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Abstract—A spatial preference query ranks objects based on the qualities of features in their spatial neighborhood. For example,
using a real estate agency database of flats for lease, a customer may want to rank the flats with respect to the appropriateness of
their location, defined after aggregating the qualities of other features (e.g., restaurants, cafes, hospital, market, etc.) within their spatial
neighborhood. Such a neighborhood concept can be specified by the user via different functions. It can be an explicit circular region
within a given distance from the flat. Another intuitive definition is to consider the whole spatial domain and assign higher weights to
the features based on their proximity to the flat. In this paper, we formally define spatial preference queries and propose appropriate
indexing techniques and search algorithms for them. Extensively evaluation of our methods on both real and synthetic data reveal that
an optimized branch-and-bound solution is efficient and robust with respect to different parameters.

Index Terms—H.2.4.h Query processing, H.2.4.k Spatial databases

1 INTRODUCTION

Spatial database systems manage large collections of
geographic entities, which apart from spatial attributes
contain non-spatial information (e.g., name, size, type,
price, etc.). In this paper, we study an interesting type of
preference queries, which select the best spatial location
with respect to the quality of facilities in its spatial
neighborhood.

Given a set D of interesting objects (e.g., candidate
locations), a top-k spatial preference query retrieves the
k objects in D with the highest scores. The score of an
object is defined by the quality of features (e.g., facilities
or services) in its spatial neighborhood. As a motivating
example, consider a real estate agency office that holds
a database with available flats for lease. Here “feature”
refers to a class of objects in a spatial map such as
specific facilities or services. A customer may want to
rank the contents of this database with respect to the
quality of their locations, quantized by aggregating non-
spatial characteristics of other features (e.g., restaurants,
cafes, hospital, market, etc.) in the spatial neighborhood
of the flat (defined by a spatial range around it). Quality
may be subjective and query-parametric. For example,
a user may define quality with respect to non-spatial
attributes of restaurants around it (e.g., whether they
serve seafood, price range, etc.).

As an other example, the user (e.g., a tourist) wishes
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(a) range score, €=0.2 km

(b) influence score, €¢=0.2 km

Fig. 1. Examples of top-k spatial preference queries

to find a hotel p that is close to a high-quality restaurant
and a high-quality cafe. Figure 1a illustrates the locations
of an object dataset D (hotels) in white, and two feature
datasets: the set F; (restaurants) in gray, and the set 7,
(cafes) in black. Feature points are labeled by quality
values that can be obtained from rating providers (e.g.,
http:/ /www.zagat.com/). For the ease of discussion, the
qualities are normalized to values in [0, 1]. The score 7(p)
of a hotel p is defined in terms of: (i) the maximum
quality for each feature in the neighborhood region of
p, and (ii) the aggregation of those qualities.

A simple score instance, called the range score, binds the
neighborhood region to a circular region at p with radius
e (shown as a circle), and the aggregate function to SUM.
For instance, the maximum quality of gray and black
points within the circle of p; are 0.9 and 0.6 respectively,
so the score of p; is 7(p1) = 0.9+ 0.6 = 1.5. Similarly, we
obtain 7(p;) = 1.0+0.1 = 1.1 and 7(p3) = 0.7+0.7 = 1.4.
Hence, the hotel p; is returned as the top result.

In fact, the semantics of the aggregate function is
relevant to the user’s query. The SUM function attempts
to balance the overall qualities of all features. For the
MIN function, the top result becomes ps, with the score
T(ps) = min{0.7,0.7} = 0.7. It ensures that the top
result has reasonably high qualities in all features. For
the MAX function, the top result is ps, with 7(py) =
max{1.0,0.1} = 1.0. It is used to optimize the quality
in a particular feature, but not necessarily all of them.



The neighborhood region in the above spatial prefer-
ence query can also be defined by other score functions.
A meaningful score function is the influence score (see
Section 4). As opposed to the crisp radius e constraint in
the range score, the influence score smoothens the effect
of € and assigns higher weights to cafes that are closer
to the hotel. Figure 1b shows a hotel p5 and three cafes
51, S2, 53 (with their quality values). The circles have their
radii as multiples of e. Now, the score of a cafe s; is
computed by multiplying its quality with the weight 277,
where j is the order of the smallest circle containing s;.
For example, the scores of s1, s2, and s3 are 0.3/2! = 0.15,
0.9/2? = 0.225, and 1.0/2% = 0.125 respectively. The
influence score of ps is taken as the highest value (0.225).

Traditionally, there are two basic ways for ranking
objects: (i) spatial ranking, which orders the objects
according to their distance from a reference point, and
(ii) non-spatial ranking, which orders the objects by an
aggregate function on their non-spatial values. Our top-
k spatial preference query integrates these two types of
ranking in an intuitive way. As indicated by our exam-
ples, this new query has a wide range of applications in
service recommendation and decision support systems.

To our knowledge, there is no existing efficient solu-
tion for processing the top-k spatial preference query. A
brute-force approach (to be elaborated in Section 3.2) for
evaluating it is to compute the scores of all objects in
D and select the top-k ones. This method, however, is
expected to be very expensive for large input datasets.
In this paper, we propose alternative techniques that aim
at minimizing the I/O accesses to the object and feature
datasets, while being also computationally efficient. Our
techniques apply on spatial-partitioning access methods
and compute upper score bounds for the objects indexed
by them, which are used to effectively prune the search
space. Specifically, we contribute the branch-and-bound
algorithm (BB) and the feature join algorithm (FJ) for
efficiently processing the top-k spatial preference query.

Furthermore, this paper studies three relevant exten-
sions that have not been investigated in our preliminary
work [1]. The first extension (Section 3.4) is an optimized
version of BB that exploits a more efficient technique for
computing the scores of the objects. The second exten-
sion (Section 3.6) studies adaptations of the proposed
algorithms for aggregate functions other than SUM, e.g.,
the functions MIN and MAX. The third extension (Section
4) develops solutions for the top-k spatial preference
query based on the influence score.

The rest of this paper is structured as follows. Section
2 provides background on basic and advanced queries
on spatial databases, as well as top-k query evaluation in
relational databases. Section 3 defines the top-k spatial
preference query and presents our solutions. Section
4 studies the query extension for the influence score.
In Section 5, our query algorithms are experimentally
evaluated with real and synthetic data. Finally, Section
6 concludes the paper with future research directions.

2 BACKGROUND AND RELATED WORK

Object ranking is a popular retrieval task in various ap-
plications. In relational databases, we rank tuples using
an aggregate score function on their attribute values [2].
For example, a real estate agency maintains a database
that contains information of flats available for rent. A
potential customer wishes to view the top-10 flats with
the largest sizes and lowest prices. In this case, the score
of each flat is expressed by the sum of two qualities:
size and price, after normalization to the domain [0,1]
(e.g., 1 means the largest size and the lowest price). In
spatial databases, ranking is often associated to nearest
neighbor (NN) retrieval. Given a query location, we are
interested in retrieving the set of nearest objects to it that
qualify a condition (e.g., restaurants). Assuming that the
set of interesting objects is indexed by an R-tree [3], we
can apply distance bounds and traverse the index in a
branch-and-bound fashion to obtain the answer [4].

Nevertheless, it is not always possible to use multi-
dimensional indexes for top-k retrieval. First, such in-
dexes break-down in high dimensional spaces [5], [6].
Second, top-k queries may involve an arbitrary set of
user-specified attributes (e.g., size and price) from pos-
sible ones (e.g., size, price, distance to the beach, number
of bedrooms, floor, etc.) and indexes may not be available
for all possible attribute combinations (i.e., they are too
expensive to create and maintain). Third, information
for different rankings to be combined (i.e., for different
attributes) could appear in different databases (in a
distributed database scenario) and unified indexes may
not exist for them. Solutions for top-k queries [7], [2], [8],
[9] focus on the efficient merging of object rankings that
may arrive from different (distributed) sources. Their
motivation is to minimize the number of accesses to the
input rankings until the objects with the top-k aggregate
scores have been identified. To achieve this, upper and
lower bounds for the objects seen so far are maintained
while scanning the sorted lists.

In the following subsections, we first review the R-
tree, which is the most popular spatial access method
and the NN search algorithm of [4]. Then, we survey
recent research of feature-based spatial queries.

2.1

The most popular spatial access method is the R-tree [3],
which indexes minimum bounding rectangles (MBRs) of
objects. Figure 2 shows a set D = {p1,...,ps} of spatial
objects (e.g., points) and an R-tree that indexes them.
R-trees can efficiently process main spatial query types,
including spatial range queries, nearest neighbor queries,
and spatial joins. Given a spatial region W, a spatial range
query retrieves from D the objects that intersect W. For
instance, consider a range query that asks for all objects
within the shaded area in Figure 2. Starting from the
root of the tree, the query is processed by recursively
following entries, having MBRs that intersect the query
region. For instance, e; does not intersect the query
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region, thus the subtree pointed by e; cannot contain any
query result. In contrast, e; is followed by the algorithm
and the points in the corresponding node are examined
recursively to find the query result p7.

A nearest neighbor (NN) query takes as input a query
object ¢ and returns the closest object in D to ¢. For
instance, the nearest neighbor of ¢ in Figure 2 is p;. Its
generalization is the k-NN query, which returns the %
closest objects to g, given a positive integer k. NN (and
k-NN) queries can be efficiently processed using the best-
first (BF) algorithm of [4], provided that D is indexed by
an R-tree. A min-heap H which organizes R-tree entries
based on the (minimum) distance of their MBRs to ¢ is
initialized with the root entries. In order to find the NN
of ¢ in Figure 2, BF first inserts to H entries ey, ez, €3, and
their distances to ¢. Then the nearest entry e, is retrieved
from H and objects p1, p7, ps are inserted to H. The next
nearest entry in H is p;, which is the nearest neighbor of
g. In terms of I/0O, the BF algorithm is shown to be no
worse than any NN algorithm on the same R-tree [4].

The aggregate R-tree (aR-tree) [10] is a variant of the R-
tree, where each non-leaf entry augments an aggregate
measure for some attribute value (measure) of all points
in its subtree. As an example, the tree shown in Figure
2 can be upgraded to a MAX aR-tree over the point set,
if entries eq, e, e3 contain the maximum measure values
of sets {p2,ps},{p1,ps,p7},{Pa, p5, P}, respectively. As-
sume that the measure values of py4, ps5, pg are 0.2,0.1,0.4,
respectively. In this case, the aggregate measure aug-
mented in ez would be max{0.2,0.1,0.4} = 0.4. In this
paper, we employ MAX aR-trees for indexing the feature
datasets (e.g., restaurants), in order to accelerate the
processing of top-k spatial preference queries.

Given a feature dataset 7 and a multi-dimensional
region R, the range top-k query selects the tuples (from
F) within the region R and returns only those with the k
highest qualities. Hong et al. [11] indexed the dataset by
a MAX aR-tree and developed an efficient tree traversal
algorithm to answer the query. Instead of finding the
best k qualities from F in a specified region, our (range-
score) query considers multiple spatial regions based on
the points from the object dataset D, and attempts to
find out the best k regions (based on scores derived from
multiple feature datasets F.).
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Fig. 2. Spatial queries on R-trees

2.2 Feature-based Spatial Queries

Xia et al. [12] solved the problem of finding top-k sites
(e.g., restaurants) based on their influence on feature

points (e.g., residential buildings). As an example, Figure
3a shows a set of sites (white points), a set of features
(black points with weights), such that each line links a
feature point to its nearest site. The influence of a site
p; is defined by the sum of weights of feature points
having p; as their closest site. For instance, the score of
p1 is 0.9+0.5=1.4. Similarly, the scores of p; and p3 are 1.5
and 1.2 respectively. Hence, p; is returned as the top-1
influential site.

Related to top-k influential sites query are the optimal
location queries studied in [13], [14]. The goal is to find
the location in space (not chosen from a specific set of
sites) that minimizes an objective function. In Figures
3b and 3c, feature points and existing sites are shown
as black and gray points respectively. Assume that all
feature points have the same quality. The maximum
influence optimal location query [13] finds the location
(to insert to the existing set of sites) with the maximum
influence (as defined in [12]), whereas the minimum
distance optimal location query [14] searches for the
location that minimizes the average distance from each
feature point to its nearest site. The optimal locations for
both queries are marked as white points in Figures 3b,c
respectively.
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Fig. 3. Influential sites and optimal location queries

The techniques proposed in [12], [13], [14] are specific
to the particular query types described above and cannot
be extended for our top-k spatial preference queries.
Also, they deal with a single feature dataset whereas our
queries consider multiple feature datasets.

Recently, novel spatial queries and joins [15], [16], [17],
[18] have been proposed for various spatial decision
support problems. However, they do not utilize non-
spatial qualities of facilities to define the score of a
location. Finally, [19], [20] studied the evaluation of
textual location-based queries on spatial objects.

3 SPATIAL PREFERENCE QUERIES

Section 3.1 formally defines the top-k spatial preference
query problem and describes the index structures for
the datasets. Section 3.2 studies two baseline algorithms
for processing the query. Section 3.3 presents an effi-
cient branch-and-bound algorithm for the query, and its
further optimization is proposed in Section 3.4. Section
3.5 develops a specialized spatial join algorithm for
evaluating the query. Finally, Section 3.6 extends the
above algorithms for answering top-k spatial preference
queries involving other aggregate functions.



3.1

Let F. be a feature dataset, in which each feature object
s € F. is associated with a quality w(s) and a spatial
point. We assume that the domain of w(s) is the interval
[0,1]. As an example, the quality w(s) of a restaurant s
may be obtained from a ratings provider.

Let D be an object dataset, where each object p € D is
a spatial point. In other words, D is the set of interesting
points (e.g, hotel locations) considered by the user.

Given an object dataset D and m feature datasets
Fi,Fa, -+, Fm, the top-k spatial preference query retrieves
the k points in D with the highest score. Here, the score
of an object point p € D is defined as:

(p) =266 { 7Y(p) | c € [1,m] } 1)

where AGG is an aggregate function and 7/ (p) is the (c-th)
component score of p with respect to the neighborhood
condition ¢ and the (c-th) feature dataset F..

We proceed to elaborate the aggregate function and
the component score function. Typical examples of the
aggregate function AGG are: SUM, MIN, MAX. We first focus
on the case where AGG is SUM. In Section 3.6, we will
discuss the generic scenario where AGG is an arbitrary
monotone aggregate function.

An intuitive choice for the component score function
79(p) is: the range score 79(p), taken as the maximum
quality w(s) of points s € F, that are within a given
parameter distance e from p, or 0 if no such point exists.

Definitions and Index Structures

71"(p) = max({w(s) | s € F. Adist(p, s) < e} U{0}) ()

In our problem setting, the user requires that an object
p € D must not be considered as a result if there exists
some F. such that the neighborhood region of p does
not contain any feature point of F..

There are other choices for the component score func-
tion 7¢(p). One example is the influence score function
7inf(p) which will be considered in Section 4. Another
example is the nearest neighbor (NN) score 77" (p) that
has been studied in our previous work [1], so it will
not be examined again in this paper. The condition 6 is
dropped whenever the context is clear.

In this paper, we assume that the object dataset D
is indexed by an R-tree and each feature dataset F. is
indexed by an MAX aR-tree, where each non-leaf entry
augments the maximum quality (of features) in its sub-
tree. Nevertheless, our solutions are directly applicable
to datasets that are indexed by other hierarchical spatial
indexes (e.g., point quad-trees). The rationale of indexing
different feature datasets by separate aR-trees is that: (i)
a user queries for only few features (e.g., restaurants
and cafes) out of all possible features (e.g., restaurants,
cafes, hospital, market, etc.), and (ii) different users may
consider different subsets of features.

Based on the above indexing scheme, we develop var-
ious algorithms for processing top-k spatial preference
queries. Table 1 lists the notations to be used throughout
the paper.

TABLE 1
List of Notations

Notation Meaning
e an entry in an R-tree
D the object dataset
m the number of feature datasets
Fe the c-th feature dataset
w(s) the quality of an point s in F.
w(e) augmented quality of an aR-tree entry e of F.
P an object point of D
77 (p) the c-the component score of p
79(p) the overall score of p
dist(p, s) Euclidean distance between two points p and s
mindist(p, e) minimum distance between p and e
mazxdist(p, e) maximum distance between p and e
7 (e) upper bound score of an R-tree entry e of D

3.2 Probing Algorithms

We first introduce a brute-force solution that computes
the score of every point p € D in order to obtain the
query results. Then, we propose a group evaluation
technique that computes the scores of multiple points
concurrently.

Simple Probing Algorithm.

According to Section 3.1, the quality w(s) of any feature
point s falls into the interval [0, 1]. Thus, for a point p €
D, where not all its component scores are known, its
upper bound score 7 (p) is defined as:

T+(p)Z{ rel)

c=1

if 7.(p) is known 3)
otherwise

It is guaranteed that the bound 7 (p) is greater than or
equal to the actual score 7(p).

Algorithm 1 is a pseudo-code of the simple probing
algorithm (SP), which retrieves the query results by
computing the score of every object point. The algo-
rithm uses two global variables: W}, is a min-heap for
managing the top-k results and 7 represents the top-
k score so far (i.e., lowest score in Wj). Initially, the
algorithm is invoked at the root node of the object tree
(i.e., N = D.root). The procedure is recursively applied
(at Line 4) on tree nodes until a leaf node is accessed.
When a leaf node is reached, the component score 7.(e)
(at Line 8) is computed by executing a range search
on the feature tree F, for range score queries. Lines
6-8 describe an incremental computation technique, for
reducing unnecessary component score computations. In
particular, the point e is ignored as soon as its upper
bound score 71 (e) (see Equation 3) cannot be greater
than the best-k score ~. The variables W) and ~ are
updated when the actual score 7(e) is greater than .

Group Probing Algorithm.

Due to separate score computations for different objects,
SP is inefficient for large object datasets. In view of
this, we propose the group probing algorithm (GP),
a variant of SP, that reduces I/O cost by computing
scores of objects in the same leaf node of the R-tree
concurrently. In GP, when a leaf node is visited, its points



Algorithm 1 Simple Probing Algorithm (SP)

algorithm SP(Node N)
1: for each entry e € N do
if N is non-leaf then
read the child node N’ pointed by e¢;
SP(N');
else
for ¢:=1 to m do
if 74 (e) > - then > upper bound score
compute 7.(e) using tree F.; update 74 (e);
if 7(e) > 7 then
update Wy (and 7) by e;

@0 PNIDD BN

[y

are first stored in a set V' and then their component
scores are computed concurrently at a single traversal of
the F, tree. We now introduce some distance notations
for MBRs. Given a point p and an MBR e, the value
mindist(p,e) (maxdist(p,e)) [4] denotes the minimum
(maximum) possible distance between p and any point
in e. Similarly, given two MBRs e, and e;, the value
mindist(eq, ep) (mazxdist(eq,ep)) denotes the minimum
(maximum) possible distance between any point in e,
and any point in ey.

Algorithm 2 shows the procedure for computing the
c-th component score for a group of points. Consider
a subset V' of D for which we want to compute their
TI™9(p) score at feature tree F.. Initially, the procedure is
called with N being the root node of F.. If e is a non-leaf
entry and its mindist from some point p € V is within
the range ¢, then the procedure is applied recursively on
the child node of ¢, since the sub-tree of F. rooted at e
may contribute to the component score of p. In case e is
a leaf entry (i.e., a feature point), the scores of points in
V are updated if they are within distance ¢ from e.

Algorithm 2 Group Range Score Algorithm

algorithm Group_Range(Node N, Set V, Value ¢, Value ¢)
1: for each entry e € N do
if N is non-leaf then
if Ip € V, mindist(p,e) < € then
read the child node N’ pointed by e¢;
Group_Range(N',V ¢, €);
else
for each p € V such that dist(p,e) < e do

e(p):=max{7.(p),w(e)};

3.3 Branch and Bound Algorithm

GP is still expensive as it examines all objects in D and
computes their component scores. We now propose an
algorithm that can significantly reduce the number of
objects to be examined. The key idea is to compute, for
non-leaf entries e in the object tree D, an upper bound
7 (e) of the score 7(p) for any point p in the subtree of
e. If T(e) < ~, then we need not access the subtree of e,
thus we can save numerous score computations.
Algorithm 3 is a pseudo-code of our branch and bound
algorithm (BB), based on this idea. BB is called with
N being the root node of D. If N is a non-leaf node,

Lines 3-5 compute the scores 7 (e) for non-leaf entries e
concurrently. Recall that 7 (e) is an upper bound score
for any point in the subtree of e. The techniques for
computing 7 (e) will be discussed shortly. Like Equation
3, with the component scores 7.(e) known so far, we
can derive 74 (e), an upper bound of 7 (e). If T (e) <,
then the subtree of e cannot contain better results than
those in W, and it is removed from V. In order to
obtain points with high scores early, we sort the entries
in descending order of 7 (e) before invoking the above
procedure recursively on the child nodes pointed by the
entries in V. If N is a leaf node, we compute the scores
for all points of N concurrently and then update the set
Wi, of the top-k results. Since both W), and v are global
variables, the value of 7 is updated during recursive call
of BB.

Algorithm 3 Branch and Bound Algorithm (BB)

Wi:=new min-heap of size k (initially empty);
~:=0; > k-th score in W,

algorithm BB(Node N)

1: Vi={ele e N};

2: if N is non-leaf then

3: for c:=1 to m do

4: compute 7. (e) for all e € V' concurrently;
5: remove entries e in V' such that 7 (e) < ~;
6: sort entries e € V in descending order of 7 (e);
7: for each entry e € V such that 7 (e) > v do

8: read the child node N’ pointed by e;

9: BB(N');
10: else
11: for c¢:=1 to m do
12: compute 7.(e) for all e € V' concurrently;
13: remove entries e in V such that 74 (e) < ~;

14: update W} (and 7) by entries in V;

Upper Bound Score Computation.

It remains to clarify how the (upper bound) scores
7.(e) of non-leaf entries (within the same node N) can
be computed concurrently (at Line 4). Our goal is to
compute these upper bound scores such that

o the bounds are computed with low I/O cost, and
o the bounds are reasonably tight, in order to facilitate
effective pruning.

To achieve this, we utilize only level-1 entries (i.e., lowest
level non-leaf entries) in F. for deriving upper bound
scores because: (i) there are much fewer level-1 entries
than leaf entries (i.e., points), and (ii) high level entries
in F. cannot provide tight bounds. In our experimental
study, we will also verify the effectiveness and the cost of
using level-1 entries for upper bound score computation.

Algorithm 2 can be modified for the above upper
bound computation task (where input V' corresponds to
a set of non-leaf entries), after changing Line 2 to check
whether child nodes of N are above the leaf level.

The following example illustrates how upper bound
range scores are derived. In Figure 4a, v; and v, are non-
leaf entries in the object tree D and the others are level-1
entries in the feature tree F.. For the entry v;, we first



define its Minkowski region [21] (i.e., gray region around
v1), the area whose mindist from vy is within e. Observe
that only entries e; intersecting the Minkowski region of
vy can contribute to the score of some point in v;. Thus,
the upper bound score 7.(v;) is simply the maximum
quality of entries e, e5, e, €7, i.e., 0.9. Similarly, 7.(v2) is
computed as the maximum quality of entries e, e3, €4, €3,
ie, 0.7. Assuming that v; and v, are entries in the
same tree node of D, their upper bounds are computed
concurrently to reduce 1/0O cost.

0.3
0.9 2 €507
; y

| 2| €y

1 | 0.7
e, |04 @)

6 7
€y 0.1
0.8 0.6 9

07
(b) optimized computation

(a) upper bound scores

Fig. 4. Examples of deriving scores

3.4 Optimized Branch and Bound Algorithm

This section develops a more efficient score computation
technique to reduce the cost of the BB algorithm.

Motivation.

Recall that Lines 11-13 of the BB algorithm are used to
compute the scores of object points (i.e., leaf entries of the
R-tree on D). A leaf entry e is pruned if its upper bound
score 74 (e) is not greater than the best score found so far
~. However, the upper bound score 7 (e) (see Equation
3) is not tight because any unknown component score is
replaced by a loose bound (i.e., the value 1).

Let’s examine the computation of 7 (p1) for the point
p1 in Figure 4b. The entry ef? is a non-leaf entry
from the feature tree F;. Its augmented quality value is
w(ef™) = 0.8. The entry points to a leaf node containing
two feature points, whose qualities values are 0.6 and
0.8 respectively. Similarly, e£? is a non-leaf entry from
the tree 7, and it points to a leaf node of feature points.

Suppose that the best score found so far in BB is v =
1.4 (not shown in the figure). We need to check whether
the score of p; can be higher than . For this, we compute
the first component score 71 (p1) = 0.6 by accessing the
child node of e{'!. Now, we have the upper bound score
of p; as 74 (p) = 0.6 + 1.0 = 1.6. Such a bound is above
~+ = 1.4 so we need to compute the second component
score To(p1) = 0.5 by accessing the child node of .
The exact score of p; is 7(p1) = 0.6+ 0.5 = 1.1; the point
p1 is then pruned because 7(p1) < 7. In summary, two
leaf nodes are accessed during the computation of 7(p1).

Our observation here is that the point p; can be pruned
earlier, without accessing the child node of 4. By taking
the maximum quality of level-1 entries (from F3) that
intersect the e-range of p;, we derive: 72 (p1) < w(ef?) =
0.7. With the first component score 71 (p;) = 0.6, we infer

that: 7(p1) < 0.6 + 0.7 = 1.3. Such a value is below ~ so
p1 can be pruned.

Optimized computation of scores.

Based on our observation, we propose a tighter deriva-
tion for the upper bound score of p than the one shown
in Equation 3.

Let p be an object point in D. Suppose that we have tra-
versed some paths of the feature trees on Fi, s, - -, Fp,.
Let . be an upper bound of the quality value for any
unvisited entry (leaf or non-leaf) of the feature tree F..
We then define the function 7, (p) as:

7.(p)=)_ max({w(s)ls € Fe, dist(p,s) < e,w(s) > pe}Uinc})

c=1

@)

In the max function, the first set denotes the upper bound
quality of any visited feature point within distance ¢
from p. The following lemma shows that the value 7. (p)
is always greater than or equal to the actual score 7(p).

Lemma 1: It holds that 7, (p) > 7(p), for any p € D.

Proof: If the actual component score 7.(p) is above .,
then 7.(p)=max{w(s) | s € F¢,dist(p,s) < e,w(s) > pc}-
Otherwise, we derive 7.(p) < p.. In both cases, we have
Te(p) < max({w(s) | s € Fe,dist(p,s) < €,w(s) > pe} U
{ptc} ). Therefore, we have 7.(p) > 7(p). O

According to Equation 4, the value 7, (p) is tight only
when every p. value is low. In order to achieve this,
we access the feature trees in a round-robin fashion, and
traverse the entries in each feature tree in descending
order of quality values. Round-robin is a popular and
effective strategy used for efficient merging of rankings
[7], [9]. Alternative strategies include the selectivity-
based strategy and the fractal-dimension strategy [22].
These strategies are designed specifically for coping with
high dimensional data, however in our problem setting
they have insignificant performance gain over round-
robin.

Algorithm 4 is the pseudo-code for computing the
scores of objects efficiently from the feature trees
Fi1,Fa,- -+, Fm. The set V contains objects whose scores
need to be computed. e refers to the distance threshold of
the range score, and +y represents the best score found so
far. For each feature tree F., we employ a max-heap H.
to traverse the entries of 7. in descending order of their
quality values. The root of F. is first inserted into H..
The variable ji. maintains the upper bound quality of
entries in the tree that will be visited. We then initialize
each component score 7.(p) of every object p € V to 0.

At Line 7, the variable a keeps track of the ID of the
current feature tree being processed. The loop at Line 8
is used to compute the scores for the points in the set
V. We then deheap an entry e from the current heap
H,. The property of the max-heap guarantees that the
quality value of any future entry deheaped from H, is
at most w(e). Thus, the bound . is updated to w(e). At
Lines 11-12, we prune the entry e if its distance from
each object point p € V is larger than e. In case ¢ is not
pruned, we compute the tight upper bound score 7, (p)



for each p € V (by Equation 4); the object p is removed
from V if 7. (p) < v (Lines 13-15).

Next, we access the child node pointed to by e, and
examine each entry ¢’ in the node (Lines 16-17). A non-
leaf entry ¢’ is inserted into the heap H,, if its minimum
distance from some p € V is within ¢ (Lines 18-20);
whereas a leaf entry ¢’ is used to update the component
score 7, (p) for any p € V within distance e from ¢’ (Lines
22-23). At Line 24, we apply the round robin strategy to
find the next « value such that the heap H, is not empty.
The loop at Line 8 repeats while V' is not empty and there
exists a non-empty heap H,. At the end, the algorithm
derives the exact scores for the remaining points of V.

Algorithm 4 Optimized Group Range Score Algorithm
7fm/

algorithm Optimized_Group_Range(Trees Fi, F2, - - -
Set V, Value ¢, Value 7)
1: for c:=1 to m do

2: H_.:=new max-heap (with quality score as key);

3: insert F..root into H;

4: pe=1;

5: for each entry p € V do

6: Te(p):=0;

7: a:=1; > ID of the current feature tree

8: while |V| > 0 and there exists a non-empty heap H. do
9: deheap an entry e from H,;

10: ta:=w(e);

11: if Vp € V, mindist(p,e) > € then

> update threshold

12: continue at Line §;

13: for each p € V do > prune unqualified points
14 (D, max{pe, 7e(p)}) < 7 then

15: remove p from V;

16: read the child node C'N pointed to by e;
17:  for each entry ¢’ of CN do

18: if C'N is a non-leaf node then

19: if Ip € V, mindist(p,e’) < € then

20: insert €' into Hg;

21: else > update component scores
22: for each p € V such that dist(p,e’) < e do

23: To(p):=max{7(p),w(e’)};

24: a:=next (round-robin) value where H, is not empty;

25: for each entry p € V do
26: T(p)=320l Te(p);

The BB* Algorithm.

Based on the above, we extend BB (Algorithm 3) to an
optimized BB* algorithm as follows. First, Lines 11-13 of
BB are replaced by a call to Algorithm 4, for computing
the exact scores for object points in the set V. Second,
Lines 3-5 of BB are replaced by a call to a modified
Algorithm 4, for deriving the upper bound scores for
non-leaf entries (in V). Such a modified Algorithm 4 is
obtained after replacing Line 18 by checking whether the
node C'N is a non-leaf node above the level-1.

3.5 Feature Join Algorithm

An alternative method for evaluating a top-k spatial
preference query is to perform a multi-way spatial join
[23] on the feature trees Fi,Fo,--- ,F,, to obtain com-
binations of feature points which can be in the neigh-
borhood of some object from D. Spatial regions which

correspond to combinations of high scores are then ex-
amined, in order to find data objects in D having the cor-
responding feature combination in their neighborhood.
In this section, we first introduce the concept of a combi-
nation, then discuss the conditions for a combination to
be pruned, and finally elaborate the algorithm used to
progressively identify the combinations that correspond
to query results.

(a) non-leaf combination (b) leaf combination

Fig. 5. Qualified combinations for the join
Tuple (fi, fo,--- , fm) is a combination if, for any c €

[1,m], f. is an entry (either leaf or non-leaf) in the feature
tree F.. The score of the combination is defined by:

m

7fm>) = Z w(fc) @)

c=1

T({(f1, fa,- -

For a non-leaf entry f., w(f.) is the MAX of all feature
qualities in its subtree (stored with f., since F. is an
aR-tree). A combination disqualifies the query if:

3 (i # j Ni,j € [1,m]), mindist(f;, f;) > 2¢ (6)

When such a condition holds, it is impossible to have a
point in D whose mindist from f; and f; are within e
respectively. The above validity check acts as a multiway
join condition that significantly reduces the number of
combinations to be examined.

Figure 5a and 5b illustrate the condition for a non-
leaf combination (A;, Bs) and a leaf combination (a3, bs),
respectively, to be a candidate combination for the query.

Algorithm 5 is a pseudo-code of our feature join
(FJ) algorithm. It employs a max-heap H for managing
combinations of feature entries in descending order of
their combination scores. The score of a combination
(f1, f2, -+, fm) as defined in Equation 5 is an upper
bound of the scores of all combinations (si, s, -+ , $m)
of feature points, such that s. is located in the subtree
of f. for each c € [1,m]. Initially, the combination with
the root pointers of all feature trees is enheaped. We
progressively deheap the combination with the largest
score. If all its entries point to leaf nodes, then we load
these nodes Lq,---,L,, and call Find_Result to traverse
the object R-tree D and find potential results. Find_Result
is a variant of the BB algorithm, with the following
difference: Ly, --- , Ly, are viewed as m tiny feature trees
(each with one node) and accesses to them incur no extra
I/0 cost.

In case not all entries of the deheaped combination
point to leaf nodes (Line 9 of FJ), we select the one at the
highest level, access its child node V. and then form new
combinations with the entries in N.. A new combination



Algorithm 5 Feature Join Algorithm (FJ)

Wi:=new min-heap of size k (initially empty);
~v:=0; > k-th score in Wy

algorithm FJ(Tree D,Trees F1,F2, -+ ,Fm)

1: H:=new max-heap (combination score as the key);
2: insert (Fi.root, Fa.root,- - , Fm.root) into H;

3: while H is not empty do

4: deheap (fi, f2, -+, fm) from H;

5: if Vce [1,m], f. points to a leaf node then

6: for c:=1 to m do

7: read the child node L. pointed by f.;

8: Find_Result(D.root, L1, , Ly);

9: else

10: fo:=highest level entry among f1, f2, -+, fm;
11: read the child node N. pointed by f;

12: for each entry e. € N. do

13: insert (f1, f2, " ,€c, -+, fm) into H if its score

is greater than ~ and it qualifies the query;

algorithm Find_Result(Node N, Nodes L1, -, L)
: for each entry e € N do
if N is non-leaf then
compute 7 (e) by entries in Ly, - -
if 7(e) > -y then
read the child node N’ pointed by e;
Find_Result(N’/, L1, -, Ly);

s Lom;

else
compute 7(e) by entries in L1, -+, Lm;
update Wi (and 7) by e (when necessary);
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is inserted into H for further processing if its score is
higher than v and it qualifies the query. The loop (at
Line 3) continues until H becomes empty.

3.6 Extension to Monotonic Aggregate Functions

We now extend our proposed solutions for processing
the top-k spatial preference query defined by any mono-
tonic aggregate function AGG. Examples of AGG include
(but not limited to) the MIN and MAX functions.

Adaptation of incremental computation.

Recall that the incremental computation technique is
applied by algorithms SP, GP, and BB, for reducing 1/O
cost. Specifically, even if some component score 7.(p) of
a point p has not been computed yet, the upper bound
score 7 (p) of p can be derived by Equation 3. Whenever
7+(p) drops below the best score found so far 7, the
point p can be discarded immediately without needing
to compute the unknown component scores of p.

In fact, the algorithms SP, GP, and BB are directly
applicable to any monotonic aggregate function AGG
because Equation 3 can be generalized for AGG. Now,
the upper bound score 74 (p) of p is defined as:

if 7.(p) is known
otherwise

7e(p)

rp=noe i { | @)

Due to the monotonicity property of AGG, the bound
7+(p) is guaranteed to be greater than or equal to the
actual score 7(p).

Adaptation of upper bound computation.

The BB* and FJ algorithms compute the upper bound
score of a non-leaf entry of the object tree D or a
combination of entries from feature trees, by summing
its upper bound component scores. Both BB* and FJ
are applicable to any monotonic aggregate function AGG,
with only the slight modifications discussed below. For
BB*, we replace the summation operator by AGG, in
Equation 4, and at Lines 14 and 26 of Algorithm 4. For
FJ, we replace the summation by AGG, in Equation 5.

4 INFLUENCE SCORE

This section first studies the influence score function that
combines both the qualities and relative locations of
feature points. It then presents the adaptations of our
solutions in Section 3 for the influence score function.
Finally, we discuss how our solutions can be used for
other types of influence score functions.

4.1

The range score has a drawback that the parameter ¢
is not easy to set. Consider for instance the example
of the range score 77™9() in Figure 6a, where the white
points are object points in D, the gray points and black
points are feature points in the feature sets F; and F»
respectively. If ¢ is set to 0.2 (shown by circles), then
the object py has the score 7"9(py) = 0.9+ 0.1 = 1.0
and it cannot be the best object (as 7""9(p;) = 1.2). This
happens because a high-quality black feature is barely
outside the e-range of p,. Had e been slightly larger, that
black feature would contribute to the score of p2, making
it the best object.

In the field of statistics, the Gaussian density function
[24] has been used to estimate the density in the space,

from a set F of points. The density at location p is

- 12
estimated as: G(p) = Zfefexp(—w), where o
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is a parameter. Its advantage is that the value G(p) is

not sensitive to a slight change in 0. G(p) is mainly
contributed by the points (of F) close to p and weakly
affected by the points far away.

Inspired by the above function, we devise a score
function such that it is not too sensitive to the range
parameter e. In addition, the users in our application
usually prefer a high-quality restaurant (i.e., a feature
point) rather than a large number of low-quality restau-
rants. Therefore, we use the maximum operator rather
than the summation in G(p). Specifically, we define the
influence score of an object point p with respect to the
feature set F_ as:

dist(p,s)

Té"f (p) = max{ w(s) 27 =«

|se F.} (8)

where w(s) is the quality of s, € is a user-specified range,
and dist(p, s) is the distance between p and s.
The overall score 77"/ (p) of p is then defined as:

7 (p) = aGG { 7™ (p) | c € [1,m] } ©)



where AGG is a monotone aggregate operator and m is
the number of feature datasets. Again, we focus on the
case where AGG is the SUM function.

Let us compute the influence score 7"/() for the
points in Figure 6a, assuming ¢ = 0.2. From Figure 6a,
we obtain 77/ (p;) = max{0.7 - 2702,0.9 - 27030} +
max{0.5 - 27620,0.1 - 27636,0.6 - 27020} = 0.643 and
7 (py) = max{0.9 - 27620,0.7 - 2702 } + max{0.1 -
270%0,0.6-279%,0.5-27 030 } = 0.762. The top-1 point is
pe, implying that the influence score can capture feature
points outside the range ¢ = 0.2. In fact, the influence
score function possesses two nice properties. Firstly, a
feature point s that is barely outside the range ¢ (from
the object point p) still has potential to contribute to the
score, provided that its quality w(s) is sufficiently high.
Secondly, the distance dist(p,s) has an exponentially
decaying effect on the score, meaning that feature points

nearer to p contribute higher scores.
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(a) exact score

(b) upper bound property
Fig. 6. Example of influence score (e = 0.2)

4.2 Query Processing for SP, GP, BB, and BB*

We now examine the extensions of the SP, GP, BB,
and BB* algorithms for top-k spatial preference queries
defined by the influence score in Equation 8.

Incremental computation technique.

Observe that the upper bound of 7"/ (p) is 1. Therefore,
Equation 3 still holds for the influence score, and the
incremental computation technique (see Section 3.2) can
still be applied in SP, GP, and BB.

Exact score computation for a single object.
For the SP algorithm, we elaborate how to compute the
score 7"/ (p) (see Equation 8) of an object p € D. This
is challenging because some feature s € F. outside the
e-range of p may contribute to the score. Unlike the
computation of the range score, we can no longer use
the e-range to restrict the search space.

Given an object point p and an entry e from the feature
tree of F., we define the upper bound function:

mindist(p,e)

wm™ (e,p) =w(e) 27" - (10)

In case e is a leaf entry (i.e., a feature point s), we have
winf (s, p) = w(s) 2~ “EE The following lemma shows
that the value w'™/ (e, p) is an upper bound of w™/(¢’, p)

for any entry ¢’ in the subtree of e.

Lemma 2: Let e and e’ be entries from the feature tree
F. such that ¢ is in the subtree of e. It holds that
w'f (e,p) > w'™f(¢', p), for any object point p € D.

Proof: Let p be any object point p € D. Since ¢
falls into the subtree of e, we have: mindist(p,e) <
mindist(p,e’). As F. is a MAX aR-tree, we have: w(e) >
w(e'). Thus, we have: w*f (e, p) > w™/ (¢/, p). O

As an example, Figure 6b shows an object point p
and three entries ey, ez, e3 from the same feature tree.
Note that e; and es are in the subtree of e;. The dotted
lines indicate the minimum distance from p to e; and ej
respectively. Thus, we have wi™f(ey,p) =0.8- =03 = 0.4
and wi™f (e3,p) = 0.7 - 2762 = 0.247. Clearly, w™™/ (e;, p)
is larger than w'"/(e3,p).

By using Lemma 2, we apply the best-first approach
to compute the exact component score 7.(p) for the point
p; Algorithm 6 employs a max-heap H in order to visit
the entries of the tree in descending order of their w'™f
values. We first insert the root of the tree F. into H,
and initialize 7.(p) to 0. The loop at Line 4 continues as
long as H is not empty. At Line 5, we deheap an entry e
from H. If the value w'"/ (e, p) is above the current 7.(p),
then there is potential to update 7.(p) by using some
point in the subtree of e. In that case, we read the child
node pointed to by e, and examine each entry €’ in that
node (Lines 7-8). If ¢’ is a non-leaf entry, it is inserted
into H provided that its w'™/(¢/, p) value is above 7.(p).
Otherwise, it is used to update 7.(p).

Algorithm 6 Object Influence Score Algorithm

algorithm Object_Influence(Point p, Value ¢, Value ¢)

1: H:=new max-heap (with w""/ value as key);

2: insert (F..root,1.0) into H;

3: 7.(p):=0;

4: while H is not empty do

5: deheap an entry e from H;

6: if w7 (e,p) > 7.(p) then

7: read the child node C'N pointed to by e;
8: for each entry ¢’ of CN do

9: if CN is a non-leaf node then
10: if w™f (¢/,p) > 7.(p) then
11: insert (¢, w7 (¢/,p)) into H;
12: else > update component score
13: Te(p):=max{t.(p),w™ (¢, p)};

Group computation and upper bound computation.
Recall that, for the case of range scores, both the GP and
BB algorithms apply the group computation technique
(Algorithm 2) for concurrently computing the compo-
nent score 7.(p) for every object point p in a given set V.
Now, Algorithm 6 can be modified as follows to support
concurrent computation of influence scores. Firstly, the
parameter p is replaced by a set V of objects. Second,
we initialize the value 7.(p) for each object p € V at Line
3 and perform the score update for each p € V at Line
13. Thirdly, the conditions at Lines 6 and 10 are checked
whether they are satisfied by some object p € V.

In addition, the BB algorithm (see Algorithm 3) needs
to compute the upper bound component score 7.(e) for



all non-leaf entries in the current node simultaneously.
Again, Algorithm 6 can be modified for this purpose.

Optimized computation of scores in BB*.
Given an entry e (from a feature tree), we define the
upper bound score of e using a set V' of points as:

w™ (e, V) max w (e,p)

(11

The BB* algorithm applies Algorithm 4 to compute the
range scores for a set V' of object points. With Equation
11, we can modify Algorithm 4 to compute the influence
score, with the following changes. Firstly, the heap H.
(at Line 2) is used to organize its entries e in descending
order of the key w™/(e, V), and the value w(e) (at Line
10) is replaced by w™f(e, V). Secondly, the restrictions
based on the e-range (at Lines 11-12, 19, 22) are removed.
Thirdly, the value w(e’) (at Line 23) needs to be replaced
by wi™f (¢!, p).

4.3 Query Processing for FJ

The F] algorithm can be adapted for the influence
score, but with two changes. Recall that the tuple
(f1,f2,"+, fm) is said to be a combination if f. is an
entry in the feature tree F., for any ¢ € [1,m].

First, Equation 6 can no longer be used to prune
a combination based on distances among the entries
in the combination. Any possible combination must be
considered if its upper bound score is above the best
score found so far +.

Second, Equation 5 is now a loose upper bound value
for the influence score because it ignores the distances
among the entries f.. Therefore, we need to develop a
tighter upper bound for the influence score.

The following lemma shows that, given a set ® of
rectangles that partitions the spatial domain DOM, the
value max,co Y o, W™ (fe,7) is an upper bound of the
value w™/(f.,p) for any point p (in DOM).

Lemma 3: Let ® be a set of rectangles which parti-
tion the spatial domain DOM. Given the tree entries
fi, fa,- -+, fm (from the respective feature trees), it holds
that max,eq Yooy W™ (forr) > S0 W™ (fe, p), for any
point p € DOM.

Proof: Let p be a point in DOM. There exists an
rectangle ' € ® such that p falls into 7. Thus, for any
¢ € [1,m], we have mindist(f.,r") < mindist(f.,p), and
derive w™/ (f.,r") > w™/(f.,p). By summing all com-
ponents, we obtain > " W™ (f., 1) > 3" W (f.,p).
As v € ®, we also have max,co Y ooq W™ (fe,7) >
> wm (fe, 7). Therefore the lemma is proved. O

In fact, the above wupper bound value
max,ca Y o, W™ (f.,r) can be tightened by dividing
the rectangles of ¢ into smaller rectangles.

Figure 7a shows the combination (fi, f2), whose en-
tries belong to the feature trees F; and F, respec-
tively. We first partition the domain space into four
rectangles 71,72,73,74, and then compute their up-
per bound values (shown in the figure). Thus, the
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current upper bound score of (fi,f2) is taken as:
max{1.5,1.0,0.1,0.8} = 1.5. To tighten the upper bound,
we pick the rectangle (r;) with the highest value and
partition it into four rectangles ri1,712, 713,714 (see Fig-
ure 7b). Now, the upper bound score of (f1, f2) becomes:
max{0.5,1.1,0.8,0.7,1.0,0.1,0.8} = 1.1. By applying this
method iteratively, the upper bound score can be grad-
ually tightened.

(a) first iteration

(b) second iteration

Fig. 7. Deriving upper bound of the influence score for FJ

Algorithm 7 is the pseudo for computing the upper
bound score for the combination (f1, fa, -, fm) of fea-
ture entries. The parameter v represents the best score
found so far (in FJ). The value I,,,, is used to control the
number of iterations in the algorithm; its typical value
is 20. At Line 1, we employ a max-heap H to organize
its rectangles in descending order of their upper bound
scores. Then, we insert the spatial domain rectangle into
H. The loop at Line 4 continues while H is not empty
and I,,q, > 0. After deheaping a rectangle r from H
(Line 5), we partition it into four child rectangles. Each
child rectangle ' is inserted into H if its upper bound
score is above . We then decrement I,,,,, (at Line 10). At
the end (Lines 11-14), if the heap H is not empty, then
algorithm returns the key value of H’s top entry as the
upper bound score. Such a value is guaranteed to be the
maximum upper bound value in the heap. Otherwise
(i.e., empty H), the algorithm returns vy as the upper
bound score because all rectangles with score below ~
have been pruned.

Algorithm 7 F] Upper Bound Computation Algorithm

algorithm FJ_Influence(Value ¢, Value v, Value I, En-
tries f17f27 T 7fm)
H:=new max-heap (with upper bound score as key);
: let DOM be the rectangle of the spatial domain;
: insert (DOM, >  w(f.)) into H;
while I,,4. > 0 and H is not empty do

deheap a rectangle r from H;

partition r into four child rectangles;

for each child rectangle r’ of r do

if 7w (fe, ') > v then
insert (r',>""  w'™(fe, ")) into H;

10: Loz =Inas — 1;
11: if H is not empty then
12: return the key value of the top entry of H;
13: else
14: return ~;
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4.4 Extension to Generic Influence Scores

Our algorithms can be also applied to other types of in-
fluence score functions. Given a function i/ : ® — R, we
model a score function as w™™f (s, p) = w(s)-U(dist(p, s)),
where p is an object point and s € F. is a feature point.

Let e be a feature tree entry. The crux of our solution
is to re-define the upper bound function w™/ (e, p) (like
in Equation 10) such that w™/ (e, p) > w™/ (s, p), for any
feature point s in the subtree of e.

In fact, the upper bound function can be expressed
as wf(e,p) = w(e) - U(d), where d is a dis-
tance value. Observe that d must fall in the interval
[mindist(p, e), maxdist(p,e)]. Thus, we apply a numer-
ical method (e.g., the bisection method) to find the
value d € [mindist(p, e), maxdist(p,e)] that maximizes
the value of U.

For the special case that U/ is a monotonic decreasing
function, we can simply set d = mindist(p, e) because it
definitely maximizes the value of U/.

5 EXPERIMENTAL EVALUATION

In this section, we compare the efficiency of the pro-
posed algorithms using real and synthetic datasets. Each
dataset is indexed by an aR-tree with 4K bytes page size.
We used an LRU memory buffer whose default size is
set to 0.5% of the sum of tree sizes (for the object and
feature trees used). Our algorithms were implemented in
C++ and experiments were run on a Pentium D 2.8GHz
PC with 1GB of RAM. In all experiments, we measure
both the I/O cost (in number of page faults) and the total
execution time (in seconds) of our algorithms. Section 5.1
describes the experimental settings. Sections 5.2 and 5.3
study the performance of the proposed algorithms for
queries with range scores and influence scores respec-
tively. We then present our experimental findings on real
data in Section 5.4.

5.1

We used both real and synthetic data for the experi-
ments. The real datasets will be described in Section 5.4.
For each synthetic dataset, the coordinates of points are
random values uniformly and independently generated
for different dimensions. By default, an object dataset
contains 200K points and a feature dataset contains
100K points. The point coordinates of all datasets are
normalized to the 2D space [0, 10000]2.

For a feature dataset F., we generated qualities for
its points such that they simulate a real world scenario:
facilities close to (far from) a town center often have
high (low) quality. For this, a single anchor point s, is
selected such that its neighborhood region contains high
number of points. Let disty,in (distmgs) be the minimum
(maximum) distance of a point in F, from the anchor s,.
Then, the quality of a feature point s is generated as:

w(s) = (

Experimental Settings

diStmar — dist(s, s)

)? (12)

diStmam - diStmin
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where dist(s, s,) stands for the distance between s and
s+, and ¥ controls the skewness (default: 1.0) of quality
distribution. In this way, the qualities of points in F lie
in [0, 1] and the points closer to the anchor have higher
qualities. Also, the quality distribution is highly skewed
for large values of .

We study the performance of our algorithms with
respect to various parameters, which are displayed in
Table 2 (their default values are shown in bold). In each
experiment, only one parameter varies while the others
are fixed to their default values.

TABLE 2
Range of parameter values

Values
SUM, MIN, MAX
0.1,0.2,0.5,1,2,5,10
100, 200, 400, 800, 1600
50, 100, 200, 400, 800
1,2,4,8, 16, 32, 64
1,2,3,4,5
10, 20, 50, 100, 200

Parameter
Aggregate function
Buffer size (%)

Object data size, [D] (x1000)
Feature data size, [F] (x1000)
Number of results, k
Number of features, m
Query range, €

5.2 Performance on Queries with Range Scores

This section studies the performance of our algorithms
for top-k spatial preference queries on range scores.

Table 3 shows the I/O cost and execution time of the
algorithms, for different aggregate functions (SUM, MIN,
MAX). GP has lower cost than SP because GP computes
the scores of points within the same leaf node con-
currently. The incremental computation technique (used
by SP and GP) derives a tight upper bound score (of
each point) for the MIN function, a partially tight bound
for sUM, and a loose bound for MAX (see Section 3.6).
This explains the performance of SP and GP across
different aggregate functions. However, the cost of the
other methods are mainly influenced by the effectiveness
of pruning. BB employs an effective technique to prune
unqualified non-leaf entries in the object tree so it out-
performs GP. The optimized score computation method
enables BB* to save on average 20% I/O and 30% time
of BB. FJ outperforms its competitors as it discovers
qualified combination of feature entries early.

We ignore SP in subsequent experiments, and com-
pare the cost of the remaining algorithms on synthetic
datasets with respect to different parameters.

TABLE 3
Effect of the aggregate function, range scores

SUM function SP GP BB BB* F]
1/0 350927 | 22594 | 2033 1535 | 489

Time (s) 635.0 32.7 3.0 2.0 1.3
MIN function SP GP BB BB* FJ]
1/0 235602 16254 611 615 47
Time (s) 426.8 22.7 0.9 0.8 0.2
MAX function SP GP BB BB* F]
1/0 402704 | 26128 228 186 8

Time (s) 742.8 38.2 0.3 0.2 0.1




Next, we empirically justify the choice of using level-1
entries of feature trees F. for the upper bound score com-
putation routine in the BB algorithm (see Section 3.3). In
this experiment, we use the default parameter setting
and study how the number of node accesses of BB is
affected by the level of F. used. Table 4 shows the
decomposition of node accesses over the tree D and
the trees F., and the statistics of upper bound score
computation. Each accessed non-leaf node of D invokes
a call of the upper bound score computation routine.

When level-0 entries of F. are used, each upper bound
computation call incurs a high number (617.5) of node
accesses (of F.). On the other hand, using level-2 en-
tries for upper bound computation leads to very loose
bounds, making it difficult to prune the leaf nodes of
D. Observe that the total cost is minimized when level-1
entries (of F.) are used. In that case, the node accesses
per upper bound computation call is low (15), and yet
the obtained bounds are tight enough for pruning most
leaf nodes of D.

TABLE 4
Effect of the level of F,. used for upper bound score
computation in the BB algorithm

Level Node accesses (NA) Upper bound score computation
Total of D of F. # of calls NA of F. per call
0 3350 53 3297 4 617.5
1 2365 130 2235 4 15
2 13666 930 12736 14 2

Figure 8 plots the cost of the algorithms as a function
of the buffer size. As the buffer size increases, the I/O
of all algorithms drops. FJ remains the best method, BB*
the second, and BB the third; all of them outperform GP
by a wide margin. Since the buffer size does not affect
the pruning effectiveness of the algorithms, it has a small
impact on the execution time.

Figure 9 compares the cost of the algorithms with
respect to the object data size |D|. Since the cost of FJ
is dominated by the cost of joining feature datasets, it
is insensitive to |D|. On the other hand, the cost of the
other methods (GP, BB, BB*) increases with |D|, as score
computations need to be done for more objects in D.

Figure 10 plots the I/O cost of the algorithms with re-
spect to the feature data size | F| (of each feature dataset).
As | F| increases, the cost of GP, BB, and FJ increases. In
contrast, BB* experiences a slight cost reduction as its
optimized score computation method (for objects and
non-leaf entries) is able to perform pruning early at a
large |F| value.

Figure 11 plots the cost of the algorithms with respect
to the number m of feature datasets. The costs of GP,
BB, and BB* increase linearly as m because the number
of component score computations is at most linear to m.
On the other hand, the cost of FJ increases significantly
with m, because the number of qualified combinations
of entries is exponential to m.

Figure 12 shows the cost of the algorithms as a func-
tion of the number k of requested results. GP, BB, and
BB* compute the scores of objects in D in batches, so
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their performance is insensitive to k. As k increases, FJ
has weaker pruning power and its cost increases slightly.

Figure 13 shows the cost of the algorithms, when vary-
ing the query range e. As e increases, all methods access
more nodes in feature trees to compute the scores of the
points. The difference in execution time between BB* and
FJ shrinks as € increases. In summary, although FJ is the
clear winner in most of the experimental instances, its
performance is significantly affected by the number m
of feature datasets. BB* is the most robust algorithm to
parameter changes and it is recommended for problems
with large m.
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5.3 Performance on Queries with Influence Scores

We proceed to examine the cost of our algorithms for
top-k spatial preference queries on influence scores.

Figure 14 compares the cost of the algorithms with
respect to the number m of feature datasets. The cost
follows the trend in Figure 11. Again, the number of
combinations examined by FJ increases exponentially
with m so its cost increases rapidly.

Figure 15 plots the cost of the algorithms by varying
the number k of requested results. Observe that FJ
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becomes more expensive than BB* (in both I/O and time)
when the value of k is beyond 8. This is attributed to
two reasons. First, F] incurs extra computational cost
as it needs to invoke Algorithm 7 for computing the
upper bound score of a combination of feature entries.
Second, FJ incurs high I/O cost to identify objects in D
that produce high scores with the current combination
of features.

Figure 16 shows the cost of the algorithms as a func-
tion of the parameter e. Interestingly, the trend here
is different from the one in Figure 13. According to
Equation 8, when e decreases, the influence score also
decreases, rendering it more difficult to distinguish the
scores among different objects. Thus, the cost of BB, BB*,
and FJ becomes high at a low € value. Summing up, for
the newly introduced influence score, F] is more sensitive
to parameter changes and it loses to BB* not only when
there are multiple feature datasets, but also at large k.

5.4 Results on real data

In this section, we conduct experiments on real object
and feature datasets in order to demonstrate the appli-
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cation of top-k spatial preference queries.

We obtained three real spatial datasets from a travel
portal website, http://www.allstays.com/. Loca-
tions in these datasets correspond to (longitude, lati-
tude) coordinates in US. We cleaned the datasets by
discarding records without longitude and latitude. Each
remaining location is normalized to a point in the 2D
space [0, 10000]%. One dataset is used as the object dataset
and the other two are used as feature datasets. The
object dataset D contains 11399 camping locations. The
feature dataset F; contains 30921 hotel records, each
with a room price (quality) and a location. The feature
dataset F> has 3848 records of Wal-Mart stores, each
with a gasoline availability (quality) and a location.
The domain of each quality attribute (e.g., room price,
gasoline availability) is normalized to the unit interval
[0,1]. Intuitively, a camping location is considered as
good if it is close to a Wal-Mart store with high gasoline
availability (i.e., convenient supply) and a hotel with
high room price (which indirectly reflects the quality of
nearby outdoor environment).

Figure 17 plots the cost of the algorithms with respect
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to ¢, for queries with range scores. At a very small e
value, most of the objects have the zero score as they
have no feature points within their neighborhood. This
forces BB, BB*, and FJ to access a larger number of objects
(or feature combinations) before finding an object with
non-zero score, which can then be used for pruning other
unqualified objects.

Figure 18 compares the cost of the algorithms with
respect to ¢, for queries with influence scores. In general,
the cost follows the trend in Figure 16. BB* outperforms
BB at low e value whereas BB incurs a slightly lower
cost than BB* at a high ¢ value. Observe that the cost of
BB and BB* is close to that of FJ] when ¢ is sufficiently
high. In summary, the relative performance between the
algorithms in all experiments is consistent to the results
on synthetic data.
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6 CONCLUSION

In this paper, we studied top-k spatial preference queries,
which provides a novel type of ranking for spatial objects
based on qualities of features in their neighborhood. The
neighborhood of an object p is captured by the scoring
function: (i) the range score restricts the neighborhood
to a crisp region centered at p, whereas (ii) the influence
score relaxes the neighborhood to the whole space and
assigns higher weights to locations closer to p.

We presented five algorithms for processing top-k
spatial preference queries. The baseline algorithm SP
computes the scores of every object by querying on
feature datasets. The algorithm GP is a variant of SP that
reduces 1/0O cost by computing scores of objects in the
same leaf node concurrently. The algorithm BB derives
upper bound scores for non-leaf entries in the object tree,
and prunes those that cannot lead to better results. The
algorithm BB* is a variant of BB that utilizes an opti-
mized method for computing the scores of objects (and
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upper bound scores of non-leaf entries). The algorithm
FJ] performs a multi-way join on feature trees to obtain
qualified combinations of feature points and then search
for their relevant objects in the object tree.

Based on our experimental findings, BB* is scalable
to large datasets and it is the most robust algorithm
with respect to various parameters. However, FJ is the
best algorithm in cases where the number m of feature
datasets is low and each feature dataset is small.

In the future, we will study the top-k spatial preference
query on road network, in which the distance between
two points is defined by their shortest path distance
rather than their Euclidean distance. The challenge is to
develop alternative methods for computing the upper
bound scores for a group of points on a road network.
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