
IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 1

Efficient Authentication of Continuously
Moving kNN Queries

Duncan Yung Yu Li Eric Lo Man Lung Yiu

Abstract—A moving kNN query continuously reports the k results (restaurants) nearest to a moving query point (tourist). In
addition to the query results, a service provider often returns to mobile client a safe region that bounds the validity of query
results in order to minimize the communication cost between the service provider and that mobile client. However, when a
service provider is not trustworthy, it may send inaccurate query results or incorrect safe regions to mobile clients. In this paper,
we present a framework for authenticating both the query results and the safe regions of moving kNN queries. We theoretically
proved that our methods for authenticating moving kNN queries minimize the data sent between the service provider and the
mobile clients. Extensive experiments are carried out using both real and synthetic datasets and results show that our methods
can perform moving kNN query authentication with small communication costs and overhead.

Index Terms—H.2.4.h Query processing; H.2.7.d Security, integrity, and protection

F

1 INTRODUCTION

Location-based service providers (LBS) offer remote mo-
bile clients with querying services on points-of-interest
(e.g., restaurants, cafes, gas stations). A mobile client q
issues a moving k nearest neighbor (kNN) query [33], [14]
in order to find k points-of-interest closest to q continuously
while traveling. Such queries have numerous mobile appli-
cations. For example, a tourist may issue a moving kNN
query to obtain k nearest restaurants continuously when
walking in a city. A driver issues a moving kNN query to
find k nearest gas stations continuously while driving.

LBS that offer kNN querying services often return mo-
bile clients a safe region [33], [14] in addition to the query
results. Given a moving client q, its safe region contains
all possible query locations that have the same results as q.
In other words, the client only issues a new query to the
LBS (for the latest results) when she leaves the safe region.
This optimization significantly reduces the communication
frequency between the service provider and the clients.

Unfortunately, the query results and safe regions returned
by LBS may not always be accurate. For instance, a hacker
may have infiltrated the LBS’s servers [24] so that results
of kNN queries all include a particular location (e.g., the
White House). Furthermore, it is possible that the LBS
is self-compromised, and thus ranks sponsored facilities
higher in its query results. The LBS may also return an
overly large safe region to the clients for the sake of saving
computing resources and communication bandwidth [21],
[17], [29]. On the other hand, the LBS may opt to return
overly small safe regions so that the clients have to request

• D. Yung is with the Department of Computer Science, University of
Pittsburgh, USA.
E-mail: duncanyung@cs.pitt.edu

• Y. Li, E. Lo, and M. L. Yiu are with the Department of Computing,
Hong Kong Polytechnic University, Hong Kong.
E-mail: {csyuli, ericlo, csmlyiu}@comp.polyu.edu.hk

new safe regions more frequently, if the LBS charges fee for
each request, or if the LBS wishes to boost its request rate
— a figure that could influence its advertisement revenue.

Recently, techniques for authenticating query results have
received a lot of attentions [16], [9], [18], [26], [10],
[20], [17], [27], [19], [29]. Most authentication techniques
are based on Merkle tree [13], which is an authenticated
data structure (ADS) for ensuring the correctness of query
results on a dataset. Recently, Yang et al. [27] developed
an ADS called Merkle R-tree (MR-tree) for authenticating
queries on a spatial dataset, and also an improved tree
called MR*-tree. Upon receiving a query issued by a mobile
client, the LBS not only retrieves the query results but
also computes a verification object VO from the tree.
Specifically, the VO consists of certain tree entries that
can be later utilized by the client to verify the correctness
of results.

The issue of authenticating moving kNN queries, how-
ever, has not been addressed yet. Existing authentication
techniques for static spatial queries [27], [19], [5] have their
authentication target as the query results, being a subset of
the dataset. In contrast, the authentication target of moving
queries includes the safe region, which is a geometric shape
computed by the LBS at runtime but not part of the dataset.
Since a safe region is defined based on both query results
as well as points not in the query results, the missing of a
non-result point in the VO may also fail the authentication
of the safe region. Thus, the above techniques cannot help
in authenticating moving kNN queries.

This paper is devoted to addressing this challenging issue
of authenticating moving kNN queries. Our preliminary
work [30] has developed two methods for authenticat-
ing moving kNN queries. In this paper, we improve the
best authentication method (Section 4.2) and prove that
it achieves VO-optimality (Section 4.3). This optimality
notion guarantees that the VO contains the minimum data
points and tree entries (with respect to the given tree) [32].

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 2

We also present new optimization techniques for reducing
the computation cost (Section 4.4) and the communication
cost of our authentication method (Section 4.5). It is
especially important to minimize the mobile client’s total
communication cost as it translates to the client’s money
(paid to the mobile network provider). For example, the
typical data rate of GO-SIM is US $0.49/MB.1

In addition, we extend our authentication method to han-
dle moving kNN queries on multiple datasets (Section 5). In
summary, the technical contributions of this paper include:

1) The design of verification objects VO specific for
authenticating the safe regions (and also the results)
of moving kNN queries.

2) An improved moving kNN authentication method
that is VO-optimal [32], i.e., its VO contains the
minimum data points and tree entries (with respect
to the given tree).

3) Techniques for optimizing the computation and com-
munication costs of our authentication method.

4) Extension of our authentication method for moving
kNN queries on multiple datasets.

5) A thorough experimental study on the efficiency of
our proposed method on real data and synthetic data.

The rest of this paper is organized as follows. We discuss
related work in Section 2. Our moving query processing
and authenticating framework is presented in Section 3.
In Section 4, we present our VO-optimal method for
authenticating moving kNN queries. We then extend our
method for query authentication on multiple datasets in
Section 5. The experimental study is presented in Section 6.
Finally, we conclude this paper in Section 7.

2 RELATED WORK

2.1 Query authentication

In the literature, most authentication techniques [9], [26],
[10], [20], [27], [19], [17], [29], [11] are based on Merkle
tree [13]. Merkle tree is an authenticated data structure
(ADS) that is built on the dataset. Digests of nodes in the
tree are first recursively computed from the leaf level to the
root level.2 Then, the signature of the dataset is obtained
by signing the root digest using the data owner’s private
key. Signature aggregation [16], [18], [4] is an alternative
authentication technique, which builds a signature per data
object (or per grid cell). The advantage of this approach is
that it avoids revealing non-result data objects to the client.
Recently, Yi et al. [28] propose a probabilistic approach for
authenticating aggregation queries; and Kundu et al. study
the authentication of trees and graphs [7], [8].

The Merkle R-tree (MR-tree) is an ADS for authenti-
cating spatial queries, including range queries [27], kNN
queries [27], and location-based skyline queries [11]. MR-
tree is developed based on R∗-tree [1] and Merkle tree [13].
Figure 1b shows an MR-tree for the dataset shown in

1. http://www.gosim.ekit.com/ekit/MobileInfo/popup data services
2. A secure-hash function is often used to compute a fix-length digest.

Figure 1a. A leaf entry pi stores a data point. A non-
leaf entry ei stores a rectangle ei.r and a digest ei.α,
where ei.r is the minimum bounding rectangle of its child
node, and ei.α is the digest of the concatenation (denoted
by |) of binary representation of all entries in its child
node. For instance, e1.α = h(p1|p2), e5.α = h(e1|e2),
and eroot.α = h(e5|e6). The root signature is generated by
signing the digest of the root node eroot.α using the data
owner’s private key.

Consider the nearest neighbor (NN) query q in Figure 1.
Its NN is p1 and its NN distance is denoted by γ =
dist(q, p1). In order to let the client verify the correctness
of the NN results, the server utilizes the MR-tree (provided
by the data owner) to generate a verification object VO. For
kNN queries, the VO is computed by a depth-first traversal
of the MR-tree. First, a circular verification region �(q, γ)
with center q and radius γ is defined. Then, the tree is tra-
versed with the following conditions: (i) if a non-leaf entry
e does not intersect �(q, γ), e is added to the VO (e.g.,
e2, e6) and its subtree will not be visited; (ii) data points in
any visited leaf node are added into the VO (e.g., p1, p2). In
this example, we have VO = {{{p1, p2}, e2}, e6} , where
{ and } are tokens for marking the start and end of a node.

e1
p1

q

e5p2

p3

p
e2

γγγγ

p2 p4

p5 p6
p7

p8

e2

e3

e4

e6

e1 (r,α) e2 (r,α) e3 (r,α) e4 (r,α)

e5 (r,α) e6 (r,α)

eroot (r,α)

p1 p2 p5 p6
p7 p8p3 p4

(a) data points on a plane (b) Merkle R-tree (TD)

Fig. 1. Authentication of nearest neighbor queries

Upon receiving the VO, the client first checks the
correctness of the VO by reconstructing the digest of
root of the MR-tree from the VO and then verifying it
against the root signature using the data owner’s public
key. If the verification is successful, the client next finds
the NN result (and the NN distance γ′) directly from the
data points extracted from the VO (ignoring the non-leaf
entries). Then, the client re-defines his own verification
region �(q, γ′). Note that if a non-leaf entry e in the VO
does not intersect �(q, γ′), that means all the points in e
are farther than the computed NN result with respect to q.
Thus, the client verification step is to check whether every
non-leaf entry in the VO satisfies e.b∩�(q, γ′) = ∅. If so,
the client can assure that the computed NN result is correct.
If the server omits some point (e.g., p1) in the above VO,
then the client cannot reconstruct the correct root signature
in the above verification process.

MR*-tree is an extension of MR-tree [27], where each
node is embedded with a conceptual Merkle KD-tree de-
fined on entries in the node. It achieves a smaller VO than
MR-tree by replacing non-result entries in VO with digests.
Our proposed solutions for moving query authentication are
applicable on both MR-tree and MR*-tree.

Existing spatial authentication techniques [27], [19], [5]

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 3

cannot help in authenticating moving queries because they
focus on static queries, whose authentication targets (i.e.,
query results) are part of the dataset. In contrast, authen-
tication of moving queries require authenticating both the
query results (part of the dataset) and the safe regions (not
part of the dataset).

2.2 Moving query processing

In moving query processing, Tao et al. [23] compute the
nearest neighbors for each possible query point on a given
line segment, whereas Iwerks et al. [6] study how to
maintain the client’s future kNN upon a change of the
client’s velocity. Both work [23], [6] model the client’s
movement as a linear function. When the client’s future
movement is unknown, the buffering approach [22] and
the safe region approach [33], [14] are more appropriate
for efficient moving query processing.

In the buffering approach [22], the LBS returns to the
client kNN points and the next ∆k nearest points, where
the parameter ∆k controls the number of additional points.
Specifically, let qlast be the last query client location and
di be the i-th nearest neighbor distance for qlast. The buffer
region is defined as a circle �(qlast, ε) with center qlast and
radius ε = (dk+∆k−dk)/2. Song et al. [22] has proven that,
while the client moves within the buffer region, her latest
result can be recomputed locally from those buffered k+∆k
points. Only when the client moves outside �(qlast, ε), it
needs to issue a new (k+∆k)NN query to the LBS. How-
ever, it is not easy to tune ∆k in practice, which heavily
influences the communication frequency and the number
of objects transferred per communication. Furthermore, the
client incurs computation overhead on recomputing result.

In the safe region approach, the LBS reports a safe
region [33], [14], [3] for the query result, such that the result
remains unchanged as long as the client moves within the
safe region. Unlike the buffering approach, this approach
does not require the client to compute result locally. This
approach not only reduces the communication cost between
the LBS and the client, but also the computational overhead
at the client.

We illustrate the buffering approach and the safe region
approach in Figure 2. Assume k = 1 and all locations are
on the x axis. Let qt be the location of client q at timestamp
t. At time t = 0, the NN result of q is p1. For the safe region
approach, the safe region of NN (p1) is the interval [1,∞].
When q travels towards the right-side, q still falls into the
safe region and does not need further communication with
the LBS. On the other hand, the buffering approach may
incur frequent communication if ∆k is not carefully tuned.
Suppose that ∆k = 1. At t = 0, the client (at q0) retrieves
(k + ∆k)NN: p1 and p2. The buffer region is the circle
�(q0, ε) where ε = (dk+∆k − dk)/2 = (4 − 2)/2 = 1.
This region is the interval [3, 5]. At t = 1, the client (at q1)
leaves the buffer region. Thus, it requests the LBS for the
latest (k+∆k)NN and the buffer region �(q1, ε), where ε =
(5−3)/2 = 1. This region is the interval [4, 6]. Similarly, in
each subsequent timestamp, the client has to communicate

with the LBS upon reaching q2, q3, · · · . In summary, the
communication cost of the buffering approach can be much
higher than the safe region approach.

p1
p2

0 1 2 3 4 5 6 7 8 9

q0 q1 q2 q3

x

Fig. 2. Example on buffering and safe region, k = 1

3 THE FRAMEWORK

Following previous work [33], [14], [3], in this paper, we
use a general problem setting in which future locations of
a moving query client cannot be predicted in advance.

Figure 3 illustrates our framework for answering mov-
ing kNN queries with query correctness verification. A
map provider (e.g., the government’s land department,
NAVTEQ3 and TeleAtlas4) collects (public) points-of-
interests into a spatial dataset D. Each point-of-interest
contains a lat-long coordinate and auxiliary attributes (e.g.,
name, description, phone). Then, the map provider builds
a MR-tree/MR*-tree [27] TD on the dataset and signs the
digest of the root node, before distributing the tree to a ser-
vice provider (i.e., LBS). Our adversary model and security
guarantee are the same as in Yang et al. [27]. Adversaries
know all information (e.g., the map provider’s public key,
the secure-hash function, the tree, and our authentication
algorithms), except the map provider’s private key.

Initially, a mobile client q downloads the root signature
from the LBS and the map provider’s public key from a
certificate authority (e.g., VeriSign). Afterwards, the client
sends its location to the LBS, and obtains the query result,
the safe region, and the VO. The correctness of the query
result and the safe region can be verified at the client by
using the received VO, the root signature and the map
provider’s public key. The client needs to issue a query
to the LBS again only when it leaves its safe region.

However, the LBS may return incorrect safe regions,
rendering the client’s future result incorrect. For exam-
ple, the LBS may return overly large safe regions for
the sake of saving computing resources and communi-
cation bandwidth [21], [17], [29]. On the other hand,
the LBS may opt to return overly small safe regions so
that the clients have to request new safe regions more
frequently, if the LBS charges fee for each request or
wishes to boost its request rate. Our goal is thus to
devise an effective method for the client to verify the
correctness of the safe region returned by LBS. We aim
at minimizing the client’s total communication cost as it
translates to the client’s money to pay to the mobile network
provider (cf. Introduction).

As a remark, the spatial dataset is expected to have
infrequent updates (e.g., monthly map updates). In case the
client requires fresh results (i.e., obtained from the latest

3. NAVTEQ Maps and Traffic. http://www.navteq.com
4. TeleAtlas Digital Mapping. http://www.teleatlas.com

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 4

data), the map provider could follow Li et al. [9] to include
a timestamp in the root signature of the tree.

Service provider
Spatial Dataset

Map provider

Root

signature

build
Root

signature

location update

result, safe region, VO

Certificate authority

Public key [once]

Root signature

[once]

MR-tree

/MR*-tree

build
distribute

signature

MR-tree

/MR*-tree

Mobile client

when crossing

safe region

Fig. 3. Moving kNN Authentication

3.1 Baseline: Buffering Approach
In a moving query environment, the question is when and
where the client should (re-)issue query in order to get the
most updated query range result as q moves.

A baseline authentication method for moving kNN
queries is to apply the buffering approach [22] as follows.
The client requests (k + ∆k)NN from the server, as
discussed in Section 2.2. These (k + ∆k)NN points can
then be authenticated by using an MR-tree/MR*-tree [27].
After verifying their correctness, the client can derive its
latest kNN result locally from those retrieved points, while
it moves within the buffer region.

Although simple, the buffering approach requires finding
the optimal value of ∆k for different datasets. A small ∆k
leads to more frequent communication, thereby increasing
the communication cost. A large ∆k, unfortunately, also
increases the communication cost because the size of the
VO increases. Furthermore, even when staying within the
buffer region, the client still incurs overhead on recomput-
ing the result locally.

In the next section, we present our safe region approach
for authenticating kNN queries. The query result remains
unchanged as long as the client’s location q stays within
the safe region. This approach not only reduces the com-
munication frequency between the server and the client, but
also the computational overhead at the client.

4 AUTHENTICATING MOVING kNN QUERIES
First, we examine the safe regions of kNN queries and
the challenge on authenticating them (Section 4.1). Then,
we present our Vertex-Based (VB) method for constructing
VO for moving kNN query authentication (Section 4.2).
Our methods are applicable on both MR-tree and MR*-
tree. We improve the method presented in our preliminary
work [30] and now prove that this (new) VB method is
VO-optimal [32], i.e., it puts the minimum data points and
tree entries into the VO, with respect to the given tree
(Section 4.3). Then, we present techniques for optimizing
the computation cost and the communication cost, in Sec-
tions 4.4 and 4.5 respectively. Finally, we discuss how to
support selection predicates in the query in Section 4.6.

4.1 Preliminaries and Authentication Challenges
In this paper, we focus on the 2-dimensional space R2 be-
cause most spatial data reside in such a space. Nevertheless,
our result can be extended to the 3-dimensional space. A
summary of notation used in this paper is given in Table 1.

TABLE 1
Summary of Notations

Symbol Meaning
D the dataset of points
q the (current) query point
k number of nearest neighbors
S kNN result
γ the distance between q and its k-th nearest neighbor

�(q, r) circular region with center q and radius r
dist(p, p′) distance between points p and p′

⊥(p, p′) the half-plane closer to point p than point p′

V(p,D) Voronoi cell of p with respect to D
G(p,D) the generator set of V(p,D)
Vk(S,D) order-k Voronoi cell of S with respect to D (the safe region)
G(S,D) the generator set of V(S,D)

Ψ vertices of Vk(S,D)
e a non-leaf entry in an MR-tree/MR*-tree

mindist(e, q) the minimum distance between q and the extent of e
KV R kNN verification region
SRV R safe region verification region

Γ verification region

We adopt the order-k Voronoi cell [33] as the safe region
for moving kNN queries. We are aware of another safe
region technique called V∗-diagram [14], which formulates
an advanced safe region by fetching (k + ∆k) nearest
neighbors. However, the optimal value for ∆k is not easy
to tune because it depends on the data distribution and the
query parameters.

The basic definitions for Voronoi cells are as follows.

Definition 1. Voronoi cell [15].
Given a point p from a point set D, the Voronoi cell V(p,D)
of p with respect to D is defined as:

V(p,D) =
⋂

p′∈D\{p}

⊥(p, p′)

where ⊥(p, p′) = {z ∈ R2 | dist(z, p) ≤ dist(z, p′)}.
Definition 2. Voronoi edge.
For two adjacent Voronoi cells V(p,D) and V(p′, D), their
Voronoi edge is defined as their shared line segment:

E(p, p′, D) = {z ∈ R2 | z ∈ V(p,D) ∧ z ∈ V(p′, D)}

Definition 3. Generator and symmetric property.
A point p′ is a generator of V(p,D) if E(p, p′, D) is non-
empty. Let G(p,D) be the set of all generators of V(p,D).
Since E(p, p′, D) = E(p′, p,D), we obtain: p′ ∈ G(p,D)
iff p ∈ G(p′, D).

Figure 4a illustrates the Voronoi cell of each point
from the dataset D = {p1, p2, p3, p4, p5, p6}. The Voronoi
cell V(p1, D) of p1 is shown as three bold edges, which
can be represented by point p1 and its generator set
G(p1, D) = {p2, p5, p6}. Observe that Voronoi cells of
points in G(p1, D) share common edges with V(p1, D).

Definition 4. Order-k Voronoi cell [15].
Given a subset S ⊂ D such that |S| = k, the order-k
Voronoi cell Vk(S,D) of S with respect to D is defined as:

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 5

p1

p2

p6

p3

p4

p5

E(p1,p5,D)

V(p1,D)

p1

p2

p6

p3

p4

p5

(a) Voronoi cells (b) order-k Voronoi cells, at k = 2

Fig. 4. Example of Voronoi cells

Vk(S,D) = {z ∈ R2 | max
p∈S

dist(z, p) ≤ min
p′∈D\S

dist(z, p′)}

=
⋂
p∈S

(
⋂

p′∈D\S

⊥(p, p′))

Figure 4b depicts the order-2 Voronoi cells on the dataset
D by using bold line segments. For instance, any location
within the cell V2({p1, p2}, D) regard p1 and p2 as its 2
nearest neighbors.

p1

p2

p6

p3

p4

p5

q

(p1,p5)

(p1,p6)

(p1,p3)

(p1,p2)

(p1,p4)

p2

p4

⊥(p1,p3) ⊥(p1,p4)

p7

⊥(p ,p)

p1

2

p6

p3 p5

q

⊥(p1,p5)

⊥(p1,p6)

⊥(p1,p2)

⊥(p1,p7)

(a) a larger safe region (b) a smaller safe region

Fig. 5. Challenge of safe region authentication

The challenge of verifying the correctness of a Voronoi
cell (safe region) is illustrated in Figure 5. The server needs
to compute the 1NN of q (i.e., point p1) and also the safe
region (i.e., the Voronoi cell V(p1, D); the grey triangle).
Through Definition 3, the server can represent the Voronoi
cell V(p1, D) by point p1 and its generator set: G(p1, D) =
{p2, p5, p6}. The client can reconstruct V(p1, D) by using
p1 and G(p1, D).

Suppose that in Figure 5a the server intentionally rep-
resents V(p1, D) using a fake generator set G′(p1, D) =
{p4, p5, p6}. In this case, the client will reconstruct an
overly large safe region using an incorrect Voronoi cell
V ′(p1, D), as indicated by the bold triangle in the figure.
Since all points of G′(p1, D) also originate from the dataset
D, they pass the data correctness checking that verifies the
root signature. The problem here is that the client cannot
verify whether the points in G′(p1, D) are the same as the
actual generator set G(p1, D).

The server may also produce a smaller fake safe re-
gion, as shown in Figure 5b, by using a fake generator
set G′(p1, D) = {p2, p5, p6, p7}. Observe that the fake
safe region can only become smaller than the actual safe
region when the generator set contains fake points (e.g.,
p7). However, such fake points can be easily detected by

the client because the reconstructed VO will have a root
signature different from the original root signature.

By Definition 1, V(p1, D) is constructed by all points
in D. So, a brute-force solution is to return the whole
dataset D to the client so that she is guaranteed to compute
V(p1, D) correctly. Our goal is to design an algorithm to
construct verification object VO for verifying the correct-
ness of the Voronoi cell, yet the size of VO should be as
small as possible.

4.2 Vertex-Based Method
Our Vertex-Based (VB) method exploits the vertices of an
order-k Voronoi cell in order to construct a compact VO
for authenticating a moving kNN query. VB consists of
a server algorithm (for computing result, safe region, and
VO) and a client algorithm (for verifying result and safe
region by using VO).

Algorithm 1 Vertex-Based Method (Server)
Receive from client: (Query point q, Integer k)
Using MR-tree/MR*-tree TD (on dataset D)

1: S := compute the kNN of q from the tree TD;
2: compute Vk(S,D) from the tree TD (using method

[33]);
3: γ := maxp∈S dist(q, p); . authenticate kNN
4: KV R := �(q, γ);
5: Ψ := set of vertices of Vk(S,D); . authenticate safe

region
6: SRV R :=

⋃
ψ∈Ψ�(ψ,maxp∈S dist(ψ, p))− � +~;

7: Γ := KV R ∪ SRV R;
8: VO := DepthFirstRangeSearch(TD.root, Γ);
9: send VO to the client;

4.2.1 Server Algorithm
Algorithm 1 is the pseudo-code of the server algorithm.
Upon receiving the client location q and the number k
of required NNs, it computes the kNN result S from an
MR-tree/MR*-tree TD (Line 1). Then, it computes the safe
region as the order-k Voronoi cell Vk(S,D) (Line 2). Next,
it defines verification region Γ so as to identify useful
points for verifying the kNN result and the safe region, and
puts these points into the VO. Specifically, the verification
region Γ is defined as the union of (i) the kNN query result
verification region (KV R) and (ii) the kNN safe region
verification region (SRV R).

Definition 5. kNN query result verification region
(KV R).
The kNN query result verification region (KV R) is defined
as the circular region �(q, γ), where γ is the distance
between q’s k-th nearest neighbor and q.

Definition 6. kNN safe region verification region
(SRV R).
The kNN safe region verification region (SRV R) is defined
as the union of circular regions at each vertex ψ of
the Voronoi cell to its farthest point in the kNN result

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 6

S. i.e.,
⋃
ψ∈Ψ�(ψ,maxp∈S dist(ψ, p)), but excluding the

circumference � except the intersections ~. i.e., we have:

SRV R =
⋃
ψ∈Ψ

�(ψ,max
p∈S

dist(ψ, p))− � +~

where Ψ denotes the set of vertices of the Voronoi cell
Vk(S,D), �= {z ∈ R2 | ∃ψi ∈ Ψ, dist(ψi, z) = γi,
∀ψj ∈ Ψ, dist(z, ψj) ≥ γj}, and ~ = {z ∈ R2 | ∃ψi, ψj ∈
Ψ, dist(z, ψi) = γi, dist(z, ψj) = γj , i 6= j}.

Unlike our earlier definition in [30], this definition of
SRV R excludes the circumference � except circle inter-
sections ~. With this improved definition, we will show
that VB method is VO-optimal in Section 4.3.

p2

p4

ψ1

KVR SRVR

p1

p2

p6

p3

p5

V(p1,D)

q

γγγγ

ψ1

ψ2

ψ3Zcir

p1

p2

p6

p3

p4

p5

V2 ({p1, p2},D)

q

g

(a) order-1 cell V(p1, D) (b) order-2 cell V2({p1, p2}, D)

Fig. 6. Verification region of order-k Voronoi cell

Figure 6a depicts the verification region Γ for the case
k = 1. The NN of q is point p1 and its safe region is the
Voronoi cell V(p1, D) (in grey triangle). The KV R is the
solid circle centered at q. SRV R is the union of the dotted
circles centered at vertices ψ1, ψ2, ψ3. Note that SRV R
does not include the circumference of those dotted circles,
except the intersections of the circles (p2, p5, and p6).

The VO is computed by a depth-first traversal of the
MR-tree/MR*-tree (Line 8). Finally, the server sends the
VO to the client (Line 9), who will extract the kNN result
and the safe region from VO and authenticate them (see
Section 4.2.2).

Specifically, at Line 8, the tree is traversed with the
following two conditions: (i) if a non-leaf entry e does not
intersect Γ, e is added to the VO and its subtree will not be
visited; (ii) data points in any visited node (i.e., intersecting
Γ) are put into the VO. Thus, in our example (Figure 6a),
the VO contains the points p1, p2, p5 and p6 and other non-
leaf entries in the tree. Note that zcir is a data point on �,
so it is not part of SRV R and would not be included in
the VO. Figure 6b illustrates the verification region Γ for
the case k = 2. The points p1 and p2 are 2NN of q and the
order-2 Voronoi cell V2({p1, p2}, D) (the grey polygon) is
the safe region. In this example, the verification region Γ
contains the points p1, p2, p3, p4, p5, p6 and other non-leaf
entries in the tree.

We now prove that any point p∗ outside the verification
region Γ cannot alter the kNN results and the corresponding
safe region Vk(S,D) and thus it is safe to not include them
in the VO.

Theorem 1. [Points p∗ outside Γ cannot alter the kNN
results and the corresponding safe region Vk(S,D)]

Proof: See the proof in the Appendix.

For example, in Figure 6a, points zcir, p3 and p4 fall
outside SRV R. By Lemma 4, they cannot alter V(p1, D)
and so they are not included in the VO. On the other
hand, points p2, p5 and p6 are the generators of the order-1
Voronoi cell V(p1, D). They are essential for constructing
V(p1, D), so they are in SRV R and included in the VO.
By Theorem 1, it is safe to put only those points within Γ
into the VO (and other points are represented by a few non-
leaf entries). Therefore, while the VO constructed by this
method is very compact, it also provides all the information
the client needs to verify the correctness of the safe region
(and the kNN result).

Note that, for efficient implementation, the server does
not need to render the complex shape of the verification
region Γ (Line 7). Instead, we check whether the following
condition holds during the tree traversal (Line 8):

(mindist(e, q) ≤ γq) ∨
∨

p∈G(S,D)

(mindist(e, p) = 0)

∨
∨
ψ∈Ψ

(
mindist(e, ψ) < max

p∈S
dist(ψ, p)

) (1)

where the first term checks whether a non-leaf entry
e intersects KV R and the second and third term check
whether e intersects SRV R. If the condition is false, we
add e into the VO. Using this condition, the VO can be
constructed efficiently.

The time complexity of the server algorithm is analyzed
as follows. First, it is dominated by the number of node
accesses for the verification region Γ (at Line 8). Yang et
al. [27] has a formula of computing the node access cost for
a range query. In the following, we attempt to approximate
the verification region Γ as a circular region and then apply
the formula in [27] to estimate the node access cost.

Since Γ = KV R ∪ SRV R and SRV R always covers
KV R, it suffices to estimate the area of SRV R. For sim-
plicity, we assume that data points are uniformly distributed
in the unit space [0, 1]2. With this assumption, we can
approximate the shape of an order-k Voronoi cell Vk(S,D)

by a circle with radius λ. We have λ =
√

1
π·(2k−1)n because

the average area of Vk(S,D) is ≈ 1
(2k−1)n , according to

[15]. Next, we approximate the verification region Γ =

SRV R as a circle with the radius λ+ γ, where γ =
√

k
πn

is the average k-th NN distance. Finally, we estimate the
node access cost by substituting the circle radius γ+λ into
the cost formula in [27].

The above analysis is based on uniform data distribution.
In case of skewed data distributions, histograms may be
used to estimate the local density, γ and λ.

4.2.2 Client Algorithm
Algorithm 2 is the pseudo-code of the client algorithm.
Upon receiving the verification object VO from the server,
it first reconstructs the root digest from the VO and verifies
it against the tree root signature signed by the map provider

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 7

(Lines 1–2). If the verification is successful, the VO is
guaranteed to contain only entries from the original tree
(i.e., no fake entries). Next, it proceeds to verify the
correctness of the kNN result and the safe region provided
by the VO. It extracts from the VO (i) a set D′ of data
points, and (ii) a set R′ of non-leaf entries, and then
computes the kNN result S′ from D′ (Lines 4–6).

Algorithm 2 Vertex-Based Method (Client)
Receive from server: (Verification object VO)

1: h′root := reconstruct the root digest from VO;
2: verify h′root against the tree root signature;
3: if h′root is correct then
4: D′ := the set of data points extracted from VO;
5: R′ := the set of non-leaf entries extracted from VO;
6: S′ := compute the kNN of q from D′;
7: γ′ := maxp∈S′ dist(q, p);
8: if ∀e ∈ R′, e ∩ �(q, γ′) = ∅ then . authenticate
kNN

9: V := compute Vk(S′, D′); . authenticate safe
region

10: Ψ := set vertices of V;
11: SRV R :=

⋃
ψ∈Ψ�(ψ,maxp∈S′ dist(ψ, p));

12: if ∀e ∈ R′, e ∩ SRV R = ∅ then
13: return kNN result S′ and safe region V;
14: return authentication failed;

As described in Section 2, the kNN set S′ is correct
if every non-leaf entry of R′ does not intersect �(q, γ′),
where γ′ is the distance between q and its k-th NN (Lines
7–8). If the kNN result is authenticated, the client next
computes the order-k Voronoi cell V = Vk(S′, D′) from
D′ as the safe region for the kNN result S′ (Line 9).
It then constructs SRV R by the set of vertices Ψ in V
(Lines 10–11). By Lemma 2, the client can ensure that the
cell V is correct if every non-leaf entry of R′ does not
intersect SRV R (Line 12). And if so, the client can regard
the computed kNN result and the safe region V as correct.

Lemma 1. [kNN result correctness verifiable at client]

Proof: Direct results from Yang et al. [27].

Lemma 2. [safe region correctness verifiable at client]
Following the Vertex-Based (VB) method, a client can verify
that the constructed safe region Vk(S′, D′) equals to the
correct safe region Vk(S,D), i.e., Vk(S′, D′) = Vk(S,D).

Proof: See the proof in the Appendix.

4.3 VO-optimality

In this section, we prove that the Vertex-Based (VB) method
is VO-optimal [32], i.e., it puts the minimum data points
and tree entries into the VO, with respect to the given tree.

Theorem 2. [The VB method is VO-optimal, with
respect to the given tree TD]

Proof: See the proof in the Appendix.

4.4 Computation Optimization
This section presents an optimization to boost the efficiency
of a frequently-used operation in our authentication algo-
rithms. In both the server and client algorithms of VB, a
frequently-used operation is to check whether a point p′ (or
an entry e′) may refine the safe region. It is used at Lines
2, 8 of Algorithm 1, and Lines 9, 12 of Algorithm 2.

Let Vcur be the safe region found so far (with respect to
examined points), for the kNN result set S. To determine
whether a point p′ can refine Vcur, we check the condition:

∨ψi∈Ψcur p′ ∈ �(ψi, ri) (2)

where ψi is a vertex of Vcur and ri = maxp∈S dist(ψi, p).
In Figure 7a, Vcur is the safe region found so far for the
result set S = {p1}. It is formed after examining points
p2, p5, p6. Next, we examine points pa, pb and check the
above condition. Since they are outside all dotted circles in
Figure 7a, they cannot refine Vcur.

We now present an early termination technique to avoid
examining unpromising points that cannot help refine Vcur.
The idea is to represent the above dotted circles by a large
circle Cfilter = �(ψ∗, rmax). For this, we first compute
the centroid ψ∗ from the vertices of Vcur and then derive
the covering radius rmax = maxψi∈Ψ dist(ψ

∗, ψi) + ri. It
guarantees that, if a point p′ is outside Cfilter, then it can
be pruned safely. This checking condition is more efficient
than the previous one (Equation 2), as it involves only one
circle instead of multiple circles. In Figure 7a, point pb can
be pruned by using Cfilter. By applying the above checking
condition in the tree traversal, we are able to establish an
early termination condition.

p2
ψ1

Cfilter
pb

p1

p2

p6

pa

p5

Vcur

ψ2

ψ3

ψ∗ψ∗ψ∗ψ∗

r
max

e2
e1

p2

p4

p

p6

p

V(p5,D): 〈ψ1 ψ2 ψ3 ψ4 ψ5 ψ6〉

p1

e4e3

qlast

qnow

p2

p3

p5

p9

p10

p7

p8

p11

p12

p13

p14

V(p11,D): 〈ψ7 ψ8 ψ9 ψ10 ψ3 ψ2〉

(a) filter circle (b) VO reuse

e2
e1

p2

p4

p

p6

p

V(p5,D): 〈ψ1 ψ2 ψ3 ψ4 ψ5 ψ6〉

p1

e4e3

qlast

qnow

p2

p3

p5

p9

p10

p7

p8

p11

p12

p13

p14

V(p11,D): 〈ψ5 ψ4 ψ11 ψ12 ψ13 ψ14〉

(c) VO compression

Fig. 7. Optimization techniques for computation and
communication costs

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 8

4.5 Communication Optimization

Upon leaving the safe region, the client would request
the new safe region (and its verification object) from the
server. In our VB method, the safe region is an order-k
Voronoi cells, whose area becomes small at a large k. In
this case, the previous and the current verification objects,
say VOlast and VOnow, may (i) have significant overlap
or (ii) even intersect the same tree nodes. Section 4.5.1
proposes a client-side technique to check case (ii) and
avoid communication in such case. Section 4.5.2 addresses
case (i) and proposes a server-side technique to compress
VOnow and thus reduce its communication cost.

4.5.1 Client-Side: Reuse of VO
In this section, we discuss how the client can reuse the
previously received VO to reduce the communication fre-
quency between the server and the client even when the
client leaves the safe region.

Let us consider the example of Figure 7b. Assume
the client was previously located at qlast, which had its
NN as p1 and its safe region as V(p5, D) (the light-
grey region), formed by the vertices ψ1, ψ2, ψ3, ψ4, ψ5, ψ6

in the clockwise order. Its corresponding verification re-
gion Γlast includes

⋃
i=1,2,3,4,5,6�(ψi, dist(ψi, p5)). Let

VOlast be the resulting verification object reported by
the server. Since Γlast intersects the non-leaf entries e1,
e2, e4, they are visited and their data points p1 · · · p3,
p4 · · · p7, p11 · · · p14 are inserted into VOlast. As Γlast
does not intersect e3, so e3 is inserted into VOlast, and
the subtree of e3 is not visited. Thus, the client received:
VOlast = {{p1 · · · p3}, {p4 · · · p7}, e3, {p11 · · · p14}}.

Later on, the client moves to a new location qnow
outside V(p5, D). Before sending a new query to the
server, the client can run Algorithm 2 again using the
previous VOlast but with the current client location
qnow. First, the client attempts to find, from VOlast,
the NN result p11 and safe region V(p11, D) (the dark-
grey region) of qnow. The vertices of V(p11, D) are:
ψ7, ψ8, ψ9, ψ10, ψ3, ψ2. Its corresponding verification re-
gion Γnow includes

⋃
i=7,8,9,10,3,2�(ψi, dist(ψi, p11)).

Observe that Γnow does not intersect with any non-leaf
entries in VOlast (e.g., e3) as well. Thus, the correctness
of VOlast is maintained even for the new query location
qnow. This example illustrates how the client is able to
refresh the safe region without issuing a new query to the
server. By using this technique, the client sends a new query
to the server only when the new verification region Γnow
intersects some non-leaf entry in VOlast.

4.5.2 Server-Side: Compression of VO
This section presents two optimizations for the server to
save the communication cost per response.

The first optimization is to remove irrelevant attributes
from the VO. Recall from Section 3 that a data point p has
a lat-long coordinate p.loc and auxiliary attributes p.aux
(e.g., name, description, phone). Among data points in VO,
we must keep p.aux for each result p (as the client needs)

and discard p′.aux for each non-result p′. To ensure that the
client can compute the digests of points correctly, we rede-
fine the digest of point p as: h∗(p) = h(p.loc|h(p.aux)),
where h is the secure-hash function. Then, in the VO, we
only include p′.loc and h(p′.aux) for each non-result p′.
Note that h(p′.aux) occupies less space than p′.aux.

We proceed to elaborate the second optimization. Let
VOlast and VOnow be the previous and current verification
objects for the client respectively. A certain tree leaf node,
consisting of points {pi · · · pj}, may appear in both VOlast
and VOnow. Our main idea is to let the server detect
all such shared leaf nodes between VOlast and VOnow.
Then, the server computes a compressed verification object
∆VOnow, whose shared leaf nodes are replaced by (com-
pact) tokens.

Let us consider the example of Figure 7c. When the
client was located at qlast, the NN was p5, the safe
region was V(p5, D) (the light-grey region). As dis-
cussed in Section 4.5.1, the client received: VOlast =
{{p1 · · · p3}, {p4 · · · p7}, e3, {p11 · · · p14}}. Now, the client
moves to a new location qnow outside V(p5, D), and thus
requests the server for the updated result, safe region, and
verification object. The server computes the NN as p3 and
the safe region as V(p3, D) (the dark-grey region). Its cor-
responding verification region Γnow intersects e1, e2, e3, e4.
Thus, the current verification object is: VOnow =
{{p1 · · · p3}, {p4 · · · p7}, {p8 · · · p10}, {p11 · · · p14}}.

Observe that there is a significant overlap between
VOlast and VOnow. For instance, both of them contain
the tree leaf nodes: {p1 · · · p3}, {p4 · · · p7}, {p11 · · · p14}.
By replacing these nodes with the tokens #1,#2,#4 re-
spectively, the server can derive the compressed verification
object: ∆VOnow = {#1,#2, {p8 · · · p10},#4}. Clearly,
the size of ∆VOnow is much smaller than VOnow.

Upon receiving ∆VOnow, the client substitutes the to-
kens in ∆VOnow with the corresponding leaf nodes (that
appeared in VOlast) in order to reconstruct the original
verification object VOnow. Then, the client proceeds with
the verification procedure on VOnow. As a remark, to
support efficient lookup of tokens, the client may employ
a hash table for storing the leaf nodes of VOlast.

It remains to clarify how to compute the token of a leaf
node. Let B be the maximum capacity of nodes in the tree.
Consider the traversal path from the root to a leaf node:
(a1, a2, a3, · · · , ah), where ai is the branch visited at level
i. The server defines the token of the node as:

∑h
i=1 ai ·

Bh−1−i. Note that the client is also able to compute the
token of leaf nodes because it can infer their traversal paths
from ∆VOnow directly.

4.6 Discussion for Selection Predicates

In some applications, the client wishes to specify selection
predicates in the kNN query. An example query is: “find my
2 nearest restaurants with 4 stars or above”. In Figure 8a,
the results are p1 and p2 as their ratings are at least 4.

To enable processing such queries efficiently at the
server, we recommend the data owner to construct an

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 9

augmented MR-tree as shown in Figure 8b. In this tree,
each non-leaf entry ei is augmented with the max rating of
its children. For example, the entry e2 is augmented with
the rating 4 (i.e., max rating among p3, p4). At query time,
the VO would also contain non-leaf entries ei whose max
ratings are below the query’s rating (e.g., 4). In the above
example, the entries e2, e6 are included into the VO.

eroot (5,r,α)

e1

p1: 4

e2

e (5,r,α) e (3,r,α)
p2: 5

p : 1

p3: 2

p5 p6 p7 p8
p1 p2

e1 (5,r,α) e2 (2,r,α)

p3 p4

e3 e4

e3 (1,r,α) e4 (3,r,α)

e5 (5,r,α) e6 (3,r,α)
p2: 5

p5: 1

p6: 1

p4: 1

p7: 3

p8: 2

(a) data points on a plane (b) augmented MR-tree

q

Fig. 8. Augmented MR-tree (with rating information)

The above technique can be extended to queries with
multiple selection predicates, e.g., “find my 2 nearest asian
restaurants with 4 stars or above”. In such case, we aug-
ment each non-leaf entry in the tree with a Boolean flag
for the condition “asian”. Data compression techniques may
be applied to reduce the space of augmented information.

5 QUERYING ON MULTIPLE DATASETS

Our discussion so far assumes that mobile clients always
issue queries on the same dataset. In practice, clients
may issue queries on multiple types of datasets that
match with their interests. For instance, a client may
issue the query “find my nearest restaurant or gas sta-
tion”, which involves two datasets. These datasets originate
from different dataset owners. For example, in USA, a
restaurant association (http://www.restaurant.org/) provides
the locations of restaurants, and a gas station directory
(http://gasbuddy.com/) maintains the locations of gas sta-
tions.

At query time, a mobile client specifies her location q
and a subset of m datasets that match with her interests.
Without loss of generality, we assume that these queried
datasets are D1, D2, · · · , Dm respectively and denote their
union as D∗. The kNN result set of the query is then defined
as the set S in Definition 7. The safe region of S is the
order-k Voronoi cell Vk(S,D∗), according to Definition 4.

Definition 7. Multi-dataset kNN query result.
Let D∗ be the union of m datasets D1, D2, · · · , Dm. Given
a query location q, its multi-dataset kNN result set is a
size-k subset S ⊆ D∗ such that: ∀p ∈ S, ∀p′ ∈ D∗ −
S, dist(q, p) ≤ dist(q, p′).

For example, suppose that a client q issues the query
“find my nearest restaurant or gas station”. Datasets D1

(restaurants) and D2 (gas stations) match with her query
interests. Figure 9a shows the location of q and points in
D1 = {a1, a2, a3, a4, a5} and D2 = {b1, b2, b3, b4}. The
NN of q is point a1. This figure also illustrates the safe

a

a4
b1

b2

⊥(a1,b1)

a1

a2

a3

a5

q

⊥(a1,a5)

⊥(a1,b4)

⊥(a1,a2)

b3

b4

a
4

b

b
2

SRVR

a
1

a
2a

3 a
5

q

b
1

b
3

b
4

KVR

(a) safe region (b) VB verification region

Fig. 9. Multi-dataset kNN example, with k = 1,m = 2,
and D1 = {a1, a2, a3, a4, a5}, D2 = {b1, b2, b3, b4}

region of the result V(a1, D
∗), which is formed by the half-

planes of q with a2, a5, b1, b4.
First, we study the centralized server scenario where

a single server hosts all datasets. Then, we examine the
scenario for distributed servers where different servers host
different datasets separately.

5.1 The Centralized Server Scenario
We illustrate the centralized server scenario in Figure 10.
Each data owner Oi publishes its dataset Di as a MR-
tree/MR*-tree Ti and signs its tree root signature separately.
For example, T1, T2, T3, T4, T5 are the trees built on restau-
rants, gas stations, shops, bars, and car parks, respectively.
The LBS offers mobile clients a one-stop querying service
on these trees. Observe that, since the LBS does not have
the private keys of data owners, it cannot merge all trees
Ti into a single tree T ∗ and provide query authentication
on T ∗ directly. Thus, we need to develop specific query
authentication techniques for multi-datasets.

Service

Owner 1 (restaurants)

Service

provider
Mobile

client query:

location, types

result, safe region, VO

Owner 3 (shops)

Owner 4 (bars)

Owner 2 (gas stations)

Owner 5 (car parks)

tree T3

Fig. 10. A Centralized Server (Service Provider)

At query time, the mobile client can download the public
key of each data owner from a certificate authority (e.g.,
VeriSign). Upon receiving the client’s request, the LBS
computes the query result, the safe region, and the VO.
Similar to Section 3, the client can verify the correctness
of the query result and the safe region via the VO.

Our goal is to develop a communication-efficient method
for the client to verify the correctness of the multi-dataset
query result and the safe region returned by the LBS.

It is straightforward to adapt the buffering approach for
multi-dataset kNN queries, thus we do not present it here.

Extension of Vertex-Based Method.
We proceed to extend our VB method for processing

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 10

moving multi-dataset kNN queries.
Our server algorithm aims to construct m compact VO

for authenticating a moving multi-dataset kNN query. It
takes as input the client location q, the number k of
results, and m types of datasets specified by the client.
First, it computes the kNN result set S and the safe region
Vk(S,D∗) from m trees T1, · · · , Tm. The efficiency of this
step can be optimized by applying a synchronous traversal
on all m trees. As an example in Figure 9b, suppose
that k = 1 and the queried datasets be D1 = {ai} and
D2 = {bi}. The result is point a1 and the safe region
is shown as the grey region. Regarding the verification
region Γ, Theorem 1 is also applicable to the multi-dataset
kNN result and the corresponding safe region. The only
difference from Algorithm 1 is that, the algorithm traverses
each tree Ti independently to construct a verification object
VOi with respect to the verification region Γ. In the
example, the verification region Γ (the union of circles)
covers points a1, a2, a5 from tree T1 and points b1, b4 from
tree T2.

We proceed to describe our client algorithm. Upon
receiving m verification objects VO1, · · · ,VOm from the
server, it first reconstructs m root digests from each VOi
and verifies them against the corresponding tree root signa-
tures signed by data owners. If the verification is successful,
then those VOs are guaranteed to contain only entries from
the original tree(s) (i.e., no fake entries). Next, it extracts
from each VOi (i) a set D′i of data points, and (ii) a set
R′i of non-leaf entries. After that, the client computes the
kNN result S′ and the safe region V from the extracted
data points. Finally, the client computes the KVR and the
SRVR to verify the correctness of the kNN result and the
safe region.

5.2 The Scenario for Distributed Servers

We sketch an approach for authenticating kNN queries in
the distributed scenario.

Initial VO computation.
In this approach, the client issues its location q to all
servers in parallel. Each server SPi uses its local dataset
Di (stored in tree Ti) to compute a local kNN result set
Si, a safe region Vk(Si, Di), a verification region Γi, and a
verification object VOi. Then, every server sends its VOi
to the client in parallel.

When compared to the centralized scenario, a server
SPi cannot use other types of data points to tighten
Si, Vk(Si, Di), and Γi. Thus, each individual verification
region Γi in the distributed scenario covers the verification
region (say Γ) in the centralized scenario. This guarantees
that the client obtains sufficient information for verifica-
tion. Finally, the client applies the client-side verification
algorithm as stated in Section 5.1.

VO maintenance.
When a client leaves its current safe region (say Vcur), it
computes the new safe region (say Vnew) and the new veri-
fication region (say Γnew) by using the previous verification

objects {VOi}. If Γnew can be covered by all VOi, then
the client needs not communicate with any server.

Otherwise, let {SPx} be the set of servers whose verifi-
cation objects do not cover Γnew. It suffices for the client
to request the updated verification objects from the servers
in the set {SPx}.

6 EXPERIMENTAL STUDY

We evaluate all methods on two large real datasets5:
CN (China, 0.64M points) and US (United States, 2.09M
points). Each point-of-interest stores a lat-long coordinate
(16 bytes) and a full geographic name (250 bytes). CN and
US cover the domain areas 9.736 million km2 and 9.826
million km2, respectively. We also test the scalability of all
methods on two types of synthetic datasets: UNI (uniform)
and GAU (Gaussian). We followed the literature [2], [31],
[25] to generate each GAU dataset such that it contains 100
Gaussian bells of equal size and every Gaussian bell has a
standard deviation as 2.5% of the domain space length.

We obtained an implementation of MR*-tree from Yang
et al. [27]. For each dataset, we build a MR*-tree for it with
the page size as 4 Kbytes. As a remark, for real datasets
CN and US, their MR*-trees occupy 263 Mbytes and 844
Mbytes disk space respectively, and their tree building times
are 6.5 and 22 minutes respectively. For synthetic datasets,
the building times of their MR*-trees scale well with the
data size.

The query workload contains trajectories of 100 moving
clients generated by trajectory generator in Nutanong et
al. [14]. Clients issue moving kNN queries with the default
value of k as 10. Each trajectory simulates a client running
in Euclidean space and has a location measurement record
at every timestamp (1 second); there are 10,000 timestamps
in total. Therefore, each client’s journey is about 10,000
seconds (i.e., about 2.7 hours). We simulate the scenario of
a car (default speed 50 km/hr) moving at the country level.

All experiments were run on a 2.5 GHz Intel PC running
Ubuntu with 8 GB of RAM. In each experiment, we report
the average performance measure (e.g., communication
cost, communication frequency, server and client CPU
time) per client journey per timestamp. The communication
cost is measured as the total size of network packets
(including HTTP and TCP headers [12]) per client journey
per timestamp. This is the most important measure as we
aim to minimize the client’s money to pay to the mobile
network provider (cf. Section 3).

We implemented all methods in C++ with the crypto-
graphic functions in the Crypto++ library6. VB denotes our
proposed Vertex-Based method (cf. Section 4.2) whereas
BUF is the baseline buffering method (cf. Section 3.1).
The default ∆k value used in BUF is 100. For the sake of
comparison, in each experiment, we exhaustively try every
possible ∆k value and use BUF* to denote the instance of

5. Real datasets obtained from National Geospatial-Intelligence Agency
(http://earth-info.nga.mil/gns/html/namefiles.htm) and U.S. Board on Ge-
ographic Names (geonames.usgs.gov)

6. Crypto++ library: http://www.cryptopp.com/

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 11

BUF with the lowest communication cost (using the optimal
∆k value). We use the same method names (VB, BUF,
BUF*) in experiments on a single dataset and on multiple
datasets.

6.1 Moving kNN Query

This section focuses on moving kNN queries on a single
dataset. We first study the efficiency of our proposed
optimizations on VB. Then, we proceed to compare the
performance of all methods (VB, BUF, BUF*) with respect
to various parameters.

6.1.1 Benefit of optimizations
First, we investigate the benefit of optimizations on the per-
formance of VB. Compared to our preliminary work [30],
the new optimizations for VB in this paper are:

1) computation optimization (Section 4.4) that reduces
the server and the client CPU time, and

2) VO compression (Section 4.5.2) that reduces the size
of each VO.

By default, all our proposed optimizations have been incor-
porated into VB. We use NO-CPU to denote the version
of VB without computation optimization, and use NO-
COMPRESS to denote the version of VB without VO
compression.

We measure the performance of the above methods on
real datasets, with all parameters at their default values.
Table 2 shows (a) the communication cost, (b) the com-
munication frequency, (c) the server CPU time, and (d) the
client CPU time, per each client journey per timestamp. VB
incurs lower communication cost than NO-COMPRESS.
Since VB applies VO compression, the server reports to
the client a compact VO, in which nodes that appeared
in previous VO are now represented by tiny tokens. All
versions of VB have the same communication frequency
because they employ the same safe region (i.e., the order-k
Voronoi cell of results).

Observe that VB is more efficient than NO-CPU in
terms of both the server and the client CPU cost. This is
because the computation optimization (used in VB) is able
to reduce the computation cost of the order-k Voronoi cell
(and subsequent condition checking) significantly.

We also conduct experiments with varying parameters (k,
query speed, data size, and data distribution), and find that
VB incurs much lower CPU time and communication cost
than NO-CPU and NO-COMPRESS respectively. Thus, we
only use VB in subsequent experiments.

TABLE 2
Effect of optimizations on VB, parameters at default

CN dataset US dataset
Performance per client VB NO- NO- VB NO- NO-

per timestamp COMPRESS CPU COMPRESS CPU
comm. cost (Kbytes) 0.5516 2.2706 0.5516 3.1846 15.9386 3.1846

comm. frequency 0.0093 0.0093 0.0093 0.0252 0.0252 0.0252
server CPU (ms) 0.040 0.040 0.074 0.25 0.25 0.43
client CPU (ms) 0.017 0.018 0.064 0.10 0.10 0.35

6.1.2 Effect of query speed
We study the effect of query speed on the performance
of VB, BUF and BUF*. Figure 11 shows (a) the com-
munication cost, (b) the communication frequency, (c) the
server CPU time, and (d) the client CPU time, per each
client journey per timestamp, with respect to different query
speeds, on the CN dataset.

The communication cost of VB is lower than that of
BUF* (see Figure 11a) because VB constructs compact VO
and also applies our communication optimizations. Clearly,
the communication cost of BUF (without the optimal ∆k)
is worser than VB. In Figure 11b, when the query speed
increases, a client leaves its buffer region / safe region
sooner, so its communication frequency increases. Observe
that lower communication frequencies (in BUF/BUF*) do
not necessarily imply a lower communication cost than our
method VB.

Since the communication frequency increases with the
client’s speed, the server and the client CPU time also rise
accordingly (see Figures 11c and d). The server and client
CPU times of all methods remain low. At the client side,
BUF incurs less CPU time than BUF*. This is because
the optimal ∆k (used in BUF*) is larger than the default
∆k = 100 (used in BUF).

The experimental results of varying query speed on the
US dataset are presented in Figure 12. The trends on US
are similar to those observed on CN.

6.1.3 Effect of k
Figure 13 shows the effect of k on the performance of
the methods, on the CN dataset. The communication cost
of VB is still lower than BUF / BUF* (see Figure 13a),
thanks to our VO reuse and compression techniques. When
k increases, the communication frequency of BUF and
BUF* stays low (see Figure 13b) because k is small
compared to the value of ∆k. However, since they incur
high communication cost in each communication, their total
communication costs are higher than VB. Figures 13c,d
show that the server and client CPU times of all methods
remain low even when k increases.

The experimental results of varying k on the US dataset
are presented in Figure 14. Results similar to the CN dataset
are observed.

6.1.4 Effect of data size
We also study the scalability of VB, by generating synthetic
datasets of different sizes. Figure 15 shows the performance
of the methods in different uniform data sizes. The com-
munication cost rises (Figure 15a) because of the increase
in the communication frequency between the server and
the client (Figure 15b). When the data size increases, the
data density increases and thus the buffer region / safe
region in the methods shrink. Similarly, the server CPU
time (Figure 15c), and the client CPU time (Figure 15d)
of all methods. In terms of the most important measure —
the communication cost, VB consistently outperforms the
baseline methods and the gap becomes more pronounced
as the data size increases.

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 12

 0

 0.5

 1

 1.5

 2

 2.5

 3

20 30 50 100

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(k

b
y
te

s
)

speed (km/hr)

VB
BUF

BUF*

 0

 0.01

 0.02

20 30 50 100

C
o
m

m
u
n
ic

a
ti
o
n
 F

re
q
u
e
n
c
y

speed (km/hr)

VB
BUF

BUF*

 0

 0.05

 0.1

20 30 50 100

S
e
rv

e
r

T
im

e
 (

m
s
)

speed (km/hr)

VB
BUF

BUF*

 0

 0.01

 0.02

 0.03

 0.04

20 30 50 100

C
lie

n
t
T

im
e
 (

m
s
)

speed (km/hr)

VB
BUF

BUF*

(a) comm. cost (Kbytes) (b) comm. frequency (c) server CPU time (ms) (d) client CPU time (ms)

Fig. 11. Effect of query speed (CN dataset)

 0

 2

 4

 6

 8

 10

 12

 14

20 30 50 100

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(k

b
y
te

s
)

speed (km/hr)

VB
BUF

BUF*

 0

 0.02

 0.04

 0.06

20 30 50 100

C
o
m

m
u
n
ic

a
ti
o
n
 F

re
q
u
e
n
c
y

speed (km/hr)

VB
BUF

BUF*

 0

 0.2

 0.4

 0.6

20 30 50 100

S
e
rv

e
r

T
im

e
 (

m
s
)

speed (km/hr)

VB
BUF

BUF*

 0

 0.05

 0.1

 0.15

 0.2

 0.25

20 30 50 100

C
lie

n
t
T

im
e
 (

m
s
)

speed (km/hr)

VB
BUF

BUF*

(a) comm. cost (Kbytes) (b) comm. frequency (c) server CPU time (ms) (d) client CPU time (ms)

Fig. 12. Effect of query speed (US dataset)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(k

b
y
te

s
)

k

VB
BUF

BUF*
 0

 0.01

 0.02

 0 5 10 15 20

C
o
m

m
u
n
ic

a
ti
o
n
 F

re
q
u
e
n
c
y

k

VB
BUF

BUF*

 0

 0.05

 0.1

 0 5 10 15 20

S
e
rv

e
r

T
im

e
 (

m
s
)

k

VB
BUF

BUF*

 0

 0.02

 0.04

 0 5 10 15 20

C
lie

n
t
T

im
e
 (

m
s
)

k

VB
BUF

BUF*

(a) comm. cost (Kbytes) (b) comm. frequency (c) server CPU time (ms) (d) client CPU time (ms)

Fig. 13. Effect of k (CN dataset)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(k

b
y
te

s
)

k

VB
BUF

BUF*
 0

 0.02

 0.04

 0 5 10 15 20

C
o
m

m
u
n
ic

a
ti
o
n
 F

re
q
u
e
n
c
y

k

VB
BUF

BUF*

 0

 0.2

 0.4

 0.6

 0 5 10 15 20

S
e
rv

e
r

T
im

e
 (

m
s
)

k

VB
BUF

BUF*

 0

 0.1

 0.2

 0 5 10 15 20

C
lie

n
t
T

im
e
 (

m
s
)

k

VB
BUF

BUF*

(a) comm. cost (Kbytes) (b) comm. frequency (c) server CPU time (ms) (d) client CPU time (ms)

Fig. 14. Effect of k (US dataset)

Figure 16 plots the performance of the methods on
Gaussian datasets with different data sizes. Similar to the
results on the uniform datasets, our method has better
communication cost than the baseline methods.

6.1.5 Comparison on the client’s money to pay

Table 3 shows the client’s money (paid to the mobile service
provider) using the implemented methods on real datasets,
with all parameters at their default values. We calculate
the client’s money (per hour) by using the communication
cost and the rate $0.49/MB (cf. Section 1). Observe that
VB incurs much less client’s money than BUF and BUF*
because of the low communication cost in VB.

TABLE 3
The client’s money to pay, parameters at default

CN dataset US dataset
VB BUF BUF* VB BUF BUF*

comm. cost (Kbytes) 0.5516 1.31 1.22 3.1846 6.57 5.70
per client per timestamp

money ($ per hour) $0.95 $2.26 $2.10 $5.48 $11.32 $9.82

6.2 Moving Multi-Dataset kNN Query

We then evaluate the performance of the methods on
(moving) multi-dataset kNN queries. We obtained five rep-
resentative datasets from U.S. Board on Geographic Names
(geonames.usgs.gov): D1 (22,956 airports), D2 (32,264
post offices), D3 (67,756 parks), D4 (205,847 schools),
D5 (227,611 churches). We assume that a client queries
m datasets (D1, D2, · · · , Dm), where m ∈ [1, 5].

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 5 10 20 50

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(k

b
y
te

s
)

data size (x 100k points)

VB
BUF

BUF*

 0

 0.02

 0.04

0 5 10 20 50

C
o
m

m
u
n
ic

a
ti
o
n
 F

re
q
u
e
n
c
y

data size (x 100k points)

VB
BUF

BUF*

 0

 0.4

 0.8

0 5 10 20 50

S
e
rv

e
r

T
im

e
 (

m
s
)

data size (x 100k points)

VB
BUF

BUF*

 0

 0.1

 0.2

 0.3

0 5 10 20 50

C
lie

n
t
T

im
e
 (

m
s
)

data size (x 100k points)

VB
BUF

BUF*

(a) comm. cost (Kbytes) (b) comm. frequency (c) server CPU time (ms) (d) client CPU time (ms)

Fig. 15. Effect of data size (UNIFORM)

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 5 10 20 50

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(k

b
y
te

s
)

data size (x 100k points)

VB
BUF

BUF*

 0

 0.02

 0.04

0 5 10 20 50

C
o
m

m
u
n
ic

a
ti
o
n
 F

re
q
u
e
n
c
y

data size (x 100k points)

VB
BUF

BUF*

 0

 0.3

 0.6

0 5 10 20 50

S
e
rv

e
r

T
im

e
 (

m
s
)

data size (x 100k points)

VB
BUF

BUF*

 0

 0.1

 0.2

 0.3

0 5 10 20 50

C
lie

n
t
T

im
e
 (

m
s
)

data size (x 100k points)

VB
BUF

BUF*

(a) comm. cost (Kbytes) (b) comm. frequency (c) server CPU time (ms) (d) client CPU time (ms)

Fig. 16. Effect of data size (GAUSSIAN)

Again, the communication cost of BUF* rises with m
(see Figure 17a). Figure 17b plots the communication
frequency of the methods with respect to m. When m
increases, the density of queried data points increases and
so does the communication frequency. The communication
frequency of BUF* rises at a slower rate just because its
optimal ∆k value increases with m. VB achieves the lowest
communication cost, due to our proposed communication
optimizations. All methods incur low server and client CPU
times (see Figure 17c,d).

7 CONCLUSION

In this paper, we presented an efficient method to authen-
ticate moving kNN queries. We proved that our method
is VO-optimal, i.e., the verification object (VO) has the
minimal size with respect to the given tree. We developed
optimization techniques that can further reduce the com-
putation cost, communication frequency and cost between
a moving client and the LBS. Furthermore, we extended
our solution to handle moving kNN queries that involve
multiple datasets. Experimental results show that our au-
thentication method achieves low communication cost and
CPU overhead.

An interesting future work is to develop moving kNN
query authentication technique for a location registry [4]
that manages mobile users’ private locations. In this sce-
nario, an additional requirement is to avoid disclosing non-
result points to the query client [4]. It is challenging to
authenticate a safe region (i.e., order-k Voronoi cell) as its
vertices and edges may allow an adversary to infer some
non-result points.

ACKNOWLEDGMENTS

This work was supported by grant PolyU 5302/12E from
Hong Kong RGC.

REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The

R*-tree: An Efficient and Robust Access Method for Points and
Rectangles. In SIGMOD, 1990.

[2] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: A multidimen-
sional workload-aware histogram. In SIGMOD, pages 211–222,
2001.

[3] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang.
Continuous monitoring of distance based range queries. TKDE,
2010.

[4] H. Hu, J. Xu, Q. Chen, and Z. Yang. Authenticating location-based
services without compromising location privacy. In SIGMOD, 2012.

[5] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi. Verifying spatial
queries using voronoi neighbors. In GIS. ACM, 2010.

[6] G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of K-nn and
Spatial Join Queries on Continuously Moving Points. ACM TODS,
31(2):485–536, 2006.

[7] A. Kundu and E. Bertino. Structural Signatures for Tree Data
Structures. PVLDB, 1(1):138–150, 2008.

[8] A. Kundu and E. Bertino. How to Authenticate Graphs without
Leaking. In EDBT, pages 609–620, 2010.

[9] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic Au-
thenticated Index Structures for Outsourced Databases. In SIGMOD,
pages 121–132, 2006.

[10] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios. Proof-Infused
Streams: Enabling Authentication of Sliding Window Queries On
Streams. In VLDB, pages 147–158, 2007.

[11] X. Lin, J. Xu, and H. Hu. Authentication of location-based skyline
queries. In CIKM, 2011.

[12] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci. Httpos: Sealing information leaks with browser-side
obfuscation of encrypted flows. In NDSS, 2011.

[13] R. C. Merkle. A Certified Digital Signature. In CRYPTO, 1989.
[14] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The V*-Diagram:

A Query-dependent Approach to Moving KNN Queries. PVLDB,
1(1):1095–1106, 2008.

[15] A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley, second
edition, 2000.

[16] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
Completeness of Relational Query Results in Data Publishing. In
SIGMOD, 2005.

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 14

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(k

b
y
te

s
)

number of data sets

VB
BUF

BUF*

 0

 0.01

 0.02

 1 2 3 4 5

C
o
m

m
u
n
ic

a
ti
o
n
 F

re
q
u
e
n
c
y

number of data sets

VB
BUF

BUF*

 0

 0.05

 0.1

 1 2 3 4 5

S
e
rv

e
r

T
im

e
 (

m
s
)

number of data sets

VB
BUF

BUF*

 0

 0.02

 0.04

 1 2 3 4 5

C
lie

n
t
T

im
e
 (

m
s
)

number of data sets

VB
BUF

BUF*

(a) comm. cost (Kbytes) (b) comm. frequency (c) server CPU time (ms) (d) client CPU time (ms)

Fig. 17. Effect of m, for multi-dataset queries

[17] H. Pang and K. Mouratidis. Authenticating the Query Results of
Text Search Engines. PVLDB, 1(1):126–137, 2008.

[18] H. Pang, J. Zhang, and K. Mouratidis. Scalable Verification for
Outsourced Dynamic Databases. PVLDB, 2(1):802–813, 2009.

[19] S. Papadopoulos, Y. Yang, S. Bakiras, and D. Papadias. Continuous
Spatial Authentication. In SSTD, pages 62–79, 2009.

[20] S. Papadopoulos, Y. Yang, and D. Papadias. CADS: Continuous
Authentication on Data Streams. In VLDB, pages 135–146, 2007.

[21] R. Sion. Query execution assurance for outsourced databases. In
VLDB, pages 601–612, 2005.

[22] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for
Moving Query Point. In SSTD, pages 79–96, 2001.

[23] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor
Search. In VLDB, pages 287–298, 2002.

[24] L. Wang, S. Noel, and S. Jajodia. Minimum-Cost Network Harden-
ing using Attack Graphs. Computer Communications, 29(18):3812–
3824, 2006.

[25] X. Xiong, M. F. Mokbel, and W. G. Aref. Lugrid: Update-tolerant
grid-based indexing for moving objects. In MDM, page 13, 2006.

[26] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated
Join Processing in Outsourced Databases. In SIGMOD, 2009.

[27] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. Au-
thenticated Indexing for Outsourced Spatial Databases. VLDB J.,
18(3):631–648, 2009.

[28] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and
D. Srivastava. Small Synopses for Group-by Query Verification on
Outsourced Data Streams. ACM TODS, 34(3), 2009.

[29] M. L. Yiu, Y. Lin, and K. Mouratidis. Efficient Verification of
Shortest Path Search via Authenticated Hints. In ICDE, pages 237–
248, 2010.

[30] M. L. Yiu, E. Lo, and D. Yung. Authentication of Moving kNN
Queries. In ICDE, 2011.

[31] M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network.
In SIGMOD, pages 443–454, 2004.

[32] D. Yung, E. Lo, and M. L. Yiu. Authentication of Moving Range
Queries. In CIKM, 2012.

[33] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-
based Spatial Queries. In SIGMOD, pages 443–454, 2003.

Duncan Yung received his Bachelor and
Master degree in Computer Science in 2009
and 2012 from the University of Hong Kong
and Hong Kong Polytechnic University re-
spectively. His research focuses on different
kinds of spatial data management and au-
thentication.

Yu Li received the bachelor’s degree in 2010
from Northwestern Polytechnical University,
China. She is currently a PhD student in
Hong Kong Polytechnic University, under the
supervision of Dr. Man Lung Yiu.

Eric Lo received his PhD degree in 2007
from ETH Zurich. He is currently an assis-
tant professor in the Department of Com-
puting, Hong Kong Polytechnic University.
He research interests include query process-
ing, query optimization, and large-scale data
analysis.

Man Lung Yiu received the bachelor’s de-
gree in computer engineering and the PhD
degree in computer science from the Univer-
sity of Hong Kong in 2002 and 2006, respec-
tively. Prior to his current post, he worked
at Aalborg University for three years starting
in the Fall of 2006. He is now an assistant
professor in the Department of Computing,
Hong Kong Polytechnic University. His re-
search focuses on the management of com-
plex data, in particular query processing top-

ics on spatiotemporal data and multidimensional data.

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 15

APPENDIX
PROOF of Theorem 1: To prove the theorem, we prove
that (i) any point p∗ outside KV R cannot be kNN (Lemma
3), and (ii) any points p∗ outside SRV R cannot alter the
safe region (Lemma 4). Since the verification region Γ is
the union of KV R and SRV R, so the theorem is proved
if Lemma 3 and Lemma 4 hold.

Lemma 3. [Points outside KV R are not kNN]
We have ∀p∗ outside KV R, p∗ /∈ S, where S is the kNN
result set.

Proof: KV R is a circle with radius γ, where γ is
the distance between query point q and its k-th nearest
neighbor. There are k points in KV R such that their
distance from q ≤ γ. However, ∀p∗ outside KV R,
dist(p∗, q) > γ. Therefore, this lemma holds.

Lemma 4. [Points outside SRV R cannot alter safe
region Vk(S,D)]
Let Ψ be the set of vertices of the order-k Voronoi cell
Vk(S,D), where S is a set of k points from the dataset
D. Let p∗ be a point in D\S. If p∗ is outside SRV R then
Vk(S,D) = Vk(S,D\{p∗}).

Proof: To begin, we first have to state two facts. (i)
A half-plane is convex. (ii) The intersection of half-
planes is also convex [15]. −−−(�)

From the given if-condition, we obtain: ∀ψ ∈
Ψ, dist(ψ, p∗) ≥ maxp∈S dist(ψ, p). By rearranging
it, we have: ∀ψ ∈ Ψ,∀p ∈ S, dist(ψ, p) ≤ dist(ψ, p∗).
Thus, each vertex ψ (of the cell Vk(S,D)) is inside⋂
p∈S ⊥(p, p∗). Combining this with the fact (�) that

both Vk(S,D) and
⋂
p∈S ⊥(p, p∗) are convex, we infer

that Vk(S,D) is inside
⋂
p∈S ⊥(p, p∗).−−−(F)

Since all generators of Voronoi edges are inside
SRV R, p∗ is not a generator.−−−(♠)

By (F) and (♠), Vk(S,D) is inside
⋂
p∈S ⊥(p, p∗)

and p∗ cannot contribute to a Voronoi edge of
Vk(S,D). Hence, Vk(S,D\{p∗}) ∩

⋂
p∈S ⊥(p, p∗)

is still Vk(S,D\{p∗}). By definition of Voronoi cell,
Vk(S,D\{p∗}) ∩

⋂
p∈S ⊥(p, p∗) = Vk(S,D). There-

fore, Vk(S,D)=Vk(S,D\{p∗}).

Proof of Lemma 2: First, from Lemma 1, we know
S′ = S.−−− (�)

Next, Lines 1–2 of Algorithm 2 ensure that all data points
p ∈ D′ and all non-leaf entries e ∈ R′ in VO are originated
from the map provider [27]. Then, the client algorithm
checks whether any non-leaf entry e ∈ R′ intersect SRV R,
and if no, it regards the safe region Vk(S′, D′) as correct,
i.e., Vk(S′, D′) = Vk(S,D). We prove its correctness by
contradiction.

Assume the client regards Vk(S′, D′) = Vk(S,D) even
when a non-leaf entry e ∈ R′ in VO intersects SRV R.

When e intersects SRV R, it is possible that ∃p′ in entry e
inside SRV R.

Let P ′ be the set of p′ in entry e that is inside SRV R
and P ∗ be the set of p∗ in entry e that is outside SRV R.

By Lemma 4, p′ ∈ P ′ may (or may not) alter the safe
region. Since e covers points in P ′ ∪ P ∗, a point p in e
may (or may not) alter the safe region, i.e., it is possible
that Vk(S,D\{P ′ ∪ P ∗}) 6= Vk(S,D).−−− (F)

In our VB method, the client computes the safe region
from D′ (the set of data points in VO), as points in P ′∪P ∗
are represented by a non-leaf entry e, they are not in D′,
therefore, we have D′ = D\{P ′ ∪ P ∗}. Hence, we have
Vk(S′, D′) = Vk(S′, D\{P ′ ∪ P ∗}).

By (�), we get Vk(S′, D′) = Vk(S′, D\{P ′ ∪ P ∗}) =
Vk(S,D\(P ′ ∪ P ∗). Combining this with (F), we obtain
that Vk(S′, D′) may not equal to Vk(S,D), i.e., it possible
that Vk(S′, D′) 6= Vk(S,D), which contradicts with the
assumption.

PROOF of Theorem 2: To prove the theorem, we need to
prove that (i) Points p inside Γ are sufficient for client to
verify the correctness of the query result and the safe region
(Lemma 5). (ii) All points p inside Γ are necessary for the
client to verify the correctness of the query result and the
safe region (Lemma 6). Since the establishment of (i) shows
that all points in Γ are sufficient and the establishment
of (ii) shows that all points in Γ are necessary, the VO
contains the minimum data points. Furthermore, since we
apply depth-first-search on TD with the search range as
Γ, the number of non-leaf entries inserted into VO is also
minimum.

Lemma 5. [Points p inside Γ are sufficient for client to
verify the correctness of kNN result and its safe region]

Proof: Lemma 1 implies that points p inside KV R
are sufficient for the client to verify the correctness
of the query result. Lemma 2 implies that points p
inside SRV R are sufficient for the client to verify the
correctness of the safe region. Since Γ is the union of
KV R and SRV R, points p inside Γ are sufficient for
client to verify the correctness of query result and safe
region.

Lemma 6. [Points p inside Γ are necessary for client to
verify the correctness of kNN result and its safe region]

Proof: First, we prove that all points p inside KV R
are necessary for the client to verify the correctness of
the query result.−−−(�) Recall that KV R is a circle
with radius γ, where γ is the distance of k-th nearest
neighbor of q. For all p inside KV R, dist(p, q) ≤
γ, so p is kNN result. Since the query result must
be returned to the client, all p inside KV R are thus
necessary to be included in the VO,

IEEE TRANSACTIONS ON MOBILE COMPUTING (TMC) 16

Next, we prove that all points p inside SRV R −
KV R are necessary for the client to verify the cor-
rectness of the safe region.−−−(F)

First, points inside ~ are generators so they are
all necessary. We continue to prove that points inside
SRV R−KV R−~ are necessary. We do the proof by
contradiction. Suppose ∃p′ inside SRV R−KV R−~
that is not necessary for client to verify the correctness
of Vk(S′, D′). This implies that p′ cannot alter the safe
region and Vk(S′, D′) = Vk(S′, D′\{p′}).

By definition of SRV R, if p′ inside SRV R −
KV R − ~, ∃ψ inside Vk(S′, D′\{p′}) such that
dist(ψ, p′) < maxp∈S′ dist(ψ, p). (Note that p′ does
not belong to �.) Therefore p′ is kNN query result at
ψ.−−− (♣) Since p′ is outside KV R, by Lemma 3,
p′ is not kNN query result.−−−(♠)

By (♣) and (♠), we derive that kNN result at
query point q and query point ψ are not the same. By
definition of safe region, ∀q inside Vk(S′, D′), they
should have the same query result set S′. Since kNN
query result at query point q and query point ψ are not
the same, ψ is outside Vk(S′, D′).

Since ψ is outside Vk(S′, D′) and ψ is in-
side Vk(S′, D′\{p′}), we know that Vk(S′, D′) 6=
Vk(S′, D′\{p′}). This implies that p′ can alter the
safe region and p′ is necessary for client to verify
the correctness of the safe region. This leads to a
contradiction.

Finally, since KV R ∪ (SRV R−KV R) = KV R∪
SRV R, and Γ is the union of KV R and SRV R, by
(�) and (F), all points p′ inside Γ are necessary for
client to verify the correctness of query result and safe
region.

