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Web users and content are increasingly being geo-positioned. This development gives prominence to spatial keyword queries,
which involve both the locations and textual descriptions of content. We study the efficient processing of continuously moving
top-k spatial keyword (MkSK) queries over spatial text data. State-of-the-art solutions for moving queries employ safe zones
that guarantee the validity of reported results as long as the user remains within the safe zone associated with a result.
However, existing safe-zone methods focus solely on spatial locations and ignore text relevancy.

‘We propose two algorithms for computing safe zones that guarantee correct results at any time and that aim to optimize
the server-side computation as well as the communication between the server and the client. We exploit tight and conservative
approximations of safe zones and aggressive computational space pruning. We present techniques that aim to compute the
next safe zone efficiently, and we present two types of conservative safe zones that aim to reduce the communication cost.
Empirical studies with real data suggest that the proposals are efficient.

To understand the effectiveness of the proposed safe zones, we study analytically the expected area of a safe zone, which
indicates on average for how long a safe zone remains valid, and we study the expected number of influence objects needed to
define a safe zone, which gives an estimate of the average communication cost. The analytical modeling is validated through
empirical studies.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Spatial databases and GIS
General Terms: Algorithms

Additional Key Words and Phrases: Moving query, multiplicatively weighted Voronoi diagram, spatial keyword query, safe
zone, Voronoi diagram

1. INTRODUCTION

The Internet is increasingly being accessed by mobile users. This development is fueled by advances
in mobile devices, networks, and services. Further, the Internet is acquiring a spatial dimension, with
content and users increasingly being geo-positioned.

This development calls for spatial keyword queries that integrate location with text search [Chen
et al. 2006; Felipe et al. 2008; Cong et al. 2009; Zhang et al. 2009; Zhang et al. 2010; Cao et al.
2012; Chen et al. 2012; Wu et al. 2012]. Taking a location and a set of keywords as arguments, such
queries return relevant content that matches the arguments. We introduce the weighted distance as
the ranking function. Assuming a data set D of objects p with weight ¢r, ., (p.1)), i.e., text relevancy,
the weighted distance between p and a query q is defined as
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where ||g.\ p.A|| denotes their Euclidean distance. This distance function has been used extensively
in geo-sciences [Gambini et al. 1968; Huff 1973]; they represent an urban place as a point and
its weight as the population (importance) of that place. A key strength of this function is that the
different measurement units of the weights and the spatial distances do not affect the result because
the effect of the units is canceled in the ratio of the weights used (covered in Definition 2.1 in
detail). However, all existing proposals assume a static query location at a snapshot. In contrast, we
consider the moving top-k spatial keyword (MkSK) query, which takes into account a continuously
moving query location. This query enables a mobile user to be continuously aware of the k spatial
web objects that best match a query with respect to location and text relevancy. A tourist visiting
New York City may activate a “lunch special vegetarian” query when lunch approaches, in order to
be alerted about nearby opportunities for lunch. Individuals looking for entertainment may issue a
“happy hour free snacks” query in the late afternoon to be alerted about bars with happy hour deals
with free snacks. With the MkSK query, a user always has an up-to-date result as the user moves.
The user can ignore a result and just keep moving until an appealing result appears.

A straightforward solution to the MkSK query is to periodically invoke an existing snapshot spa-
tial keyword query processing technique (e.g., [Zhou et al. 2005; Felipe et al. 2008; Cong et al.
2009; Zhang et al. 2009; Wu et al. 2012]). To illustrate, the dashed curve in Figure 2(b) shows the
trajectory of a query. The correct top-1 result changes from ps to p4 to ps and to ps as the query
moves. Recomputing the query at times ¢y, .. ., ¢4 has the effect that the result is unnecessarily re-
computed (at time ¢3), which is undesirable due to the increased computation and communication
costs. In addition, the result is at times incorrect (before times ¢1, t2, and ¢4). In general, no single
inter-computation period exists that avoids unnecessary computations while also offering correct-
ness.

Another solution to the MkSK query is the buffering approach [Song and Roussopoulos 2001]. A
central server retrieves the user’s k + Ak nearest neighbors and uses them to derive a buffer region
for the user. While moving within the buffer region, the user’s k nearest neighbors can be kept up to
date by the user using only the k£ + Ak nearest neighbors. This method only considers the distances
between objects and the query. It is non-trivial to adopt this approach to solve our problem, since
we take into account of both text relevancies and distances so that the buffer region based on the
Euclidean distance is not applicable.

State-of-the-art proposals for moving queries [Zhang et al. 2003; Nutanong et al. 2008; Cheema
et al. 2010] adopt a standard client-server architecture along with safe zones. The safe zone of a
query is a region containing the query location. As long as the query remains in this region, the
result of the query does not change, and there is no need to request a new result from the server.
The client is able to monitor whether it is inside the safe zone or moves out of it. The client sends a
new request to the server only when it leaves the safe zone. Then the server computes and returns a
new result and corresponding safe zone to the client. The advantage of safe zones is that the client is
able to request a new result exactly when necessary to always provide a correct result, which makes
it possible to avoid unnecessary computation and communication. We adopt the same architecture.
Figure 1 illustrates the steps involved in the query processing. The service provider maintains a
dataset of spatial web objects. The client repeatedly obtains its current location, e.g., using GPS
or a network-based positioning service (Step 1a), and checks whether the current location is in its
current safe zone (Step 1b). As long as the client stays inside the safe zone, the result is guaranteed
to remain correct. When the client exits the safe zone, the client issues the query ¢ with the same
query keywords as before, but with the new location (Step 2). Having received the query, the service
provider first computes the result of the query (Step 3) and then compute the safe zone of the result
(Step 4). Finally, the service provider sends the result and its safe zone to the client (Step 5), and the
process starts with with Steps 1a and 1b.

To the best of our knowledge, this paper is the first study of moving spatial keyword queries.
Voronoi cells have been used as safe zones for nearest neighbor queries [Zhang et al. 2003]. Fig-
ure 2(a) shows the Voronoi diagram of a set of 5 data points. The Voronoi diagram partitions the
space into several cells. The Voronoi cell that a data point belongs to has the property that any point
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Fig. 1. Client-Server Architecture

in that cell has the data point as its nearest neighbor. Thus, the Voronoi cell of a data point is the
safe zone for the the nearest neighbor query that returns the data point as its result. As an example,
consider the query q located inside the cell of p4. This query has p, as its nearest neighbor result,
and the safe zone of the result is the containing Voronoi cell. However, Voronoi diagrams consider
only spatial distance and do not account for text relevancy.

For the MkSK query, a query-keyword dependent relevancy score is assigned to each data point.
To take the text relevancy into account, we use a distance function (Equation 1) that weighs the
spatial distance with the textual relevancy. Voronoi cells do not work properly as safe zones for
such queries. According to Okabe et al. [2000], a so-called multiplicatively weighted Voronoi (MW-
Voronoi) diagram captures the correct safe zones when the weighted distance function in Equation 1
is used. The MW-Voronoi cell of a data point defines its influence region based on its weight. In our
setting, the weight w(p) of a data object p is query-dependent and is determined by the text relevancy
between the object’s description and the keywords in the query.

The safe zone of an object is its MW-Voronoi cell—all locations in the safe zone have smaller
weighted distance to the object than to any other object. Figure 2(b) illustrates the MW-Voronoi
diagram of the same 5 data objects as in Figure 2(a). Now each object has a weight. These weights
are the text relevancies between the objects and the query, known only when the query submitted. In
other words, different queries produce different MW-Voronoi diagrams on the same dataset. In this
example, query q is inside the safe zone of ps, i.e., ps is the top-1 object, according to Equation 1,
while in Figure 2(a) p4 is the nearest neighbor according to the Euclidean distance.

MW-Voronoi diagrams have been applied extensively in geographic, market, and urban analy-
sis. For instance, Gambini et al. [1968] examine the geometric properties of market areas of firms
serving hoursehold consumers, where a MW-Voronoi cell of a firm is determined by its distance
from consumers and its consumer attraction. In the U.S. national systems of planning regions [Huff
1973], the regions that are delineated represent the spheres of influence of urban places.

Existing methods for constructing MW-Voronoi diagrams involve a full scan of the data [Mu
2004]. In our setting, we need only compute a single MW-Voronoi cell, for which the existing
methods are inefficient. Pre-computation is inapplicable in our setting because the weight w(p) of a
point p is known only when a query is received.

Previous work [Wu et al. 2011] presents two algorithms for computing safe zones using a tree-
based index [Zhou et al. 2005; Felipe et al. 2008; Cong et al. 2009; Zhang et al. 2009; Li et al. 2011;
Wu et al. 2012] over a spatial keyword data set, so that only a small fraction of the data objects are
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(a) Voronoi Diagram (b) MW-Voronoi Diagram

Fig. 2. Comparisons between the Traditional Voronoi Diagram and the MW-Voronoi Diagram

accessed during computation. The objectives are to optimize the server-side computation as well
as the client/server communication. This work formalizes the continuously moving top-k spatial
keyword query problem and presents an early stop algorithm (IBD) for computing a safe zone and
an advanced algorithm (MSK-uvr) that enables pruning of subtrees of objects that do not contribute
to defining a safe zone, thus improving efficiency.

This paper substantially revises and extends this previous work. The additional contributions of
the paper are summarized as follows.

(1) We study analytically the expected area of a safe zone in Section 5, which indicates how long
a safe zone remains valid; and we also study analytically the expected number of so-called
influence objects that contribute to defining a safe zone, which offers insight into the average
communication cost.

(2) We develop techniques that aim to efficiently compute the next safe zone, i.e., to reduce the
server-side computation (corresponding to Step 4 in Figure 1) in Section 6. These utilize the
previous safe zone and results to construct a smaller temporary safe zone, and they also reuse
the weights of entries that have been obtained when computing the previous safe zone.

(3) We introduce two types of conservative safe zones, along with parameter-free variants, that aim
to reduce the cost of the communication between the client and the server (corresponding to
Step 5 in Figure 1) in Section 7. Since a conservative safe zone is a subset of the real safe zone,
the communication frequency may become higher. There exists a tradeoff between the com-
munication cost per round and communication frequency. However, as we show in the exper-
iments, lower total communication costs can be achieved by taking advantage of conservative
safe zones.

(4) We offer empirically based insight into the performance of the proposed techniques.

The rest of the paper is organized as follows. We first present the problem setting and provide
background knowledge in Section 2. Then we present the early stop algorithm (IBD) in Section 3
and the advanced algorithm (MSK-uvr) in Section 4. Section 5 studies analytically the expected
area of a safe zone as well as the expected number of influence objects that define a safe zone.
Techniques for efficiently computing the next safe zone are the subject of Section 6. The concept of
conservative safe zone is studied in Section 7 with the objective of to reducing the communication
cost. Next we study the performance of our proposals on real data sets in Section 8. We discuss
related work in Section 9 and conclude in Section 10. The paper is accompanied by an electronic
appendix.

2. PROBLEM SETTING AND BACKGROUND

Following a formal problem definition, we provide background on the MW-Voronoi diagram and a
tree-based index for spatial keyword data.
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2.1. Problem Definition

We consider a data set D in which each object p € D is a pair (A, ) of a point location p.A and
a text description, or document, p.i (e.g., the facilities and menu of a restaurant). Next, a top-k
spatial keyword query ¢ = (), 1), k) takes three arguments: a point location ), a set of keywords 1),
and a number of requested objects k.

Let the function ¢r, . (p.1)) denote the text relevancy of p.i) to ¢.1). Our approach is applicable
to any information retrieval model, e.g., TFIDF [Salton and McGill 1986].

Intuitively, an object whose description is more relevant to the query keywords and is closer to the
query location is preferable. We use a weighted distance [Aurenhammer and Edelsbrunner 1984] in
Equation 2 as our ranking function, since it matches the semantics of the query.

_ JlgApAl
trq.w(PW)’

where ||g.A p.)|| denotes their Euclidean distance. An object p with a smaller value of rank,(p) is
ranked higher (more relevant to the query).

The top-k spatial keyword query q returns a list of k objects from D that minimize the ranking
value and that are in ascending order of their ranking values. Formally, the result, denoted by RS,
is a list of k£ objects from D that satisfy the following condition:

Vp € RS(Vp' € D —RS( ranky(p) < rank,(p'))) 3)

Figure 3(a) shows the locations of a set of objects D = {p1, pa2, p3, p4 }. Figure 3(b) shows the
word frequencies for each object. Let the query ¢ shown in Figure 3(a) with ¢.¢0 = (a,b) and
q.k = 2 be given. The number in brackets next to each object is its text relevancy to the query
keywords g.1 that are computed on-the-fly using the text relevancy function tr, ., (p.¢). The result
of query g is (p2, p3) according to function rank,(-). The ranking value of ps and ps is 0.478
(= 0.11/0.23) and 0.54 (= 0.13/0.24), respectively. When g moves to ¢, the result rank becomes
(p2, p4). The ranking value of ps and p4 is 0.478 and 0.48, respectively.

rankq(p) 2)

;.)4<0.25>
[ tf [alb] | g pill | lg" pill |
px0.24 G, pr| 3|4 p1 | 0.14 0.15
020.23) pe | 1|2 p2 | 0.11 0.11
T ps |23 ps | 0.3 | 0.12
p1<0.244) ax pa | 415 ps | 0.14 0.12
(a) locations (b) descriptions  (c) Euclidean distances

Fig. 3. Example Moving Top-k Spatial Keyword Query

Problem Statement.
We study the efficient processing of moving top-k spatial keyword (MkSK) queries over static ob-
jects in Euclidean space. Thus, the spatial location of a query changes continuously whereas the
keywords of a query remain constant.

We aim for a solution that (i) guarantees that the client has a correct result at any point in time,
(ii) optimizes the computational server-side cost, and (iii) optimizes the client and server communi-
cation cost.

2.2. Multiplicatively Weighted Voronoi Diagram

Our approach to computing the moving top-k spatial keyword query utilizes the so-called mul-
tiplicatively weighted Voronoi (MW-Voronoi) diagram [Okabe et al. 2000]. Here, we recall the
definitions of MW-Voronoi diagrams and regions.
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Let D be a set of weighted points in two-dimensional Euclidean space /. A point a in D has (i)
a weight w(a) and (ii) coordinates (a, a, ). The weighted distance between any point z in ¢/ and a
is defined as d,, (2, a) = ||z al|/w(a), where ||z a]| is the Euclidean distance between z and a.

Definition 2.1. The dominant region of point a over point b is defined as:
Domgpy ={z €U | duw(z,a) <dy(zDb)}. 4)

To characterize the shape of Dom,, ;, we define the Apollonius circle [Durell 1961] and explain
its relationship with Dom,, 3. As an example, Figure 4(a) shows the Apollonius circle of two points
a and b. Any location z on the circle satisfies the equation ||z a|| = i - ||z b]|.

(a) Apollonius circle (b) MW-Voronoi region

Fig. 4. Example MW-Voronoi Region

Definition 2.2. ([Durell 1961]) Given two points a and b and a constant 0 < u < 1, the
Apollonius circle C,, is defined as all locations z that satisfy: ||z a|| = p - ||z b||. The Apollonius
circular region C, p is defined as the region: ||z a|| < p - ||z b]|.

LEMMA 2.3. [Radius and center, Apollonius circle] (/Okabe et al. 2000]) Given two points
a and b such that w(a) < w(b), Domg, = Cqp. The center o4y, and the radius 141, of Cop are
shown in Equations 5 and 6. In addition, we have: Domy, , = U — Cqp, where U is the spatial
domain.

_ [ wi(b)-az—w?(a)b, w?(b)-ay—w?(a)-by
Oa,b = ( wZ(b)—w(a)  °  wZ(b)—w2(a) ) o)
o = sepetje ©

We will use “circle” and “circular region” interchangeably.
For the special case w(a) = w(b), the Apollonius circular region C, ; degenerates to the perpen-
dicular half plane 1, ;. In general, the dominant region Dom,, ;, is expressed as:

Coap ifw(a) < w(b)
Domg,, = { U—Chpq ifw(a) > w(b) (7
Lap if w(a) = w(b)

The MW-Voronoi diagram of D is the collection of MW-Voronoi regions of all points in D. These
regions form a (disjoint and complete) partitioning of the spatial domain [Okabe et al. 2000].
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Definition 2.4. Given a (result) point p* € D, its MW-Voronoi region with respect to D is
defined as:

Yp*)= () Dompe (8)
p’€D—{p*}

Based on a (result) point p* € D, we can partition D into D = D U D~ U D° U {p*}, where
set DT contains all points with higher weight than p*, set D~ contains all points with lower weight
than p*, and set D contains the objects whose weights are identical to p*. According to Mu et
al. [2004], by applying Equation 7, we can re-express the MW-Voronoi region as Equation 9. Thus,
higher-weight neighbors add to the MW-Voronoi region of a point, forming convex edges; lower-
weight neighbors subtract from it, forming concave edges; and equal-weight neighbors crop it with
straight lines.

Tp*) = () Domp, )
pED—{p*}
= m Cp*,pj n ﬂ Lpep, N m U - Cpkm*)
p; €DT p;€D° prED—
= ﬂ CP*J)j n ﬂ Lpep — U Cpy.p*
pj €Dt pi €D px€ED~

Figure 4(b) shows a point set D = {p1, p2, p3, p4, p* }. The number in brackets next to each point
is its weight. The MW-Voronoi region of p*, T (p*), is shaded. Every location in this region has a
smaller weighted distance d,, (-, ) to p* than to any other point in D. We have that D™ = {p2, p3}
and D~ = {p1,pa}. As shown in the figure, C- ,,, = V10207, Cp p, = V10306, Cp, pr = VaUsUs,
and Cp, - is the circle c. The MW-Voronoi region of p* is then given as

T(p*) = Cppy N Cpr py — (Cpl,p* U Cp4,p*)~

2.3. Choice of Index Structure

The techniques we propose require two primitive operations on spatial text data: (i) retrieving ob-
jects by their spatial proximity to a query ¢, and (ii) retrieving objects by their text relevancy to q.
Any index supporting these two operations can be easily integrated with our proposed techniques.
The R-tree [Guttman 1984] supports the first operation, and the inverted index [Zobel and Moffat
2006] supports the second operation, but neither supports both operations simultaneously.

We adopt the IR-tree [Cong et al. 2009; Wu et al. 2012] for indexing data objects at the server,
which is a state-of-the-art index that enables pruning according to space and text simultaneously
and efficiently supports the processing of ranking-aware spatial keyword queries. Our algorithms
are also applicable to variants of the IR-tree [Cong et al. 2009; Li et al. 2011; Wu et al. 2012]. We
are not aware of any other indexes that can support the computation of text relevancy and spatial
approximation simultaneously.

The IR-tree is an R-tree [Guttman 1984] extended with inverted files [Zobel and Moffat 2006].
Each leaf node contains entries of the form e, = (ptr, A, 1), where e,.ptr is a reference to a data
object, e,.A is a minimum bounding rectangle (MBR), and e,,.1) refers to the text description. Each
leaf node also contains a pointer to an inverted file with the text descriptions of all objects stored in
the node.

An inverted file index has two main components.

— A vocabulary of all distinct words appearing in the description of some object.
— A posting list for each word ¢, i.e., a sequence of the identifiers of the objects whose descriptions
contain ¢.
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Each non-leaf node NN in the IR-tree contains entries of the form e = (pir, A, 1), where e.ptr is a
reference to a child node of IV, e.A is the MBR of all rectangles in entries of the child node, and e.v)
is a reference to a pseudo text description that represents all text descriptions in the entries of the
child node. The latter enables derivation of an upper bound on the text relevancy to a query of any
object contained in the subtree rooted at e. Each non-leaf node also contains a pointer to an inverted
file on the text descriptions of the entries stored in the node.

Figure 5(a) contains 9 spatial objects, and Figure 5(b) shows the frequencies of the words in the
description of each object. For example, the description of p; contains the words a and c five times
each. Figure 6(a) illustrates the corresponding IR-tree, and Figure 6(b) shows the contents of the
inverted files associated with the nodes. As a specific example, the weight of the term c in entry Ro
of node Rj5 is 7, which is the maximal weight of the term in the three documents in node R.

[
R; é’g Ps |z
P1 R, P1 | P2 | P3| P4 | P5 | P6 | Pr | P8 | P9
R, © a|5]0 |70 40103
s 3 R; b| 0 5 0 0 0 4 1 3 0
Ps %p, c| 5 5 0 7 4 3 4 3 3
R, Pi g dlo o|1|1]0l0|1]0]O
P70 (¢} 2
Ps o
(a) object locations (b) object descriptions
Fig. 5. A Data Set of Spatial Keyword Objects
|InvFile- root I
|InvFile— Rs | |InvFile- R; |
—|P1 ‘Pz |—P3 P4 | Ps 4|P5 ’P9 | |P6 ’P7 I*
InvFile-R, | |mnvFile-R, | |mvFile-R, | | nvFile- R,
(a) Structure of the IR-tree
InvF-root InvF-Rs InvF-Rg
| | | |
a (R57 7)7 (RGa 4) a (Rh 5)7 (R27 7) (R37 ) (R47 1)
b (R5’5)7(R674) b: (R175)7(R273) b (R47 )
C (R577)7 (R674) c (R175)7(R277) c (R37 ) (R474)
d (R5a1)7(R671) d: (R271) d: (R47 )
[ InwF-Ry | InvF-Ry | InvF-R3 | InvF-Ry \
a: (p1,5) a: (ps3, 7) a: (ps,4), (pe,3) | a: (pr,1)
b: (p2,5) b: (ps, 3) b: (ps,4), (p7, 1)
c (p175)7(p275) 2 (p477)7(p873) c (p574)7(p973) (p67 7(p77 )
d: (p331)a(p471) ( p7, )

(b) Content of the Inverted Files of the nodes

Fig. 6. Example of an IR-Tree
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For ease of understanding, we use ¢f (¢, p.¢)) to represent the weight of word ¢ in the running
example of the paper.

LEMMA 2.5. [Monotonicity, text relevancy function] (/Cong et al. 2009]) Given a query q
and an entry e with its rectangle e.\, we have Vp € e.\ (trq.4(e)) > try.,(p4)).

As an example in Figure 6, given any query g, trq. (Rs5.¢) > trg.y(R1.%) > trq.p(p1.1).

3. EARLY STOP SOLUTION

By setting the weight w(p) of each point p € D to its text relevancy trq.,(p.1), we have that
ranky(p) = dy(q,p). The safe zone of query ¢ is the MW-Voronoi region Y (p*), where p* is
the top-1 result of g. For the safe zone, we present its geometric interpretation (the region in 2D
space) and the storage representation in terms of the influence objects. In this section, we present
an early stop solution that utilizes the IR-tree for computing Y (p*) without having to visit all data
objects. First, we develop pruning rules for discarding objects that cannot contribute to defining
the safe zone. Next, we discuss an efficient ordering for accessing the IR-tree and then present the
algorithm. We first consider the case k¥ = 1 and end by describing how to extend the solution to
arbitrary k.

3.1. Pruning Rules for Unseen Objects

It is generally far from every data object that contributes to defining the safe zone Y (p*). In the
example in Figure 4, the (shaded) region Y'(p*) is defined by points p; and p» only: without the
points p3 and p4, we would obtain exactly the same region Y'(p*). We proceed to present pruning
rules for discarding such irrelevant objects. Given a set I of objects in D — {p*} that have been seen
so far, the temporary safe zone is defined as:

Qr = () Domype . (10)
p'el

For convenience, we will simply use {2 instead of {2;. The following lemma states that temporary
safe zone (2 is always a superset of the actual safe zone Y (p*).

LEMMA 3.1. [Temporary safe zone, superset property] It holds that: (i) Q 2 Y (p*), and (ii)
Vp' € I (22 C Domys ).

PROOF. For part (i), observe that:
T(p*) = ﬂ Domp« ,» =Q N m Domy« .
p'e(D—{p*}) p'e(D—{p*}-1I)
Therefore, we obtain: 2 2 Y (p*). For part (ii), since Q = [
foreachp’ € I. O

e Domys pr, we get @ C Doy

Let p be an unseen object, i.e., p ¢ I, and p € (D — {p*}). If the dominant region Dom,,- ,, of
an unseen object p contains €) then the intersection of Dom,,- , and 1 is still €2, and so p does not
contribute to shrinking 2. We present several pruning rules to discard such objects that do not help
shrink Q.

Recall from Section 2.2 that we decompose D into the sets DT, D, and D°. Similarly, we
express the set of seen objects as I = I™ U I~ U I°. Any object p’ € I belongs to either I, I, or
1°, depending on its weight.

PRUNING RULE 1. Let py be an unseen object in Dt. If Ip' € It (Cp+ ,, D Cp+ ) then py
cannot affect ).

PROOF. Let p’ be an object of I such that Cp-,, 2 Cp . By Equation 7, we have:
Domy- . 2 Domyy- . By Lemma 3.1, since p’ € I, we get: Domy,« ,y 2 €. Combining them,
we obtain: Domy,« . D €, 50 Domy,, NQ=Q. O
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PRUNING RULE 2. Let p_ be an unseen objectin D~. If 3p' € I'" (C},_ p» NCps ,y = 0) then
p_ cannot affect ).

PROOF. Let p’ be an object of I* such that C), ,« N Cp+ ;v = 0. Thus, we get: (U —C)p_ ,+) D
Cyp+ . By Equation 7, we have: Domy+,, 2 Domyp+ . By Lemma 3.1, since p’ € I, we get:
Domy- 2 ). Combining these, we obtain: Dom,- ,_ 2 €2, and thus Domy,-,, N =Q. O

PRUNING RULE 3. Let p_ be an unseen object in D~. If 3p’ € I~ (Cp_ ps C Cpy =) then p_
cannot affect Q.

PROOF. Let p’ be an object of 1~ such that C), . C Cp p-. Thus, we get: (U — Cp,_ p+) 2
(U—Cyp p+). By Equation 7, we have: Domy-,, 2 Dom,,« ,». By Lemma 3.1, since p’ € I, we get:
Domy- 2 ). Combining them, we obtain: Domy- , 2 €, and thus Dom- , N =0Q. O

PRUNING RULE 4. Let p_ be an unseen object in D~ If Ip' € I° (Cp_ 1+ N Ly= ,y = 0) then
p_ cannot affect ).

PRUNING RULE 5. Let p, be an unseen object in D°. If 3p' € I (L« . DO Cpe ) then p,
cannot affect Q.

PRUNING RULE 6. Let p, be an unseen object in D°. If Ip’ € I° (Ly+ p, D Ly« ) then p,
cannot affect Q.

The proofs of Pruning Rules 4, 5, and 6 are trivial and similar to the proofs of Pruning Rules 2,
1, and 1, respectively.

We summarize the pruning rules in Table I and proceed to exemplify the power of the pruning
rules. Thus, let p* be the top result in Figure 4, and let €2 be the shaded region, with I = {p,} and
I~ = {p1}. Next, we examine the unseen objects p3 € DT and p, € D~. By rule 1, object p3 does
not affect €, since Cp+ ,, = V1V2v7 C Cp+ 5y, = V1V3V6. By rule 2, object py does not affect €2,
since Cp» p, N Cp, p+ =

Table I. Pruning Rules for Unseen Objects

py € DT p— € D™ po € D°
I | Pruning Rule 1: 3p" € I | Pruning Rule 2: 3p’ € I™ | Pruning Rule 5: 3p’ € IT
(Cp*,m 2 Cp*,p/) (Cpﬂp* N Cp*,p/ = @) (J-P*ypo 2 CP*,p’)
I - Pruning Rule 3: 3p" € I~ -
(Cp_ px € Cpr,pr)
I° - Pruning Rule 4: J9p” € I° | Pruning Rule 6: Ip’ € I°
(Cp_p* N Lppr = 0) (Lppo 2 Lp=pr)

Now let p* be the top result in Figure 7(a), and let © be the shaded region, with I™ = {p; } and
I~ = {p2}. We then examine the unseen object p3 € D~. By rule 3, this object does not affect (2,
since Cp, p+ O Cpy pr.

Finally, let p* be the top result in Figure 7(b), and let  be the shaded region, with I'™ = {p3}
and I° = {p2}. We examine unseen objects p; € D~ and ps € D°. By rule 4, p; does not affect (2,
since Cp, p+ N Ly 5, = 0. By rule 5, py does not affect €, since Ly« ,, D Cp+ ,,,. Also, by rule 6,
p4 does not affect €2, since Ly« ,, D Ly« 5.

Safe Zone Representation and Client-Side Test.

The finalized set of objects I = It U I~ U I°, called the influence set (storage representation),
is used to represent the safe zone. With this set, the client can easily check whether its current
location g belongs to the safe zone, by using the Boolean condition: /\pG(IJrUI*UI") (¢ € Domp~ p)
(geometric interpretation). This checking is Step 1b in the architecture (Figure 1). The client needs
not compute the shape of the safe zone. Specifically, given an influence object p € I, checking
whether ¢ € Dom,,- ;, is done by computing the center and radius (Equations 5 and 6) of the
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Lo+ pa

Lp',DZ

(a) Rule 3 (b) Rules 4, 5, and 6

Fig. 7. Pruning Rule Examples

Apollonius circle Cpy+ ,, (if w(p) > w(p*)), the Apollonius circle Cp, .- (if w(p) < w(p*)), or the
perpendicular half plane L. , (if w(p) = w(p )) and then testing whether ¢ is inside Cj- ,, (if
w(p) > w(p*)), is outside C,, ,+ (if w(p) < w(p*)), or is inside L+ ,, (if w(p) = w(p*)).

Implementation Aspects.

For the sake of easy implementation, we convert the topological conditions in the pruning rules into
distance-based conditions. For example, in rule 1, the topological condition dp’ € I (Cp*,p )
Cp+ p) is equivalent to the distance-based condition 3p” € I (||op« pr 0p* po || < Tpe py — Tp= 1),
which can be evaluated by using the centers and radii of the respective Appollonius circles. In
rule 2, the topological condition 3p’ € I (C,_ ,» N Cp+ ,y = 0) is the same as the distance-based
condition 3p’ € I (||opp , _p+ + 7rp+ ). Similar conversions are applied to the
topological conditions of the other rules. Table II shows the conversions of the 6 pruning rules in
Table I. Table II, L, denotes the perpendicular bisector between points a and b.

Table II. Conversions of Pruning Rules

Pruning Rule 1 I €I (llopp 0p* ool < Ty — Tpe )
Pruning Rule 2 3p’ €T (J[op pr 0p_ || = Tp_ p + T 1)
Pruning Rule 3 Ip" € I (o pr 0p_p* |l < Tpr pr — Tp_ p*)
Pruning Rule 4 Ip" € I° (ILp* pr 0p_p= |l > Tp_px AP— € Ly px)
Pruning Rule 5 3" € I (|ops . Lpyp= || = Tpr pr)

Pruning Rule 6 | J3p” € I° (parallel(L,* ', Lp* p,) AP poll > [Ip* P'1))

3.2. Ordering Accesses of Data Objects with Early Stop

This section studies the order in which it is desirable to access the data objects. An early stopping
condition is derived, and processing of objects that cannot contribute to the safe zone is avoided.

The first step is to study the distance between an Apollonius circular region and data points.
Figure 4(a) shows an Apollonius circular region C, ; defined by two data points a and b, where
w(a) < w(b). We present the concept of border distance in Definition 3.2 and cover its computation
in Lemma 3.3.

Definition 3.2. Consider two points a and b such that w(a) < w(b). The minimum border
distance bord,in (a, Cqp) (O bord ,in (b, Cq b)) is defined as the minimum distance from a (or b)
to the border of C, . The maximum border distance bord,,aq(a, Cop) (Or bordmaes (b, Cap)) is
defined as the maximum distance between a (or b) and Cj, 5.
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LEMMA 3.3. [Border distance computation] The functions bord,,(+,-) and bord,,q.(-,-)
can be expressed as:

bordmin(a, Cap) = [la M|| = w(;(fzu(b) a0 (11)
bordinin (b, Cag) = [ 3] = 5P (12)
bordinas(0.Cas) = la V] = s ] (13
bord (b, Cus) = I N = Oy (149

(b) — w(a)

PROOF. Observe that the line o, 3 a b intersects the border of C, ; at locations M and N. Ac-
cording to Okabe et al. [2000], the center o, of C, 4 is co-linear with points a and b. Therefore,
we have: bord,in(a, Cap) = |la M|, bordmin (b, Cap) = ||b M|, bordmaes(a, Cap) = |la N,
and bordmaz (b, Cup) = |0 N||.

Recall that the value w(a)/w(b) is a constant. By Definition 2.2 (of the Apollonius circle), we
derive:

la Ml _w(@  faM| _Jabl—[bM]| _ w(a)
B~ w®) ~ abl el pM] | w()
la NI _w@) JbNI=labl _  JaN| _w(a
BN w®) T Al Tabl+a N w(

)
(b)

Thus, we can express bord,in (-, -) and bord,q. (-, -) in terms of w(a), w(b), and ||a b, as in

Equations 11-14. O

For the special case w(a) = w(b), the Apollonius circle degenerates into a half plane, so we have:
bordmin(a, Cap) = bordmin(b,Cap) = |la b]|/2 and bordmes(a, Cop) = bordmesz (b, Cop) =
00. For convenience, we define the minimum border distance and the maximum border distance of
point p from p* as:

vy J bordmin (p*, Cpe ) if w(p®) < w(p)
bor dimin (P, p) = { bordmin(p*, Cp p+) otherwise. (15)

* _ bordmam(p*v Cp*,p) lfw(P*) < w(p)
bordmas (p", p) = { bordmaz(p*, Cpp+) otherwise. (16)

Lemma 3.4 presents an early stopping threshold 7 that enables us to save significant computa-
tional cost by skipping a set of unseen objects. In order to utilize the condition, we propose to visit
points in the data set in the ascending order of the bord,,:,(p*,p) value. With this access order,
it suffices to check bord,nin (p*, Pnew) Of the current point in D, as all unseen objects have an
equal or larger bord,,;, (p*, p) value.

LEMMA 3.4. [Early stopping threshold]
Let 7 = minyer+ bordmax (p*,p). Let Dyew be a set of unseen objects such that
bordmin (P, Prew) > T for each ppew € Drew. Then no object in Dy,e,, can affect Q.

PROOF. Let p, be the objectin I that produces the value 7. Let ©(p*, ) be the circular region
with center p* and radius 7. By the property of maximum border distance, we have: Domy- , C
O(p*, 7). By Lemma 3.1, we get: 2 C Dom,,- ;. . Thus, we have: Q C ©(p*, 7). —(3)
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Let py,eqy be any object in the unseen object set D,y Since we are given bord,in (P, Prew) > T,
we have: Domp- 5, . D @(p*, 7). Combining this with Equation %, we obtain: Q C Dom,,
Therefore, p, ., cannot affect Q2. O

sPnew*

Figure 8 illustrates how the early stopping works. We visit the objects according to the min-
imum border distance order: p1, pa, p3, ps4. After visiting p;, we add it to I+ and update 7 =
bordmaz (p*, Cp+ p, ). The dashed circle indicates the stopping circle with center p* and radius 7.
When we visit point ps, we find that its minimum border distance exceeds 7. Thus, we stop and do
not Vvisit p4.

Fig. 8. Early Stopping Example

3.3. Incremental Border Distance (IBD) Algorithm

We proceed to present the incremental border distance (IBD) algorithm that utilizes the IR-tree to
compute the safe zone Y (p*) of the top-1 result p*. Extension to an arbitrary k is given at the end
of the section.

The intended use of the IR-tree calls for a few definitions. We let A be a rectangle that contains
a subset of points of D and let w*(A) be the maximum weight of any point in A. Also, we let
lp* Al|min be the minimum distance between p* and A. To be able to apply Lemma 3.4 to the
IR-tree, we need to define the minimum border distance of A from p* such that bord,,;, (p*, A) is
always a lower-bound of bord,,;, (p*, p) for any point p € A.

We consider the two cases in Equation 16. For the first case, we obtain w(p*) < w(p) and then
substitute « = p* and b = p into Equation 11. To minimize the bord,,;, value, we maximize w(p)
to w"(A), and we minimize the distance ||p* p|| to ||p* A||min. Thus, we define the minimum border
distance of A from p* as:

w(p®)
w(p*) +w*(A)

For the second case, we obtain w(p*) > w(p) and then substitute b = p* and a = p into
Equation 12. By minimizing its bord,,;, value, we also obtain the above equation. Thus, we can
safely use the above equation for both cases.

Algorithm 1 is the pseudo-code of IBD. It takes the root of the IR-tree, the current query object ¢,
and the result p* as arguments. The method for computing p* based on the text relevancy function
rankg(p;) is orthogonal to our work, and it has been studied by Cong et al. [2009] and Wu et
al. [2012].

First, the algorithm creates the sets I+, I~, and I° for storing influence objects. The early stop-
ping threshold 7 is initially set to co. With a min-heap H, we apply standard best-first search to visit
index entries (e.g., nodes or objects) in ascending order of their minimum border distances from p*.
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When the deheaped entry e is an object, we consider the three possible cases based on its weight
w(e). We then apply the six pruning rules in Table I to discard objects that cannot contribute to the
safe zone. Specifically, rule 1 is used to compute /™ rules 2, 3, and 4 are used to compute I ~; and
rules 5 and 6 are used to compute I°. Each time we insert an object into I+, we update the threshold
7 such that it captures the minimum value of the maximum border distances of objects in I™. The
algorithm terminates when the minimum border distance of the current dequeued entry exceeds 7.
Finally, the algorithm reports the set ™ U I~ U I° to the client.

Algorithm 1 IBD (Tree root root, Query ¢, Result p*)

1: IT < newset; I~ < newset, I° < new set;

2: T 4 O0; > 7 is the early stop threshold
3: H < new min-heap;

4: H.enheap(root,0);

5: while (H is not empty) and (H.top.key < 7) do

6: e < H.deheap(); > e is a data structure containing a node or an object and its key
7: if e contains an object and e # p* then

8: if w(e) > w(p*) then > object in D
9: if Ap’ € IT(Cp+ . 2 Cp+ ) then > rule 1
10: insert e into 17

11: T = min{7, bordmaez(Cp ¢) }; > shrink 7
12: if w(e) < w(p*) then > object in D~
13: if Ap' € IT(Cepr N Cp y = () and > rule 2
14: Ap' € I~ (Cepi € Cpr p-) and > rule 3
15: Ap' € I°(Ly y NCe p« = 0) then > rule 4
16: insert e into I —;

17: if w(e) = w(p*) then > object in D°
18: if Ap' € IT(Lys o D Cpe ) and >rule 5
19: Ap' € I°(Ly py C Ly ) then > rule 6
20: insert e into 19;
21: else > e contains a node
22: for each entry ¢’ in ¢ do
23: H.enheap(e', bordn(p*, e’ .A));

24: return the set [T U T~ U I°;

Voronoi Cell Optimization—Enhancing Rules 4 and 6.

We propose an optimization to enhance pruning rules 4 and 6. Let ® be a convex polygon that
represents the temporary safe zone defined by the set I°. As an example, the condition Jp’ €
I°(Lp« p, 2 Lp+ ) of pruning rule 6 can be replaced by L« ,» O ®. The pruning power is higher
as ® is much smaller than the halfplanes L, ,,. We maintain the polygon ® each time we insert an
object p into I°. We first derive the halfplane L« , and then update ® by the intersection ® N _L - ,,.
Instead of keeping the entire /¢, it suffices to use the polygon ¢, whose average number of vertices
is six [Okabe et al. 2000].

Extension to Arbitrary k.

Let RS be the top-k result of the query g. According to Okabe et al. [2000], the order-k MW-
Voronoi region of the set RS, denoted by T’“(RS ), contains all locations that take the set RS as
the top-k result. In other words, Y*(RS) is the safe zone for the result set RS.
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We can express the region Y*(RS) by using the intersections of order-1 MW-Voronoi re-
gions [Okabe et al. 2000]:

THRS) = () To-rs®)) (18)
pJ*-ERS

where Tp_rs(pj) denotes the MW-Voronoi region of p? with respect to the object set D — RS.

A simple solution to computing the safe zone Y*(R.S) is to run the IBD algorithm for each result
p; € RS to obtain the influence object set of Tp_r.s (p;‘) The union of these influence object sets
enables the client to determine whether the query belongs to the safe region.

Instead, we propose an efficient extension of IBD that only traverses the IR-tree once, regardless
of the value of k. Let the result object of RS be p7,p3,--- ,pj. For each result object pj. we

maintain its influence object sets I ]+ , I7,and I, and also its early stopping threshold,

. *
7j = min bordyax (P, p)-
ver}

From Equation 18, we learn that the safe region Y*(RS) is the intersection of k order-1 MW-
Voronoi regions. Therefore, an object (or entry) can be pruned if it cannot contribute to any such
order-1 MW-Voronoi region. For this, we add the following checking condition for the deheaped
entry e just after Line 6:

\/ bordpmin(p;,e.N) > 7j.
JEILK]

If it evaluates to true then entry e can be safely pruned.

In order to ensure the correctness of the early stopping condition, we perform the following
modifications: (i) replace 7 in Line 5 by a global threshold 7,4, = max e[y ] 75, and (ii) compute
the key of an entry ¢’ (in Line 23) as

in bordn(pt, e .A).
o e 15,6

4. ADVANCED SOLUTION

Except for the early stopping condition, IBD can only apply pruning at the object level. Here, we
develop techniques capable of pruning entire subtrees that cannot contribute to the safe region. Then,
we present an advanced solution for computing the safe zone efficiently, with two optimizations for
enhancing the power of the pruning rules.

4.1. Subtree Pruning

Let A be the minimum bounding rectangle (MBR) of a subtree, and let w*(A) be the upper bound
of the weights of all the objects in A. We use ||A p*||min (O ||A p*|lmaz) to denote the minimum
(or maximum) Euclidean distance between A and the result object p*. Given a region R, we define
its minimal dominant region as:

Domyy- m = m Domy- . (19)
pER, 0<w(p)<wh(R)

With this concept, we can extend the pruning rules of Section 3 for pruning a rectangle A. For
example, pruning rule 1 can be extended to 3p’ € I (Domy- p 2 Cp« ), ie., there exists an
object p’ € I such that the dominant region C)- , is contained in the region Domy,- 4.

It is challenging to represent the shape of Dom,,« A because the Appollonius circles formed by
points in A can have different centers and radii.

We first present two lemmas that specify how dominant regions vary with respect to location and
weight.
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LEMMA 4.1. [Subset dominant region property at higher weight] Given three objects p*, p,
and p’ such that w(p) > w(p’) and p.X = p' X then Domyp~ , € Domyp« .
PROOF. By Definition 2.1, we have:
lp* 2l _ llp Z)
Vz € Domy,« ( < .
PP\ w(pr) T wip)
Since p.A = p’. A, we have ||p z|| = ||p’ z]|. In addition, we have w(p) > w(p’). Thus,
lp* =2l _ [P Z)
Vz € Domy,« ( < .
TP\ w(pt) T w()

According to the definition of Domy- ,s, we have Domy,« , € Domp« .. O

LEMMA 4.2. [Subset dominant region property at closer distance] Given three objects p*,
p, and p', such that w(p*) < w(p) = w(p')
and p' form a line. Then Domy,» , C Domyps 4.

PROOF. Without loss of generality, we translate and rotate the space such that p*
p = (21,0), and p’ = (22,0), where 0 < 1 < zo. By Definition 2.1 and using w(p) = (
obtain the centers and radii of circles Cp+ ;, and Cy,-« , as:

Op=p = (M’O)’ Oprp = (Imﬁ)’

_ wpt) - wlp) - w(p*) - w(p) - w2

Tp* p = s Tprp = -
TP wr(p) —w(pr) T T wi(p) — wi(pY)

By using w(p*) < w(p), we derive:

\/\

w?(p*) - (w2 — 1) _ w(®*) - w(p) - (v2 — 1)
w?(p) — w?(p*) w?(p) — w?(p*)
Thus, we have: Cp+ ,, € Cp pr, i€, Domy« , € Domyps . O

llop p 0p* || = < =Tprp —Tprp. (20

We proceed to illustrate the subset property of the above two lemmas. In Figure 9, we fix the
location of p while varying its weight w(p). When w(p) decreases, the dominant region Dom,,« ,
becomes a subset of the former dominant region. In Figure 10(a), we fix the weight of p while
moving its location (e.g., ps, p2, p1) towards p* along the line segment p p*. When ||p* p|| decreases,
Domy,- , becomes a subset of the former dominant region. The remaining case of Figure 10(b) will
be discussed later.

w(p)=0.3
w(p)=0.5
() ;
w(p)=0.7
w(p*)=w(p)=0.1 —/

Fig. 9. Varying the Weight of p
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w(p*)=0.3, w(p123)=0.1

o’ g.

Co1p°
........................ Coop  ~Cospr
(a) case of w(p*) < w(p) (b) case of w(p*) > w(p)

Fig. 10. Varying the Spatial Location of p

We then consider how to conservatively approximate Dom,,-  using a tight subset expressed by
simple geometric shapes. First, we propose to enclose A by a minimum bounding ring-sector, as
shown in Definition 4.3. Figure 11 shows the minimum bounding sector rsp of A, with respect to
point p*. It is bounded by the arcs and segments of four vertices v1, va, v3, and v4.

N3

lmax=Imin

rmax

emin emax

Fig. 11. The Minimum Bounding Ring-Sector

Definition 4.3. Given a rectangle A, its minimum bounding ring-sector rs w.r.t. an object p*
is defined by a quadruple (7pin, "maz, Omin, Omaz) Where the minimum and maximum radii are
Tmin = |A 2| min and "mae = |A D™ || maz, and pip, and 6,4, are the bounding angles w.r.t. p*.

LEMMA 4.4. [Coverage of the minimum bounding ring-sector] Given an object p* and a
rectangle A such that w*(A) > w(p*). Let rsy be the minimum bounding ring-sector of A, and let
arcs be the arc of rsp closest to p*. It holds that:

Domyp= p 2 ﬂ Domyp 201
p'€arcs, w(p)=w*(A)

where p' is any possible point on arc, with weight w*(A).

PROOF. For each object p € A, there exists an object p’ on arc, such that p*, p’, and p form
a line, ||p* p'|| < [[p* p|, and w(p’) > w(p). By Lemmas 4.1 and 4.2, we have Domy,- ,» C

Domyy-~ . Hence, we have Domp« p 2 [y cgpe, DOmp=pr. O

We then study the shape of Dom,,~ 5 for three cases.
The shape of Dom,,~ » when w"(A) = w(p*).
By Lemma 4.4, the region Domy,« qrc, 1 a subset of Dom,,« 5. The boundary of Domy« g, (the
shaded region in Figure 12(b)) is formed by the perpendicular bisectors of p* and each point on the

arc arcs. It can be represented as the arc (v5v7) with center p*, radius % - "min and angle Zvp*va,
and the halfplanes formed by the arc’s tangent lines vsvg and v7vsg.
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(b) w*(A) = w(p*) (©) w*(A) < w(p*)
Fig. 12. Representing the Shape of the Minimal Dominant Region Dom,« A

The shape of Dom,- » when w*(A) > w(p*).

By Lemma 4.4, the region Domp« qrc, is a subset of Dom,= . Observe that any location z on
circle Cp+ ,, can be represented in the polar coordinate system of p* as a magnitude |p* z|| and
an angle 0. Thus, we have: z = (p} + [[p* z|| - cos0,p; + [[p* z|| - sin ). Since z falls onto the
circle Cy- , it satisfies: (p} + [|p* 2| - cos — 0,)* + (pj, + llp* 2| - sinf — 0,)* = r2. . Using
Fo, = p} — 0., Fg = pj, — 0y, and solving for lp* z|| in the above equation, we obtain Equation 22,
which expresses the magnitude ||p* z|| as a function of 6.

where Fy, = p; — 04, Fg = p;, — oy, and I, = F,, - cosf + Fj -siné.

The dominant region of p* over arcs, i.e., Domp« 4, , is the intersection of the Apollonius circle
C(p*, p) for each point on arcs. It is the shaded region in Figure 12(a). Consider the endpoint v,
of arc, in the figure. By rotating circle C- ,, with the angle of arcs, i.e., replacing 6 by 6 + 0 in
Equation 22, and taking the intersection, we obtain Dom« 4., thatis a subset of Dom« .

Specifically, we capture the region Domy« qrc, by a subset f-sided polygon as described next.
The parameter f decides the tightness of the approximation. In the example of Figure 13, we have:
Tp=p = L, (0z,04) = (0,0), and (p;,p;) = (0,0.5). Figure 13(b) plots the value of |[p* z|| with
respect to 6 (see Equation 22). The x-curve is obtained by shifting the ¢-curve to the left by the
angle 6 = m/3. For each angle § = 2mi/f where i € [1, f], we compute the minimum ||p* z||
and obtain its (z,y) coordinates (see Figure 13(a)). Then we link these f points to form a polygon,
which is guaranteed to be a subset of Domp= qrc, .

The shape of Dom,- » when w*(A) < w(p*).
In this case, we have:

Domy,« p = ﬂ Domy» ,, = ﬂ U—-Cpp)=U— U Cpp+-
peEA peEA pEA

In order to obtain a subset representation of Dom,,« 5, we need to derive a superset representation
of the region |J,c5 Cp p+-

Let p be a point in A and consider the example of Figure 10(b) where w(p*) > w(p). We fix
the weight of p while moving its location (e.g., p1, p2, p3) away from p* along the line segment
p* p. The union of these circles can be represented by a ring-sector. Figure 12(c) illustrates how to
represent the superset of the region | J Cp.p+, Which can also be approximated by a ring-sector.

DPETSA
4.2. Optimizations

Upgraded Voronoi Cell—Enhancing Rules 1, 2, 4, 5, and 6.
The Voronoi cell optimization (presented in Section 3.3) employs a convex polygon ® to represent
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Ip*zl
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(a) polar view from p* (b) angle-radius plot

Fig. 13. Expressing ||[p* z|| as a Function of 6

the temporary safe zone defined by the set 1°. We now upgrade this technique by using the set I
with a parameter f that enables a trade-off between pruning power and computational overhead.
Each time we insert an object p into I+, we derive the circle C,+ , and compute an f-sided polygon
(say, G) such that it encloses Cp+ ,,. Next, we update ® to the intersection region ® N G. This
upgraded ¢ enhances pruning rules 1, 2, 4, 5, and 6. Correctness is ensured because G is a superset
of Cp+ p, s0 no pruned object can contribute to the actual safe zone.

In the example in Figure 14(a), the shaded region is the temporary safe zone ® formed by objects
in I°. The circles C; and C; are formed by objects in . After intersecting ® with the f-sided
polygons of the two circles, ® becomes the striped polygon, which is much smaller than the initial
® and both circles.

(a) upgraded Voronoi cell, f = 8 (b) reducing I, level = 2

Fig. 14. Optimization Techniques for the MSK Algorithm

Recursive Refinement of / ~—Enhancing Rule 3.
We finally enhance pruning rule 3. Consider the example in Figure 14(b) where the set ~ has two
objects, forming two circles C; and C; with the result object p*, respectively. Now we encounter
a new object pney, € D~ and define the circle C,,,, (w.r.t. p*). Rule 3 cannot prune p,,.,, because
neither C| nor C; contains C,,_,,.

We propose a recursive refinement technique that removes an object p,,¢,, Whose circle is covered
by the union of the circles in /. This can significantly reduce the size of I~. The idea is to partition
the circle C,,,,, into four squares, say s, S2, S3, and s4, as shown in Figure 14(b). Then we check

whether each square is covered by some circle, e.g., s1 and s, are covered by C5, ', and s3 and s4 are
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covered by C] . If each square s; satisfies the condition then circle C,_,, is covered by the union of
circles in 1, and thus C,,_,, is pruned. In case a square s; does not intersect any circle of 7~ then
C,,.., cannot be pruned. When a square s; only partially intersects some circle of I ~, we apply the
above process recursively on the square s; until reaching a pre-defined maximum recursion level

Imaz- In practice, it is sufficient to use a small constant for /,,,,,; we study its effect empirically.

4.3. MSK-uvr Algorithm

Algorithm 2 shows the pseudo code of the advanced algorithm for computing the safe zone Y (p*)
of the top-1 result p*. It differs from Algorithm 1 in several respects. First, it is able to prune an
unqualified node (or a subtree) in Lines 20-21 by using the techniques developed in Section 4.1.
Second, it applies the upgraded Voronoi cell optimization (Line 12) for enhancing pruning rules 1,
2,4, 5, and 6. Third, it performs the recursive refinement (Line 18) in order to reduce the size of the
set .

Algorithm 2 MSK-uvr (Tree root root, Query ¢, Result p*)

System parameters: f, l;qx > used for optimizations

I: It < newset; I~ < new set;

2: @ < the space domain U; > a convex polygon
3: H < new min-heap;

4: H.enheap(root,0);

5. while H is not empty do

6: e + H.deheap(); > e is a data structure containing a node or an object and its key
7: if e contains an object and e # p* then

8: if w(e) > w(p*) then

9: if ® Z Cp- . then > enhanced rule 1
10: insert e into I1;
11: G <+ an f-sided polygon that contains Cp- ;
12: P+~ dNG; > upgraded Vor. cell optimization
13: else if w(e) = w(p*) then
14: if® g 1, then > enhanced rules 5,6
15: O~ DN Ly e
16: else if w(e) < w(p*) then
17: if ® N C. - # 0 then > enhanced rules 2,4
18: Recur_Refine(e, I, linaz); > enhanced rule 3
19: else > e contains a node
20: if (w"(e) > w(p*) and ® C Dom,,~ ) or
21 (w*(e) < w(p*) and & N Dom, - = ) then
22: continue; > pruning a node
23: for each entry ¢’ in e do
24: H.enheap(e', bord,n(p*, €' .N));

25: return the set I+ U I~ and the polygon ®;

Extension to Arbitrary k.

Recall that the order-k MW-Voronoi cell T¥(RS) is the safe zone of the result set RS (see Equa-
tion 18). Here, we extend Algorithm 2 to arbitrary k, so that it visits each IR-tree node at most once.
Let result set RS be {p},pi, - ,p;}. The key of an entry e’ (in Line 24) is computed as:

i b dmzn #7 /.A.
it 5,
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When we encounter an object e in the IR-tree, we compute its dominant region for each result p;.
If any of these regions does not intersect the polygon ® then we prune the object e. Otherwise, we
update ® by its intersection with all such dominant regions. When we visit a non-leaf entry e, we
also compute the dominant region for each result p;. If any of these regions does not intersect ®
then we prune the subtree of e.

5. COMMUNICATION FREQUENCY AND COST ANALYSIS

This section presents an analytical study of the communication frequency and cost. The safe zone
of a moving top-k spatial keyword query is an order-k (k > 1) multiplicatively weighted Voronoi
(MWYV) cell. For the sake of simplicity, we consider the case k = 1.

5.1. Communication Frequency Analysis

In this section, we first analyze the expected area of a safe zone, which can be used to indicate on
average for how long a safe zone remains valid. Based on the expected area of a safe zone, the
expected time for a user to leave that safe zone is derived. The expected safe zone leaving time is
for one safe zone. In the real application, a user may enter and leave multiple safe zones. We finally
derive the communication frequency for a user whose speed is V' and the travel time is 7.

5.1.1. Expected Area of a Safe Zone. We assume that the locations of the objects in a set D are
generated according to a homogeneous Poisson point process, which is a frequently used tool for
the modeling and analysis of spatial data [Diggle 2003]. It is the simplest stochastic model for a
planar point pattern. The idea of this model is that the point events of interest occur completely
independently of each other. It is a spatial generalization of the standard one-dimensional Poisson
process in which points occur continuously and independently of one another. For many years,
almost all of the available methods for statistical analysis of planar point patterns were based on the
assumption that the points in question form a realization of a planar homogeneous Poisson process.
Although today there exists a large variety of alternative point process models, the homogeneous
Poisson process still provides a basic reference model against which to compare other models.
Let A be a region and let N(A) be the number of points placed in A. Formally, the probability,
Pr(N(A) = x), that x points are placed in A (C S C R?) when N points are generated in S is
given by

(p|A[)7e—rIA

Pr(N(A)=x) = p

r=0,1,2,..., (23)
where |A| is the area of A and p = N'/|S| is the point density of S. Figure 15(a) shows a simulation
of a homogeneous Poisson point process on [0,1] x [0, 1] with p = 150. Figure 15(b) shows the
Poisson counting process, i.e., the number of points in A, N(A), as a step function of |A|.
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(a) Simulation of point process (b) N(A)

Fig. 15. Homogeneous Poisson Point Process
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Let T, be the MWV region of a random object p; in D and w; be the weight of p;. The proba-
bility, P(z € T},), that a point z in R? belongs to T, is given by

zZ Pi zZ Py
P(zeTp)=P( A Jepdl Nz psly) (24)
. oo w; w
JE[LNIAG#i

The expected area of the safe zone T, of any object p; with weight wj is given by

E(4w)) = [ PGeT,)
z€R2
) W
= [ I Plonl>ErPoplclrrral) @9
0 e[ NAj#£i ¢
2
x2S, 5
:/ ¢ T aen wi 2pmr dr
0
2
w.
= -+ (26)
Zje[l,N]wJQ'

The detailed derivation of the above equations is covered in Section A of the electronic appendix.

The expected area of T, defined by Equation 25, is applicable for any type of weight distribu-
tion. To validate the above analysis, we experimentally consider the expected area A(w;) for three
types of weight distributions: (1) uniform distribution (Figure 16(a)), (2) Gaussian distribution (Fig-
ure 17(a)), and (3) Zipfian distribution (Figure 18(a)). We generate N' = 1000 objects in the unit
square whose locations follow the Poisson process (Equation 23). We assume JenaN Wi = 1.
The unit square is partitioned into a 1000 x 1000 grid. By assigning each grid cell to its nearest
object in terms of weighted distance (Equation 1), the actual area of the safe zone of each object
is collected which is plotted in Figures 16(b), 17(b), and 18(b), where it is denoted by actualArea.
The estimated area of the safe zone of each object computed from Equation 25 is also shown in the
figures, where it is denoted by estimatedArea. The estimated values are close to the actual values.
The expected area T, increases as the weight w; of p; increases.

2000 0.0035 100
estimatedArea - estimatedValue
0.003 - actual Area ) 3 actual Value
1500 0.0025 - a4 g
£ o0 g oo - RS 54}
5 5 L & g 3 o, S SH
8 0.0015 e g o i
500 0.001 | e E = oo 0 OB IBEE
o, 50% §Pe0
0.0005 - o5 . % o By
! ! ! 0 ! ! 1 il ! !
0.0001 0.001 0.0017 0.0001 0.001 0.0017 0.0001 0.001 0.0017
weight weight weight
(a) Weight distribution () A(Tp,) (c) # of influence objects

Fig. 16. Weights Following a Uniform Distribution

5.1.2. Average Communication Frequency. To estimate the average communication frequency,
we first derive the safe zone leaving time and the average safe zone leaving time.

To estimate the safe zone leaving time, we need to estimate the user’s movement. For simplicity,
we assume the following movement model. Observe that the user submits the query with an updated
location when reaching the border of the safe zone. At the time when the result and the new safe
zone are received, the user is located at the center of the safe zone and moves with some velocity
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Fig. 17. Weights Following a Gaussian Distribution
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Fig. 18. Weights Following a Zipfian Distribution

|V'|. We have derived the expected area of the safe zone of a random object p;, E(A(w;)). For the
sake of simplicity, we assume the safe zone Y, is a circle centered at p;. It then has the following
radius.

B(A(w)

s

r(wi) = 27)
We assume that the user follows linear movement pattern which models the worst-case communi-
cation frequency. The safe zone leaving time for p; is then LT (w;) = r(w;)/|V|. Then the average
safe zone leaving time is

E(LT) = ) E(Aw:))LT(w)

i€[1,N]
- ¥ E(A(w:))*?

1/2
epn TV

Zie[l,,/\/'] wp
VIr2 (e wi)¥?

where E(A(w)) can be considered as the probability for a random user falling into the safe zone
of an object with weight w, and [ _,, E(A(w)) = 1. Hence, the average communication frequency
is

(28)

CF =1/E(LT).

We validate the average communication frequency using the synthetic dataset described in Sec-
tion 5.1.1 and a real dataset EURO. The details of EURO are described in Section 8.1. We model
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the location of a query ¢ as ¢.A\(t) = (z,y) + (vz,vy) - 0, where 6 is an angle. We consider linear
movements where 6 changes only when the query reaches the boundary of the space). Tables III and
IV show the real and estimates values of the average communication frequency of three types of
data distributions on the synthetic dataset and EURO, where in EURO (100, 200, 300), the weights
of objects are computed according to three query keywords with IDs 100, 200, and 300; in EURO
(200, 300), the weights of objects are determined by two query keywords with IDs 200 and 300.
The estimate values are close to the real values. As the speed increases, the average communication
frequency increases as expected.

Table Ill. Average Comm. Frequency of Linear Movement on Synthetic Data

speed uniform distribution | Gaussian distribution | Zipfian distribution
(cell/timestamp) real [ estimate real [ estimate real [ estimate
1 0.0288 0.0096 0.0295 0.0111 0.0226 0.0057
5 0.0982 0.0474 0.0939 0.0478 0.0834 0.0271
10 0.1833 0.0963 0.1862 0.1078 0.1392 0.0585
20 0.3566 0.1951 0.3589 0.2062 0.2951 0.1140

Table IV. Average Comm. Frequency of Linear Movement on

EURO
speed EURO (200, 300) EURO (100, 200, 300)
(cell/timestamp) real [ estimate real | estimate
1 0.0371 0.0283 0.0408 0.0423
5 0.1590 0.1415 0.2205 0.2115
10 0.2879 0.2830 0.3822 0.4231
20 0.5873 0.5660 0.7815 0.8462

5.2. Communication Cost Analysis

5.2.1. Expected Number of Influence Objects. Let DJr Dy, and D, be the sets that contain ob-

jects having higher, equal, and lower weights than does Pi. Assume there are A\ objects in dataset
D. Let |U| be the area of the whole dataset.

LEMMA 5.1. Let p; and p; be points of the dataset D. The condition of p; not being an influence
object of p; is:

r(w;)

[pi pill =2 ——wj + r(w;).
w;

The proof of Lemma 5.1 is presented in Section B of the electronic appendix.
The expected number of influence objects of p; is:

B = > Plpasl < "y b ()

JEN]IA#i
-~ r(w;) - 4
=N P(||lp; p; ” i +7r(w;))PDF(w)dw
T(“’i 2
=N / CTL;T r(wi) PDF (w)dw. (29)

The actual number of influence objects (for each p;) can be obtained by constructing MWV
regions. However, existing construction methods are not scalable in the dataset size (taking O(N?)
time). Thus, we approximate the actual number of influence objects by using the following grid-
based counting method. Using the 1000 x 1000 grid described in Section 5.1.1, after assigning each
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grid cell to its nearest object, each object has a list of grid cells. For each grid cell in the list of object
pi, we check its neighbor (up, down, right, and left) cells. If one neighbor cell takes another object
p; as the nearest object, we add p; to the influence object list of p;. Figures 16(c), 17(c), and 18(c)
show the actual number of influence objects and the estimated number of influence objects. The
estimated values are close to the actual values. The expected number of influence objects increases
as the weight w; of p; increases.

5.2.2. Average Communication Cost within a Time Interval [0, T]. We have derived the expected
number of influence objects E(X), which is actual the communication cost per communication trip.
We have also derived the average communication frequency CF'. Hence, the average communication
cost within a time interval [0, T is

E(X)-CF-T.

6. EFFICIENT NEXT SAFE ZONE COMPUTATION

When a query exits its safe zone, it sends a location update to the server to retrieve a new safe zone
and a result. We propose techniques that aim to efficiently compute the new safe zone based on the
previous safe zone and results. The resulting algorithm uses the techniques described next.

6.1. Restricting the Search Space

When computing a safe zone from scratch, in the beginning, the temporary safe zone is the whole
space of the dataset. However, the current safe zone and the previous safe zone have some common
arcs/edges, so that the computations of those shared arcs/edges can be saved. In addition, the influ-
ence objects and top-k result objects from the previous safe zone can help restrict the search space,
i.e., forming a smaller temporary safe zone that makes the proposed pruning rules more effective.

Algorithm 3 shows the pseudo code of the initialization function that constructs a smaller tempo-
rary safe zone instead of using the whole space of the dataset. It takes five parameters: the previous
influence object sets I7;,,19,,, and I,,, the previous top-k result object set 75,4, and the cur-
rent top-k result object set 7s,,¢,,. Both previous influence objects (Lines 4—12) and previous result
objects (Lines 13—18) are used to construct the current temporary safe zone P.

Figure 19(a) shows the safe zone obtained when the client last contacted the server. The previous
top-2 result object set 7,44 Of the query ¢ is {p1, p2}, and the shaded region is the previous safe zone
defined by the Apollonius circles Cy, ,,, and Cy, ,,. The previous influence objectis ps (p3 € I,).
When the query g moves to the position shown in Figure 19(b), the current top-2 result object set
TSnew 18 {P2,p3}. Instead of computing the new safe zone (shaded region in Figure 19(b)) from
scratch, we first construct a smaller temporary safe zone. In this example, the Apollonius circle
Cp, ps can be reused. In addition, since p; belongs to the previous top-2 result object set 754, it is
also used to construct the smaller temporary safe zone. Taking advantage of the smaller temporary
safe zone, Algorithm 2 is able to compute the final safe zone faster.

6.2. Reusing Text Relevancies of Nodes

Since the keyword part in an MkASK query does not change while the query is moving, the text
relevancies (weights) of the nodes in the IR-tree do not change. In Algorithm 2, the text relevancies
of some nodes that have been computed before can be reused for the current query position, so that
the computation and I/O costs from the inverted files of those nodes are reduced. Specifically, for
each MESK query, a hash table is maintained in main memory to store the weights of the nodes that
have been visited. The key is the pair (uid, nid), where uid identifies the user and nid identifies the
node in the IR-tree. The value is a list of the weights of the entries in that node. When the weight
of a node is needed (in Lines 8, 9, 13, 14, 16, 17, and 20 in Algorithm 2), we first check the hash
table. If it is not found, we refer to the inverted files on disk to compute its weight. The hash table
is created when a query is issued and is destroyed when the query expires.
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(a) Top-2 objects: p1 and p2

Fig. 19. Smaller Temporary Safe Zones

Algorithm 3 Initialization (Set [ ;“l g et 1o, Set I, ., Result set 75,14, Result set 755,64)

1 I, «+newset; I2, < newset; I, < new set
2: @ ¢+ the space domain U/; > a convex polygon
3 1« I, Ul Ul

4: for each influence object o in I do

5: if 0 & rs,eq then

6: for each result object r in 5, do

7: if Ir(r € rspa No € Ijld) then

8: d+— NG, > G is an f-sided polygon that contains Cp-
9: insert o into I}, ;

10: else if 3r(r € rsoq Ao € I9,) then

11: DD Ly e

12: insert o into I,

13: else if 3r(r € rs,q Ao € I,,,) then

14: Recur_Refine(e, I, lmaz);

15: else

16: e < 0;

17: p*

18: Execute Lines 8—18 in Algorithm 2;

19: for each result object 77 in 75,4 do

20: if 7" & rspew A1’ ¢ I then

21: for each result object r in 75, do

22: e+ 1r';

23: Pt

24: Execute Lines 8—18 in Algorithm 2;

25: return the set I,},, U I, U, and the polygon ®;

6.3. Tighter Bound for Retrieving Top-k Results

The previous top-k result object set rs,;q and the current top-k result object set 7S, probably
have some common result objects. Figures 19(a) and 19(b) offer an example where the previous
top-2 result object set contains p; and p, and the current top-2 result object set contains p, and ps.
Since top-k results are obtained using best search method, previous top-k results can be considered
as candidates of the current top-k results and provide a tighter bound of the stopping threshold.
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Fig. 20. Sizes of the I+ and I~ Sets

7. CONSERVATIVE SAFE ZONE FOR REDUCING COMMUNICATION

In general, the shape of a safe zone is an irregular region with holes, each of which corresponds to
the Apollonius circle of an influence object whose weight is smaller than the weights of the result
objects. It is possible for the number of holes to be so large that the communication cost (i.e., the
number of influence objects to be sent) becomes overly high. As a case study, we count the number
of influence objects of generated objects with different weights. The locations of generated objects
follow a homogeneous Poisson point process, and the weights of generated objects follow a Zipfian
distribution. Figure 20 shows the number of influence objects (the I-set curve), the I objects (the
IT-set curve), and the I~ objects (the I~ -set curve). The generated objects have unique weights, so
the size of the 7 set in this example is 0. The influence objects (the I-set curve) of an object with
a small weight are dominated by the I* objects (the I™-set curve), while the influence objects of
an object with a large weight are dominated by the I~ objects (the I~ -set curve). An object with a
large weight can have a large influence object set, of which most are the I~ objects.

To avoid safe zones with many influence objects and thus obtain lower communication costs, we
study the use of conservative safe zones. Definition 7.1 gives the definition of the conservative safe
zone. Lemma 7.2 shows that the conservative safe zones guarantee the correctness of the result of a

query.

Definition 7.1. Let T be the real safe zone (defined by Equation 9) of a query g. A conservative
safe zone T ., is a subset of Y that contains ¢, i.e., T con C T Aq € Yion.

The computation of conservative safe zones can be implemented efficiently at the server. When
the query exits the conservative safe zone and sends a location update to the server, the updated
location may remain inside the real safe zone. Hence, in order to save computation and achieve
fast query response, for each query, the real safe zone is cached at the server side. When a location
update arrives, the server first checks whether it remains inside the real safe zone. If yes, the cached
real safe zone is used to construct a new conservative safe zone. Otherwise, the real safe zone is
recalculated.

LEMMA 7.2. The use of conservative safe zones guarantees the correctness of the results of
queries.

PROOF. Let T be the real safe zone of a query ¢ and let RS be the result when ¢ stays inside Y.
Since a conservative safe zone Y .., is a subset of Y and q is also inside Y ..., ¢’s result is RS. If
q exits T .oy, but remains inside T, a new conservative safe zone Y’ is constructed. By definition

(Definition 7.1), Y’ is a subset of T, and the result of ¢ is RS. If q exits Y ,,,, and also outside

con
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T, a new real safe zone Y™ is calculated that has result RS™". Then a new conservative safe

zone Y7 is constructed based on Y™, and the above arguments are again applied. O

The underlying motivation for considering the user of conservative safe zones is that these have
a smaller description, i.e., has fewer influence objects, than the corresponding real safe zone, which
implies a lower cost per communication round. Although the area of a conservative safe zone is also
smaller than that of the corresponding real safe zone, it can be expected that relatively few additional
communication rounds are incurred. This is because a real safe zone may well have influence objects
that contribute lines or arcs that will never be reached by the user and thus are wasted.

We study two approaches for constructing conservative safe zones. Section 7.1 proposes a con-
servative circle, and Section 7.2 introduces a conservative freeform. Moreover, for the sake of ease
use, we propose parameter-free variants of the two types of conservative safe zones, in Section 7.3.
Our experimental results (in Section 8.4) show that: (i) the conservative freeform achieves good per-
formance in scenarios with low overhead per communication round, and (ii) the conservative circle
performs well in scenarios with high overhead per communication round.

7.1. Conservative Circle

The conservative circle centers at the query location and has a predefined radius. It conservatively
approximates the real safe zone while using a simpler representation. Figure 21(a) shows an example
where the shaded region is the safe zone of the query ¢ and the two dashed circles are conservative
circles with different radiuses. In an actual application, only one conservative circle is needed. In-
stead of sending the real safe zone, which is defined by influence objects (e.g., ps, p3, P4, and ps in
Figure 21(a)), only the influence objects whose Apollonius circles intersect the conservative circle
are sent.

Formally, let InfObj(q) be the influence object set of query g. Let C, . denote the Apollonius
circle of influence object p; and one of the top-k results of ¢, and let C is the conservative circle.
The message size per communication round is defined as:

Size(q,C) = |{p; € IfObj(q) | Cpw NC # B} +1. (30)

Given a query, it is an interesting problem to determine the radius of the conservative circle. We
aim at finding an optimized value of the radius that has low message size and low communication
frequency.

A smaller radius results in a lower message size, but probably also a higher communication
frequency. As shown in Figure 21(a), the smaller conservative circle does not intersect any boundary
of the safe zone, and hence only this circle is a valid conservative approximation of the safe zone.
However, this circle is small, which means that the probability of the query leaving the conservative
safe zone is high, thus resulting in more frequent communication. There exists a tradeoff, i.e., a
smaller radius gives lower message size, while larger radius gives a lower communication frequency.
Consider the example in Figure 21(a) again. If we choose the bigger conservative circle (dashed
circle), it intersects the Apollonius circle C),, p, . Then both the conservative circle and the influence
object p4 are sent to the client. Comparing with the smaller conservative circle, it has one more
influence object to be sent, but has a larger area.

We introduce an integer parameter 7 that indicates the radius of the conservative circle. To do so
recall that the boundaries of the real safe zone are defined by influence objects. We sort the influence
objects in terms of their minimum border distances. The parameter 7 implies that a circle with radius
equal to the 7t minimum border distance is used. In Figure 21(a), the smaller conservative circle
is used when 7 = 1. The bigger conservative circles is used when 7 = 2. How different values of 7
affect the performance is evaluated in Section 8.4.1.

When the query exits a safe zone given by a conservative circle, it sends an update of its location to
the server. Then the server computes a new conservative circle based on the current query location.
In Figure 21(b), when g moves to ¢’, the new conservative circle is the dashed circle centered at ¢’
(r=1).
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Fig. 21. Conservative Circle, Top-1 Object: p1

7.2. Conservative Freeform

The conservative freeform is a conservative safe zone without any holes. It is obtained by cropping
the real safe zone using the tangent lines of the holes in the real safe zone. Each tangent line is
perpendicular to the line formed by the query position and the center of its hole. Formally, let T be
the real safe zone of a query g and let O¢, denote the center of any hole C;. The tangent line [, ¢,

of C; satisfies I, L ¢ Oc,. Line [, ¢, divides the space into two half planes. Let L, ¢, be the half
plane containing g. The conservative freeform T ,,, is defined as:

Yeon = {Lqo N T, 31)
i=1
where 7 is the number of holes in Y.

As an example, the shaded region is the real safe zone T of the query ¢, and there are three
holes Cy, p,, Cpy p,» and Cy, p, . The three dashed lines Iy ¢, . » lq.c,, > and lgc,, , are the
tangent lines of the three holes. The shaded region enclosed by the dashed lines and Céphps is the
conservative freeform Y .,,, to be sent to the client.

Coapi E3<0.3>

Cozp\N 2
[ ] 7
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Iq,Cps,m
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Iq,CP4»D1

(@) (®) (©

Fig. 22. Conservative Freeform, Top-1 Object: p1

When the query exits a conservative freeform Y ., it sends a location update to the server. Then
the server computes a new conservative freeform based on the current query location. Figure 22(b)
shows the new conservative freeform (the shaded region enclosed by the dashed line /¢, ,, and
Ch, ps) When ¢ moved to ¢. In this example, the tangent lines of C,,, ,,, and C,, ,, are disregarded,
since they do not intersect the current conservative freeform.
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The conservative freeform is represented by several vertices and arcs that are sent to the client.
Sometimes, the conservative freeform may contain many vertices, yielding a large message size. We
propose to shrink the conservative freeform to avoid some vertices. A parameter y is introduced to
control the shrinkage.

!/
_ Area('rcon)

B= Area(T con)’

where Area(Y.,,) is the area of the conservative freeform and Y/,
freeform after removing some vertices.

We propose a greedy removal approach to remove the vertices of the conservative freeform.
Algorithm 4 shows the pseudo code. We keep on removing the vertex such that the remaining
freeform has larger area than when removing any other vertex and such that its area is at least u%
of the freeform before shrinking. In Figure 22(c), vertex v; is removed when p = 0.75. The shaded,
striped region is the conservative freeform after shrinking. How different values of p affect the
performance is evaluated in Section 8.4.2.

(32)

denotes the conservative

Algorithm 4 ConFreeform (q, T con, 1t)

1: Vpem < null;

2: repeat

3: area — —oQ;

4 for each vertex v; in Y ,,, do
5: Y on — Yeon \ i3

6: if area < Area(7",,) and g € Y’ then
7: area < Area(Y’,,);
8 Urem € U5

9 if % 2 12 then

10: Tcon <~ Tcon \Urem;

11: else

12: Vrem < null;

13: until v,,, 1S null

7.3. Parameter-Free Conservative Safe zone

Both the conservative circle and the conservative freeform techniques require parameters (7 and p),
which might not be easy to tune manually. To improve usability, we proceed to render both safe
zone computation techniques parameter free. We first define the goodness of a conservative safe
zone Y ., as

Area(Y con)
#InfObj
where # InfObj is the number of influence objects defining the conservative safe zone Y .,,. The
parameter-free versions then aim to maximize Goodness(Y .on), i.€., finding a conservative safe
zone whose area is large (achieving low communication frequency) and whose number of influence

object is small (achieving low communication cost).

For the parameter-free conservative circle, parameter 7 is encapsulated inside the algorithm (Al-
gorithm 5), i.e., for each possible value of 7, we compute the goodness of the corresponding con-
servative circle and return the 7 of the conservative circle with the largest goodness. Note that

parameter 7 implies the 7% minimum border distance and the influence object set is finite, so that
the domain of 7 is finite.

Goodness(Y con) = (33)
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Algorithm 5 GoodConCircle (¢, T con)

PriorityQueue queue < null;

1:

2. G+ 0

3: radius < 0;

4: for each influence object o of T ,,, do

5: d < minimum border distance of o from ¢;

6: queue.add(d); > Minimum border distances are sorted in ascending order.
7: while queue is not empty do

8: d + queue.pop();

9: if 7d*> < G then
10: break;
11: ¢ < the number of influence objects that intersect the circle centered at ¢ with radius d;
122 if G < 7d?/c then
13: G+ nd?/c
14: radius < d;

15: return radius;

For the parameter-free conservative freeform, we propose a greedy algorithm, shown in Algo-
rithm 6, that finds a good conservative safe zone. In each iteration (lines 3—10), we remove the
vertex such that the goodness of the conservative safe zone is maximized. Across iterations (lines
11-12), we keep the conservative safe zone with the biggest goodness. We evaluate the performance
of parameter-free conservative safe zones in the empirical study.

Algorithm 6 GoodConFreeform (¢, T cor)

X%, — Yoons

20 Gg + 05 > Global goodness.
3. while Area(Y .op,) > 0 do

4: G+ 0; > Local goodness.
5: for each vertex v; in T ,,, do

6: T/wn — Yon \Ui;

7: if G < Goodness(7T.,,) and ¢ € Y/ . then

8 G, + Goodness(Y',,.);

9: Urem < Vi;

10: Teon < Yeon \Urem;

11: if G, < G} then

12: Y on — Yeons

13: return Y*

con?

8. EMPIRICAL STUDY

We conduct empirical studies to evaluate our proposals. Section 8.1 presents datasets, queries, pa-
rameters, and the platform used in experiments. The proposed algorithms for the processing of
MFESK queries are evaluated in Section 8.2. Sections 8.3 and 8.4 study the techniques of efficient
next safe zone computation and the effectiveness of conservative safe zones. Section 8.5 summarizes
the findings.

8.1. Experimental Setup

We use four real data sets, each containing objects with a point location and a set of keywords,
for studying the robustness and performance of the proposals. Data set HOTEL contains US
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hotels (www.allstays.com); GN is obtained from the U.S. Board on Geographic Names (geon-
ames.usgs.gov); and EURO and USCAN contains points of interest (e.g., ATMs, hotels, stores)
in Europe, and in USA and Canada, respectively (www.pocketgpsworld.com). Table V offers addi-
tional detail. We normalize object locations to fit a square domain with side length 10, 000 meters.

Table V. Data Set Statistics
| dataset | #of objects | # of distinct words [ average # of words per object ]

HOTEL 21,021 602 3
GN 1,868,821 222,407 4
EURO 162,033 35,315 18
USCAN 13,977 5,106 15

Brinkhoft’s generator [Brinkhoff 2002] is used to generate a trajectory of 100 points, using one
location acquisition per timestamp (second). Each experiment has 100 moving queries with such
trajectories. The keyword set of each query is generated based on the word distribution of the data
sets used. Specifically, we first randomly pick an object and then randomly choose consecutive
words from the document of the object as query keywords. The TF function is used to measure the
relevancy between two keyword sets. We generally report the average value per query per timestamp
of the following: (i) server-side elapsed time, (ii) client-side elapsed time, (iii) communication cost
(number of influence objects transferred), and (iv) communication frequency (the probability of
sending a request to the server).

We study our proposed solutions: IBD and MSK. To observe the effects of the optimizations on
MSK, we consider three variants: MSK-v (using Voronoi cells), MSK-uv (using upgraded Voronoi
cells), and MSK-uvr (using upgraded Voronoi cells and the I~ refinement).

By default, we set the number k of results to 1, the number of query keywords to 3, and the client
speed to 10 m/s. For the optimizations of MSK, we set f (the number of sides per polygon) to 16,
and l,,,4, (the level of recursive pruning) to 5. We used disk-based IR-trees with the page size fixed
at 8 KBytes. All client- and server-side algorithms are implemented in Java and run on a Linux
server with one processor (Pentium-R Dual-Core CPU E5200 @ 2.50GHz) and 4GB memory.

8.2. Performance of Continuous MiSK Queries
We study the proposed methods under varying settings.

Results for the Real Data Sets.

Table VI reports the average server elapsed time, server I/O cost, client elapsed time, communica-
tion cost, and communication frequency for the four methods. Since the MSK variants can prune
objects at higher levels in the IR-tree, they beat IBD significantly in terms of server elapsed time
and I/O cost. MSK-uv benefits from upgraded Voronoi cells that offer tighter bounds than do the
Voronoi cells used in MSK-v and IBD. MSK-uv thus achieves some 20% lower cost than MSK-v.
In contrast, MSK-uvr’s recursive refinement of I~ incurs an overhead, and so its server elapsed
time is slightly higher than that of MSK-uv. On the positive side, MSK-uvr is able to shrink I~
significantly, reducing the communication cost and also the client elapsed time. All methods use
safe zones and have the same low communication frequency. As the methods perform consistently
across the different data sets, we use EURO and GN in subsequent experiments. We drop MSK-v
as it is always worse than MSK-uv. Table VII shows detailed information of the indexes (IR-trees)
on the four datasets. The size of the index on dataset GN is the biggest, around 3.8GB. The whole
index is not buffered by the operating system, given 4GB physical main memory.

Varying the Speed of Moving Queries.
This experiment compares IBD, MSK-uv, and MSK-uvr when varying the speed of the moving
queries on datasets EURO and GN. As the speed increases, the server elapsed time (Figures 23(a)
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Table VI. Performance per Timestamp on Real Data Sets

\ Data Set | HOTEL | GN | EURO [ USCAN ]
IBD 2.673 | 12327.555 | 182.606 1.454
Server elapsed time MSK-v 0.549 374.921 9.350 0.534
(milliseconds) MSK-uv 0.531 257.403 7.897 0.523
MSK-uvr 0.582 855.629 9.215 0.554
IBD 9.288 2183.079 | 163.435 6.159
Server I/0O cost MSK-v 0.503 30.168 8.014 0.622
(page accesses) MSK-uv 0.459 19.909 7.340 0.568
MSK-uvr 0.459 19.909 7.340 0.568
IBD 0.002 0.225 0.014 0.002
Client elapsed time MSK-v 0.002 0.223 0.016 0.002
(milliseconds) MSK-uv 0.004 0.223 0.015 0.003
MSK-uvr 0.003 0.017 0.003 0.001
IBD 0.611 23.635 2.589 0.332
Communication MSK-v 0.606 23.105 2.575 0.332
cost (objects) MSK-uv 0.623 22.277 2.583 0.338
MSK-uvr 0.489 2.597 0.841 0.279

| Communication frequency | All methods [ 0.036 | 0091 ] 005 | 0.025 |

Table VII. Index Statistics
| dataset | index size (MB) [ # of levels in the IR-tree | # of non-leaf nodes | # of leaf nodes |

HOTEL 4.05 2 1 168
GN 3934.51 3 148 16771
EURO 142.37 3 12 1423
USCAN 12.23 2 1 190

and 24(a)), the client elapsed time (Figures 23(b) and 24(b)), and the communication cost (Fig-
ures 23(c) and 24(c)) exhibit increasing trends. The query leaves the safe zone faster at a higher
speed. Indeed, Figures 23(d) and 24(d) show that the communication frequency increases with in-
creasing speed, leading to larger elapsed time and communication cost. MSK-uv and MSK-uvr
outperform IBD significantly.

Varying the Number of Query Keywords.

We consider again IBD, MSK-uv, and MSK-uvr on datasets EURO and GN. As expected, the MSK
variants outperform IBD significantly in terms of server elapsed time as shown in Figures 25(a)
and 26(a). Figures 25(b), 25(c), 26(b), and 26(c) show that the communication cost is proportional
to the client elapsed time, with MSK-uvr being the winner due to its recursive refinement of 1~
Figures 25(d) and 26(d) show that the communication frequency increases slightly with the number
of keywords. This is because larger query keyword sets yield smaller safe zones.

Varying k.

We evaluate the performance of our proposals on datasets EURO and GN when varying k. Fig-
ures 27(a) and 28(a) shows that MSK-uv and MSK-uvr have much lower server elapsed time than
IBD. Figures 27(b), 28(b), 27(c), and 28(c) show that MSK-uvr has the lowest client elapsed time
and communication cost. The communication frequency increases slightly with k increases (see
Figures 27(d) and 28(d)), as a larger k yields smaller safe zones.

Scalability.

This experiment studies the scalability of the proposed approaches beyond main memory by in-
creasing the dataset size. We generated 4 datasets containing approximately 3.6M, 5.4M, 7.2M, and
9M objects by shifting GN spatially a given number of times. The intuition is that if GN is realistic
for one region, it can also be considered as realistic for another region. So suppose that GN occupies
a cell in a grid. We then create 1, 2, 3, and 4 adjacent grid cells by copying GN to those cells. The
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Fig. 23. Performance per Timestamp, Varying Speed, on EURO

sizes of the indexes of these 4 generated datasets are 13.55GB (0.26GB R-tree + 13.29GB inverted
files), 29.02GB (0.39GB R-tree + 28.63GB inverted files), 50.36GB (0.52GB R-tree + 49.84GB in-
verted files), and 77.58GB (0.65GB R-tree + 76.93GB inverted files), respectively. We use a Core2
Quad CPU Q8400 @ 2.66GHz with 4GB memory for this experiment and report averages for five
queries. Figure 29 shows that the server elapsed time exhibits a moderately increasing trend, which
suggests good scalability for out-of-core data. However, the client elapsed time, the communication
cost, and the communication frequency are insensitive to the dataset size.

Effect of f on the Upgraded Voronoi Cell Optimization.

Figure 30 shows the elapsed time and I/O cost of MSK-uv when varying the number f of edges
used for circles in the upgraded Voronoi cell optimization. As f increases, it more tightly represents
a circle by a (superset) f-sided polygon. This makes the temporary safe zone tighter, enabling more
tree nodes to be pruned and thus reducing the I/O cost. The elapsed time decreases when f < 32,
but increases when f > 32. A larger f leads to higher computational overhead, which counteracts
the savings from pruned nodes. The elapsed time is low for a wide range of f (8—128).

Effect of /,,,,,. on the Recursive Refinement.

We end by observing the effect of varying the maximum recursion level [,,,, on the recursive
refinement. Figure 31 reports the elapsed time and the size of I~. As l,,4, increases, partition
squares become smaller, making it easier to prune an object (in D~) whose dominant region is
covered by the union of circles formed by objects in /~. Even at a high 4, (e.g., 8), MSK-uvr
only incurs slightly more elapsed time.

8.3. Evaluating the Safe Zone Computation Enhancements

We study the performance of the three proposed techniques presented in Section 6 that aim to
increase the performance of safe zone computation, and we compare them with the MSK-uvr algo-
rithm. The algorithm with all three enhancements is called MSK-uvr-SP.
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Fig. 24. Performance per Timestamp, Varying Speed, on GN

As defaults, we set the number & of results to 10, the number of query keywords to 3, and the
client speed to 10 m/s. Figures 32, 33, and 34 show the elapsed time and I/O cost when varying the
speed of the moving queries, the number of keywords, and k, respectively.

MSK-uvr-SP and MSK-uvr differ in terms of safe zone computation at the server. Hence, MSK-
uvr-SP has the same client elapsed time, communication cost, and communication frequency as
does MSK-uvr (shown in Figures 23, 25, and 27). This experiment evaluates the performance of
MSK-uvr-SP and MSK-uvr in terms of server elapsed time and server I/O cost. As expected, the
server elapsed time is proportional to the server I/O cost. As the client speed increases, the server
elapsed time and the server I/O cost of both MSK-uvr-SP and MSK-uvr increase. This is so because
if the client leaves the safe zone more quickly, more requests are sent to the server, and thus more
safe zone and result computations occur at the server. Thanks to the techniques incorporated into
MSK-uvr-SP, its server elapsed time and server I/O cost increase more slowly than do those of
MSK-uvr. The same trend can be observed as the number of keywords and k increase. All in all,
MSK-uvr-SP with all three speedup techniques achieves significant improvements when compared
with MSK-uvr.

8.4. Evaluating Conservative Safe Zones

We proceed to study the performance of the proposals for conservative safe zones presented in
Section 7. We tune the parameter used in the proposals so that each achieves its best performance,
i.e., 7 for the conservative circle and p for the conservative freeform, and we compare with their
parameter-free versions and the MSK-uvr algorithm. As defaults, we set the number k of results to
10, the number of query keywords to 3, and the client speed to 10 m/s.

8.4.1. Conservative Circle. Figure 35 shows the performance of the conservative circle
(ConCircle) when varying 7 and its parameter-free version (ConCircle*). The server elapsed times
of the ConCircle, the ConCircle* and the MSK-uvr algorithm are very similar in Figure 35(a), in-
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Fig. 25. Performance per Timestamp, Varying the Number of Query Keywords, on EURO

dicating that the additional computational costs of ConCircle and ConCircle* are low. Figure 35(b)
shows that the client elapsed time of the MSk-uvr is reduced by around 70% when using the conser-
vative circle, due to the reason that the number of transferred influence objects is reduced by around
65%, as shown in Figure 35(c).

As T increases, Figures 35(b) and 35(c) show a slightly increasing trend, since the conserva-
tive circle becomes bigger, i.e., the number of influence objects to be sent increases, and the client
elapsed time also increases. When 7 is small, the communication frequency of ConCircle is higher
than that of MSK-uvr, as shown in Figure 35(d). This is because the conservative circle is small,
making the probability of leaving the conservative safe zone high. As 7 increases, the communi-
cation frequency of ConCircle drops significantly, approaching the communication frequency of
MSK-uvr. The optimal value of 7 found in this experiment is between 7 and 9. Both ConCircle and
ConCircle* yield low client elapsed time, less influence objects to be sent, and low communication
frequency.

8.4.2. Conservative Freeform. Figure 36 shows the performance of the conservative freeform
algorithm (ConFreeform) when varying p and its parameter-free version (ConFreeform*). The
server elapsed time of ConFreeform, ConFreeform*, and MSK-uvr algorithm are very close in Fig-
ure 36(a), indicating that the additional computation costs of ConFreeform and ConFreeform* are
low. Figure 36(b) shows that the client elapsed time of MSk-uvr is reduced by around 70% when
using the conservative freeform, due to the reason that the number of transferred influence objects
is reduced by around 40%, as shown in Figure 36(c). As u decreases, Figures 36(b) and 36(c) show
a slightly decreasing trend, since more vertices are removed and the conservative freeform becomes
smaller, i.e., the number of influence objects to be sent decreases and the client elapsed time also
decreases. When i is small, the communication frequency of ConFreeform is higher than that of
MSK-uvr, as shown in Figure 36(d). This is because the conservative freeform is small and the prob-
ability of leaving the conservative safe zone is high. As u increases, the communication frequency of

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2012.



00:37

100000 -
. 10000 F XK ——x—f -
o F E °
= F E =
=} o
3 1000 £ 5t
= 100 k 3 |
3 MSK-uv —&— 1§
MSK-uvr ——
10 L L L 0.001 L L L
1 2 3 4 5 1 2 3 4 5
number of keywords number of keywords
(a) server elapsed time (b) client elapsed time
100 o 0.094
% 0.092 B
. % 0.09 B
£ 10 2 0088 e
2 S 0086 .
2 s 0084 .
=] Q
3 1 E 2 0.082 B
IBD X 2 o008 .
MSK-uv —o— ] £ :
MSK-uvr —— 1 s 0.078
0.1 1 : 1 0.076 I 1 |
1 2 3 4 5 1 2 3 4 5
number of keywords number of keywords
(c) comm. cost (d) comm. frequency

Fig. 26. Performance per Timestamp, Varying the Number of Query Keywords, on GN

ConFreeform drops significantly, approaching the communication frequency of MSK-uvr. The op-
timal value of p is found to be 0.95. Both ConFreeform and ConFreeform* yield low client elapsed
time, less influence objects to be sent, and low communication frequency.

8.4.3. Recommendation. In applications where the overhead per communication round is low,
use of the conservative freeform is recomended. A small x can be chosen to achieve low client
elapsed time and low communication cost. If the overhead per communication round is high, use
of the conservative circle is recommended. A large 7 can be chosen to obtain low communication
frequency while also keeping the client elapsed time and communication cost low. The parameter-
free conservative safe zones offer increased usability.

8.5. Summary

The experimental study shows that MSK-uv achieves the lowest server elapsed time, while MSK-
uvr is only slightly worse than MSK-uv in terms of server elapsed time. The added cost is due
to the recursive refinement of /—. MSK-uvr is the best in terms of communication cost, since it
reduces the size of the I~ set significantly. Hence, MSK-uvr achieves the lowest client elapsed
time. The safe zone computation enhancements improve the performance of MSK-uvr significantly,
and conservative safe zones achieve significantly lower client elapsed time and communication cost
at the expense of only slightly higher server elapsed time and communication frequency.

9. RELATED WORK

The MkSK query is a combination of two kinds of queries, i.e., the spatial keyword query and the
spatial moving query. Spatial keyword query processing and spatial moving query processing have
been well studied separately. This section covers existing work related to these two kinds of queries.
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Fig. 27. Performance per Timestamp, Varying k, on EURO

9.1. Spatial Keyword Queries

A spatial keyword query retrieves the best object(s) with respect to a given location and a set of
keywords. Cao et al. [2012] provides an introduction to the subject, and Chen et al. [2012] provides
an experimental comparison of indexes. Efficient implementation of spatial keyword queries, with
varying semantics, has been studied.

Zhou et al. [2005] use a hybrid index structure that integrates inverted files and R*-trees for
computing both textual and location aware queries. Three different index variations are studied:
(1) inverted file and R*-tree double index, (2) first inverted file then R*-tree, (3) first R*-tree then
inverted file. All the three variants are used for the processing of spatial keyword queries in two
phases, i.e., either first spatial filtering or first keyword filtering. The IR?-tree [Felipe et al. 2008] is
another hybrid index that targets spatial keyword queries. It combines an R-tree with superimposed
text signatures. However, it is applicable only when the keywords serve as a Boolean filter. In the
IR-tree [Cong et al. 2009; Li et al. 2011; Wu et al. 2012], each node in the R-tree is augmented with
inverted files. It supports the ranking of objects based on a weighted sum of spatial distance and text
relevancy.

The recently proposed mCK query retrieves m objects within a minimum diameter that match
given keywords. The bR*-tree and the virtual bR*-tree [Zhang et al. 2009; Zhang et al. 2010], which
augment each node with a bitmap and MBRs for keywords, are used for computing this query.

Cao et al. [2010] propose the concept of prestige-based relevance to capture both the textual
relevance of an object to a query and the effects of nearby objects. They introduce a new type of
query, the Location-aware top-k Prestige-based Text retrieval (LkPT) query that retrieves the top-k
spatial web objects ranked according to both prestige-based relevance and location proximity.

Cao et al. [2011] study a variant of the spatial keyword query that retrieves a group of spatial
web objects such that the group’s keywords cover the query’s keywords and such that objects are
the nearest to the query location and have the lowest inter-object distances.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2012.



00:39

100000 . 1 g

IBD — % }

10000 K 4 0.1k

0.01

IOOOW =
100 ' ' 0.001 ' ' '

milliseconds
=<
w2
~
<
<
milliseconds

1 5 10 15 20 1 5 10 15 20
k k
(a) server elapsed time (b) client elapsed time
100 f : o1 .
F IBD —<— 1 ) ]
MSK-uv —&— 1] g "
” MSK-uvr —&— g
B - £ -
2 =
<10 2 0.1 E
3 8 3
I+ g ]
£
g
[}
1 | | | 00_01 | | |
1 5 10 15 20 1 5 10 15 20
k k
(c) comm. cost (d) comm. frequency

Fig. 28. Performance per Timestamp, Varying k, on GN

Lu et al. [2011] consider the Reverse Spatial Textual k& Nearest Neighbor (RSTENN) query, i.e.,
finding objects that take the query object as one of their £ most spatial-textual similar objects. They
propose a hybrid index tree called I[UR-tree (Intersection-Union R-Tree) that effectively combines
location proximity with textual similarity. Based on the IUR-tree, they design a branch-and-bound
search algorithm and a cluster enhancement to improve the performance of the [UR-tree.

Fan et al. [2012] study the spatio-textual similarity search on regions of interest (ROIs) that con-
tain region-based spatial information and textual descriptions. Result ROIs overlap the query region
spatially and are similar to the query text. Li, Feng, and Xu [2012] study the use of direction in the
spatial keyword search. Their direction-aware spatial keyword query finds k nearest neighbors of
the query that are in the search direction and contain all input keywords. Li, Yao, Tang, and Had-
jieleftheriou [2012] study a spatial approximate string (SAS) query that is a range query augmented
with a string similarity search predicate in both Euclidean space and road networks.

None of the above techniques take into account continuous queries, and our focus, the computa-
tion of safe zones for query results, has not been studied.

9.2. Spatial Moving Queries

In our setting, the query user moves continuously while the data objects (e.g., hotels, restaurants)
are stationary. We consider related work for this setting.

In moving query processing, Benetis et al. [2002; 2006] study persistent and continuous nearest
and reverse nearest neighbor query processing for for moving users and data points, Tao et al. [2002]
compute nearest neighbors for each possible query point on a line segment, and Iwerks et al. [2006]
study how to maintain a users future k nearest neighbors when the users velocity changes. These
works all model the users movement as a linear function. Given the known future movement of a
user, a time-parameterized query [Tao and Papadias 2002] retrieves the current result along with a
time interval indicating its validity.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2012.



00:40

le+06 . 0.1 :
, 100000 . ——
= 3 = 4
g b IBD —%— ] g
2 10000 £ MSK-uv —6— 4 2 0.01 | 4
é F MSK-uvr —— E é‘ ]
= ook ] = IBD —x—
MSK-uv —&—
b MSK-uvr —&—
100 & ! 0.001 ! !
36M  54M  72M oM 36M  54M  72M oM
dataset size dataset size
(a) server elapsed time (b) client elapsed time
10 [ . . 1
IBD —X— 1 5
[ MSK-uv —6— g
- |l MSK-uvr —— S
g &
) [=]
5 S 0.1 ° °
5 g
* =
£
g
o
1 | | o 0.01 | |
3.6M 5.4M 7.2M oM 3.6M 5.4M 7.2M oM
dataset size dataset size
(c) comm. cost (d) comm. frequency

Fig. 29. Performance per Timestamp, Varying Dataset Size

16 MSK-uv —@— ] 20 MSK-uv —@— -
» 14 * )
é 12 | — 2 15 N
S 10 | B §
2 8r b S 10 E
= 5}
é 6 - - %‘j '
4+ g 5 F 4
2 - -
O 1 1 1 1 1 0 1 1 1 1 1
4 8 16 32 64 128 256 4 8 16 32 64 128 256
f f
(a) server elapsed time (b) server I/0 cost

Fig. 30. Performance per Timestamp, Varying f, on EURO

When the user’s movement is not known in advance, a buffering approach [Song and Roussopou-
los 2001] retrieves the user’s k + Ak nearest neighbors and uses them to derive a buffer region for
the user. While moving within the buffer region, the user’s k nearest neighbors can be kept up to
date by using only the k& + Ak nearest neighbors. However, it is not easy to find the optimal value
of Ak in practice, and that value used strongly influences the communication frequency and the
number of objects transferred per communication round.

The safe zone approach [Zhang et al. 2003; Nutanong et al. 2008; Cheema et al. 2010] is more
suitable and may reduce the client-server communication cost significantly. The server returns a
query result to the user along with a safe zone. It is guaranteed that the result remains unchanged as
long as the user remains in the safe zone. When leaving the safe zone, the user requests a new result
and safe zone from the server. The safe zone of a kNN query can be captured by an order-k Voronoi
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cell [Zhang et al. 2003], or a V*-diagram [Nutanong et al. 2008]. The safe zone of a moving circular
range query can be captured by a set of objects that affect the safe zone [Cheema et al. 2010].

Gao et al. [2009] study continuous nearest neighbor queries in the presence of obstacles, i.e.,
continuous obstructed nearest neighbor (CONN) queries. They consider the impact of obstacles on
the distance between objects. Given a data set P, an obstacle set O, and a query line segment ¢ in a
two-dimensional space, a CONN query retrieves the nearest neighbor of each point on ¢ according
to the obstructed distance, i.e., the shortest path between them without crossing any obstacle. In ad-
dition, they extend their solution to handle the continuous obstructed k-nearest neighbor (COkNN)
query that finds the k£ nearest neighbors to every point along ¢ based on obstructed distances.
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Chen et al. [2009] address the problem of monitoring the k nearest neighbors to a dynamically
changing path in road networks, namely the k-Path Nearest Neighbor query (k-PNN). Given a
destination of a user, the query returns the kNN with respect to the shortest path connecting the
destination and the user’s current location, and it thus provides a list of nearest candidates for refer-
ence by considering the whole journey ahead. As the user is moving and may not always follow the
shortest path, the query path keeps changing. Chen et al. [2009] propose a three-phase Best-first Net-
work Expansion (BNE) algorithm for monitoring the k-PNN and the corresponding shortest path.
In its search phase, the BNE finds the shortest path to the destination, during which a candidate set
that guarantees to include the k-PNN is generated at the same time. Then in its verification phase,
a heuristic algorithm examines the candidates’ exact distances to the query path, and it achieves
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significant reduction in the number of visited nodes. The monitoring phase deals with computing
update locations as well as refreshing the k-PNN for different user movements.

None of the above techniques consider the text relevancy of the data objects. In our work, the safe
zone is an MW-Voronoi region, whose efficient computation has not been studied.

10. CONCLUSIONS AND RESEARCH DIRECTIONS
10.1. Conclusions

This paper studies the moving top-k spatial keyword query and utilizes the concept of the safe
zone to save computation and communication costs. We develop two solutions for computing a safe
zone: (i) an early stop algorithm IBD and (ii) an advanced algorithm MSK-uvr that prunes subtrees
of objects that do not contribute to the safe zone and applies two optimizations to further reduce
the search space and communication cost. We present techniques that aim to compute the next safe
zone efficiently, and we present two types of conservative safe zones, along with parameter-free
variants, that aim to reduce the communication cost. Empirical studies on real data sets demonstrate
that MSK-uv (a variant of MSK-uvr) has the lowest server elapsed time and that MSK-uvr has the
lowest communication cost. To understand the effectiveness of the proposed safe zones, we study
analytically the expected area of a safe zone, which indicates on average for how long a safe zone
remains valid, and we study the expected number of influence objects needed to define a safe zone,
which gives an estimate of the average communication cost. The analytical study is verified by
extensive empirical studies.

10.2. Research Directions

In future work, it is of interest to examine the processing of moving range spatial keyword queries.
The term “range” can be described in multiple ways. It could be “Independent Thresholding,” i.e.,
imposing two separate thresholds on the spatial range and the text relevancy. A pedestrian may use
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a “within walking distance (5 km)” range and may ask for objects with text relevancy higher than
0.5 within that spatial range. If only few objects are found, the threshold can be lowered by using a
slider in a graphical user interface. The objects can be ordered according their text relevancy. The
“range” could also be “Weighted Thresholding,” i.e., imposing a single threshold on the weighted
distance (Equation 1) directly. For example, objects with weighted distances higher than 0.5 are
then returned. By issuing such a query, the user can have an overview of how relevant objects
are distributed within a certain “range.” A different safe zone and algorithms are needed for the
processing of moving range spatial keyword queries.

It is also of interest to examine the processing of moving top-k spatial keyword queries over
spatial networks. When users’ movements are constrained by road networks, the Euclidian distance
in Equation 1 becomes network distance. The network distance makes the shapes of dominant re-
gions and representation of a safe zone different. Inspired by Kolahdouzan and Shahabi [2004] who
propose a network Voronoi diagram for k nearest neighbor search in spatial network databases, a
spatial network-based MW-Voronoi diagram may be needed for the processing of moving top-k spa-
tial keyword queries over spatial networks. In addition to the influence objects used for representing
a safe zone, some points on road networks may also determine the border of the safe zone. This
direction of research offers non-trivial challenges to the algorithms that are applicable to Euclidean
space.

Another possible research direction is to consider the future path of a moving query when
computing the safe zone of the current result. If and when such paths are available, it may
be beneficial to construct a conservative safe zone that is refined along the near-future path
and is coarse elsewhere. An alternative goodness criteria may be considered instead of Equa-
tion 33, ie., Goodness(Y con) = FEscapeDistance(Y con)/#InfObj, where the estimation of
EscapeDistance(Y .o, ) takes the knowledge of the path into account.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library. It provides a
detailed derivation of Equation 26 and a proof of Lemma 5.1.
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In this appendix, we provide detailed derivation and proofs of some equations and lemmas in the
paper.

A. DERIVATION OF EQUATION 26
In Equation 25, o is the origin. The probability

. _ 2
P(llopjl > 1) = Pr(N(4;) = 0) = e P4l = ¢ "3 (34)
w;

means that A; is the circle centered at o with radius Z’Tjr containing no object in D. The probability
P(Jlo p;|| € [r, + dr]) in Equation 25 is given in Lemma A.1.

LEMMA A.l.
[Deriving the probability P (||o p;|| € [r, r+dr])] Let o be the origin and p; be a random object.
The probability that the distance between o and p; falls into range [r,r + dr] is:
P(llopill € [r,r+dr]) = 2pmre ™™ dr.

PROOF. The probability P(||o p;|| € [r,r + dr]) can be interpreted as the probability that there
is only one object p; in a thin ring A A with thickness dr defined by the outer circle centered at o
with radius r + dr and the inner circle centered at o with radius r multiplied by the probability that
the circle A centered at o with radius r contains no object, i.e.,

P(llopil € [r,r+dr]) = Pr(N(AA)=1)Pr(N(A) =0)
- p‘AA|€—pIAAIe—p\A\7 (33)

where |[AA| = 7(r +dr)? —7r? and |A| = 772 The area of A A can be estimated by 27 dr, since

|AA| . w(r+dr)? —mr?
= 1 36
drlgo 2mr dr drlgo 2mr dr (36)
. 2mrdr + w(dr)?
= hm —_—
dr—0 2mr dr
2 2w d
= lim Zmrt emdr (L’Hopital’s rule)
dr—0 2mr
= 1.
Hence, we have
P(llo ps| € [r,r + dr]) = ere—(ﬂm,uzm, dr) gy — me,e—,wz dr, 37)

where prrr? + 277 dr is approximated by prr? when dr — 0. O
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B. PROOF OF LEMMA 5.1

PROOF.
Ifp; € Dj', i.e., w; > w;, the condition of p; not being one influence object of p; is:

HOP/L"PJ' pl” < Tpip; — T(wl)

Since [|op, p; Pill = Tp;p; — bOrdmin(pi, Cp, p;) (defined in Lemma 3.3), we have:
W
bordmin(pi, Cp; p;) = mnpi pill = r(wi),
ie.,
w; + w;
lpi psll = ———r(w;). (38)

i
If p; € D?,ie., w; = w;, the condition of p; not being one influence object of p; is:

Ipi pjll = 2r(w;). 39
If p; € D; ,ie., w; < w;, the condition of p; not being one influence object of p; is:

1090 Pill = 7p; ;41 (wi)-

Since [|op; p; Pill = Tp, p; + b0rdmin(pi, Cp, p, ), We have:
W
bordmin(pi; Cp; p,) = m”pz pill = r(w;),
ie.,
w; + Ww;
lpi pj || = ———r(wi). (40)

(2

Having Equations 38, 39, and 40, we conclude that the condition of any object p; (with either
bigger, equal, or smaller weight) not being one influence object of p; is as stated by the lemma. O
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