
00

Design and Analysis of a Ranking Approach to Private
Location-Based Services

MAN LUNG YIU, Hong Kong Polytechnic University
CHRISTIAN S. JENSEN, Aarhus University
JESPER MØLLER, Aalborg University
HUA LU, Aalborg University

Users of mobile services wish to retrieve nearby points of interest without disclosing their locations to the
services. The paper addresses the challenge of optimizing the query performance while satisfying given
location privacy and query accuracy requirements. The paper’s proposal, SpaceTwist, aims to offer loca-
tion privacy for k nearest neighbor (kNN) queries at low communication cost without requiring a trusted
anonymizer. The solution can be used with a conventional DBMS as well as with a server optimized for
location-based services. In particular, we believe that this is the first solution that expresses the server-side
functionality in a single SQL statement. In its basic form, SpaceTwist utilizes well-known incremental NN
query processing on the server. When augmented with a server-side granular search technique, SpaceTwist
is capable of exploiting relaxed query accuracy guarantees for obtaining better performance. The paper ex-
tends SpaceTwist with so-called ring ranking that improves the communication cost, delayed termination
that improves the privacy afforded the user, and the ability to function in spatial networks in addition to
Euclidean space. The paper reports on analytical and empirical studies that offer insight into the properties
of SpaceTwist and suggest that the paper’s proposal is indeed capable of offering privacy with very good
performance in realistic settings.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Spatial databases and GIS

General Terms: Algorithms

Additional Key Words and Phrases: Location Privacy, Mobile Service

1. INTRODUCTION
The mobile Internet offers location-based services (LBSs) that retrieve the locations
and other information pertaining to so-called points of interest (data points), e.g.,
stores, restaurants, and tourist attractions, that are near a user. Some such services
rely on the k nearest neighbor (kNN) query [Hjaltason and Samet 1999; Roussopoulos
et al. 1995] that retrieves the k data points closest to a user’s location q. A server-side
database stores a set of points of interest. To retrieve the nearest data point, the user’s
mobile device sends its location q to the server. The server then computes the (nearest
neighbor) result and returns it to the mobile client. As a complication to this scenario,
users may wish to avoid disclosing their exact locations to the server.

Author’s addresses: M. L. Yiu, Department of Computing, Hong Kong Polytechnic University; email:
csmlyiu@comp.polyu.edu.hk; C. S. Jensen, Department of Computer Science, Aarhus University; email:
csj@cs.au.dk; J. Møller, Department of Mathematical Sciences, Aalborg University; email: jm@math.aau.dk;
H. Lu, Department of Computer Science, Aalborg University; email: luhua@cs.aau.dk.
This is a preliminary release of an article accepted by ACM Transactions on Database Systems. The definitive
version is currently in production at ACM and, when released, will supersede this version.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0362-5915/2011/-ART00 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:2 M. L. Yiu et al.

A naive private retrieval approach is for the client to download the whole dataset
from the server, regardless of the user’s location q. Then the client is able to process the
query locally. However, the original dataset at the server is subject to updates, so the
downloaded file cannot simply be reused for answering future queries at the client. As
another drawback, this approach incurs unacceptably high data transmission times,
especially for users of mobile devices. Consider a simple experiment that involves a
spatial dataset with 500,000 points stored at the server. Each data point consists of an
identifier (a 4-byte integer), and X, Y coordinates (two 8-byte double), so the dataset
occupies 9.53 Mbytes. We test with a mobile client device (an Asus P535) with Wi-
Fi and GPRS connectivity. We also test with another mobile client device (an HTC
Diamond) that supports 3G. The time needed by the client’s off-the-shelf Windows
Mobile browser for downloading the dataset is 16 s using the fast Wi-Fi connection1,
37 s using 3G, and 2082 s using GPRS. The high data transfer times of the naive
approach make it unattractive.

Existing location privacy approaches can be categorized as spatial anonymization,
obfuscation, or private retrieval methods.

Spatial anonymization [Gruteser and Grunwald 2003; Gedik and Liu 2005; Mokbel
et al. 2006; Kalnis et al. 2007] employ the architecture shown in Figure 1a. A trusted
third-party server, called an anonymizer, is placed in-between the client and the server.
The anonymizer enlarges an exact user location q into a (superset) cloaked region Q′ so
that it contains q and also the locations ofK−1 other users. This way, the server cannot
distinguish q from other user locations in Q′. Upon receiving Q′, the server processes a
range NN query [Hu and Lee 2006] in order to return a candidate set that contains the
nearest data point for any location in Q′. The anonymizer then refines the candidate
set and reports the actual result to the client. The advantage of this approach is that
it incurs low communication cost between the client and the anonymizer. However,
this anonymizer suffers from three drawbacks: (i) it is a performance bottleneck, (ii)
it represents a central point of attack (e.g., is prone to collusion attacks from hostile
users), and (iii) it heavily depends on the distribution and density of other mobile
users.

Obfuscation [Ardagna et al. 2007; Cheng et al. 2006; Xu et al. 2010; Kido et al.
2005; Duckham and Kulik 2005b] adopts the traditional client-server architecture. It
avoids the disadvantages associated with the anonymizer. The client is responsible
for enlarging the user’s location q into an obfuscated set Q′. Specifically, Q′ can be
represented as a simple region or a discrete set. The server returns the candidate
set of Q′ to the client, which then computes the actual result from the candidate set.
However, this approach also has drawbacks. In case Q′ is a simple region, it is hard to
control the candidate set size (and the client communication cost), especially when Q′

falls into a dense area. On the other hand, if Q′ is a discrete set, then it cannot survive
location guesses by the adversary; we discuss this in Section 3.2.

Private retrieval methods [Indyk and Woodruff 2006; Khoshgozaran and Shahabi
2007; Ghinita et al. 2008] also operate on the client-server architecture. The client
encodes the original query q into an ‘incomprehensible’ query q♦. Then the server com-
putes the encoded result of q♦ blindly. Upon receiving the encoded result, the client
derives the actual result. The advantage of this approach is that it offers the strongest
privacy guarantee when compared to other approaches. However, it requires special-
ized algorithms at the client and the server that are hard to implement and do not uti-

1Wi-Fi is of the IEEE 802.11g standard and has a maximum bit rate of 54 Mbit/s. The theoretical data
transfer time for the dataset is: 9.53/(54/8)=1.41 s. However, this is unrealistically low as it ignores real-
world conditions, e.g., the overhead of communication protocols and the congestion of mobile signals in the
multiple-user scenario.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:3

lize existing spatial indexes. They also need a trusted party to perform pre-processing
on the dataset beforehand.

All three kinds of approaches have their own strengths and weaknesses. They are
applicable to different scenarios, and none of them can replace the other approaches.
Many real-world LBSs (e.g., services in Google’s Android Market, Loopt, and Yahoo
FireEagle) require users to log in and reveal their identity (User ID). Thus, we are
interested in location privacy techniques that prevents the server from knowing the
user’s location (rather than the user’s identity) [Jensen et al. 2009]. We adopt the fol-
lowing design requirements for a highly deployable and usable location privacy solu-
tion:

— Adopts the conventional client-server architecture (for deployability).
— Leverages existing spatial database technology such as spatial indexes and query

processing techniques (for deployability).
— Allows the client to control the communication cost, result accuracy, and privacy (for

usability).

Spatial anonymization and private retrieval methods are inapplicable because they do
not meet with the first and second requirements, respectively. While obfuscation tech-
niques satisfy these two requirements, most of them do not permit the client to control
the communication cost. Our proposed solution belongs to the obfuscation category,
and yet it allows the client to control the communication cost conveniently.

Location-based server
(S i l i d)

Trusted third-party
(Spatial index support)serverClient

Client Location-based server
(Spatial index support)

Relational server
(SQL support)

(a) Trusted party architecture (b) Our flexible architecture

Fig. 1. Comparisons of Architectures

Our proposal, called SpaceTwist, is a client-server solution (see Figure 1b) that does
not require a trusted anonymizer, unlike the spatial anonymization techniques. The
client specifies a fake user location called an anchor. Then, the server returns data
points to the user incrementally in ascending order of their distances from the an-
chor [Hjaltason and Samet 1999]. The client algorithm processes these data points
iteratively until an accurate query result can be reported. In addition, we develop a
method that enables the user to control the communication cost conveniently. Fur-
thermore, we also propose several extension techniques that can be integrated into
SpaceTwist. They can be used to reduce the communication cost, improve the privacy,
and extend the applicability to road-network scenarios.

SpaceTwist is applicable not only to servers optimized for state-of-the-art LBSs, but
also to conventional DBMS servers. It leverages existing technology on indexing, query
processing and optimization, and other systems aspects. In summary, the paper con-
tributes a client-server location privacy solution that is highly deployable and usable.
It provides the following substantial contributions over previous work [Yiu et al. 2008]:

— SQL-based server-side implementation (Sections 3.1, 6.1, and 6.2).

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:4 M. L. Yiu et al.

— Analyses and control of the communication cost of SpaceTwist (Section 5).
— A server-side ring ranking technique that reduces the communication cost of exact

queries (Section 6.2).
— A delayed termination technique that increases the user’s privacy (Section 6.3).
— Applications to spatial networks (Section 6.4).
— Additional empirical studies (Section 7).

Section 2 reviews related work. Section 3 presents the foundations on the incre-
mental nearest neighbor operator and our privacy model. Section 4 develops the query
processing technique and analyzes the privacy it affords users. Section 5 presents anal-
yses on the expected communication cost of our solution. Section 6 presents several
extensions of SpaceTwist. Section 7 covers the results of extensive studies of the pro-
posed techniques. Finally, Section 8 concludes and identifies research directions.

2. RELATED WORK
Query authentication and privacy are two orthogonal concerns when users issue
queries to the server. Query authentication [Pang et al. 2005; Li et al. 2006; Yang
et al. 2009] focuses on verifying the correctness of the query result returned from an
untrusted server. In fact, query authentication on location-based data has also been
studied [Yang et al. 2009; Papadopoulos et al. 2009]. On the other hand, privacy protec-
tion aims at preventing the server from knowing the user’s original query information
(e.g., identity, location).

We categorize existing privacy protection approaches into: spatial anonymiza-
tion, obfuscation, and private retrieval methods. Spatial anonymization requires an
anonymizer in the architecture, whereas the other two approaches adopt the (conven-
tional) client-server architecture.

2.1. Spatial Anonymization
Spatial anonymization techniques [Gruteser and Grunwald 2003; Mokbel et al. 2006;
Kalnis et al. 2007] aim at protecting the identity privacy [Bettini et al. 2007] of users.
The adversary is assumed to know the exact locations of all users in the system. The
K-anonymity model [Sweeney 2002] aims at preventing the adversary from identifying
a user (from the user’s query) with probability above 1/K.

To achieve this, a trusted third-party location anonymizer [Gruteser and Grunwald
2003; Mokbel et al. 2006; Kalnis et al. 2007] is employed to maintain the current
locations for all users. When a user issues a query, the anonymizer computes a K-
anonymous region Q′ that contains the user’s location q and at least K − 1 other user
locations. This prevents the adversary from identifying the user from Q with probabil-
ity above 1/K. Figure 2a illustrates a 4-anonymous region Q′, where u1, u2, and u3 are
(4− 1) user locations.

Instead of using q, the anonymizer sends the cloaked query Q′ to the server for
processing. Observe that the cloaked query cannot be answered by point-based kNN
algorithms [Roussopoulos et al. 1995; Hjaltason and Samet 1999]. Specialized server-
side algorithms [Mokbel et al. 2006; Hu and Lee 2006; Kalnis et al. 2007] are needed
for identifying a candidate set that includes the kNN for any location in a cloaked
region. In the example of Figure 2b, the candidate set of Q′ contains these points:
p1, p2, p3, p4, p5, p6; they can become NN for any location inQ′. Specifically, Mokbel et al.
[2006] propose efficient heuristics for computing a superset of the candidate set, Hu
and Lee [2006] develop the range kNN algorithm for computing the minimal possible
candidate set for a rectangular cloaked query, and Kalnis et al. [2007] study the com-
putation of the candidate set for a circular cloaked query. After receiving the candidate

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:5

set from the server, the anonymizer derives the actual result for q and sends the result
to the user.

In addition to supporting the K-anonymity model, the anonymizer can be extended
to support alternative privacy requirements, such as minimum cloaked area [Mokbel
et al. 2006], maximum cloaked area [Bamba et al. 2008], location diversity [Bamba
et al. 2008], and sensitive area hiding [Gruteser and Liu 2004].

The advantage of spatial anonymization is that the communication cost between
the client and the anonymizer is optimal. Unfortunately, the anonymizer and the K-
anonymity model exhibit several disadvantages. First, the anonymizer becomes a per-
formance bottleneck because it needs to serve all its subscribed users, as well as main-
taining accurate records of their locations. Second, the anonymizer is vulnerable to
malicious attacks. An example is the collusion attack, where the adversary subscribes
to the anonymizer multiple times with fake user locations. Then, the adversary can
exclude those fake locations from the cloaked region Q′ generated by the anonymizer,
this way identifying a user with higher probability. Third, it heavily depends on the
distribution and density of other mobile users. When the user is located in a sparse
region or few users are subscribed to the anonymizer, it needs to construct a very large
cloaked region Q′ such that it contains K user locations. This incurs high processing
time at the server and the anonymizer.

Alternatively, a K-anonymous region can be derived through peer-to-peer commu-
nication [Chow et al. 2006; Ghinita et al. 2007b; 2007a]. Users close together form a
group and set their cloaked region as a rectangle containing them. The drawback is
that group formation and maintenance incur communication latency.

q Q'

u
1

u

2

u
3

q

Q'p
1

p

6

p
5

p
2

p
4p

3

qq
Q'

q

q
1

q

2

q
3

5 6 9 10

4 7 8 11

p2

3 2 13 12

0 1 14 15

p3q

p1

(a) K-anonymity (b) range kNN (c) obfuscation (d) dummies (e) Hilbert retrieval

Fig. 2. Examples of Location Privacy Solutions

2.2. Obfuscation
In the location privacy model, the adversary (e.g., the server) knows the user’s identity
(the user’s ID), but not the user’s location. Obfuscation techniques [Cheng et al. 2006;
Xu et al. 2010; Ardagna et al. 2007; Kido et al. 2005; Duckham and Kulik 2005b; Lu
et al. 2008] aim to protect the user’s exact location from being revealed. Based on given
privacy requirements, the client enlarges the user’s exact location q into an obfuscated
set Q′ that contains q. This approach does not require any anonymizer.

The obfuscated set Q′ can be represented as a connected obfuscated region (see Fig-
ure 2c) or a discrete obfuscated set (see Figures 2d).
Connected Obfuscated Query.
A connected obfuscated query Q′ is a simple region (e.g., a rectangle or circle) that
contains the user’s location q. An example is shown in Figure 2c. It can be processed
by server-side techniques employed in K-anonymization solutions. For instance, the
processing of a rectangular query and a circular query can be handled by the proposal

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:6 M. L. Yiu et al.

of Hu and Lee [2006] and Kalnis et al. [2007], respectively. The only difference is that
no anonymizer is used now. Upon receiving the candidate results from the server, the
client is responsible for refining them into the actual result. The disadvantage of using
a connected obfuscated region Q′ is that it is hard to control the communication cost,
especially when Q′ overlaps with a dense region (of data points).

Various techniques have been proposed for the client to construct Q′ from q.
The study of Ardagna et al. [2007] takes location positioning inaccuracy into account,

models the user location as a circular region, and develops several geometric operators
for deriving obfuscated regions.

Xu et al. [2010] study the obfuscation for a continuously-moving query user. Each
obfuscated region is a circle whose area is required to be above a user-specified value
Amin. Let Q(t′) be the previous obfuscated region, Q(t) be the current obfuscated re-
gion, and D∗ be the maximum possible travel distance of the user (from time t′ to time
t). By exploiting this information, the adversary can launch the trace analysis attack
to deduce the probabilistic density distribution of the user within region Q(t). The en-
tropy value can be derived from the above probabilistic density distribution. It is zero
when the user is at a location with probability 1; it is maximized when the user is at
any location in Q(t) with the same probability. To defend against the trace analysis
attack, Xu et al. [2010] formulate a set of linear equations for constructing a current
region Q(t) that maximizes the entropy. They also introduce two objective functions
for optimizing the mobile client’s result accuracy or communication cost. The equation
set may not always have a feasible solution; in such cases, the query is blocked, and
the candidate set of the previous query Q(t′) is used to compute an approximate result
instead of sending a new query to the server. This method imposes considerable com-
putational overhead during obfuscation at the client, which needs to solve the above
equations using linear programming techniques together with discretization. In our
problem setting, where we consider the snapshot kNN query (i.e., only issued by a
user once), the above trace analysis attack is not relevant, and the obfuscation method
of Xu et al. [2010] is degraded to a simple obfuscation method that generates any ob-
fuscated region around the actual user’s location q. Furthermore, the proposal of [Xu
et al. 2010] relies on linear programming techniques in Euclidean space and so cannot
be adapted to road networks, unlike our method.

Cheng et al. [2006] process range queries on a private dataset that contains the
(obfuscated) locations of all users. The client enlarges the user’s exact location q into a
circular region Q′ based on the user’s requirement on the region area and the coverage
of sensitive facilities (e.g., a hospital). The server manages the circular regions of all
users. Upon receiving a range query, the server computes a candidate result set and
derives the probability/confidence of each candidate being an actual result. The quality
of the result set is summarized by a quality score that combines the confidence value
of each candidate. This method is inapplicable to our work, which uses a public dataset
(e.g., locations of restaurants) and considers kNN queries. Cheng et al. [2006] do not
study techniques for reducing the communication cost between the server and the
query client; and probabilistic results are returned—not the exact results as required
in our work. Although the method of Cheng et al. [2006] can be generalized to the
case where all other users’ locations are precise points, each candidate only qualifies
as result for part of the cloaked range query so a candidate is still associated with a
probability.
Discrete Obfuscated Query.
A discrete obfuscated query Q′ contains the user’s location q and a number of dummy
locations [Kido et al. 2005; Duckham and Kulik 2005a; 2005b; Lu et al. 2008]. An exam-
ple [Kido et al. 2005] is shown in Figure 2d, in which q1, q2, and q3 are dummy locations,

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:7

and the obfuscation is Q′ = {q, q1, q2, q3}. Enhanced techniques have also been studied
for generating dummy locations, e.g., based on the distances among the locations [Lu
et al. 2008]. In another proposal, the possible locations are restricted to be vertices in
a graph (e.g., a road network), and the obfuscation is a set of vertices [Duckham and
Kulik 2005a; 2005b].

The obfuscation Q′ can be answered by processing each point in the query in turn,
returning the union of the results [Kido et al. 2005; Lu et al. 2008]. Alternatively,
an interactive negotiation protocol has been proposed that enables on-line trade-offs
between privacy and result accuracy [Duckham and Kulik 2005a; 2005b].

A discrete obfuscated set Q′ allows easy control of the communication cost. How-
ever, it is not location-collision-resistant, so it may not survive location guesses by the
adversary. We elaborate on this issue in Section 3.2.

2.3. Private Retrieval Methods
Private retrieval methods [Indyk and Woodruff 2006; Khoshgozaran and Shahabi
2007; Ghinita et al. 2008] use the client-server architecture. The client encodes its
original query q into an ‘incomprehensible’ query q♦. Next, the server computes the
encoded result of q♦ blindly, and then the client derives the actual result from the
encoded result. This approach offers the strongest privacy guarantee when compared
to spatial anonymization and obfuscation approaches. However, it requires specialized
algorithms at the client and the server that are hard to implement and do not utilize
existing spatial indexes.

A theoretical study of a client-server protocol for deriving the nearest neighbor of q
has been reported [Indyk and Woodruff 2006]. Its communication cost is asymptotic
to
√
N , where N is the number of data points. It does not necessarily report the exact

result. No experimental evaluation of the communication cost and result accuracy of
the protocol with real data are available.

Another study defines a specific Hilbert ordering based on a key H, whose value
is known only by the client and a trusted entity [Khoshgozaran and Shahabi 2007].
Not having the key value, the server cannot decode a Hilbert value into a location
correctly. In preparation for querying, the trusted entity transforms each data point
pi into a Hilbert value H(pi) that is uploaded to the server. In the example of Fig-
ure 2e, the Hilbert value of each cell is shown in the top-left corner of the cell. At
query time, the client q submits its Hilbert value H(q) = 2 to the server. The server
then reports the Hilbert value H(p2) = 10 that is closest to H(q). This Hilbert value
is eventually decoded by the client into point p2. Observe that a Hilbert curve does
not completely preserve spatial proximity, so the reported result can be far from q. To
improve the accuracy, the use of two keysH andH′ with orthogonal Hilbert curves has
been considered [Khoshgozaran and Shahabi 2007]. Still, this enhanced method does
not necessarily report the exact result.

Ghinita et al. [2008] study private information retrieval methods for answering the
NN. Their proposal includes an approximate method and an exact method. Both are
built upon a computationally secure protocol that retrieves a number from a two-
dimensional array. In their approximate method, the data points are partitioned into√
N leaf nodes of a K-d tree [Bentley 1975], where N is the number of data points.

In their exact method, the space is divided into G × G grid partitions (where G is a
parameter) and the Voronoi diagram of the dataset is pre-computed. Each partition
stores the data points whose Voronoi cells intersect the grid cell. For both methods,
during query time, the user requests all data points of the (server-side) partition that
covers the query point, then derives locally the result from those points. However, the
above methods suffer from two limitations. First, they are applicable only to the NN

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:8 M. L. Yiu et al.

query, not to kNN queries. For instance, the exact solution utilizes a Voronoi diagram,
which cannot be used to answer kNN queries. Second, the exact method leads to very
high execution times at the server side (20 seconds for a single-CPU server [Ghinita
et al. 2008]), meaning that the server cannot handle a high volume of queries within a
short time period.

2.4. Cloaking and Query Processing in Road Networks
We proceed to review solutions that provide location privacy to users on a road net-
work. Duckham and Kulik [2005a; 2005b] provide the first study of location privacy
when the query and data points are constrained to a spatial network such as a road
network. In their solution, the server and the client agree on a negotiation protocol for
retrieving the results for the user. During execution, the user may be required to make
multiple interactive decisions on whether or not to release a more accurate obfuscation
set for the user’s location. A reasonably accurate result can only be obtained if the user
accepts to reveal a sufficiently accurate obfuscation set. The protocol cannot achieve
high accuracy and high privacy simultaneously.

Other works adopt the K-anonymity model and focus on protecting the identity pri-
vacy of users [Ku et al. 2007; Li et al. 2008; Mouratidis and Yiu 2010; Wang and Liu
2009]. An anonymizer is employed to construct a cloaked queryQ′ such that it contains
the user’s location q andK−1 other user locations. To process the cloaked queryQ′, the
server executes three steps: (i) compute the border intersections between Q′ and the
road network, (ii) find the kNNs for each such intersection, and (iii) fetch all data points
that fall intoQ′. The server then returns the union of the results from steps (ii) and (iii)
as the candidate result set to the anonymizer. This approach exhibits two drawbacks.
First, the processing cost depends on the number of border intersections between Q′

and the road network, which becomes high for a large Q′. Second, duplicates are found
in step (ii), wasting computational effort. To avoid the above limitations, our network-
based SpaceTwist (in Section 6.4) directly executes the network-based incremental
nearest neighbor algorithm [Papadias et al. 2003] at the server side. This guarantees
that no duplicates are retrieved. Also, our solution is easy to implement, as it does not
perform low-level operations (e.g., computing border intersections).

3. FOUNDATIONS
This section presents the foundations for the subsequent sections. We first cover the
implementation of the incremental nearest neighbor operator [Hjaltason and Samet
1999] in Section 3.1 and then propose our privacy model in Section 3.2. Table I sum-
marizes the notation to be used throughout the paper.

Table I. Summary of Notation

Symbol Meaning
q the actual user location
q′ the anchor location
P the set of points of interest/data points
pi a data point of P

dist(q, pi) Euclidean distance between the points q and pi
distG(q, pi) network distance between the points q and pi

N the cardinality of P
k the number of requested nearest neighbors
m the number of received points
Ψ the inferred privacy region

Γ(q,Ψ) the privacy value
ε the guaranteed error for relaxed kNN

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:9

3.1. Implementation of the Incremental Nearest Neighbor Operator
Let q′ be a given anchor location. Given a set P of data points, the incremental nearest
neighbor (INN) operator retrieves each point p ∈ P in ascending order of dist(q′, p), i.e.,
the Euclidean distance between q′ and p.

As the INN operator is an important component of our solutions, we proceed to dis-
cuss the implementations of the INN operator with different types of servers.
Implementation on a Server for Location-Based Services (LBSs).
This kind of server is designed with the objective of processing location-based queries.
For efficient query processing, the server usually employs a spatial index (e.g., an R-
tree) for indexing a point set P . Hjaltason and Samet [1999] develop an I/O-efficient
implementation of the INN operator on an R-tree that indexes P .
Implementation Using a Conventional DBMS.
A DBMS is a general-purpose system that supports a wide range of applications. In
order to facilitate easy deployment on a DBMS and also significantly reduce the devel-
opment cost, SQL has been used to compute various queries: approximate string join
[Gravano et al. 2001], skyline retrieval [Bartolini et al. 2006], kNN queries and kNN
joins [Yao et al. 2010]. Past works use plain SQL queries as opposed to user-defined
functions (UDF). The latter generally do not integrate well with query optimizers and
incur expensive computation overhead. Particularly, in the proposal of Bartolini et al.
[2006], the client issues an SQL ORDER BY query to retrieve tuples progressively from
the DBMS server until the client is guaranteed to compute the exact result (of a sky-
line query). In the same spirit, we study how to implement the INN operator on top of
a relational DBMS.

First, we propose to store the point set P as a relational table with schema (id, x, y),
where id is an identifer, x and y are location coordinates. Each row corresponds to a
point p in P . Then, we denote the coordinates of the anchor location q′ by qx′ and
qy′ (where an underscore indicates a given value). The distance dist(q′, p) can then

be expressed as
√

(x− qx′) · (x− qx′) + (y − qy′) · (y − qy′). Thus, we can implement
the INN operator by the following SQL query.

SELECT id, x, y
FROM P
ORDER BY (x-_qx’)·(x-_qx’) + (y-_qy’)·(y-_qy’) ASC

The ORDER BY clause uses the squared distance because it preserves the ordering of
distances and is faster to compute than dist(q′, p). The query is a ranking query, and
it can be executed efficiently by the DBMS server by means of various optimization
strategies [Ilyas et al. 2004; Ilyas et al. 2006; Xin et al. 2006; Xin et al. 2007; Zou and
Chen 2008].

More efficient implementations of kNN search in relational databases are provided
in the literature [Jagadish et al. 2005; Yao et al. 2010]. These employ a relational table
with schema (id, x, y, key) where key is an additional attribute that captures partial
location information. A primary index (e.g., a clustering B+-tree) is built on the at-
tribute key in order to support efficient access to the table. Jagadish et al. [2005] set
the key of a point to be a composite value that consists of its nearest cluster ID and
its distance to the cluster center, and Yao et al. [2010] set the key of a point to be a
space filling-curve value (e.g., the z-value of the point). At query time, the server first
retrieves k points whose key are closest to that of q. Then, the server executes a range
search with a certain key range on the table to retrieve all candidate points that can
become results. These candidates are then filtered in order to obtain the final results.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:10 M. L. Yiu et al.

We believe that these methods can be adapted for incremental nearest neighbor search
by iteratively expanding k and excluding the key range of reported result points.
Transferring Results from the Server to the Client.
We propose an efficient Non-blocking implementation that enables the client to termi-
nate the transfer of data points before having received all the points returned by the
SQL query (or by the LBSs). Once the client initiates the server with a Start mes-
sage, the server sends incremental NNs to the client in a streaming manner, without
the need for explicit GetNext requests from the client. When the client decides to ter-
minate the process, it sends a Stop message to the server. Let m be the number of
points received by the client at this time. Before the server encounters the Stop mes-
sage, the client will receive β∗ = m′′ − m unnecessary data points from the server,
where m′′ is the total number of points sent by the server. Details are available in Ap-
pendix A. Our empirical testing on real mobile devices reveal that the measured value
of β∗ fluctuates within a certain technology-dependent range [β−, β+]. As the actual
value of β∗ cannot be predicted, the adversary can only infer the possible range of m
to be: [m′′ − β+,m′′ − β−]. This information will be considered in our privacy analysis
in Section 4.2.

Furthermore, in Section 5.6, we explore how to reduce the execution time of DBMS
by estimating a tight bound on the number of tuples to be retrieved.

3.2. Privacy Model

Adversary Model and Privacy Quantization.
Before formulating the concept of privacy, we capture the capabilities of the adversary
via an adversary model. This is in line with the location privacy model adopted in
obfuscation techniques (see Section 2).

Many real-world LBSs (e.g., services available in Google’s Android Market and from
Loopt and Yahoo’s FireEagle) require users to register and log in as prerequisites for
using services. Thus, the users reveal their identity (User ID), and identity privacy is
not an issue in our problem setting, rendering the K-anonymity model [Sweeney 2002;
Mokbel et al. 2006] inapplicable. We assume that services only access the content of
the messages sent to and from the users, and we assume that those location-based
services cannot collude with the communication providers (e.g., telecom companies
and Internet service providers) of the users. Thus, the location-based server is unable
to infer the user’s location via other means such as wireless signal strengths, hands-
off signals, and IP addresses. Several IP address geo-location tools2 exist; however,
IP addresses only allow coarse (e.g., city-level) positioning, and they may even point
to the locations of Internet service providers. Such information is not useful for the
adversary, for typical location-based applications on a city map. Alternatively, users
can hide their IP addresses from the LBS server by using a proxy server or distributed
anonymous networking software3.

Based on the above observation, our adversary is assumed to have the user’s exact
identity, but no knowledge of the user’s current location q. We then capture the worst
case scenario in our adversary model, i.e., the adversary has complete knowledge of:
(i) the messages sent between the client and the server, (ii) the algorithms executed at
the client and the server, and (iii) the parameters used by those algorithms (except the
user’s current location). The goal of the adversary is then to infer the user’s location
from the query issued by the user.

2http://ipinfodb.com; http://www.ip2location.com
3http://www.torproject.org

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:11

We proceed to give a generic definition of a user’s privacy region Ψ in Defini-
tion 3.1. We highlight that Ψ can be given explicitly as a connected, rectangular region
[Gruteser and Grunwald 2003; Mokbel et al. 2006; Kalnis et al. 2007], or can be derived
implicitly based on the adversary’s knowledge (as for SpaceTwist in Section 4.2).

Definition 3.1. The privacy region Ψ of a user is defined as a set such that: Ψ con-
tains the user’s exact location q, and the adversary cannot distinguish q from other
locations in Ψ.

Next, we introduce an essential concept called location collision privacy. In this
model, the adversary is given κ (an integer) resource units and allowed to pick a set Ψ′

of κ distinct points from the privacy region Ψ. The region Ψ is said to be unsafe if the
adversary’s picked set Ψ′ contains the user’s exact location q. We then formulate this
definition as follows.

Definition 3.2. A region Ψ is said to be location-collision-resistant if for any positive
integer κ, there exists a set Ψ′ of κ points such that q /∈ Ψ′ and Ψ′ ⊂ Ψ.

Observe that any connected privacy region (say, Ψconn) is collision-resistant because,
for any κ, we can always pick κ distinct points from Ψconn such that they are different
from q. In contrast, any discrete privacy region (say, Ψdis) is not collision-resistant
because it fails to satisfy the condition of Definition 3.2 when κ = |Ψdis|. E.g., the
dummy query in Figure 2d cannot survive from 4 location guesses by the adversary.
Thus, we eliminate discrete privacy region (e.g., dummies) from further consideration
in this paper.

We attempt to define the privacy value of the user based on the proximity between
the actual user location q and other locations in Ψ. Intuitively, the privacy value of Ψ
is high if most of the adversary’s picked locations (from Ψ) are located far away from q.
Thus, we quantify the privacy value as the average distance from a location (uniformly
distributed) in Ψ to the user’s actual location q:

Definition 3.3. Let q be a user location and Ψ be a privacy region. The privacy value
Υ(q,Ψ) of q and Ψ is given as follows:

Υ(q,Ψ) =

∫
z∈Ψ

dist(z, q) dz∫
z∈Ψ

dz
(1)

Extension for Advanced Constraints and Preferences.
The above definition of the privacy value is built on the basic assumption that each
location in the inferred region Ψ is equally probable of being the actual user location.
Our privacy model can be adapted to take into account complex features: (i) spatial
domain constraints (e.g., excluding low density regions such as forests and lakes from
the space) and (ii) user preferences (e.g., a user requires low privacy at work and high
privacy when visiting a clinic). In such scenarios, we employ a weighting function ω :
R2 → R+. The value of ω(z) can be set to a high value when the location z warrants
additional privacy, e.g., is a clinic, the user’s home, or another sensitive location. With
the function ω(·), we define the conditional privacy value Υcond(q,Ψ) of q as follows.

Υcond(q,Ψ) =

∫
z∈Ψ

dist(z, q) · ω(z) dz∫
z∈Ψ

ω(z) dz
(2)

4. SPACETWIST: INCREMENTAL PROCESSING
We propose an algorithm that computes exact kNN query results in an incremental
fashion while affording the user location privacy. We assume only a simple client-

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:12 M. L. Yiu et al.

server architecture, and we assume that the server indexes the dataset P by an R-
tree [Guttman 1984] and supports incremental nearest neighbor retrieval [Hjaltason
and Samet 1999]. We consider the snapshot kNN query [Mokbel et al. 2006; Kalnis
et al. 2007], leaving continuously-moving queries [Chow and Mokbel 2007; Xu et al.
2010] for future work.

In this paper, we assume that the server evaluates queries correctly and it does not
report altered result to the client. This issue is orthogonal to our study, and it can
be achieved by existing query authentication method [Yang et al. 2009] that verifies
the correctness of the query result reported from an untrusted server. These methods
consider the owner OP of the dataset P , who builds an authenticated index on the
dataset, before distributing it to the server. Upon receiving a query, the server not only
computes the query result, but also derives a verification object from the authenticated
index as a proof of the result correctness. The client then verifies the correctness of the
query result based on the verification object. In our problem setting, the dataset P
is public (e.g., restaurant locations) and its authoritative data owner OP could be the
government’s business registration department, which is usually an entity different
from the server. For the sake of generality, we also consider the case where the data
owner is the same as the server. In this scenario, the server could request a certification
authority (CA) to build the authenticated index on P . The client trusts the CA and uses
its public key for the verification process.

We now offer an overview of our technique in Figure 3. Instead of sending the actual
user location q to the server, the client sends an anchor (a “fake” location) q′ and then
iteratively requests data points from the server in ascending distance order [Hjaltason
and Samet 1999] from the anchor. The supply space centered at the anchor is the
part of space already explored. The demand space denotes the space to be covered
before the client is guaranteed to be able to produce an accurate result. The client
knows both the demand space and the supply space, whereas the server knows only the
supply space. In the beginning (see Figure 3a), the demand space equals the domain
space, and the supply space is empty. As points are retrieved from the server, the
supply space expands. When a retrieved point p is the closest point to the client seen
so far, the results are updated, and the demand space shrinks. When the supply space
eventually covers the demand space (see Figure 3b), it is termed final, and the client
is guaranteed to be able to produce an accurate result. The communication cost of our
solution is measured as the total number of points received by the client — a platform-
independent measure. Detailed discussion on the transmission of results can be found
in Section 3.1 (and Appendix A).

Following the above overview, Section 4.1 describes the client-side algorithm. Sec-
tion 4.2 analyzes the location privacy achieved, and Section 4.3 presents a visualiza-
tion of the privacy region by means of primitive geometric shapes.

4.1. The SpaceTwist Client-Side Algorithm
We proceed to present the client-side algorithm for accurate kNN retrieval. We use the
notation dist(q, p) to denote the Euclidean distance between points q and p.

The client (i.e., the user) executes Algorithm 1 to obtain its k nearest objects from
the server (i.e., the query processor). The anchor location q′ is first sent to the server.
The user’s actual location q is known only by the client. Intuitively, if q and q′ are close
then few objects are retrieved (i.e., low cost), but less location privacy is achieved. We
will present a procedure for selecting an appropriate q′ in Section 5.5.

A max-heap Wk, initialized with k virtual objects, maintains the k nearest objects
(of q) seen so far. Let γ be the maximum distance in Wk. The demand space is then the
circle with radius γ and center q (see Line 3). Let τ be the largest distance between
q′ and any object examined so far. The supply space is then the circle with radius τ

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:13

demand space

supply space

anchor

demand space

supply space

anchor

(a) the beginning (b) the end

Fig. 3. Demand Space and Supply Space

Algorithm 1 Space Twist Client (for kNN query)
algorithm SpaceTwistClient(Value k, Point q, Point q′)

1: Wk ← new max-heap of pairs 〈p, dist(q, p)〉;
2: insert k pairs of 〈NULL,∞〉 into Wk;
3: γ ← the top distance of Wk; . kth best distance from q
4: τ ← 0; . furthest distance seen from q′

5: send an INN query with q′ to the server;
6: while γ + dist(q, q′) > τ do
7: p← get the next point from the server;
8: τ ← dist(q′, p); . update supply space
9: if dist(q, p) < γ then . check demand space
10: update Wk (and γ) by using p;
11: terminate the INN query at the server;
12: return Wk;

and center q′ (see Line 4). Next, the server is requested to return incremental nearest
neighbors (INNs) of q′.

In Line 7, the client retrieves the next INN (of q′) from the server. The distance τ
is updated to be the furthest distance between q′ and the retrieved point p. We then
check whether dist(q, p) is less than γ (i.e., whether q is closer to p than some object in
Wk). If so, then Wk and γ are updated. According to Lemma 4.1, the loop continues as
long as γ+dist(q, q′) > τ . Finally, the client returns the result set Wk after terminating
the INN query at the server.

LEMMA 4.1. Termination condition.
If γ + dist(q, q′) ≤ τ then the kth nearest object (say, p?) of q has been retrieved.

PROOF. Since the upper pound of the distance between p? and q is γ, the upper
bound on its distance to q′ is γ + dist(q, q′), according to the triangular inequality.
Based on the property of incremental nearest neighbor retrieval [Hjaltason and Samet
1999], all objects within distance τ from q′ have been seen. Thus, we conclude that p?
has already been retrieved.

Example.
Figure 4 exemplifies the algorithm for the case k = 1. When we discover point p1 (see
Figure 4a), we set the best result to p1 and define the demand space (light gray area)
around q as well as the supply space (dark gray area) around q′. Next, in Figure 4b,
point p2 is discovered and the supply space expands. Since q is closer to p2 than the
previous result (i.e., p1), the best result is updated to be p2 and the demand space

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:14 M. L. Yiu et al.

shrinks. Then point p3 is retrieved (see Figure 4c), and the supply space grows. As the
supply space encloses the demand space, the algorithm terminates and returns p2 as
the nearest neighbor of q.

q

q'

p
1

γ τ

 q

q'

p
1

p
2

γ

τ

q

q'

p
1

p
2 p

3

γ τ

(a) first point (b) second point (c) third point

Fig. 4. Query Processing Example

We observe that, based on the given parameters k, q, and q′, the algorithm computes
the exact result and terminates without requesting unnecessary points from the server,
due to Lemma 4.1.

4.2. Privacy Analysis
This section studies how an adversary is able to infer the possible locations of the
user. We assume that the adversary knows: (i) the anchor q′ and the value k, (ii) the
points reported by the server, and (iii) the termination condition of Algorithm 1. As
we assume a simple client-server architecture, the concept of K-anonymity [Sweeney
2002; Mokbel et al. 2006] is inapplicable.
Privacy Properties of SpaceTwist.
We denote a possible user location by qc in order to distinguish it from the actual user
location q. For now, we consider qc as a random variable of q while fixing the parameters
k and q′ at some given values.

Note that the anchor q′ deterministically defines the order in which data points are
retrieved from the server via the INN query. Thus, the SpaceTwist client-side algo-
rithm is deterministic, meaning that the same input parameter q always yields exactly
the same sequence of points received from the server. The number of received points
must be an integer between 1 and N .

Since SpaceTwist is deterministic, we can conceptually define a function ℵ(qc) : R2 →
[1, N] that returns the number of points received for the query point qc. We use this for
defining the privacy region Ψq′,k(m) as the set of all possible query locations such that
exactly m points are retrieved from the server:

Ψq′,k(m) = {qc ∈ R2 | ℵ(qc) = m}

Observe that Ψq′,k(m) constitutes a partitioning of the space domain for different
values of m. In other words,

⋃
m∈[1,N] Ψq′,k(m) is equal to the space domain, and

Ψq′,k(m) and Ψq′,k(m′) are disjoint for m 6= m′.
In the following, we discuss how to formulate the region Ψq′,k(m) by utilizing in-

equalities.
Formulation of Privacy Region by Inequalities.
Let m be the number of points received by the client and let the points received in the
order of their retrieval be p1, p2, . . . , pm. Since the algorithm did not terminate at the

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:15

final point received, we have:

dist(qc, q
′) +

k
min

1≤i≤(m−1)
dist(qc, pi) > dist(q′, p(m−1)) , (3)

where the middle term represents the kth smallest distance of the first (m − 1) points
from qc.

The adversary knows the last point leading the algorithm to terminate. Thus, the
adversary deduces:

dist(qc, q
′) +

k
min

1≤i≤m
dist(qc, pi) ≤ dist(q′, pm) (4)

Clearly, a possible user location qc must satisfy both inequalities above.
While region Ψ can be inferred by both the user and the adversary, only the user can

derive the privacy value Υ(q,Ψ), as q is required in Equation 1.
Since Ψ does not have closed-form expression in the general case, its derivation is

non-trivial. Monte Carlo methods can be used for approximating Ψ, by randomly gen-
erating candidate locations for qc and checking them against inequalities 3 and 4.

Recall from Section 3.1 (and Appendix A) that in the Non-blocking implementation
of the incremental NN search,m represents the number of points received by the client
and m′′ represents the total number of points sent by the server. Further, we defined
β∗ = m′′−m be their difference. In general, the adversary, as an observer of the server,
knows only m′′ and an estimate of β∗ (in the range [β−, β+]), as discussed in Section 3.1
(and Appendix A. Instead of knowing the exact m value, the adversary can only deduce
the possible range of m to be: [m′′ − β+,m′′ − β−]. In order to capture this scenario, we
replace m− 1 by m′′ − β+ − 1 and m by m′′ − β− in Equations 3 and 4, respectively.
Exact Privacy Region Derivation.
Fortunately, we have found a closed-form expression for Ψ for the case of k = 1. For
each retrieved point pi, we can derive Vor(pi), its Voronoi cell [Okabe et al. 2000] with
respect to all retrieved points. Observe that pi is the NN of any location qc inside
Vor(pi). Furthermore, the possible location of qc is constrained by the termination con-
dition of the algorithm. Figure 5a depicts the final supply space as the circle with
radius dist(q′, pm) and center at the anchor q′. Termination occurs when the supply
space covers the demand space:

dist(qc, q
′) + dist(qc, pi) ≤ dist(q′, pm)

Definition 4.2. Elliptical region.
Given the anchor point q′ and two retrieved points pi and pj (where i < j in the re-
trieval order), we define F (q′, pi, pj) as an elliptical region such that (i) its foci are q′
and pi, and (ii) any point on the border of the elliptical region has its sum of distances
to the foci being equal to dist(q′, pj).

The set of locations satisfying this inequality can be expressed as an elliptical region
F (q′, pi, pm) (shown in gray in Figure 5a) with foci q′ and pi, where any point on the
border has its sum of distances to the foci being equal to dist(q′, pm).

Similarly, we obtain F (q′, pi, pm−1), the elliptical region with pm replaced by pm−1.
Since the algorithm did not terminate at point pm−1, we exclude F (q′, pi, pm−1) from
the possible region, as shown in Figure 5b.

Combining the above with the Voronoi cell Vor(pi), the inferred privacy region is
given by:

Ψ =

m⋃
i=1

V or(pi) ∩ (F (q′, pi, pm) \ F (q′, pi, pm−1))

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:16 M. L. Yiu et al.

q'

pi
dist(q' p)dist(q , pm)

F(q' , pi , pm)

pi

q'

F(q' , pi , pm–1)
(a) supply space constraint (b) privacy region

Fig. 5. Inferring a Privacy Region

4.3. Visualization of Privacy Region
We apply the above derivation to a dataset in order to visualize the inferred privacy re-
gion Ψ. Figure 6a shows the anchor location q′ and m = 6 retrieved points p1, p2, . . . , p6,
whose associated ellipses are shown using the symbols ♦, +, �, ×, O, and ∗, respec-
tively.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

p1
p2

p3

p4

p5

p6

anchor

ELP (6)

ELP (5)

ELP (4)

ELP (3)

ELP (2)

ELP (1)

Reported

Anchor

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Psi (6)

Psi (5)

Psi (4)

Psi (3)

Psi (2)

Psi (1)

Reported

(a) elliptical regions, m = 6 (b) privacy regions, m ∈ [1, 6]

Fig. 6. Visualization of Inferred Privacy Regions

Following the notation from Section 4.2, each point pi is used to derive its outer
elliptical region F (q′, pi, pm) and its inner elliptical region F (q′, pi, pm−1). For in-
stance, the point p3 is used to derive its outer (�) elliptical region F (q′, p3, p6)
and inner (�) elliptical region F (q′, p3, p5). By taking the intersection of the region
F (q′, p3, p6) \F (q′, p3, p5) with the Voronoi cell of p3 (not shown here), we obtain the set
of possible user location qc such that it takes p3 as its nearest neighbor and causes the
algorithm to terminate after receiving p6.

It is worth noticing that for point p5, the inner (O) elliptical region F (q′, p5, p5) degen-
erates to a line. Also, for point p6, the outer (∗) elliptical region F (q′, p6, p6) degenerates
to a line, whereas its inner elliptical region F (q′, p6, p5) is undefined.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:17

Figure 6b depicts, for each value m ∈ [1, 6], the corresponding inferred privacy region
when the algorithm terminates after receiving the m-th point. For instance, the region
marked by ∗ corresponds to the inferred privacy region at m = 6, and it resembles
the shapes of elliptical regions shown in Figure 6a. All possible query locations in that
privacy region have the same behavior from the perspective of the server—they trigger
the algorithm to terminate after receiving point p6. In Figure 6b, the inferred privacy
region at m = 5 (4, 3, 2, 1) is indicated by regions marked by different symbols, as
listed in the figure’s legend.

5. COMMUNICATION COST ANALYSIS
We proceed to analyze the communication cost incurred by SpaceTwist. Our objective
is to derive the expected number of points m reported by the server to the client. This
enables the selection of an appropriate location for the anchor q′ that satisfies a given
communication cost budget.

We first employ a stochastic process for concisely representing the distribution of
data points in Section 5.1, next apply a radial simulation technique to model the be-
havior of SpaceTwist in Section 5.2, and then derive the expected communication cost
in Section 5.3. Our stochastic analysis is restricted to the case with parameter values
k = 1 and a 2D point dataset with a uniform distribution.

For any arbitrarily distributed dataset, we exploit a spatial histogram for estimating
the communication cost in Section 5.4, and then present an efficient client-side anchor
selection procedure based on communication cost budget in Section 5.5. We also discuss
how to utilize our cost model for limiting the server cost of the SQL implementation of
SpaceTwist in Section 5.6.

5.1. Definitions and Properties
For the sake of our analysis, we first introduce notation for the areas of a region and
a circular region. Recall that R represents the set of real numbers and R2 denotes
the two-dimensional space with real-valued coordinates. We use |BR| to represent the
area of a bounded region BR ⊂ R2. Let �(w, r) be the circular region with center w and
radius r. Formally, we have:

�(w, r) = {w′ ∈ R2 | dist(w′, w) ≤ r}

Several data distributions are needed for the analysis. We denote the uniform distri-
bution on a bounded set A ⊂ R by Uni(A); the exponential distribution on the positive
half-line (0,∞) by Exp(µ), where 1/µ > 0 is the mean value; the gamma distribution
on (0,∞) by Γ(α, γ), where α > 0 is the shape parameter and γ > 0 is the inverse scale
parameter (i.e., the mean value is α/γ, and Γ(1, µ) = Exp(µ)); and the beta distribution
on (0, 1) by B(α1, α2), where α1 > 0 and α2 > 0 are the shape parameters.

We say X ∼ D when the random variable X has the probability distribution D. For
instance, the expression Ui ∼ Uni((0, 1)) means that the random variable Ui has the
uniform probability distribution on the range (0, 1).

In probability theory, a planar point process is a random countable subset of R2.
Throughout the analysis, we adopt the stationary Poisson process, which is a natu-
ral and basic point process that can be utilized for constructing more advanced point
process models [Møller and Waagepetersen 2004]. In addition, this model eliminates
boundary effects, which renders the subsequent mathematical analysis easier to un-
derstand.

In particular, we consider an infinite set of data points Φ = {p1, p2, p3, . . .} in R2 that
conforms the stationary Poisson model with an intensity parameter ρ > 0. This model
has the following properties [Kingman 1993]:

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:18 M. L. Yiu et al.

— For any bounded region BR ⊂ R2, the points in Φ ∩ BR are independently and uni-
formly distributed in BR.

— For any bounded region BR ⊂ R2, the expected number of points in Φ∩BR is ρ · |BR|.
This number follows a Poisson distribution.

— The model is stationary, meaning that the distribution of Φ is invariant under arbi-
trary translation in R2.

— The model is isotropic, meaning that the distribution of Φ is invariant under arbitrary
rotation at q′ in R2.

Let l = dist(q, q′) be the distance between the anchor q′ and the user location q.
Due to the stationarity and isotropy of Φ, we set q and q′ as follows, without loss of
generality.

q′ = (0, 0), q = (l, 0) (5)

This simplifies the mathematical exposition to follow.

5.2. Radial Simulation Technique
We proceed to discuss a simulation technique that generates the elements of set Φ
such that it follows the stationary Poisson distribution. Specifically, Quine and Watson
[1984] propose a radial simulation technique for this purpose. The process of radial
simulation and its property are captured by the following theorem.

THEOREM 5.1. Consider independent random variables θ1, U1, θ2, U2, . . ., where
θi ∼ Uni([0, 2π)) and Ui ∼ Uni((0, 1)). We set

Si = − 1

πρ
lnUi, i = 1, 2, . . . , (6)

where ln denotes the natural logarithm, and we let

R0 = 0, Ri =
√
R2
i−1 + Si, i = 1, 2,

Then pi = (Ri cos θi, Ri sin θi), i = 1, 2, . . ., constitute the radially ordered points of a
stationary Poisson process with intensity ρ.

By definition the sequence of radiiRi is increasing (and strictly increasing with prob-
ability one), and the squared radii R2

i form a homogeneous Poisson point process on the
positive half-line (0,∞), and this point process is independent of the point process of
the angular coordinates θ1, θ2, Moreover, the Si are independent and identically
distributed, with Si ∼ Exp(πρ).

The following lemma shows the properties of the first m data points generated by
the radial simulation technique, namely that these m points considered without their
radial ordering are independent and uniformly distributed in the region �(q′, Rm+1).
Thus, the (first m) points generated by the radial simulation technique effectively cap-
ture the characteristics of the points returned by the SpaceTwist client-side algorithm.

COROLLARY 5.2. Properties of radial simulation technique.
Following straightforwardly from Theorem 5.1, we have the following properties for any
m ∈ N:

(1) R2
m ∼ Γ(m,πρ) is independent of θm ∼ Uni([0, 2π)).

(2) Conditional on Rm+1 = r, the set {p1, p2, . . . , pm} is a binomial point process, i.e.,
these m unordered data points are independent and uniformly distributed in the
region �(q′, r).

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:19

5.3. Stochastic Communication Cost Analysis
We are now able to analyze the communication cost of SpaceTwist (see Algorithm 1).
For the moment, we consider both q and q′ as fixed points.

Let the point pj be the point accessed by the algorithm in its jth iteration. We define
the current supply space as:

Sj = �(q′, Rj) ,

where Rj = dist(pj , q
′) is the distance between the last received point and q′. Then we

define the current demand space as:

Dj = �(q, R̃j) ,

where R̃j = min1≤i≤j dist(pi, q) is the (smallest) nearest neighbor distance from q seen
so far.

By Corollary 5.2, with probability 1, the sequence R1, R2, . . . increases strictly to-
wards infinity, causing the sequence of supply spaces to expand, i.e., S1 ⊂ S2 ⊂
Further, the sequence R̃1, R̃2, . . . decreases, so the sequence of demand spaces shrinks,
i.e., D1 ⊇ D2 ⊇ The communication cost M is then given by:

M = min{j ∈ N | Dj ⊆ Sj}

The capital letter M is used to stress that this is a random variable that depends on
the points q and q′ and the distribution of the data points. Our task is to derive the
distribution of M and in particular its expected value E(M) and variance V(M). The
following is a special case of results derived in Møller and Yiu [2010].

THEOREM 5.3. The communication cost M has probability distribution

Pr(M = m) =

∫ ∞
0

(
α2 + 2α

√
s
)m−2

(m− 2)!
e−(α2+2α

√
s+s) ds, m = 2, 3, . . . (7)

and mean and variance given by

E(M) = α2 +
√
πα+ 2, V(M) = (5− π)α2 +

√
πα,

with α =
√
πρ l.

PROOF. See Theorem 1 in Møller and Yiu [2010].

Let erf(α) = (2/
√
π)
∫ α

0
exp(−t2) dt be the ‘error function’. Then Equation 7 gives

P(M = 2) = exp(−α2) + α
√
π(erf(α)− 1),

which strictly decreases from one to zero as α decreases from zero to infinity. We have
also evaluated the integral in Equation 7 for m = 3, 4, . . . using the computational
software program Maple, but since the number of terms increases fast as m increases,
we omit the results here.

5.4. Communication Cost for Arbitrary Data Distributions
In this section, we utilize a spatial histogram to capture the distribution of the dataset
P . Based on the histogram, we develop a client-side technique that estimates the com-
munication cost for a given query location q and an anchor location q′.

The distribution of a point dataset P can be summarized concisely by a spatial his-
togram [Acharya et al. 1999], which partitions the domain space into bins. Each bin
represents a spatial region and records the count of points in P that fall into its region.
Figure 7 shows a simple equi-width spatial histogram with 5×5 bins. The count of each

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:20 M. L. Yiu et al.

bin is also shown in the figure. For instance, the top-right-most bin has the rectangle
[0.8, 1.0)× [0.8, 1.0) as its spatial region and has count 5.

Spatial histograms have been applied for the estimation of the result sizes of spatial
range queries. The so-called MinSkew histogram [Acharya et al. 1999] incurs smaller
estimation errors than other histograms, given the same number of bins. It is thus the
state-of-the-art histogram.

Let H be the spatial histogram of the dataset P . To facilitate the estimation pro-
cedure, the client needs to request the histogram H from the server. This incurs only
small communication overhead as the typical number of bins in H is small.

Figure 8a illustrates how the communication cost of SpaceTwist is estimated for the
given anchor q′. Let γ̂ be the estimated kNN distance of the original query location q,
i.e., the distance from q to its kth nearest neighbor in P . Its value can be estimated from
H by applying the estimation technique of Tao et al. [2004]. When SpaceTwist termi-
nates, the supply space covers the demand space. Thus, we derive τ̂ = γ̂ + dist(q, q′) as
the estimated supply space radius. Let �(q′, τ̂) be the circle centered at the anchor q′
and with radius τ̂ . Let m̂ be the estimated number of points in the circle �(q′, τ̂), i.e.,
estimated communication cost. Its value can be estimated from H by the estimation
technique of Acharya et al. [1999]. The above estimation procedure is summarized in
Lines 6–8 of Algorithm 2.

y

0 0 0 0 5

y
1.0

0 0 0 0 5
0 5 0 0 10

10 10 0 0 5
0.6

0.8

10 10 0 0 5
0 10 15 5 5
0 0 0 15 5

0.2

0.4

0 0 0 15 5 x
0 0.2 0.4 0.6 0.8 1.0

Fig. 7. Spatial Histogram


(q,)



dist(q,q')q' q


(q,)

(q q)

(q',)

q'

q

�(q',τmax)

�(q,γmax)

τmax

γmax

(a) cardinality estimation (b) limiting cost

Fig. 8. Using a Spatial Histogram for Cost Estimation

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:21

Algorithm 2 Cost-Estimation
algorithm Cost-Estimation(Value k, Point q, Budget m∗)

1: q′ ← a random location;
2: distanclb ← 0;
3: distancub ← the maximum distance of the spatial domain;
4: retrieve the spatial histogram H of the dataset P from the server;
5: repeat
6: γ̂ ← the estimated kNN distance of q; . Apply [Tao et al. 2004] on H
7: τ̂ ← γ̂ + dist(q, q′);
8: m̂← the estimated cardinality in �(q′, τ̂); . Apply [Acharya et al. 1999] on H
9: if m̂ < m∗ then
10: distanclb ← dist(q, q′);
11: else if m̂ > m∗ then
12: distancub ← dist(q, q′);
13: d′ ← (distanclb + distancub)/2;
14: q′ ← q + (q′ − q) · d′

dist(q,q′) ;
15: until |m̂−m∗| ≤ δ
16: return the point q′;

5.5. Anchor Generation Based on a Communication Cost Budget
Next, we use the technique from the previous section for generating a suitable anchor
q′ based on a given communication cost budget m∗. Specifically, we present a client
procedure for generating an anchor q′ such that its estimated number of retrieved
points m̂ is sufficiently close to m∗, i.e., the absolute difference between m̂ and m∗ is
below a certain threshold δ.

This problem can be solved by applying the bisection method in multiple rounds—
see Algorithm 2. Initially, the client picks a random location q′, then sets the lower-
bound anchor distance distanclb to 0, and sets the upper-bound anchor distance distancub
to the maximum distance in the spatial domain.

In each round, the client runs Algorithm 2 to obtain the estimated cost m̂. If m̂
is smaller than m∗, the client updates distanclb to dist(q, q′). If m̂ is greater than m∗,
the client updates distancub to dist(q, q′). After that, the client moves q′ towards/away
from q by updating dist(q, q′) to distanc

lb +distanc
ub

2 . The above process is repeated until the
estimated cost is sufficiently close to the budget m∗.

As a remark, Algorithm 2 is efficient, and convergence occurs in 10 iterations.
Correctness and Privacy When Using a Spatial Histogram.
The algorithm just presented needs to retrieve the spatial histogram H of the dataset
P from the server. This prompts two new questions:

— How does the client detect whether the server returns a genuine histogram?
— Can the server exploit the histogram and Algorithm 2 to deduce the user’s location?

We consider each question in turn in two settings. In the first, the spatial dataset
originates from a separate data owner (see the beginning of Section 4). In this setting,
the data owner can compute the histogram and attach a digital signature to it before
sending it to the server. When the client receives the histogram from the server at
query time, it can easily verify the correctness of the histogram by using its digital
signature and the data owner’s public key.

In the second setting, the histogram is built by the server, and no digital signature
is available. We then assume that the adversary is aware of the approximate location
of the client q. As this can be difficult for the adversary to obtain, this is a worst-case
assumption. The adversary could then manufacture dense histogram buckets near q.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:22 M. L. Yiu et al.

Due to the budget constraint, the client tends to choose a location for q′ that is close
to q, so this may reveal considerable location information for q. This problem can be
detected as follows. When the client retrieves fewer points than the estimated number
from the histogram, it regards the server as malicious and can then apply the delayed
termination technique (to be discussed in Section 6.3). The client then keeps retrieving
points from the server until its budget is spent, in order to obfuscate its actual location.

Considering the second question, we find that the histogram does not help the server
deduce the user’s actual location q. As described in Section 4.2, after the execution of
SpaceTwist, the server already knows the anchor point q′, the value of k, and the com-
munication cost m∗. The server can then derive the inferred privacy region Ψq′,k(m∗)
(see Equation 3), which represents the set of all possible query locations such that the
server returns exactly m∗ points. Even if the server knows the histogram and Algo-
rithm 2, the server still cannot eliminate any possible query location from Ψq′,k(m∗),
according to Lemma 5.4.

LEMMA 5.4. Privacy of anchor generation.
Given the value of k, the communication cost budget m∗, the generated anchor q′ of
Algorithm 2, and the spatial histogram H, any location qc in Ψq′,k(m∗) could have been
the actual query location q.

PROOF. By the definition of Ψq′,k(m∗) (see Equation 3), any possible location qc ∈
Ψq′,k(m∗) causes SpaceTwist to return m∗ points. Observe that Algorithm 2 generates
an anchor q′ from the actual query point q, so that its estimated cost on the histogram
H equals the communication cost budget m∗. Thus, any possible location qc ∈ Ψq′,k(m∗)
could have been the input query location q of Algorithm 2.

5.6. Limiting the Cost of the SQL Implementation
Recall that our server-side functionality can be implemented by a SQL query. The
computational effort of the server can be significantly reduced by including the “LIMIT
m” clause4 into the SQL query of Section 3.1, where m is (an upper bound on) the
number of data points to be retrieved by the client.

To achieve this, we use a spatial histogram to compute a tight upper-bound on m.
Our technique consists of three steps. Consider the spatial histogram of Figure 8b
as an example and let k = 1. First, the client finds the bin such that its maximum
distance γmax to q is minimized. That bin is shown in dark gray. Observe that the circle
�(q, γmax) is guaranteed to enclose the actual NN of q. Second, the client formulates
the supply space as the circle �(q′, τmax), where τmax = γmax + dist(q′, q). Third, the
client finds the total count of bins (shown in light gray) whose extents intersect with
�(q′, τmax). This total count is used as an upper bound on the communication cost m. It
guarantees that all points within �(q′, τmax) will be retrieved and thus that the client
will compute the correct result.

The above technique is applicable to arbitrary k, by modifying the first step to find
the subset of bins such that: (i) the sum of their counts is at least k, and (ii) their
maximum distance to q is minimized.

6. EXTENSIONS
We present four extensions to SpaceTwist. Section 6.1 studies a granular search tech-
nique that reduces the communication cost by relaxing the result accuracy. Section 6.2
presents an incremental ring ranking technique that aims to reduce the communi-
cation cost without compromising the result accuracy. Section 6.3 proposes a delayed

4Different RDBMS products provide this functionality using slightly different syntax, e.g., “TOP” for MS-
SQL Server, “LIMIT” for MySQL, and “ROWNUM” for Oracle.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:23

termination strategy capable of enhancing the privacy value in a dynamic manner.
Section 6.4 applies SpaceTwist to querying data points constrained to a road network.

6.1. Granular Search
We proceed to equip SpaceTwist with a server-side granular search technique that is
capable of retrieving data points from the server with a user-specific granularity. This
technique enables communication cost reduction and location privacy improvement
while providing strict guarantees on the accuracies of the query results. First, we de-
scribe granular search for the case k = 1. Then we examine its implementation and
extension to arbitrary k. Finally, we discuss how to implement granular search using
SQL on a conventional DBMS.

Recall that the client-side algorithm requests data points from the server in ascend-
ing order of their distance to anchor q′. For the example in Figure 9a, the server returns
points in the order: p1, p2, p3, p4. Although p4 is the actual NN of q, this point cannot be
obtained early by the client.

q

q'

p
1

p
4

p
2

p
3

q

q'

p
1

p
4

p
2

p
3

 λλλλ
(a) set of points (b) grid cells

Fig. 9. Granular Search

The communication cost can be reduced by returning only a sample of the reported
data points. A threshold ε is then introduced for controlling the result accuracy:

Definition 6.1. ε-relaxed kNN query.
Given a point set P , a distance threshold ε, and a location q, a point p ∈ P is said to
be an ε-relaxed kNN of q when dist(q, p) ≤ ε + minkp′∈P dist(q, p

′), where the last term
represents the distance between q and its kth NN in P .

The idea behind granular search is to impose a grid (with cell extent λ) on the do-
main space, as shown in Figure 9b. When the server iteratively retrieves incremental
nearest neighbors of anchor q′, it disregards points in a grid cell from which a point
has already been reported. To ensure that the query result is an ε-relaxed NN of q, it
suffices to set the cell extent λ to ε/

√
2, as shown in the lemma below.

LEMMA 6.2. Result distance guarantee.
Consider a regular grid with cell extent λ. Let p? be the actual NN of q and p′ be the
retrieved NN of q. It holds that dist(q, p′) ≤ dist(q, p?) +

√
2 · λ.

PROOF. In case p? has been retrieved, the inequality holds trivially (by setting p′ to
p?).

Otherwise, p? has not been retrieved. Thus, a point p′′ in the cell of p? must have been
retrieved. The maximum possible distance between p and p′′ is the diagonal length of
the cell, i.e.,

√
2 · λ. From the triangular inequality, we obtain dist(q, p′′) ≤ dist(q, p?) +

dist(p?, p
′′) ≤ dist(q, p?) +

√
2 · λ. Since p′ is the retrieved NN of q, we have dist(q, p′) ≤

dist(q, p′′), completing the proof.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:24 M. L. Yiu et al.

Continuing with the example in Figure 9b, the server first sends point p1 to the
client. Since p2 and p3 fall in the cell of p1, they are disregarded. Finally, p4 is reported
to the client. In this example, the communication cost drops from 4 to 2 data points.

We provide the following guidelines for the client to choose the values for ε and q′. It
is intuitive to set the error bound ε = vmax · ∆tmax, according to the maximum speed
vmax of the user and the maximum travel time delay ∆tmax acceptable by the user. For
instance, a typical value for ∆tmax may be 5 minutes and the value of vmax depends on
the user’s mode of transportation (e.g., walking, bicycling, driving).

The anchor q′ can be determined by the algorithm presented in Section 5.4. The only
difference is that we need to use a spatial histogram that captures the data distribution
of the points considered by the granular search.
Granular Search Using an LBS Server.
We proceed to consider the implementation of the above method. Algorithm 3 shows
our granular incremental NN algorithm, which takes the user-specified error bound
ε as input. A conceptual grid with cell extent λ (= ε/

√
2) is imposed on the returned

points during runtime. The algorithm also takes an R-tree R (indexing the data points)
and an anchor q′ as arguments. The notation mindist(q′, e) (maxdist(q′, e)) represents
the minimum (maximum) possible distance between q′ and an R-tree entry e [Rous-
sopoulos et al. 1995; Hjaltason and Samet 1999]. Next, Cλ(p) denotes the cell contain-
ing point p.

Algorithm 3 Granular Incremental NN
algorithm GranularINN(R-Tree R, Point q′, Value ε)

1: λ← ε/
√

2;
2: H ← new min-heap (mindist to q′ as key);
3: V ← new set; . cells of reported points
4: for all entries e ∈ R.root do
5: insert 〈e,mindist(q′, e)〉 into H;
6: while H is not empty do
7: deheap 〈e,mindist(q′, e)〉 from H;
8: remove each cell c from V satisfying

maxdist(q′, c) < mindist(q′, e);
9: if e is not covered by the union of cells in V then
10: if e is a point p then
11: report p to the client;
12: V ← V ∪ {Cλ(p)};
13: else
14: read the child node CN ′ pointed to by e;
15: for all entries e′ ∈ CN ′ do
16: insert 〈e′,mindist(q′, e′)〉 into H;

The algorithm applies INN search to anchor q′, with two modifications: (i) a set V is
employed (Line 3) for tracking the grid cells of the reported points (Line 12), and (ii)
only qualifying entries that are not covered by the union of cells in V are processed
further (Line 9).

Figure 10b illustrates the use of granular NN search on the example in Figure 10a.
An R-tree is assumed, the root of which contains the three entries e1, e2, and e3, each of
which points to a leaf node. Each cell is marked by a bold label ci. The algorithm first
examines the root of the R-tree, inserting entries e1, e2, and e3 into heap H. Next, e1 is
deheaped and its child entries p1, p2, and p3 are inserted into H. Then, p1 is found and
reported, and its corresponding cell c3 is added to V . Next, p2 is found and reported,

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:25

and its cell c1 is inserted into V . When point p3 is deheaped, it is discarded because
it falls into a cell (i.e., c1) in V . Similarly, entry e2 is discarded, as it is covered by the
union of the cells c1 and c3 in V . After that, e3 is deheaped, and its child entries p6,
and p7 are inserted into H. Cell c1 (and c3) is removed from V , as it cannot intersect
any point or entry encountered in the future. The algorithm continues until H becomes
empty or it is terminated by the client.

c
2

c
4

c
5

c
6

c
3

e
1q'

p
5

p
1

p
4

p
7

p
3

p
2

c
1

e
2

e
3

p
6

Operation Heap H Cell list V
Expand root e1, e2, e3 ∅
Expand e1 p1, p2, p3, e2, e3 ∅
Report p1 p2, p3, e2, e3 c3
Report p2 p3, e2, e3 c3, c1
Discard p3 e2, e3 c3, c1
Discard e2 e3 c3, c1
Expand e3 p6, p7 ∅
Report p6 p7 c6
Discard p7 ∅ c6

(a) locations of points (b) execution steps

Fig. 10. Granular INN Example

We observe that Lemma 6.2 can be extended to kNN search as well. The basic idea
is to keep not just one, but k points in each cell. To accomplish this, Algorithm 3 is
modified as follows. First, each cell c ∈ V is associated with a counter cnt(c). Second,
in Line 12, we check whether the cell Cλ(p) already exists in V . If so, we increment its
counter; otherwise, we insert the cell (with counter value 1) into V . Third, in Line 9,
we only consider the cells with a counter value of k.
Granular Search Using a Conventional DBMS.
We consider the implementation of granular search on a conventional DBMS.

Let the coordinates of the anchor q′ be denoted by qx′ and qy′. Let the value of λ
be lambda. We propose the following SQL query for performing granular search. For
each data point p ∈ P , the coordinates of its grid cell are represented by gx and gy,
respectively. Then we group the points based on the values of gx and gy. Next, we
order the groups in ascending order of their distances from the anchor. Finally, the
Top-k is used to return (at most) k points from each group.

SELECT TOP-k(id)
FROM P
GROUP BY ROUND(x,_lambda) AS gx, ROUND(y,_lambda) AS gy
ORDER BY (gx-_qx’)·(gx-_qx’)+(gy-_qy’)·(gy-_qy’) ASC

6.2. Communication Cost Reduction: Incremental Ring Ranking
If the exact result of the kNN query is needed, the technique of Section 6.1 cannot
be applied. Here, we propose a new server-side ranking technique that reduces the
communication cost for exact queries. This technique is inspired by an observation
that can be made from Figure 6b. The inferred privacy region is an irregular, ring-
shaped region around the anchor q′. This suggests that efforts to retrieve points near
q′ will be in vain because the adversary can learn that the user is not located at the
“center” of the ring.

This suggests that it may be possible to develop a technique for ordering the points,
such that (i) it produces inferred privacy regions with extents similar to those produced

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:26 M. L. Yiu et al.

by the original SpaceTwist algorithm, and (ii) it retrieves only the “necessary” points
close to the inferred privacy regions.
A New Server-Side Retrieval Order.
We name this technique incremental ring ranking. The client is required to specify
two input parameters: an anchor location q′ and a ring radius R. An optimal commu-
nication cost can be achieved by setting R = dist(q, q′); but other values of R may be
specified by the user.

The server now retrieves data points p in ascending order of their distance
|dist(q′, p)−R|. This can be achieved by a slightly modified incremental nearest neigh-
bor algorithm [Hjaltason and Samet 1999]. Specifically, the key of each heap entry e (in
the min-heap H) is set to the value |mindist(q′, e)−R| instead of the original distance
mindist(q′, e), where q′ is the anchor.
Modifications of the SpaceTwist Client.
Due to the new retrieval order, the client-side algorithm (Algorithm 1) also needs mod-
ification (in Lines 4, 5, and 8) such that its correctness is guaranteed.

First, the ring radius R is included as a parameter. It defines a ring that is a (hollow)
circle centered at anchor q′ and with radius R. In Line 4, the variable τ is used to
keep the furthest distance of retrieved points from the ring. In Line 5, we invoke the
incremental ring ranking method on the server side using parameters q′ and R. In
Line 8, we set τ to the absolute value |dist(q′, p)−R|.

Lemma 6.3 states the termination condition of the modified client-side algorithm,
which guarantees the correctness of the result. The condition in Line 6 is replaced by
the negated termination condition: (R− τ > dist(q′, q)− γ) or (R+ τ < dist(q′, q) + γ).

LEMMA 6.3. Termination condition of ring-based retrieval.
If R − τ ≤ dist(q′, q) − γ and R + τ ≥ dist(q′, q) + γ then the actual kth nearest object
(say, p?) of q has been retrieved.

PROOF. The distance dist(q′, q) − γ denotes the minimum possible distance of p?
from q′, whereas the distance dist(q′, q) + γ denotes the maximum possible distance of
p? from q′. Based on the property of incremental ring-based retrieval, all objects within
the distance range [R − τ,R + τ] from q′ have been seen. Since R − τ ≤ dist(q′, q) − γ
and R+ τ ≥ dist(q′, q) + γ, p? has already been retrieved.

As a corollary of Lemma 6.3, the termination condition is simplified to γ ≤ τ , for the
special case dist(q′, q) = R.
Example.
Figure 11 illustrates the modified SpaceTwist algorithm for k = 1. The user initially
submits the parameter values q′ and R to the server, requesting data points incremen-
tally in ring-based order.

In Figure 11a, the point p1 is received from the server. Value τ is set to the distance
of p1 from the ring (whose radius is R). The search space is a (dark gray) ring-shaped
region that captures any location whose distance from q′ falls into the interval [R −
τ,R+τ]. The best result is updated to be p1. Next, point p2 is retrieved (see Figure 11b).
Since q is closer to p2 than to p1, the best result is updated to be p2. The next point
retrieved is p3, as shown in Figure 11c. Since the termination condition is satisfied,
the algorithm stops and returns p2 as the result.
SQL Implementation.
The following SQL query, which is a variant of the queries presented earlier, enables
incremental ring ranking using a conventional relational DBMS:

SELECT id, x, y

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:27

q

q'

p1

γ
τ

R

q

q'

p1

τ

p2

γ
q

q'

p1

τ

p2

γ

p3

(a) first point (b) second point (c) third point

Fig. 11. Incremental Ring Ranking Example

FROM P
ORDER BY ABS((x-_qx’)·(x-_qx’) + (y-_qy’)·(y-_qy’) - _R*_R) ASC

Privacy Analysis.
We proceed to extend the privacy analysis of Section 4.2 for this modified version of
SpaceTwist.

Let qc be a possible user location, letm be the number of points received by the client,
and let the points received (in their order of retrieval) be p1, p2, . . . , pm. The inferred
privacy region Ψ is then defined by the set of all qc satisfying the two inequalities given
next.

As the algorithm did not terminate by the last point of the (m−1)st point, we obtain:

|dist(qc, q′)−R|+
k

min
1≤i≤(m−1)

dist(qc, pi) > dist(q′, p(m−1)) ,

where the middle term denotes the kth smallest distance between the first m−1 points
and qc.

Since the algorithm did terminate by the last point of the mth point, we derive:

|dist(qc, q′)−R|+
k

min
1≤i≤m

dist(qc, pi) ≤ dist(q′, pm)

6.3. Offering Privacy Guarantees by Delaying Termination
It is relevant to consider scenarios where the user specifies a privacy value thresh-
old α and requires SpaceTwist to offer such a privacy value. This section develops a
technique that provides such a privacy guarantee.

A simple heuristic is to select an anchor location q′ such that dist(q, q′) = α. Exper-
imental results (see Section 7) suggest that the measured privacy value Υ is usually
above α. However, no theoretical result exists that guarantees that the measured pri-
vacy Υ is always above α.
Delayed Termination in SpaceTwist.
To offer the above guarantee, we propose to delay the termination of the SpaceTwist
client algorithm until the measured privacy is above the required privacy value α.
The pseudo code of this modified client is shown in Algorithm 4. In comparison to the
original SpaceTwist client, it takes α as an additional parameter.

First, the set Wk is initialized to keep track of the best k objects found so far. Then
it reuses the original SpaceTwist client functionality (Lines 2–11 of Algorithm 1) in
order to retrieve the results and store them in the set Wk. In Line 3, the privacy region

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:28 M. L. Yiu et al.

Ψ is computed by using the points received. The computation of Ψ will be explained
shortly. The algorithm then checks whether the measured privacy value Υ(q,Ψ) is
below the required privacy value α. If so, it retrieves the next point from the server and
recomputes the privacy region Ψ. This process is repeated until the required privacy
is guaranteed, i.e., Υ(q,Ψ) ≥ α. After that, the algorithm terminates the INN query at
the server and reports Wk as the result to the user.

It is worth noticing that the algorithm returns the correct result to the user while
guaranteeing that the measured privacy value is above the required α.

Algorithm 4 Delayed Termination SpaceTwist Client
algorithm DelaySpaceTwistClient(Value k, Point q, Point q′, Required Privacy α)

1: Wk ← new max-heap of pairs 〈p, dist(q, p)〉;
2: apply Lines 2–11 of Algorithm 1;
3: compute the privacy region Ψ by using all received points;
4: while Υ(q,Ψ) < α do
5: p← get the next point from the server;
6: compute the privacy region Ψ by using all received points;
7: terminate the INN query at the server;
8: return Wk;

Privacy Analysis.
Using the notation from Section 4.2, we consider the derivation of the privacy region
Υ (occurs in Lines 3 and 6).

Let m be the number of received points at the moment when Υ is computed. Sup-
pose that qc is a possible user location. As the algorithm returns the correct result, the
adversary learns that qc must satisfy Inequality 4. On the other hand, since the ad-
versary does not know the value of α, it cannot determine how many of those m points
are the extra points retrieved in Line 5. Thus no additional inequalities can be used to
further constrain the possible location qc. Therefore, the privacy region Ψ is computed
as the set of all locations that satisfy Equation 4.

6.4. Application of SpaceTwist to Road Networks
We proceed to apply SpaceTwist to the context where the locations of points are con-
strained to a road network.
Graph-Based SpaceTwist.
We represent a spatial network by a graph G = (V,E), where V is a set of vertices and
E is a set of edges (i.e., pairs of vertices from V). Each edge (va, vb) is associated with a
non-negative weight w(va, vb). We assume that every edge is bidirectional. Given any
two vertices vi and vj , the network distance distG(vi, vj) denotes the sum of the weights
along the shortest path between vi and vj .

As in related work [Duckham and Kulik 2005a; 2005b], we assume for simplicity
that data points can only be located at graph vertices. However, our solution is di-
rectly applicable to a road network model with data points located on edges [Papa-
dias et al. 2003]. Figure 12a illustrates an example road network with eight vertices
(v1, v2, . . . , v8) and ten edges. For instance, the weight of the edge (v2, v4) is 3. The net-
work distance distG(v4, v7) is computed as 3 + 2 = 5. The data points p1, p2, and p3 are
located on the vertices v8, v7, and v3, respectively.

We assume that the server stores the road network G and the dataset P , and we
assume that it supports the incremental network expansion (INE) algorithm [Papadias
et al. 2003], which is an extension of Dijkstra’s algorithm that incrementally retrieves

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:29

nearest neighbors (of a given query point) with respect to the network distance. The
client side is also required to keep a copy of the road network G so that it can compute
network distances between points.

Algorithm 1 can be applied to the network space domain when replacing the Eu-
clidean distance function dist(·) by the network distance function distG(·) and replac-
ing the call to INN (in Line 5) by a call to INE. Since the network distance satisfies the
triangular inequality, Lemma 4.1 also holds for the network space.

The main advantage of our algorithm over existing work [Ku et al. 2007; Li et al.
2008; Mouratidis and Yiu 2010; Wang and Liu 2009] is that our algorithm is easy to
implement as it does not perform low-level operations (e.g., computing border intersec-
tions between the cloaked region and road segments).

v
1

3

p3

q'

q

v
2

v
5

v
3

v
4

3
2

1

6

3

4

v
9

p4

4

2

v
8

p1

p2
v

7

v
6

2

2

2

5

b

q'q

(2)

b2

8

6

3

7

b
2
.r

b
2
.c

(v
9
)

b
2
.n

(2)

(v
8
)

b1

(2)

6

b
1
.r

b
1
.c

b
1
.n

(2)

(a) road network (b) network-based histogram

Fig. 12. Network-Based SpaceTwist Example

Example.
Figure 12a demonstrates the running steps of the network-based SpaceTwist algo-
rithm for k = 1. The actual user location q is vertex v2. Assume that the client chooses
vertex v4 to be the anchor q′. The client then requests the server to return points in
ascending order of their network distances to q′.

First, the point p1 (with distG(q′, p1) = 3) is received from the server. The algorithm
updates τ to 3 and computes the network distance distG(q, p1) = 6. The best result
so far is p1, and γ is set to 6. Next, point p2 (with distG(q′, p2) = 5) is returned from
the server. The value of τ is updated to 5. Since distG(q, p2) = 4 is lower than γ, the
algorithm sets the best result to p2 and sets γ to 4. When point p3 (with distG(q′, p3) = 7)
is received, τ is updated to be 7. Now, the termination condition γ + distG(q′, q) ≤ τ is
satisfied, so the algorithm terminates and returns p2 as the result.
Privacy Analysis.
We assume that the adversary knows the road network being used by the user.
Any valid location must fall into the road network. The privacy model of Sec-
tions 3.2 and 4.2 (including Equations 1, 2, 3, and 4) is directly applicable to the
network-based SpaceTwist algorithm. It suffices to replace the Euclidean distance
function dist(·) by the network distance function distG(·).
Communication Cost Estimation and Anchor Generation.
We then extend our techniques in Sections 5.4 and 5.5 for estimating the communica-
tion cost and generating the anchor for the network-based SpaceTwist. These issues

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:30 M. L. Yiu et al.

have not been studied in existing privacy solutions on road networks [Ku et al. 2007;
Li et al. 2008; Mouratidis and Yiu 2010; Wang and Liu 2009].

In a spatial histogram, each bin has a rectangular extent, which cannot capture well
the proximity of points based on network distances. Thus, we will adopt the distance-
based representation [Ciaccia et al. 1997] for a bin in a network-based histogram.
Specifically, each bin bi is associated with its count of points bi.n, its center bi.c, and
its radius bi.r, where bi.r denotes the maximum network distance from bi.c to all data
points in bi. By Ciaccia et al. [1997], the minimum and maximum distances from a
query point q to a bin bi can be computed as follows:

mindistG(q, bi) = max{0, distG(q, bi.c)− bi.r}

maxdistG(q, bi) = distG(q, bi.c) + bi.r

Figure 12b shows a histogram for the road network in Figure 12a. This histogram
contains two bins b1 and b2. Bin b1 has 2 points, its center as v8, and its radius as
2. Bin b2 has 2 points, its center as v9, and its radius as 2. For example, the mini-
mum and maximum distances from q to bin q1 are mindistG(q, bi) = 6 − 2 = 4 and
maxdistG(q, bi) = 6 + 2 = 8.

This new histogram renders the estimation techniques in Sections 5.4 and 5.5 ap-
plicable to road networks. This involves cardinality estimation and anchor generation.
First, we briefly discuss how to estimate the count of data points within distance R
of anchor q′. Let us consider how many points in a bin bi that contribute to the esti-
mated count. If mindistG(q, bi) > R then no points in bi can contribute to the estimated
count. If maxdistG(q, bi) ≤ R then all points in bi contribute to the estimated count.
Otherwise, we estimate the contribution of bi to the estimated count as:

bi.n ·
(

R−mindistG(q, bi)

maxdistG(q, bi)−mindistG(q, bi)

)
Regarding the anchor generation in Algorithm 2, Line 1 is modified to choose a random
network vertex as the anchor q′, and Line 14 is modified to shift the location of the
anchor q′ such that its network distance from q becomes d′.

What remains is to discuss how to construct the bins in the above histogram. In
order to obtain accurate estimates, we aim at minimizing the sum of the radii of the
bins. This can be achieved by the M-tree [Ciaccia et al. 1997] which indexes data points
based on a given metric (distance function). We set its distance metric to the network
distance, and the node fanout to N/B, where N is the dataset size and B is the num-
ber of bins. We insert data points into the M-tree and use each resulting leaf node
information as a bin.
Other Extensions.
All our extensions (i.e., granular search, ring-based ranking, and delayed termination)
can be adapted to road networks.

7. EMPIRICAL EVALUATION
We evaluate five versions of SpaceTwist that employ different combinations of client-
side and server-side algorithms.

— The Basic SpaceTwist (BST) uses Algorithm 1 on the client and the incremental
nearest neighbor algorithm on the server.

— The Granular SpaceTwist (GST) employs Algorithm 1 on the client, but uses Algo-
rithm 3 on the server.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:31

— The Ring-Based SpaceTwist (RST) corresponds to the proposal in Section 6.2, where
modified client-side and server-side algorithms are used for the incremental ring
ranking.

— The Delayed Granular SpaceTwist (DGST) is as GST, except that the client delays
termination as described in Section 6.3.

— The Network-Based SpaceTwist (NST) applies the network-based version of Algo-
rithm 1 on the client and the incremental network expansion algorithm on the
server, as discussed in Section 6.4.

Section 7.2 studies a realistic scenario in which the client is a real mobile device and
the server uses an SQL-based implementation. Section 7.3 examines the accuracy of
the cost model (developed in Sections 5.4, 5.5, and 6.4). We then compare our solutions
(BST, RST, GST) with existing client-server approaches in Section 7.4. Section 7.5 stud-
ies the performance of GST when varying the settings of pertinent parameters. Then,
Section 7.6 investigates the effect of the delayed termination condition on the perfor-
mance of DGST. Section 7.7 evaluates the performance of NST on real road networks.
Finally, Section 7.8 summarizes the findings.

7.1. Settings
For the experiments in Euclidean space, we use synthetic datasets (UI) that are ran-
domly uniformly generated, and we also use two real datasets: NA5 (North America)
with 175,813 points, and SF [Brinkhoff 2002] (San Francisco) with 174,956 points.
These datasets are visualized in Figure 13. For the experiments in road networks, we
use two real road networks: NA with 175,813 vertices and 179,179 edges; and SF with
175,813 vertices and 223,001 edges. The data density of a network denotes the fraction
of graph vertices with data points. For each tested case, we randomly generate data
points such that the data density equals a given value. The default data density is
0.01.

(a) North America: NA (b) San Francisco: SF (c) Uniform data: UI

Fig. 13. Datasets for Experiments

The coordinates of points in each dataset are normalized to the square 2D space with
side length 10,000 meters. A 2D data point takes 20 bytes, as its identifer takes 4 bytes
and each coordinate takes 8 bytes. Except in the study of the SQL implementation (in
Section 7.2), we employ an LBS server, which indexes each dataset by an R-tree with
a 4K byte page size.

Table II summarizes the parameters used in the experiments along with their set-
tings, with default values in bold. In each experiment, we use a workload of 100 ran-

5Digital Chart of the World, www.maproom.psu.edu/dcw/.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:32 M. L. Yiu et al.

Table II. Parameter Values

Parameter Values Applicability
Error bound (meter), ε 0, 50, 100, 200, 500, 1000 GST, DGST

Anchor distance (meter), dist(q, q′) 50, 100, 200, 500, 1000 all
Number of required results, k 1, 2, 4, 8, 16 all

Data size (million), N 0.1, 0.2, 0.5, 1, 2 all

domly generated query points and measure the average value of the following perfor-
mance metrics:

— Communication cost, in numbers of points received by the client.
— Result error, defined as the result kNN distance minus the actual kNN distance.
— Privacy value of the inferred privacy region (Equation 1).

As discussed in Section 4.2, the privacy value needs to be computed by using
a technology-dependent interval bound [β−, β+] that captures the number of addi-
tional/unnecessary points sent by the server. We determine these values in the next
section.

7.2. Mobile Devices and SQL Implementation
In this experiment, we use a conventional DBMS server (SQL Server 2005, Intel Xeon
4-core CPU 2.33GHz) and two mobile client devices: an Asus P535 with Wi-Fi and
GPRS connectivity and an HTC Diamond that supports 3G. The end-user time is mea-
sured as the time between the Start and Stop messages sent by the client. It includes
the client’s processing time as the Stop message can only be sent after the client has
examined the retrieved points and determined that no more points are needed. We
only report the performance of the Basic SpaceTwist (BST) on the default UI dataset
(with 500,000 points). When performing this experiment on real datasets (NA and SF),
we obtain similar results. It is worth noticing that existing spatial anonymization, ob-
fuscation, and private retrieval methods cannot be readily expressed as a single SQL
statement on the dataset.

Table III shows the average end-user time of BST for different connections, as a func-
tion of the anchor distance dist(q, q′). The average communication cost (i.e., number of
points received by client, and its equivalence in Kbytes) of each case is also shown for
reference. Note that all these end-user times are far smaller than those reported by
the naive method in the introduction. With either Wi-Fi or 3G, the client is able to
afford high privacy value (e.g., dist(q, q′) = 1000) with only 6 seconds. Even with the
slow GPRS connection, the client can enjoy medium privacy (e.g., dist(q, q′) = 200) in
reasonable time.

Table III. Average End-User Time of BST vs. Anchor Distance dist(q, q′); UI data

Anchor distance Average number Equivalent Time (s)
(meter) of points received Kbytes Wi-Fi GPRS 3G

50 58.67 1.14 2.16 5.05 2.50
100 186.57 3.64 2.22 5.06 2.55
200 677.89 13.24 2.29 6.51 2.62
500 3748.05 73.20 2.88 18.50 3.27
1000 14593.03 285.02 3.45 60.21 6.01

Figure 14 plots the end-user time of BST per instance, for different connection types,
while fixing dist(q, q′) = 200. Observe that these instances do not form a straight line
in the figure. Instead, they fall into a cluster, whose width is 1 s and whose length is
(750− 625) = 125 points. Thus, we fix the value of β+− β− to 125, when measuring the
privacy values in subsequent experiments.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:33

***** Running Spacetwist experiment *****

Query id k q.x q.y q'.x q'.y Objs received time(sec)

0 1 1129.534 7129.704 1100.597 7327.599 696 2.174959385

1 1 4522.251 5264.211 4697.309 5167.49 701 2.160410769

2 1 5289.226 1918.9 5243.291 1724.246 754 2.469563385

3 1 2113.252 9877.314 2202.276 9698.219 693 2.624022769

4 1 2921.5 2389.965 2948.668 2588.112 658 2.597036

5 1 2823.874 1006.783 2747.929 1191.803 667 2.385295692

6 1 6137.41 2320.321 6259.651 2162.026 688 2.329994769

7 1 3869.206 1787.623 3711.893 1911.125 701 2.447087077

8 1 2940.339 3814.016 3010.268 4001.392 717 2.390898769

9 1 1740.198 6266.35 1668.628 6453.106 708 2.188544615

10 1 7871.63 9453.918 7671.747 9460.737 707 2.100093846

11 1 5116.047 7700.072 5245.44 7547.568 715 2.274

12 1 458.2987 6951.934 280.6094 6860.138 651 1.855849846

13 1 5848.243 9968.821 6006.84 9846.974 626 2.174314462

14 1 4455.055 2581.376 4617.921 2465.295 692 2.369810462

15 1 4312.826 5851.834 4488.099 5948.164 659 2.719277538

16 1 7645.169 7799.154 7636.155 7599.357 657 2.379363077

17 1 9137.805 7916.886 9181.385 8112.08 677 2.229717538

18 1 3593.361 7260.328 3397.963 7217.671 650 2.223049846

19 1 8790.37 1581.912 8912.932 1739.958 670 2.516890769

20 1 7265.125 3549.028 7081.701 3469.305 705 2.288566462

21 1 4048.719 4241.622 4241.684 4294.202 657 2.264676308

22 1 3288.467 7805.453 3092.252 7844.176 676 2.287026154

23 1 3663.332 2365.576 3497.574 2477.488 672 2.428990154

1

2

3

End-user time (s)

24 1 7360.982 289.1679 7379.617 488.2979 657 2.251302154

25 1 9589.188 9414.151 9764.826 9318.489 690 2.411644308

26 1 4926.238 8627.513 4983.504 8435.887 714 2.505995077

27 1 1131.701 4095.029 1245.898 3930.837 661 2.617137231

28 1 5654.206 8733.826 5767.967 8898.32 673 2.339661538

29 1 2795.335 1522.686 2987.749 1577.246 709 2.126897538

30 1 3277.724 1667.929 3083.105 1621.848 699 2.353823692

31 1 4308.731 8583.118 4183.172 8427.442 714 2.410840308

32 1 3304.831 406.3359 3405.529 233.5357 706 1.859461846

33 1 8591.08 1024.359 8658.399 836.0297 686 2.238656615

34 1 6109.919 3981.837 5917.294 3928.024 643 2.227215692

35 1 3373.393 1776.822 3389.425 1577.466 751 2.113608

36 1 9798.891 4004.173 9842.051 3808.885 655 2.347892923

37 1 6135.833 3864.132 6079.504 4056.036 661 2.146464615

38 1 3488.013 6133.424 3676.359 6066.149 691 1.963631692

39 1 7185.353 8394.513 6995.447 8331.779 692 2.726369846

40 1 8886.364 493.132 8747.884 348.8293 652 2.308380615

41 1 4250.149 385.6071 4431.24 470.4953 705 2.145801846

42 1 8684.827 3052.251 8780.51 3227.878 668 2.282815385

43 1 5931.706 6284.358 6094.085 6167.596 822 2.328531692

44 1 866.4929 6335.158 879.4464 6135.578 689 2.495566462

45 1 9915.801 5021.782 10115.3 5035.994 120 2.143258154

46 1 3033.618 2280.813 2966.7 2092.341 746 2.029098769

47 1 3909.314 2996.444 3911.641 2796.457 657 2.227883385

0

1

2

3

0 200 400 600 800 1000

End-user time (s)

Number of points received

***** Running Spacetwist experiment *****

Query id k q.x q.y q'.x q'.y Objs received time(sec)

0 1 1129.534 7129.704 1100.597 7327.599 696 6.994128

1 1 4522.251 5264.211 4697.309 5167.49 701 6.358139385

2 1 5289.226 1918.9 5243.291 1724.246 754 6.303025538

3 1 2113.252 9877.314 2202.276 9698.219 693 6.613248923

4 1 2921.5 2389.965 2948.668 2588.112 658 5.946010154

5 1 2823.874 1006.783 2747.929 1191.803 667 7.161514769

6 1 6137.41 2320.321 6259.651 2162.026 688 6.189660923

7 1 3869.206 1787.623 3711.893 1911.125 701 6.747223077

8 1 2940.339 3814.016 3010.268 4001.392 717 6.387150462

9 1 1740.198 6266.35 1668.628 6453.106 708 6.591123692

10 1 7871.63 9453.918 7671.747 9460.737 707 6.573205538

11 1 5116.047 7700.072 5245.44 7547.568 715 6.406449846

12 1 458.2987 6951.934 280.6094 6860.138 651 6.165093846

13 1 5848.243 9968.821 6006.84 9846.974 626 6.219268

14 1 4455.055 2581.376 4617.921 2465.295 692 6.360471692

15 1 4312.826 5851.834 4488.099 5948.164 659 6.183090462

16 1 7645.169 7799.154 7636.155 7599.357 657 6.480315077

17 1 9137.805 7916.886 9181.385 8112.08 677 6.456017538

18 1 3593.361 7260.328 3397.963 7217.671 650 6.075879385

19 1 8790.37 1581.912 8912.932 1739.958 670 6.789855077

20 1 7265.125 3549.028 7081.701 3469.305 705 6.833819077

21 1 4048.719 4241.622 4241.684 4294.202 657 6.173228

22 1 3288.467 7805.453 3092.252 7844.176 676 6.691494462

23 1 3663.332 2365.576 3497.574 2477.488 672 6.843784923

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

End-user time (s)

Number of points received 24 1 7360.982 289.1679 7379.617 488.2979 657 6.187618769

25 1 9589.188 9414.151 9764.826 9318.489 690 6.472612923

26 1 4926.238 8627.513 4983.504 8435.887 714 6.233082462

27 1 1131.701 4095.029 1245.898 3930.837 661 6.492240308

28 1 5654.206 8733.826 5767.967 8898.32 673 5.955529846

29 1 2795.335 1522.686 2987.749 1577.246 709 6.452602462

30 1 3277.724 1667.929 3083.105 1621.848 699 6.531853538

31 1 4308.731 8583.118 4183.172 8427.442 714 6.508238462

32 1 3304.831 406.3359 3405.529 233.5357 706 6.508048308

33 1 8591.08 1024.359 8658.399 836.0297 686 6.465208

34 1 6109.919 3981.837 5917.294 3928.024 643 6.651564923

35 1 3373.393 1776.822 3389.425 1577.466 751 6.539639692

36 1 9798.891 4004.173 9842.051 3808.885 655 6.311603692

37 1 6135.833 3864.132 6079.504 4056.036 661 6.343686462

38 1 3488.013 6133.424 3676.359 6066.149 691 6.514066154

39 1 7185.353 8394.513 6995.447 8331.779 692 6.639923385

40 1 8886.364 493.132 8747.884 348.8293 652 6.366014769

41 1 4250.149 385.6071 4431.24 470.4953 705 6.184353846

42 1 8684.827 3052.251 8780.51 3227.878 668 6.178406462

43 1 5931.706 6284.358 6094.085 6167.596 822 7.678843692

44 1 866.4929 6335.158 879.4464 6135.578 689 6.428491692

45 1 9915.801 5021.782 10115.3 5035.994 120 4.965841846

46 1 3033.618 2280.813 2966.7 2092.341 746 7.114437538

47 1 3909.314 2996.444 3911.641 2796.457 657 6.641556308

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

End-user time (s)

Number of points received

***** Running Spacetwist experiment *****

Query id k q.x q.y q'.x q'.y Objs received time(sec)

0 1 1129.534 7129.704 1100.597 7327.599 696 2.569933333

1 1 4522.251 5264.211 4697.309 5167.49 701 2.670328333

2 1 5289.226 1918.9 5243.291 1724.246 754 2.657543333

3 1 2113.252 9877.314 2202.276 9698.219 693 2.548618333

4 1 2921.5 2389.965 2948.668 2588.112 658 2.551516667
3

4

End-user time (s)

4 1 2921.5 2389.965 2948.668 2588.112 658 2.551516667

5 1 2823.874 1006.783 2747.929 1191.803 667 2.63696

6 1 6137.41 2320.321 6259.651 2162.026 688 2.732225

7 1 3869.206 1787.623 3711.893 1911.125 701 2.627908333

8 1 2940.339 3814.016 3010.268 4001.392 717 2.182906667

9 1 1740.198 6266.35 1668.628 6453.106 708 2.730226667

10 1 7871.63 9453.918 7671.747 9460.737 707 2.483085

11 1 5116 047 7700 072 5245 44 7547 568 715 2 822206667
1

2

3

4

End-user time (s)

11 1 5116.047 7700.072 5245.44 7547.568 715 2.822206667

12 1 458.2987 6951.934 280.6094 6860.138 651 2.394773333

13 1 5848.243 9968.821 6006.84 9846.974 626 2.177018333

14 1 4455.055 2581.376 4617.921 2465.295 692 2.439388333

15 1 4312.826 5851.834 4488.099 5948.164 659 3.04464

16 1 7645.169 7799.154 7636.155 7599.357 657 2.265628333

17 1 9137.805 7916.886 9181.385 8112.08 677 2.955968333

0

1

2

3

4

0 200 400 600 800 1000

End-user time (s)

Number of points received

18 1 3593.361 7260.328 3397.963 7217.671 650 2.839268333

19 1 8790.37 1581.912 8912.932 1739.958 670 2.823723333

20 1 7265.125 3549.028 7081.701 3469.305 705 2.593531667

21 1 4048.719 4241.622 4241.684 4294.202 657 2.609356667

22 1 3288.467 7805.453 3092.252 7844.176 676 2.791271667

23 1 3663.332 2365.576 3497.574 2477.488 672 2.598578333

24 1 7360 982 289 1679 7379 617 488 2979 657 2 7277

0

1

2

3

4

0 200 400 600 800 1000

End-user time (s)

Number of points received

24 1 7360.982 289.1679 7379.617 488.2979 657 2.7277

25 1 9589.188 9414.151 9764.826 9318.489 690 2.508295

26 1 4926.238 8627.513 4983.504 8435.887 714 2.565411667

27 1 1131.701 4095.029 1245.898 3930.837 661 2.405311667

28 1 5654.206 8733.826 5767.967 8898.32 673 2.600048333

29 1 2795.335 1522.686 2987.749 1577.246 709 2.381695

30 1 3277.724 1667.929 3083.105 1621.848 699 2.55904

31 1 4308.731 8583.118 4183.172 8427.442 714 3.10442

32 1 3304.831 406.3359 3405.529 233.5357 706 2.565596667

33 1 8591.08 1024.359 8658.399 836.0297 686 2.21717

34 1 6109.919 3981.837 5917.294 3928.024 643 2.503681667

35 1 3373.393 1776.822 3389.425 1577.466 751 2.600343333

36 1 9798.891 4004.173 9842.051 3808.885 655 2.437048333

37 1 6135.833 3864.132 6079.504 4056.036 661 2.54971666737 1 6135.833 3864.132 6079.504 4056.036 661 2.549716667

38 1 3488.013 6133.424 3676.359 6066.149 691 2.461648333

39 1 7185.353 8394.513 6995.447 8331.779 692 2.438488333

40 1 8886.364 493.132 8747.884 348.8293 652 3.18441

41 1 4250.149 385.6071 4431.24 470.4953 705 2.555253333

42 1 8684.827 3052.251 8780.51 3227.878 668 2.265011667

43 1 5931.706 6284.358 6094.085 6167.596 822 2.928791667

44 1 866 4929 6335 158 879 4464 6135 578 689 2 79284166744 1 866.4929 6335.158 879.4464 6135.578 689 2.792841667

45 1 9915.801 5021.782 10115.3 5035.994 120 3.480275

46 1 3033.618 2280.813 2966.7 2092.341 746 1.645221667

47 1 3909.314 2996.444 3911.641 2796.457 657 2.370606667

48 1 2593.568 7141.891 2631.513 6945.524 697 2.540115

(a) Wi-Fi (b) GPRS (c) 3G

Fig. 14. End-User Time of BST per Instance; UI data, Anchor Distance=200m

7.3. Communication Cost Model Accuracy
We investigate the accuracy of the communication cost model developed in Sections 5.4
and 5.5. An anchor q′ is selected such that its estimated cost costest equals a given
communication cost budget. Let costact be the actual cost of running BST with such
an anchor. The relative cost error is then measured as: |costest−costact|

costact
. By default, k

is fixed at 4 and, the cost budget is set to 2000 points, in the following experiments.
We employ a spatial histogram with 1024 bins, whose communication cost overhead is
only 1024 · (4 + 4 · 4)/1024 = 20 Kbytes, where each bin consists of a count (an 4-byte
integer) and its discretized bounding box (four 4-byte integers). It is possible to apply
existing histogram compression techniques to further shrink the histogram size, by
only sacrificing its quality a little.

Figure 15a shows the relative cost error for different datasets, with respect to a
given communication cost budget. Recall from Algorithm 2 that the estimated supply
space radius τ̂ equals the sum of the anchor distance dist(q, q′) and the estimated kNN
distance γ̂. When the budget is high, a large dist(q, q′) is selected, and it contributes to
a large fraction of τ̂ . Even with an imperfect estimation of γ̂, its impact on τ̂ remains
small, keeping the overall estimation error relatively low. Following the intuition, the
estimation error on UI data is smaller than that on the real datasets (NA and SF).
When a sufficient budget is used (e.g., 2000 points), our estimation method yields a
reasonable estimation error (0.3–0.6).

Figure 15b plots the relative cost error on different datasets, as a function of k. When
k increases, the estimated kNN distance γ̂ becomes more accurate, thus reducing the
overall estimation error of our cost model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000 10000

E
s
ti
m

a
ti
o

n
 e

rr
o

r

Budget

NA
SF
UI

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16

E
s
ti
m

a
ti
o
n
 e

rr
o
r

k

NA
SF
UI

(a) error vs. budget, at k = 4 (b) error vs. k, at budget=2000

Fig. 15. Relative Error of Communication Cost, with an 1024-bin Spatial Histogram

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:34 M. L. Yiu et al.

We proceed to evaluate the accuracy of our network-based anchor generator in
Section 6.4. We also use the aforementioned measurement for the relative cost er-
ror, except that costact now denotes the actual cost of running NST (Network-Based
SpaceTwist) with the generated anchor. We also employ a network histogram with
1024 bins, whose communication cost overhead is 1024 · (4 + 8 + 4)/1024 = 16 Kbytes,
where each bin consists of a center node ID (4-byte integer), a radius (8-byte double),
and a count (4-byte integer).

Figure 16a shows the relative cost error on two real road networks when varying
the communication cost budget. It follows the decreasing trend from Figure 15a. The
inherent dimensionality of a road network space lies between 1 (linear) and 2 (planar).
When compared to Euclidean space, a data point in a road network is expected to have
fewer ‘neighbors’, and thus the estimation error is lower. Figure 16b plots the relative
cost error on two real road networks, with respect to k. The error remains very low and
is insensitive to the value of k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

E
s
ti
m

a
ti
o

n
 e

rr
o

r

Budget

NA
SF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16

E
s
ti
m

a
ti
o

n
 e

rr
o

r

k

NA
SF

(a) error vs. budget, at k = 4 (b) error vs. k, at budget=2000

Fig. 16. Relative Error of Communication Cost, with an 1024-bin Network Histogram

7.4. Comparison with Existing Client-Server Approaches
In keeping with the simple client-server architecture (assumed in our problem setting),
we disregard techniques that require trusted third-party components or peer-to-peer
functionality.

For comparison purposes, we implement a prototype client-based cloaking (i.e., ob-
fuscation) technique, called CLK, that generates the cloaked region as a (randomly
generated) square region that contains the exact user location q. The region has an
extent of 2 · dist(q, q′), making it comparable to the inferred privacy region of GST. The
value dist(q, q′) roughly reflects the privacy value, as we will see shortly in Section 7.5.
The query processing algorithm of Hu and Lee [2006] (used in Kalnis et al. [2007]) is
applied on the server to evaluate the cloaked query such that the minimal candidate
result set is reported.

Since CLK provides exact results, we include our exact solutions BST and RST in
this study. The ring radius R of RST is simply set to the anchor distance dist(q, q′).
The result accuracy of GST is guaranteed by a user-specified error bound (ε = 200 by
default).

Table IV shows the communication cost as a function of dist(q, q′) for different
datasets. The cost rises when dist(q, q′) increases. Since RST is designed towards re-
ducing accesses to the “center region” surrounding the anchor, it outperforms BST in
all cases. In addition, RST incurs lower cost than CLK when dist(q, q′) is sufficiently

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:35

large. Clearly, GST has the lowest communication cost because it is able to discard
uninformative points that stay close to previously reported points.

From this experiment, we conclude that the cost of CLK does not scale well with the
extent of the cloaked region.

Table IV. Communication Cost vs. dist(q, q′)

NA SF UI, N=0.5M
dist(q, q′) BST RST GST CLK BST RST GST CLK BST RST GST CLK

50 80.4 72.3 14.9 33.9 64.1 56.7 14.8 24.0 67.5 49.0 18.4 63.9
100 218.4 175.4 26.1 103.0 181.4 146.9 26.1 74.5 207.0 95.5 33.6 215.6
200 647.0 438.3 51.7 361.6 513.9 362.8 52.1 281.6 708.9 188.0 68.1 802.4
500 3064.0 1598.2 170.6 2106.5 2317.4 1391.7 162.7 1774.3 3916.0 450.0 238.3 4783.8
1000 9284.8 4179.6 466.6 8234.2 8268.6 4506.9 438.7 6571.2 14142.8 821.6 709.5 18057.8

Recall from Section 2.3 that private retrieval methods do not leverage spatial
database technology so they do not satisfy our high deployability requirement.
Nevertheless, we still compare GST with the following approximate solutions: (i)
SHB [Khoshgozaran and Shahabi 2007], which returns the k nearest neighbors along
a Hilbert curve, (ii) DHB [Khoshgozaran and Shahabi 2007], which performs search
along two orthogonal Hilbert curves, and (iii) APX [Ghinita et al. 2008], a two-
dimensional approximate method that returns all points of a K-d tree [Bentley 1975]
leaf node whose extent covers the query point. In accordance with existing studies, we
fix the level of the Hilbert curves used at 12 for both SHB and DHB [Khoshgozaran
and Shahabi 2007], and we set the number of leaf nodes to

√
N for APX [Ghinita et al.

2008]. A previous theoretical study [Indyk and Woodruff 2006] does not offer imple-
mentation details and is not covered here. The exact solution of Ghinita et al. [2008]
is also not considered as it utilizes a Voronoi diagram, which cannot be used to answer
kNN queries.

Table V compares the result error of SHB, DHB, APX, and GST for different values of
k. For the real-world datasets (NA and SF), SHB computes results with poor accuracy
because a Hilbert curve only preserves spatial proximity approximately. Since DHB
employs two Hilbert curves, it is more accurate than SHB. Note that APX is even more
accurate because it preserves data locality better than Hilbert curves do. However, the
average error of APX is not small because it can suffer from inaccuracies in some cases
where the query point is located close to the border of multiple K-d tree leaf nodes.
Note that GST benefits from skew in the data to achieve the best accuracies. This is so
because data points in the same grid cell (as illustrated in Figure 9b) are likely to fall
in the same cluster and the distances between them are significantly lower than the
worst case distance bound (i.e., the diagonal grid cell distance).

For uniform data (UI), the Hilbert transformation approach (SHB and DHB) and
the two-dimensional approximate method APX are quite accurate. Nevertheless, the
accuracy of GST remains acceptable, being much better than the specified error bound
(ε = 200).

Table V. Result Error Versus k

NA SF UI, N=0.5M
k GST SHB DHB APX GST SHB DHB APX GST SHB DHB APX
1 12.9 316.2 99.4 41.9 11.8 218.0 109.3 42.8 43.6 9.2 4.9 0.0
2 13.6 328.5 122.0 42.4 11.3 242.9 115.8 49.9 44.1 11.0 5.6 0.5
4 13.7 359.3 139.7 42.3 9.6 343.7 182.8 49.8 43.2 13.1 5.6 0.6
8 14.3 381.9 161.3 43.0 8.0 376.7 187.6 51.0 41.5 19.5 7.2 1.2

16 12.5 400.4 178.8 45.1 8.2 457.1 189.7 57.9 35.4 27.1 10.1 2.6

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:36 M. L. Yiu et al.

In summary, GST is robust and achieves stable result errors across different data
distributions. Existing approximate solutions (SHB, DHB, and APX) do not offer result
error guarantees as provided by GST. Also, their result errors are much higher than
those of GST for real datasets.

7.5. Performance Study of GST
We proceed to investigate the scalability of GST with respect to different parameters
while using the two real datasets as well as the UI dataset.

Figure 17 depicts the performance of GST when varying the error bound ε. As a
reference for comparison, the curve for the anchor distance dist(q, q′) is included in
Figure 17c. As ε increases, each grid cell has a larger extent, and fewer points are
retrieved, which yields a lower communication cost, but a larger result error. Since the
real datasets are skewed, the average error for these is much smaller than the specified
error bound ε. At ε = 0, granular search is not applied, and exact results are reported.
Even for this case, the communication cost and privacy value are both acceptable.

Observe that GST indeed achieves both low communication cost and low result error
for a broad range of ε values (between 100 and 1000) when applied to real data. At
ε = 100, the communication cost is only 200 points at most. For the other end (i.e.,
ε = 1000), the measured error is acceptably low and stays within 25% of the bound ε
for real datasets.

 10

 20

 50

 100

 200

 500

 1000

 0 200 400 600 800 1000

P
o
in

ts

Epsilon (metre)

NA
SF
UI

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

E
rr

o
r

(m
e
tr

e
)

Epsilon (metre)

NA
SF
UI

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

P
ri
v
a
c
y
 (

m
e
tr

e
)

Epsilon (metre)

NA
SF
UI

d(q,q')

(a) communication cost (b) result error (c) privacy value

Fig. 17. Performance of GST Vs. Error Bound ε

Figure 18 shows the performance of GST as a function of the anchor distance
dist(q, q′). The communication cost and result error increase when dist(q, q′) increases.
However, even for large dist(q, q′), the communication cost and result error are quite
low. Note also that the location privacy afforded by GST is greater than the anchor
distance dist(q, q′). It is worth noticing that the more the skew, the lower the result
error and the higher the privacy value become.

Figure 19 shows the performance of GST when varying the number of required re-
sults k. The communication cost is proportional to k, and it remains low for typical
values of k. Both the result error and the privacy value are fairly insensitive to k, but
benefit from skew in the data. For real datasets, the privacy value is much larger than
the specified anchor distance.

We end the study of GST by varying the dataset size N using synthetic UI datasets.
Figure 20 plots the results. Since the error bound ε is fixed, the communication cost,
result error, and privacy are insensitive to N . Thus, GST scales well with the dataset
size.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:37

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

P
o
in

ts

Anchor distance (metre)

NA
SF
UI

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

E
rr

o
r

(m
e
tr

e
)

Anchor distance (metre)

NA
SF
UI

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

P
ri
v
a
c
y
 (

m
e
tr

e
)

Anchor distance (metre)

NA
SF
UI

d(q,q')

(a) communication cost (b) result error (c) privacy value

Fig. 18. Performance of GST Vs. Anchor Distance dist(q, q′)

 0

 50

 100

 150

 200

 250

 300

 0 4 8 12 16

P
o
in

ts

k

NA
SF
UI

 0

 10

 20

 30

 40

 50

 0 4 8 12 16

E
rr

o
r

(m
e
tr

e
)

k

NA
SF
UI

 0

 200

 400

 600

 800

 1000

 0 4 8 12 16

P
ri
v
a
c
y
 (

m
e
tr

e
)

k

NA
SF
UI

d(q,q')

(a) communication cost (b) result error (c) privacy value

Fig. 19. Performance of GST Vs. Number of Required Results k

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

P
o
in

ts

N (million)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

E
rr

o
r

(m
e
tr

e
)

N (million)

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2

P
ri
v
a
c
y
 (

m
e
tr

e
)

N (million)

UI
d(q,q')

(a) communication cost (b) result error (c) privacy value

Fig. 20. Performance of GST Vs. Data Size N , on UI Datasets

7.6. Performance of the Delayed Termination Strategy
We proceed to study the effect of the required privacy value α on the performance of
DGST. In this experiment, we vary the value of α while fixing the other parameters
(including the anchor distance) at their default values. The measured result error of
DGST is independent of α so it is not reported.

Figure 21a plots the measured privacy value of DGST with respect to the required
privacy value α. The requirement curve for α is included in the figure for comparison
purposes. Observe that the measured privacy values on all datasets are now guaran-
teed to exceed α. The privacy on all datasets stay very close to α.

Figure 21b shows the communication cost of DGST as a function of α. When α in-
creases, a larger number of points need to be retrieved in order to guarantee that

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:38 M. L. Yiu et al.

the privacy value exceeds α. Even for the cases of high privacy requirements (e.g.,
α = 2000), the number of received points on any dataset remains below 5000.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000

P
ri
v
a
c
y
 (

m
e
tr

e
)

Required privacy value

NA
SF
UI

Requirement

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

P
o
in

ts

Required privacy value

NA
SF
UI

(a) privacy value (b) communication cost

Fig. 21. Performance of DGST Vs. Required Privacy Value α

7.7. Performance of the Network-Based SpaceTwist
In the last two experiments, we study the performance of NST. We use two real road
networks (NA and SF) and the experimental setting described in Section 7.1. The de-
fault value of the network anchor distance distG(q′, q) is fixed at 200.

Figure 22 shows the communication cost and privacy value of NST for various data
densities. Since the anchor distance is fixed, many data points are received from a net-
work with high data density. Recall from Section 4.2 that, for the given values q′ and
k, the number of distinct inferred privacy regions is N , which is directly proportional
to the number of data points. When the data density increases, the value N increases,
implying that the “thickness” of each individual (irregular ring-shaped) privacy region
shrinks. The combined effect is that the extent of the overall privacy region is insensi-
tive to the data density.

 0

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4 0.5

P
o
in

ts

Data density of graph vertices

NA
SF

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5

P
ri
v
a
c
y
 (

m
e
tr

e
)

Data density of graph vertices

NA
SF

d(q,q')

(a) communication cost (b) privacy value

Fig. 22. Performance of NST Vs. Data Density of Graph Vertices

Figure 23 plots the communication cost and privacy value of NST when varying the
network anchor distance distG(q, q′). When the anchor distance increases, the commu-
nication cost rises slightly in a super-linear manner and the privacy value increases
linearly. Observe that the cost remains small even at a large anchor distance.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:39

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000

P
o
in

ts

Anchor distance (metre)

NA
SF

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

P
ri
v
a
c
y
 (

m
e
tr

e
)

Anchor distance (metre)

NA
SF

d(q,q')

(a) communication cost (b) privacy value

Fig. 23. Performance of NST Vs. Network Anchor Distance distG(q, q′)

7.8. Summary of Experimental Results
We proceed to summarize our findings from the experimental results.

First, our proposal is readily deployable using conventional DBMS servers. Our SQL
implementation of SpaceTwist is able to achieve high privacy in reasonable end-user
time.

Second, our cost model is acceptably accurate, allowing the client to choose an appro-
priate anchor point based on the communication cost budget. The relative cost error of
our estimation ranges from 0.3 to 0.6 in most of the cases studied.

Third, our methods perform better than existing solutions in terms of communica-
tion cost and result error. For instance, our GST incurs much lower communication
cost than the cloaking method CLK. Our RST has lower cost than CLK when dist(q, q′)
is sufficiently large. For the real datasets, GST achieves much better result error than
private retrieval methods (SHB, DHB, and APX).

Fourth, our GST method performs well for wide ranges of settings of parameters
such as the error bound ε, the anchor distance dist(q, q′), the number of required results
k, and the data size N .

For the GST method, the user needs to specify the result error bound ε and an anchor
location q′. It is desirable to choose ε based on the data density and the value of k. We
recommend to set ε =

√
k

(0.01)N . This choice saves substantial communication cost (i.e.,
the worst-case cost is 1% of data points) and yet ε becomes adequately small for a large
dataset. The choice of q′ can be determined automatically by Algorithm 2, based on a
given cost budget. Alternatively, q′ can be selected such that anchor distance dist(q, q′)
equals a given privacy value. Experimental results show that the measured privacy
value of GST is usually above the value of dist(q, q′).

To guarantee that the measured privacy is always above the value of dist(q, q′), the
DGST method applies a delayed termination strategy.

Last but not least, in the road network environment, our network-based SpaceTwist
is readily deployable as it directly applies the network-based incremental nearest
neighbor algorithm, without caring low-level access operations on the road network.

8. CONCLUSION AND RESEARCH DIRECTIONS
This paper concerns the efficient support for location privacy of users of location-based
service. Existing location privacy solutions either incur high server-side loads, require
specialized server techniques, or produce results without worst-case guarantees on the
accuracy bounds of the query results.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:40 M. L. Yiu et al.

Motivated by this, the paper proposes a novel and effective framework, called
SpaceTwist, that consists of a client-side algorithm and a server-side granular search
technique that supports user-defined (relaxed) query accuracies. SpaceTwist offers
fine-grained support for managing the trade-offs among location privacy, query perfor-
mance, and query accuracy. Empirical studies with real-world datasets demonstrate
that SpaceTwist is capable of providing high degrees of location privacy as well as
very accurate results at low communication cost.

Furthermore, SpaceTwist is the first location privacy solution whose server-side
functionality can be expressed as a single SQL query on the queried dataset. We also
contribute extensions of SpaceTwist that provide specialized services for other appli-
cation scenarios, including a delayed termination strategy for enhancing the privacy
protection, an incremental ranking technique for reducing the communication cost,
and a solutions that renders SpaceTwist applicable to spatial networks.

A promising direction is to generalize SpaceTwist for private ranking queries over
public data (of generic types). The goal here is to hide the user’s query interest (i.e.,
a conceptual ‘location’ defined in the data space). As an example scenario, a doctor
wishes to search a public database of medical MRI images for an image similar to a
patient’s MRI image; however, the doctor is not allowed to expose the patient’s image to
third parties. Interesting aspects of the privacy model and the choice of anchor object
need to be studied in this setting.

ACKNOWLEDGMENTS
Man Lung Yiu was supported by the grant PolyU 5333/10E from Hong Kong RGC.
Christian S. Jensen is an Adjunct Professor at University of Agder, Norway. Jesper
Møller was supported by the Danish Natural Science Research Council, grants 272-
06-0442 and 09-072331, “Point process modelling and statistical inference”, and by the
Centre for Stochastic Geometry and Advanced Bioimaging, funded by a grant from the
Villum Foundation.

REFERENCES
ACHARYA, S., POOSALA, V., AND RAMASWAMY, S. 1999. Selectivity Estimation in Spatial Databases. In

SIGMOD. 13–24.
ARDAGNA, C. A., CREMONINI, M., DAMIANI, E., DI VIMERCATI, S. D. C., AND SAMARATI, P. 2007. Location

Privacy Protection Through Obfuscation-Based Techniques. In DBSec. 47–60.
BAMBA, B., LIU, L., PESTI, P., AND WANG, T. 2008. Supporting Anonymous Location Queries in Mobile

Environments with Privacygrid. In WWW. 237–246.
BARTOLINI, I., CIACCIA, P., AND PATELLA, M. 2006. SaLSa: Computing the Skyline without Scanning the

Whole Sky. In CIKM. 405–414.
BENTLEY, J. L. 1975. Multidimensional Binary Search Trees Used for Associative Searching. Commun.

ACM 18, 9, 509–517.
BETTINI, C., MASCETTI, S., WANG, X. S., AND JAJODIA, S. 2007. Anonymity in Location-Based Services:

Towards a General Framework. In MDM. 69–76.
BRINKHOFF, T. 2002. A Framework for Generating Network-Based Moving Objects. GeoInformatica 6, 2,

153–180.
CHENG, R., ZHANG, Y., BERTINO, E., AND PRABHAKAR, S. 2006. Preserving User Location Privacy in

Mobile Data Management Infrastructures. In Privacy Enhancing Technology Workshop. 393–412.
CHOW, C.-Y. AND MOKBEL, M. F. 2007. Enabling Private Continuous Queries For Revealed User Locations.

In SSTD. 258–275.
CHOW, C.-Y., MOKBEL, M. F., AND LIU, X. 2006. A Peer-to-Peer Spatial Cloaking Algorithm for Anonymous

Location-based Services. In ACM GIS. 171–178.
CIACCIA, P., PATELLA, M., AND ZEZULA, P. 1997. M-tree: An Efficient Access Method for Similarity Search

in Metric Spaces. In VLDB. 426–435.
DUCKHAM, M. AND KULIK, L. 2005a. A Formal Model of Obfuscation and Negotiation for Location Privacy.

In PERVASIVE. 152–170.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:41

DUCKHAM, M. AND KULIK, L. 2005b. Simulation of Obfuscation and Negotiation for Location Privacy. In
COSIT. 31–48.

GEDIK, B. AND LIU, L. 2005. Location Privacy in Mobile Systems: A Personalized Anonymization Model. In
ICDCS. 620–629.

GHINITA, G., KALNIS, P., KHOSHGOZARAN, A., SHAHABI, C., AND TAN, K.-L. 2008. Private Queries in
Location Based Services: Anonymizers are not Necessary. In SIGMOD. 121–132.

GHINITA, G., KALNIS, P., AND SKIADOPOULOS, S. 2007a. MobiHide: A Mobile Peer-to-Peer System for
Anonymous Location-Based Queries. In SSTD. 758–769.

GHINITA, G., KALNIS, P., AND SKIADOPOULOS, S. 2007b. PRIVÉ: Anonymous Location-Based Queries in
Distributed Mobile Systems. In WWW. 371–380.

GRAVANO, L., IPEIROTIS, P. G., JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA,
D. 2001. Approximate String Joins in a Database (Almost) for Free. In VLDB. 491–500.

GRUTESER, M. AND GRUNWALD, D. 2003. Anonymous Usage of Location-Based Services Through Spatial
and Temporal Cloaking. In USENIX MobiSys. 31–42.

GRUTESER, M. AND LIU, X. 2004. Protecting Privacy in Continuous Location-Tracking Applications. IEEE
Security & Privacy 2, 2, 28–34.

GUTTMAN, A. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching. In SIGMOD. 47–57.
HJALTASON, G. R. AND SAMET, H. 1999. Distance Browsing in Spatial Databases. TODS 24(2), 265–318.
HU, H. AND LEE, D. L. 2006. Range Nearest-Neighbor Query. IEEE TKDE 18(1), 78–91.
ILYAS, I. F., AREF, W. G., ELMAGARMID, A. K., ELMONGUI, H. G., SHAH, R., AND VITTER, J. S. 2006.

Adaptive Rank-aware Query Optimization in Relational Databases. TODS 31, 4, 1257–1304.
ILYAS, I. F., SHAH, R., AREF, W. G., VITTER, J. S., AND ELMAGARMID, A. K. 2004. Rank-aware Query

Optimization. In SIGMOD. 203–214.
INDYK, P. AND WOODRUFF, D. 2006. Polylogarithmic Private Approximations and Efficient Matching. In

Theory of Cryptography Conference. 245–264.
JAGADISH, H. V., OOI, B. C., TAN, K.-L., YU, C., AND ZHANG, R. 2005. iDistance: An Adaptive B+-tree

Based Indexing Method for Nearest Neighbor Search. TODS 30, 2, 364–397.
JENSEN, C. S., LU, H., AND YIU, M. L. 2009. Location Privacy Techniques in Client-Server Architectures.

In Privacy in Location-Based Applications. 31–58.
KALNIS, P., GHINITA, G., MOURATIDIS, K., AND PAPADIAS, D. 2007. Preventing Location-Based Identity

Inference in Anonymous Spatial Queries. IEEE TKDE 19, 12, 1719–1733.
KHOSHGOZARAN, A. AND SHAHABI, C. 2007. Blind Evaluation of Nearest Neighbor Queries Using Space

Transformation to Preserve Location Privacy. In SSTD. 239–257.
KIDO, H., YANAGISAWA, Y., AND SATOH, T. 2005. An Anonymous Communication Technique using Dum-

mies for Location-based Services. In IEEE International Conference on Pervasive Services (ICPS). 1248.
KINGMAN, J. F. C. 1993. Poisson Processes. Oxford University Press.
KU, W.-S., ZIMMERMANN, R., PENG, W.-C., AND SHROFF, S. 2007. Privacy Protected Query Processing on

Spatial Networks. In ICDE Workshops. 215–220.
LI, F., HADJIELEFTHERIOU, M., KOLLIOS, G., AND REYZIN, L. 2006. Dynamic Authenticated Index Struc-

tures for Outsourced Databases. In SIGMOD. 121–132.
LI, P.-Y., PENG, W.-C., WANG, T.-W., KU, W.-S., XU, J., AND HAMILTON, J. A. 2008. A Cloaking Algorithm

Based on Spatial Networks for Location Privacy. In SUTC. 90–97.
LU, H., JENSEN, C. S., AND YIU, M. L. 2008. PAD: Privacy-area Aware, Dummy-based Location Privacy in

Mobile Services. In MobiDE. 16–23.
MOKBEL, M. F., CHOW, C.-Y., AND AREF, W. G. 2006. The New Casper: Query Processing for Location

Services without Compromising Privacy. In VLDB. 763–774.
MØLLER, J. AND WAAGEPETERSEN, R. P. 2004. Statistical Inference and Simulation for Spatial Point Pro-

cesses. Chapman and Hall/CRC, Boca Raton.
MØLLER, J. AND YIU, M. L. 2010. Probabilistic Results for a Mobile Service Scenario. Research Report

R-2010-03, Department of Mathematical Sciences, Aalborg University. (Revised version to appear in Ad-
vances in Applied Probability.).

MOURATIDIS, K. AND YIU, M. L. 2010. Anonymous Query Processing in Road Networks. IEEE TKDE 22, 1,
2–15.

OKABE, A., BOOTS, B., SUGIHARA, K., AND CHIU, S. 2000. Spatial Tessellations: Concepts and Applications
of Voronoi Diagrams second Ed. Wiley.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

00:42 M. L. Yiu et al.

PANG, H., JAIN, A., RAMAMRITHAM, K., AND TAN, K.-L. 2005. Verifying Completeness of Relational Query
Results in Data Publishing. In SIGMOD.

PAPADIAS, D., ZHANG, J., MAMOULIS, N., AND TAO, Y. 2003. Query Processing in Spatial Network
Databases. In VLDB. 802–813.

PAPADOPOULOS, S., YANG, Y., BAKIRAS, S., AND PAPADIAS, D. 2009. Continuous Spatial Authentication.
In SSTD. 62–79.

QUINE, M. P. AND WATSON, D. F. 1984. Radial Generation of n-Dimensional Poisson Processes. Journal of
Applied Probability 21, 548–557.

ROUSSOPOULOS, N., KELLEY, S., AND VINCENT, F. 1995. Nearest Neighbor Queries. In SIGMOD. 71–79.
SWEENEY, L. 2002. k-Anonymity: A Model for Protecting Privacy. International Journal on Uncertainty,

Fuzziness and Knowledge-Based Systems 10(5), 557–570.
TAO, Y., ZHANG, J., PAPADIAS, D., AND MAMOULIS, N. 2004. An Efficient Cost Model for Optimization of

Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE TKDE 16, 10, 1169–1184.
WANG, T. AND LIU, L. 2009. Privacy-Aware Mobile Services over Road Networks. PVLDB 2, 1, 1042–1053.
XIN, D., HAN, J., AND CHANG, K. C.-C. 2007. Progressive and Selective Merge: Computing Top-k with

Ad-hoc Ranking Functions. In SIGMOD. 103–114.
XIN, D., HAN, J., CHENG, H., AND LI, X. 2006. Answering Top-k Queries with Multi-Dimensional Selec-

tions: The Ranking Cube Approach. In VLDB. 463–475.
XU, J., TANG, X., HU, H., AND DU, J. 2010. Privacy-Conscious Location-Based Queries in Mobile Environ-

ments. IEEE TPDS 21, 3, 313–326.
YANG, Y., PAPADOPOULOS, S., PAPADIAS, D., AND KOLLIOS, G. 2009. Authenticated Indexing for Out-

sourced Spatial Databases. VLDB J. 18, 3, 631–648.
YAO, B., LI, F., AND KUMAR, P. 2010. K Nearest Neighbor Queries and kNN-Joins in Large Relational

Databases (Almost) for Free. In ICDE. 4–15.
YIU, M. L., JENSEN, C. S., HUANG, X., AND LU, H. 2008. SpaceTwist: Managing the Trade-Offs Among

Location Privacy, Query Performance, and Query Accuracy in Mobile Services. In ICDE. 366–375.
ZOU, L. AND CHEN, L. 2008. Dominant Graph: An Efficient Indexing Structure to Answer Top-K Queries.

In ICDE. 536–545.

A. APPENDIX—TRANSFERRING RESULTS FROM THE SERVER TO THE CLIENT
In both the LBS and DBMS implementations discussed above, the server needs to
return incremental NNs to the client by using a communication channel. For many
programming languages (e.g., C++ and Java), high-level APIs are available that enable
the server to send data points to the client via a TCP/IP socket interface. Low-level
issues, such as TCP/IP packet sizes and the segmentation of data points into packets,
are handled transparently by such APIs.

We consider two means by which the server can send incremental NNs to the client.
Both are built on top of TCP/IP socket APIs, so they are guaranteed to provide reli-
able communication. The client may issue the following messages to the server: Start,
GetNext, and Stop.

We first consider a straightforward method called Blocking. The client first sends a
Start message to the server to initiate the process. Upon receiving a GetNext message
from the client, the server sends the next NN point to the client. When the client
decides to terminate the process, it sends a Stop message to the server. The major
disadvantage of Blocking is that the server needs to wait for GetNext messages, and
the number of round trips equals the number of points sent.

To eliminate the waiting time, we consider a method called Non-blocking. The client
first sends a Start message to the server to initiate the process. Then, the server sends
incremental NNs to the client iteratively (in a streaming manner), without waiting for
GetNext messages. The client employs an event trigger that invokes necessary pro-
cessing whenever a new data point arrives via the stream. When the client decides to
terminate the process, it sends a Stop message to the server. Some unnecessary data
points are likely to be sent from the server to the client during the time it takes for the
eventual Stop message to be transmitted from the client to the server. Specifically, we

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

Design and Analysis of a Ranking Approach to Private Location-Based Services 00:43

denote the number of such unnecessary data points by β∗ = m′′ −m, where m denotes
the number of points received by the client (when it sends the Stop message), and m′′
denotes the total number of points sent by the server.

We compare the efficiency of Blocking and Non-blocking experimentally. Specifically,
we use a mobile device (an Asus P535) with two popular wireless connections (Wi-Fi
and GPRS), and another mobile device (an HTC Diamond) with a 3G connection. We
measure the end-user time as the time between the Start and the Stop messages sent
by the client. It includes the client’s processing time as the Stop message can only
be sent after the client has examined the retrieved points and determined that no
more points are needed. For the Non-blocking method, we also measure the number
of data points sent by the server. Figure 24a shows the end-user time of the methods
with respect to the number of points received by the client. Note that both axes are
shown in log scale, whereas the label suffixes B and the NB refer to Blocking and Non-
blocking respectively. Clearly, Non-blocking outperforms Blocking for all connection

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+006

E
n
d
-u

s
e
r

ti
m

e
 (

s
)

Points received

Wi-Fi B
GPRS B

3G B
Wi-Fi NB

GPRS NB
3G NB

 0

 1000

 2000

 3000

 4000

 5000

 1 10 100 1000 10000 100000

E
x
tr

a
 p

o
in

ts
 m

''-
m

Points received m

Wi-Fi NB
GPRS NB

3G NB

(a) end-user time (b) value of β∗

Fig. 24. Effect of the Number of Points Received on the End-User Time and Extra Points Sent

types. Thus, we adopt the Non-blocking method for transferring data objects from the
server to the client.

Figure 24b plots the measured value of β∗ (i.e., number of unnecessary points sent
by the server) as a function of the number of points received by the client. Observe
that the value of β∗ fluctuates within a certain technology-dependent range [β−, β+].
Its range is [800, 1300] for GPRS and 3G, and it is [2800, 3500] for Wi-Fi in our tests.
Since the actual value of β∗ cannot be predicted, it is not possible to deduce the precise
value of m (points received by client) by using the value of m′′ (points sent by server).
Nevertheless, one may still infer the possible range of m to be: [m′′ − β+,m′′ − β−]. We
exploit this information in our privacy analysis in Section 4.2.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 00, Publication date: 2011.

