicted path from the current position to the
predicted location. We name these methods Linear-A* (lin-
ear prediction) and RMF-A* (non-linear model).

Figure 8 shows that the prediction accuracies of our meth-
ods (MaxLike and Greedy) exceed those of the competitors.
Specifically, the prediction errors of our proposals are around
half of those of Linear-A* and RMF-A*, and about one quar-
ter of those of PLM.

Between our methods, MaxLike shows slightly lower
errors than does Greedy for short-term predictions (h <

15 min); surprisingly, this trend is reversed for longer-term
predictions for Copenhagen. This is because Greedy employs
reverse mobility statistics and travel directions for predicting
turns at road junctions without mobility statistics. As we will
see shortly, utilizing travel directions improves prediction

Aalborg

2
4
6
8

10
12
14
16
18
20

1 4 7 10

prediction length (minute)

d
is

ta
n

ce
 e

rr
o

r
(

ki
lo

m
et

er
) Linear–A* RMF–A* PLM MaxLike Greedy

5

10

15

20

25

30

35

1 10 20 30

prediction length (minute)

d
is

ta
n

ce
 e

rr
o

r
(

ki
lo

m
et

er
)

Copenhagen

Fig. 8 Comparison of prediction errors

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 4 7 10
prediction length (minute)

p
at

h
 s

im
ila

ri
ty

 (
 F

1-
sc

o
re

)

 Linear–A* RMF–A* PLM Greedy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 10 20 30
prediction length (minute)

p
at

h
 s

im
ila

ri
ty

 (
 F

1-
sc

o
re

)

RealData2Aalborg Copenhagen

MaxLike

Fig. 9 Comparison of predicted path similarity

accuracy. For long-term predictions, a predicted path may
contain many junctions without statistics; hence, the benefits
of maximizing probabilities in MaxLike decrease.

Also, Linear-A* exhibits slight higher accuracies than
does RMF-A*. The RMF method needs several previous
positions to compose its motion function. Although an object
usually travels along a relatively straight line (i.e., a road seg-
ment) after turning at a road junction, the positions on the
previous road still influence the motion function computa-
tion for several time points. This degrades the accuracy of
RMF-A* for road-network constrained movement.

The better accuracies of our prediction methods are also
clear from the path similarity comparisons reported in Fig. 9.
For both datasets, the path similarities of our methods
decrease gradually with increasing h, while the similarities
of the other methods decrease more markedly. For 30- min
predictions, Greedy reports at least 5.1 times higher similar-
ity than do Linear-A* and RMF-A*, and Greedy is 49.4 times
better than PLM. These differences are much greater than the
distance error differences from the previous experiment.

Figure 10 explains well the reasons why the differences in
path similarities between our methods and the other methods
are bigger than are the corresponding distance errors. The
figure illustrates predicted paths obtained by all methods for
h = 4 min using Aalborg. MaxLike and Greedy predict iden-
tical paths in this test. Although the destinations (i.e., the ends
of the forecasted paths) predicted by our methods and Linear-
A* exhibit similar distance errors (i.e., have similar distances
to at the end of the actual trajectory), the path predicted by
Linear-A* overlaps little with the actual path when compared
with the paths computed by our methods.

123

Path prediction and predictive range querying in road network databases 599

Fig. 10 Visualization of predicted paths (h = 4 min)

0.1

1

10

100

1000

10000

100000

1 4 7 10

prediction length (minute)

el
ap

se
d

 t
im

e
(

m
s,

 lo
g

 s
ca

le
)

 Linear–A* RMF–A* PLM MaxLike Greedy

0.1

1

10

100

1000

10000

100000

1 10 20 30

prediction length (minute)

el
ap

se
d

 t
im

e
(

m
s,

 lo
g

 s
ca

le
)

Aalborg Copenhagen

Fig. 11 Comparison of prediction efficiency

Figure 10 also suggests an explanation for the large pre-
diction errors of PLM. Since PLM utilizes depth-first graph
search until it finds all exit points (see Sect. 2), the number
of edges associated with a path to an exit point may be large,
and the path may also be impractical, as shown in the figure.

Next, we also compare the efficiency of prediction for
each method in Fig. 11. Greedy exhibits by far the best
performance, which is better than those of the competi-
tors by between approximately one order of magnitude and
three orders of magnitude. Furthermore, while the processing
times of the other methods (especially MaxLike) increase sig-
nificantly for long-term predictions in Copenhagen,
Greedy remains very low (at 7.3 milliseconds for 30- min
predictions). It is worth noticing that Greedy also exhibits
the best accuracy for the long-term predictions in the first
experiment.

Because PLM needs to traverse the argument graph until
it finds all exit points, its efficiency decreases significantly as
the prediction length increases. The query processing times
of Linear-A* and RMF-A* also increase with growing h
because the search space in the graphs for the A* algorithm is
increased as the predicted locations are moved further from
the current position.

Our path prediction methods utilize past movement pat-
terns (i.e., mobility statistics at road junctions and mined
speeds of road segments) for path prediction. It is of inter-

5

Copenhagen Copenhagen

10

15

20

25

1 10 20 30

prediction length (minute)

d
is

ta
n

ce
 e

rr
o

r
(

ki
lo

m
et

er
)

 Mobility Statistics Direction Fast Road Random Walk

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 10 20 30

prediction length (minute)

p
at

h
 s

im
ila

ri
ty

 (
 F

1-
sc

o
re

)

Fig. 12 Effect of mobility pattern use for prediction

1

2

3

4

5

6

7

8

1 4 7 10

prediction length (minute)

d
is

ta
n

ce
 e

rr
o

r
(

ki
lo

m
et

er
)

 Mined Speed Maximum Speed Half Maximum Speed

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 4 7 10

prediction length (minute)

p
at

h
 s

im
ila

ri
ty

 (
 F

1-
sc

o
re

)

RealData1 RealData1Aalborg Copenhagen

Fig. 13 Effect of different speed use for prediction

est to see how the availability of movement patterns affects
prediction.

Figure 12 compares the prediction accuracies obtained by
using Greedy with different way of choosing the next edge for
prediction, on the Copenhagen dataset. Random Walk selects
the next edge randomly when encountering a fork dilemma.
Fast Road chooses the edge with the highest speed limit as the
next edge, whereas Direction selects the edge with the most
similar angle to the object’s current travel direction as the next
edge. The experiment using the Aalborg dataset yields simi-
lar trends, so the results are omitted. Clearly, using mobility
statistics improves the prediction performance greatly; the
distance errors are approximately half of those of Fast Road
and Random Walk. Although Direction is an improvement
over the latter two, its error also increases substantially with
increasing h; in contrast, Greedy with mobility patterns is
affected less by growing h. Furthermore, the use of mobility
statistics outperforms the others in terms of the path similar-
ity.

MaxLike assigns equal probability to each next edge when
mobility statistics unavailable, which resembles the approach
of Random Walk. In contrast, Greedy uses the approach
of Direction for selecting the next edge in this case. As
Direction is better than Random Walk, this difference gives
Greedy an advantage over MaxLike. Both Greedy and Max-
Like estimate an object’s travel time on a road segment based
on speeds mined from historical trajectories. The use of
mined speed for prediction is investigated in Fig. 13. The
results for Maximum Speed and Half Maximum Speed are
measured by applying the maximum speeds and half of the
maximum speeds of road segments for travel time estimation.

123

600 H. Jeung et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 7 10

prediction length (minute)

ac
cu

ra
cy

 (
 F

1-
sc

o
re

)
 Linear–A* RMF–A* PLM MaxLike Greedy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 20 30

window size (% of map)

ac
cu

ra
cy

 (
 F

1-
sc

o
re

)RealData1
window 10 %

RealData1
h =7 min.

Aalborg Aalborg

Fig. 14 Accuracy of predictive window query

In comparison with the result of the previous experiments,
the path similarities are not sensitive to the use of the different
speeds. This is because the speeds do not affect the selection
of the next edge, but only how far an object travels within a
given prediction length.

6.3 Server-side prediction performance

For the server side, we first investigate the prediction accu-
racy of predictive window queries. For this experiment, we
generate a category of windows for each of 4 sizes, with
each category containing 100 windows placed randomly
within the road network. Next, we take all trajectories in the
dataset as query inputs. For each trajectory, we pick a ran-
dom position as the current location and examine whether
the position h time units after the current location is within
any of the windows generated. We also perform prediction
using each method with the same current location and record
whether a predicted location is covered by any of the win-
dows. By doing this for all the trajectories, we obtain an
actual set of objects and a predicted set of objects (i.e., Sact

and Spred , respectively, in Sect. 3) for each query window.
Finally, the F1-score is computed for each window, and we
report averages over all scores.

Figure 14 presents the accuracy results for predictive win-
dow queries for each method, for different prediction lengths
and window sizes. The results for Copenhagen are similar
and are thus omitted. Although the accuracies of MaxLike
and Greedy decrease with growing h, they are always better
than the other methods. This is evidence that a more accu-
rate prediction model increases the quality of query results.
When varying the window size, we observe that our meth-
ods perform better than the others with smaller windows.
For very large windows (30% of the network coverage), the
differences among the methods are small, and linear predic-
tion becomes competitive. This is so because the probability
that even an inaccurately predicted location is within a query
window is high if the window occupies a significant fraction
of the entire space.

We next examine how the prediction accuracy affects the
client–server location updates. In Sect. 3, we observed that

0

20

40

60

80

100

120

140

160

100 200 300 400
distance threshold (meter)

u
p

d
at

e
in

te
rv

al
 (

 s
ec

o
n

d
)

 Point Linear RMF PLM MaxLike Greedy

0

20

40

60

80

100

120

140

160

100 200 300 400
distance threshold (meter)

u
p

d
at

e
in

te
rv

al
 (

 s
ec

o
n

d
)

Aalborg Copenhagen

Fig. 15 Location update frequencies

0
10
20
30
40
50
60
70
80
90

100

1 5 10 15 20

prediction length (minute)

p
ru

n
in

g
 (

 %
)

 EDF PDF

100

200

300

400

500

600

700

1 5 10 15 20

prediction length (minute)

re
sp

o
n

se
 t

im
e

(
se

co
n

d
)

+ brute-force

Copenhagen

Fig. 16 Pruning power and query response time

a low update frequency is important for good system per-
formance, and we suggested that accurate predictions will
reduce the update rate. Figure 15, which plots average time
durations in-between consecutive updates for different dis-
tance threshold values, offers quantitative evidence that sub-
stantiates this claim (the results for MaxLike and Greedy
intersect for Copenhagen, which hides the MaxLike results).
In the figure, ‘Point’ denotes point-based location track-
ing [8], in which an update is performed when the dis-
tance between the most recently reported position and the
current position exceeds the given distance threshold value.
The update frequencies of MaxLike and Greedy decrease
substantially with increasing distance thresholds, while the
frequencies of the other methods decrease less markedly. The
improved predictions reduce not only the overhead of server-
side updates, but also the mobile communication costs.

In the following experiments, we analyze the effect of
our indexing method on the processing of predictive range
queries. We use the Copenhagen dataset to study scalability.
We regard each trajectory as coming from a distinct object
(i.e., the number of objects equals 114,393) and also use the
first position of the trajectory as the object’s current location.
The size of each grid is set to 5 times the average length of
an edge (462 m), and 10 query windows are generated ran-
domly within the network; each query window size is fixed
at 10% of the network coverage. Under these settings, we
obtain 1,510,658 index entries (18 MBytes) with a 43- min
construction time.

Figure 16 characterizes the pruning power of our index-
ing method, and it plots the query response time (CPU time)
of predictive range queries, based on the index. The results

123

Path prediction and predictive range querying in road network databases 601

Table 8 Overview of discovered patterns

Aalborg Copenhagen

Bound Having patterns Bound Having patterns

Vertices 27,268 6,059 (22.2%) 71,015 35,887 (50.5%)

Objects 20 2.8 (14.0%) 192 15.3 (8.0%)

Entries 2,277,500 29,890 (1.3%) 59,400,192 974,866 (1.6%)

Speed 91,196 11,150 (12.2%) 230,934 90,043 (38.9%)

for EDF are obtained by pruning objects that are further
away than the Euclidean distance an object can travel dur-
ing h time units at the highest mined speed. The results for
PDF are obtained by utilizing the prediction distance table
(see Sect. 5.2) for filtering. Observe that EDF is only use-
ful for near-future predictions; its pruning power diminishes
for longer than 10- min predictions. In the Copenhagen tra-
jectory dataset, the highest speed mined was 144 km/h. As
a result, the bound used for EDF quickly exceeds the road
network, resulting in no filtering.

In contrast, PDF’s pruning power remains high (96.1%)
even for h = 20 min because PDF is based on a prediction
space whose distances are much greater than those used in
EDF. In addition, the query response time of PDF remains
very low even for long prediction durations. In the tests, we
store the objects’ current locations in the main memory. If
the objects’ locations were stored on disk, the differences
in query response time between PDF and the brute-force
method would be much greater.

Next, we study the storage consumption of the patterns
reported by all clients to the server, for the server-side Greedy
prediction. Table 8 lists (i) the numbers of entries that may
have mobility statistics and (ii) the numbers of edges that have
mined speeds. In order to obtain the largest numbers for the
patterns, we set the values of minimum support and minimum
confidence (see Sect. 3) for the discovery of mobility statis-
tics to 1 and 0.0, respectively. (These setting are also applied
for the other experiments covered in this paper.) In the table,
‘bound’ captures the maximum values for the different pat-
terns. The numbers for ‘vertices’ are the numbers of vertices
with a fork dilemma and thus differ from the total numbers
of vertices in the road networks. Next, ‘objects’ describe the
average numbers of objects on the vertices having mobility
statistics. The bounds for ‘speed’ are two times the numbers
of edges in the road networks. Since we mine travel speeds
according to two different time categories, i.e., traffic time
and the rest, each edge has at most two mined speeds asso-
ciated with the time categories.

It follows from the table that the movement patterns dis-
covered are relatively sparse. This is because people usually
drive in certain areas, often following the same routes, and do
not often visit new locations. For instance, although the size

of Copenhagen is very large, relatively few mobility entries
are mined. Moreover, by setting the threshold values for the
pattern discovery (i.e., minimum support and minimum con-
fidence) slightly higher, we can further reduce the pattern
sizes substantially, while preserving strong patterns.

7 Conclusions

Most existing object movement prediction schemes focus
on near-term predictions, e.g., to reduce update rates. These
techniques are incapable of predicting the turning behaviors
of moving objects at road junctions.

To address this, we develop a network mobility model for
effectively and concisely capturing the turning patterns of
moving objects at road junctions and estimating the objects’
travel speeds on road segments. Based on this model, we
develop two algorithms for predicting the future path of
a mobile user moving in a road network. The Maximum
Likelihood algorithm returns paths that maximize the travel
probability among all possible paths, while the Greedy algo-
rithm aims at being highly efficient while computing near-
maximum probability paths. Furthermore, we present a novel
indexing method that utilizes the Greedy algorithm for sup-
porting efficient processing of predictive range queries on the
server side.

Extensive experiments with real data suggest that both
algorithms outperform existing prediction solutions for
objects moving in a road network. They also confirm that
our indexing technique efficiently processes predictive range
queries on the server side.

Acknowledgements Christian S. Jensen is an Adjunct Professor at
University of Agder, Norway.

References

1. Aggarwal, C.C., Agrawal, D.: On nearest neighbor indexing of
nonlinear trajectories. In PODS, pp. 252–259 (2003)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules in large databases. In: VLDB, pp. 487–499 (1994)

123

602 H. Jeung et al.

3. Anagnostopoulos, T., Anagnostopoulos, C.B., Hadjiefthymiades,
S., Kalousis, A., Kyriakakos, M.: Path prediction through data
mining. In: International Conference on Pervasive Services,
pp. 128–135 (2007)

4. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc. (1999)

5. Brilingaitė, A.: Location-related context in mobile services. PhD
in Computer science, Aalborg University (2006)

6. Brilingaitė, A., Jensen, C.S.: Online route prediction for automo-
tive applications. In: World Congress and Exhibition on Intelligent
Transport Systems and Services (2006)

7. Cho, H., Chung, C.: An efficient and scalable approach to CNN
queries in a road network. In: VLDB, pp. 865–876 (2005)

8. Čivilis, A., Jensen, C.S., Pakalnis, S.: Techniques for efficient
road-network-based tracking of moving objects. TKDE 17(5),
698–712 (2005)

9. Ding, Z., Güting, R.H.: Managing moving objects on dynamic
transportation networks. In: SSDBM, pp. 287–296 (2004)

10. González, M.C., Hidalgo, C.A., Barabási, A.: Understand-
ing individual human mobility patterns. Nature 453(7196),
779–782 (2008)

11. Jensen, A.B.O., Zabic, M., Overø, H.M., Ravn, B., Nielsen, O.A.:
Availability of GNSS for road pricing in copenhagen. In: GNSS,
pp. 2951–2961 (2005)

12. Jensen, C.S., Lahrmann, H., Pakalnis, S., Runge, J.: The infati data.
CoRR, cs.DB/0410001, (2004)

13. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B+-tree
based indexing of moving objects. In: VLDB, pp. 768–779 (2004)

14. Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density que-
ries on continuously moving objects. In: ICDE, pp. 71 (2006)

15. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model
for moving objects. In: ICDE, pp. 70–79 (2008)

16. Karimi, H.A., Liu, X.: A predictive location model for location-
based services. In: ACM GIS, pp. 126–133 (2003)

17. Kim, S., Won, J., Kim, J., Shin, M., Lee, J., Kim, H.: Path predic-
tion of moving objects on road networks through analyzing past
trajectories. In: KES, pp. 379-389 (2007)

18. Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile
objects. In: PODS, pp. 261–272 (1999)

19. Liu, T., Bahl, P., Chlamtac, I.: Mobility modeling, location track-
ing, and trajectory prediction in wireless atm networks. IEEE J.
Sel. Areas Commun. 16(6), 922–936 (1998)

20. Liu, X., Karimi, H.A.: Location awareness through trajectory pre-
diction. Comput. Environ. Urban. Syst. 30(6), 741–756 (2006)

21. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental
processing of continuous queries in spatio-temporal databases. In:
SIGMOD, pp. 623–634 (2004)

22. Patel, J.M., Chen, Y., Chakka, V.P.: STRIPES: an efficient index
for predicted trajectories. In: SIGMOD, pp. 635–646 (2004)

23. Pathirana, P.N., Savkin, A.V., Jha, S.: Location estimation and
trajectory prediction for cellular networks with mobile base sta-
tions. IEEE Trans. Veh. Technol. 53(6), 1903–1913 (2004)

24. Šaltenis, S. Jensen, C.S.: Indexing of moving objects for location-
based services. In: ICDE, pp. 463–472 (2002)

25. Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Index-
ing the positions of continuously moving objects. In: SIGMOD,
pp. 331–342 (2000)

26. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and index-
ing of moving objects with unknown motion patterns. In: SIGMOD,
pp. 611–622 (2004)

27. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-tem-
poral databases. In: SIGMOD, pp. 334–345 (2002)

28. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: An optimized spatio-
temporal access method for predictive queries. In: VLDB, pp. 790–
801 (2003)

29. Wolfson, O., Yin, H.: Accuracy and resource concumption in track-
ing and location prediction. In: SSTD, pp. 325–343 (2003)

30. Yasdi, R.: Prediction of road traffic using a neural network
approach. Neural Comput. Appl. 8(2), 135–142 (1999)

31. Yiu, M.L., Tao, Y., Mamoulis, N.: The bdual-tree: indexing mov-
ing objects by space filling curves in the dual space. VLDB
J. 17(3), 379–400 (2008)

123

	Path prediction and predictive range querying in road network databases
	Abstract
	1 Introduction
	2 Related work
	2.1 Path prediction in euclidean space
	2.2 Path prediction in road networks

	3 Problem setting
	3.1 Road network model and distance notions
	3.2 Predictive queries
	3.3 Architecture and supported functionality

	4 Client-side prediction
	4.1 Network mobility model
	4.1.1 Turning patterns at road junctions
	4.1.2 Travel speed estimation

	4.2 Maximum likelihood path prediction
	4.2.1 Foundation
	4.2.2 Prediction algorithm
	4.2.3 Example
	4.2.4 Comparison with PLM

	4.3 Greedy path prediction
	4.3.1 Comparison with maximum likelihood and PLM
	4.3.2 Example

	5 Server-side query processing
	5.1 Preliminaries
	5.1.1 System architecture
	5.1.2 Foundation

	5.2 The prediction distance table
	5.2.1 Index construction and maintenance
	5.2.2 Predictive range query processing

	6 Experiments
	6.1 Datasets and experimental settings
	6.2 Client-side prediction performance
	6.3 Server-side prediction performance

	7 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

