IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

Route-Saver: Leveraging Route APIs for
Accurate and Efficient Query Processing at
Location-Based Services

Yu Li, and Man Lung Yiu

Abstract—Location-based services (LBS) enable mobile users to query points-of-interest (e.g., restaurants, cafes) on various
features (e.g., price, quality, variety). In addition, users require accurate query results with up-to-date travel times. Lacking the
monitoring infrastructure for road traffic, the LBS may obtain live travel times of routes from online route APIs in order to offer
accurate results. Our goal is to reduce the number of requests issued by the LBS significantly while preserving accurate query
results. First, we propose to exploit recent routes requested from route APIs to answer queries accurately. Then, we design
effective lower/upper bounding techniques and ordering techniques to process queries efficiently. Also, we study parallel route
requests to further reduce the query response time. Our experimental evaluation shows that our solution is 3 times more efficient
than a competitor, and yet achieves high result accuracy (above 98%).

Index Terms—H.2.4.h Query processing, H.2.4.k Spatial databases

+*

1 INTRODUCTION ID [loc. [food |quality [price [TV 2 _é_,?,o
type Pogr—- Ps
The availability of GPS-equipped smartphones leads to a p1 [@.1) burger | 5 7 1Y q?/;
huge demand of location-based services (LBSs), like city p2 (6,2) | grill 2 2 | 7 2 o
guides, restaurant rating, and shop recommendation web- ps (8,7) | cafe 5 31V | o T
sites, e.g.,OpenTable, Hotels, UrbanSpoon.! They manage ps (1.3) burger | 3 2 x| P 2
ps |3,6) | grill 4 5 |V PO

points-of-interest (POIs) specific to their applications, and
enable mobile users to query for POIs that match with
their preferences and time constraints. As an example,
consider a restaurant rating website that manages a dataset
of restaurants P (see Fig. 1a) with various attributes like:
location, food type, quality, price, etc. Via the LBS (web-
site), a mobile user ¢ could query restaurants based on
these attributes as well as travel times on road network
to reach them. Here are examples for a range query and
from P where P.TV = ’'yes’
and TIME (g, P.1loc)
‘select * from P where P.price < 5
order by TIME (q,P.loc)
~A'successful LBS must fulfill two essential requirements:
(R1) accurate query results, and (R2) reasonable response
time. Query results with inaccurate travel times may dis-
rupt the users’ schedules, cause their dissatisfaction, and
eventually risk the LBS losing its users and advertisement
revenues. Similarly, high response time may drive users
away from the LBS.
Observe that the live travel times from user ¢ to POIs
vary dynamically due to road traffic and factors like rush
hours, congestions, road accidents. As a case study, we used

select =

e Y. Liand M. L. Yiu are with the Department of Computing, Hong Kong
Polytechnic University, Hong Kong.
E-mail: {csyuli, csmlyiu} @comp.polyu.edu.hk

1. www.opentable.com www.hotels.com www.urbanspoon.com

(a) dataset P (b) live travel times
Fig. 1. A restaurant rating website: data and queries

a
=}

S

Singapore

N oW A
S

=]

Tokyo

Travel time (minute)
Travel time (minute)

=
o

0 0
9:3011:00 13:00 15:00 17:00 19:00 21:00 23:00 9:3011:00 13:00 15:00 17:00 19:00 21:00 23:00
Time Time

(a) on Oct 17, 2012 (Wed) (b) on Oct 24, 2012 (Wed)
Fig. 2. Measurement of live travel times

Google Maps to measure the live travel times for three pairs
of locations in Brisbane, Singapore, and Tokyo, on two days
(see Fig.2). Even on the same weekday (Wednesday), the
travel times exhibit different trends. Thus, historical traffic
data may not provide accurate estimates of live travel times.

Unfortunately, if the LBS estimates travel times based
on only local information (distances of POIs from user q),
then query results (for range and K NN) would have low
accuracy (50% for NoAPI, see Fig. 7). Typical LBS lacks
the infrastructure and resources (e.g., road-side sensors,
cameras) for monitoring road traffic and computing live
travel times [32] [33]. To meet the accuracy requirement
(R1), the framework SMashQ [32] [33] is proposed for
the LBS to answer K NN queries accurately by retrieving
live travel times (and routes) from online route APIs (e.g.,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

Google Directions API [7], Bing Maps API [4]), which
have live traffic information [6]. Given a query g, the
LBS first filters POIs by local attributes in P. Next, the
LBS calls a route API to obtain the routes (and live travel
times) from ¢ to each remaining POI, and then determines
accurate query results for the user. As a remark, online
maps (e.g., Google Maps, Bing Maps), on the other hand,
cannot process queries for the LBS either, because those
queries may involve specific attributes (e.g., quality, price,
facility) that are only maintained by the LBS.

Using online route APIs raises challenges for the LBS in
meeting the response time requirement (R2). It is important
for LBS to reduce the number of route requests for answer-
ing queries because a route request incurs considerable time
(0.15-0.3s) which is high compared to CPU time at LBS
(see Fig. 8 and 11). SMashQ [32] [33] obtains the latest
travel times for queries from online route API. Though
it guarantees accurate query results, it may still incur a
considerable number of route requests.

In this paper, we exploit an observation from Fig. 2,
namely that travel times change smoothly within a short
duration. Routes recently obtained from online route APIs
(e.g., 10 minutes ago) may still provide accurate travel
times to answer current queries. This property enables us
to design a more efficient solution for processing range
and K'NN queries. Our experiments show that our solution
is 3 times more efficient than SMashQ, and yet achieves
high result accuracy (above 98%). Specifically, our method
Route-Saver keeps at the LBS the routes which were
obtained in the past ¢ minutes (from an online route API),
where § is the expiry time parameter [17]. For instance,
based on Fig. 2, we may set § to 10 minutes. These recent
routes are then utilized to derive lower/upper bounding
travel times to reduce the number of route requests for
answering range and K NN queries.

Another related work [31] studies how to cache shortest
paths for reducing the response times on answering shortest
path queries (but not range/ KNN queries in this paper).
They mainly exploit the optimal subpath property [15] of
shortest paths, i.e., all subpaths of a shortest path must
also be shortest paths. Given a shortest path query (s,t),
if both nodes s,t¢ fall on the same (cached) shortest path,
then the shortest path from s to ¢ can be extracted from that
cached path. Unfortunately, this optimal subpath property
is not powerful enough in reducing the number of route
requests significantly in our problem. This is because each
path contains a few data points and thus the probability
for points lying on the same path with the query point is
small. We show in an experiment (see Fig. 10) that the
optimal subpath property (‘rz’ in black) saves very few
route requests, whereas our techniques (e.g., lower/upper
bounds to be discussed below) provide the major savings
in route requests. Furthermore, Ref. [31] has not considered
the expiry time requirement as in our work.

To reduce the number of route requests while providing
accurate results, we combine information across multiple
routes in the log to derive tight lower/upper bounding travel
times. We also propose effective techniques to compute

such bounds efficiently. Moreover, we examine the effect
of different orderings for issuing route requests on saving
route requests. And we study how to parallelize route
requests in order to reduce the query response time further.
In the following, we first review related work in Sec-
tion 2. Then, we describe the system architecture and our
objectives in Section 3. Our contributions are:

o Combine information across multiple routes in the log
to derive lower/upper bounding travel times, which
support efficient and accurate range and K NN search
(Section 4);

o Develop heuristics to parallelize route requests for
reducing the query response time further (Section 5);

« Evaluate our solutions on a real route API and also on
a simulated route API for scalability tests (Section 6).

Finally, we conclude this paper in Section 7.

2 RELATED WORK
2.1 Query Processing on Road Networks

Indexing on road networks have been extensively studied
in the literature [19], [20], [22], [26], [28]. Various shortest
path indices [19], [20], [28] have been developed to support
shortest path search efficiently. Papadias et al. [26] study
how to process range queries and K NN queries over points-
of-interest (POIs), with respect to shortest path distances
on a road network. The evaluation of range queries and
KNN queries can be further accelerated by specialized
indices [19], [22], [28].

In our problem scenario, query users require accurate
results that are computed with respect to live traffic in-
formation. All the above works require the LBS to know
the weights (travel times) of all road segments. Since the
LBS lacks the infrastructure for monitoring road traffic,
the above works are inapplicable to our problem. Some
works [16], [21] attempt to model the travel times of
road segments as time-varying functions, which can be
extracted from historical traffic patterns. These functions
may capture the effects of periodic events (e.g., rush hours,
weekdays). Nevertheless, they still cannot reflect live traffic
information, which can be affected by sudden events, e.g.,
congestions, accidents and road maintenance.

Landmark [24], [25], [27] and distance oracle [29] can be
applied to estimate shortest path distance bounds between
two nodes in a road network, which can be used to prune
irrelevant objects and early detect results. The above works
are inapplicable to our problem because they consider
constant travel times on road segments (as opposed to
live traffic). Furthermore, in this paper, we propose novel
lower/upper travel time bounds derived from both the road
network and the information of previously obtained routes;
these bounds have not been studied before.

2.2 Querying on Online Route APIs

Online route APIs. An online route API [4], [7] has access
to current traffic information [6]. It takes a route request as
input and then returns a route along with travel times on

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

route segments. The example below illustrates the request
and response format of Google Directions API [7]. Bing
Maps API [4] uses a similar format.

HTTP request
http://maps.googleapis.com/maps/api/directions/xml?
origin=44.94033, -93.22294sdestination=44.94198,-93.23722
mode=driving

XML response
<step>
<start_location>
<lat>44.9403300</lat> <1lng>-93.2229400</1lng>
</start_location>
<end_location>
<lat>44.9395900</lat> <1lng>-93.2229500</1ng>
</end_location>
<duration> <value>8</value> </duration>
</step>

The request is an HTTP query string, whose parameters
contain the origin and destination locations in latitude-
longitude, as well as the travel mode. In this example,
the origin is at (44.94033, —93.22294), the destination is at
(44.94198, —93.23722), and the user is at ‘driving’ mode.

The response is an XML document that stores a sequence
of route segments from the origin to the destination. Each
segment, enclosed by <step> tags, contains its endpoints
and its travel time by driving (see the <duration> tags).
The segment in this example takes 8 seconds to travel. We
omit the remaining segments here for brevity. Besides, the
XML response contains the total travel time on this route
(the sum of travel times on all segments).

Query processing algorithms. Thomsen et al. [31] study
the caching of shortest paths obtained from online route
APIs. They exploit the optimal subpath property [15] on
cached paths to answer shortest path queries. As we dis-
cussed in the introduction and verified in experiments, this
property cannot significantly reduce the number of route
requests in our problem. Also, they have not studied the
processing of range/ K NN queries, the lower/upper bound
techniques developed in this paper, as well as the accuracy
of query results.

The framework SMashQ [32], [33] is the closest work
to our problem. It enables the LBS to process K NN queries
by using online route APIs. To reduce the number of route
requests (for processing queries), SMashQ exploits the
maximum driving speed Vs 4 x and the static road network
Gs (with only distance information) stored at the LBS.
Upon receiving a KNN query from user g, the LBS first
retrieves K objects with the smallest network distance from
q and issues route requests for them. Let v be the K"
smallest current travel time (obtained so far). The LBS
inserts into a candidate set C' the objects whose network
distance to ¢ is within v - V4 x. Next, SMashQ groups
the points in C' to road junctions, utilizes historical statistics
to order the road junctions, and then issues route requests
for junctions in above order. Compared with our work,
SMashQ does not utilize route log to derive exact travel
times nor lower/upper bounds to boost the query perfor-
mance of the LBS. As we will show in the experiments,
even if we extend SMashQ to use a route log and apply the
optimal subpath property [15] [31] to save route requests,

it still incurs much more route requests than our proposed
method.

Efficient algorithms [23], [30] have been developed
for KNN search on data objects with respect to generic
distance functions. It is expensive to compute the exact
distance from a query object ¢ to a data object p (e.g.,
using exact spatial object geometry). On the other hand, it is
cheap to compute the lower/upper bound distance from ¢ to
p (e.g., using bounding rectangle). Seidl et al. [30] propose
a KNN search algorithm that fetches the optimal number
of objects from the dataset P. Kriegel et al. [23] further
improve the algorithm by utilizing both lower and upper
bound distances. These generic solutions [23], [30] are
applicable to our problem; however, they do not exploit the
rich information of routes that are specific in our problem.
In our problem, the exact route from ¢ to p reveals not only
the current travel time to p, it may also provide the current
travel times to other objects p’ on the route, and may even
offer tightened lower/upper bounds of travel times to other
objects, as we will illustrate in Section 4.

3 PROBLEM STATEMENT

In this section, we first describe the system architecture and
then formulate the objectives of our problem.

System architecture and notations. In this paper, we
adopt the system architecture as depicted in Fig. 3. It
consists of the following entities:

¢ Online Route API. Examples are: Google / Bing route
APIs [7] [4]. Such API computes the shortest route
between two points on a road network, based on live
traffic [6]. It has the latest road network G with live
travel time information.

+ Mobile User. Using a mobile device (smartphone), the
user can acquire his current geo-location ¢ and then
issue queries to a location-based server. In this paper,
we consider range and KNN queries based on live
traffic.

+ Location-Based Service/Server (LBS). It provides
mobile users with query services on a dataset P, whose
POIs (e.g., restaurants, cafes) are specific to the LBS’s
application. The LBS may store a road network G with
edge weights as spatial distances, however G cannot
provide live travel times. In case P and G do not fit
in main memory, the LBS may store P as an R-tree
and store the G as a disk-based adjacency list [26].

We then define route, travel time, and queries formally.

DEFINITION 1 (Route and travel time). The route
Y (vs,vq) between vs and vg, obtained from route API
at timestamp t, is a sequence of pairs { (v;,7t(vs,v;)) :
v; € Yy }. Each pair stores a node v; and its travel time
7t (vs, v;) from the source vs. Let 7¢(v,v") be the (shortest)
travel time between two locations v and v' (obtained at
timestamp t).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

Mobile
users

Fig. 3. System architecture

(Location-Based Server '\

(LBS)

Latest
road
traffic

Online Route
API

2. External

1. Queries route requests

Points of
interest 2

Route log 3. Routes &

travel times

4. Results

i
4

[
Road
network G

Road
network G

DEFINITION 2 (Query results).

Let q be a query point and t,,., be the current time.
Given q and a travel time limit T, the result set of range
query is: R={peP:m, . (¢.p) <T}

Given q and a result size K, the result set of KNN query
iss R={peP:n,. (¢,p) <7, (¢,0), 0 €EP—R}
with size K.

As discussed in the introduction, queries in real appli-
cations may involve filters on (i) non-spatial features (e.g.,
quality, price) of P as well as (ii) live travel times from
the query point ¢ to POIs in P. These queries cannot be
solved by the LBS alone nor an online map (e.g., Google
Map) alone. LBS lacks access to live traffic information
(i.e. travel times), whereas the dataset P maintained by the
LBS is not available to an online map.

The flow of the system is as follows. A user first issues
a query to the LBS via his/her mobile client (Step 1). The
LBS then determines the necessary route requests for the
query and submits them to the route API (Step 2). Next, the
route API returns the corresponding routes back to the LBS
(Step 3). Having such information, the LBS can compute
the query results and report them back to the user (Step
4). As a remark, our system architecture is similar to [32],
except our LBS maintains a route log £ and some additional
attributes with edges on G (to be elaborated soon).

Objective and our approach. Our objective is to reduce
the response time of queries (i.e., requirement R2) while
offering accurate query results (i.e., requirement R1). It is
important to minimize the number of route requests issued
by the LBS because route requests incur considerable time
(see introduction).

As observed in Fig. 2, travel times change slightly
within a short duration (e.g., 10 minutes). Based on this
observation, we approximate the travel time (from v to v’)
at current time ¢,,,,, as the travel time obtained from a route
API at an earlier time ¢':

ASSUMPTION 1 (Temporal approximation). For any lo-
cations v,v', we have: Ty, (v,v") = T (v,0") if ' >
tnow — 4.

This approximation enables the LBS to save route re-
quests significantly, while still providing high accuracy.
Specifically, at the LBS, we employ a log £ of routes that
were requested from an online route API within the last §
minutes.

Like in [32] [33], we assume that the road network G
used in LBS is the same with that used in route service.
This is feasible when the LBS can obtain accurate maps
from the government [12], route service providers [9] or

their map suppliers [3]. However, when the LBS cannot
have access to the same GG as the route service, we will
discuss the applicability of our techniques in Section 4.5.

To achieve low response time, we will exploit the route
log and road network G to reduce the number of external
route requests (issued to online route API) for answering
queries (Section 4). We will also parallelize route requests
(Section 5) to further reduce the response time.

4 QUERY PROCESSING

This section presents our approach Route-Saver for an-
swering queries efficiently. First, we discuss the mainte-
nance of the time-tagged road network GG and the route
log £ (Section 4.1). Then, we exploit G and £ to design
effective bounds for travel times (Section 4.2). Next, we
present our algorithms for answering range and KNN
queries in Sections 4.3, 4.4 respectively. Finally, we discuss
the applicability of our techniques when no local maps are
available in Section 4.5.

In subsequent discussion, we drop the subscript ¢ in
7:(v,v") as we only use valid routes (and their travel times).

4.1 Maintenance of Structures at LBS

Conservative travel time bounds. Given an edge e(v,v’),
we define cw™(€) and cw™ (€) as conservative lower-bound
and upper-bound of travel time on e, respectively. Observe
that the lower-bound cw™(e) is limited by the Euclidean
distance of e and the maximum driving speed Vasax:

cw™ (e) = dist(e)/Varax (1)

On the other hand, the upper-bound is cwt(e) = oo
because the travel time on e can be arbitrarily long in case
of traffic congestion.

Structures. We employ a route log £ and a time-tagged
network G in the LBS.

The route log L stores all routes obtained from an online
route API within the last § time units, as described in
Section 3. Recall from Definition 1 that the timestamp of a
route (v, v’) is indicated by its subscript t. Assume that
we use 4 = 2 in Fig. 4a. At time t,,, = 4, L keeps the
routes obtained during time 2—4.

To support query operations efficiently, we summarize
the travel times of edges in £ into a time-tagged network
G. Specifically, each edge e in G is tagged with a tu-
ple (cw™(e),w(e))u(e)» Where cw™(e) is the conservative
lower-bound travel time on e (Eqn. 1), w(e) is the exact
travel time stored in £, and p(e) is the last-update times-
tamp for w(e). We call an edge e to be valid if its last-
update timestamp p(e) satisfies p(€) > tpow — 0.

As an example, consider the time-tagged network G at
current time t,,, = 4 in Fig. 4b. Assume that the expiry
time is 6 = 2. We draw valid edges by solid lines and
invalid edges by dotted lines. For the solid edge (v3,vg),
the tuple (25, 42)5 means that its conservative lower bound
cw ™ (v3,vg) s 25, its exact travel time w(vs, vg) is 42, and
its last-update timestamp p(vs,vg) is 3. The dotted edge

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 5
I Route ID [Route Content [tnow:4 [tnow=5 [t”0“’=6 l Point Loc. [Route ID [Route Content]
1 (v2,04) [(v2,0), (v3,15), (04, 50) DL O (o 5] (07, 0) (05 5) (05,15
¥2(vs,v6) |(vs,0), (va,60), (s, 135) | +/ Zi (ﬁiﬁ) s (43, pa)| (v, 0), (011, 18), (v9, 50),(v2, 60)
3 (3,) (vs, 0), (ve, 42) V v b4 (@1, 91) jlfe(q%,pz) (vs, 0), (v10,5), (va, éS). (vs, 25)
Va(v2,06) [(02,0), (05,40), (06,500 | /| v/ | ps | (s, vs) | [bridpbrifva. B (1.5 (12, 20 (o, TO)
45> P5 3, Y)s 3 9)s) 3
Y5 (v1,v7) [(v1,0), (vs,20), (v7,30) v v - Ef‘; ng (v9, 35), (13, 52), (v1, 55)
wﬁ (UQ’ U3) (v2,0), (v3,15) § § \/ (a) dataset P (b) route log £
(a) Route Log L (at different times) 2% v, (pe)
v, . Ay, Vis Q=== Qo v (Q'y) (162 Vs ()
RN / - ye
62), I‘. \\(\10,?)7 LA (10,17) * ’ ,(18,2)
vy ;Vs D 1): W
7z .
' Vs © *: '/’; v, (Ps) V(@)
«_ (40,60), | e 4(25)
/ (322) “‘ Ve (d's)
L (2535); Ty) »(6.10)
. V17o(p6)

(b) G at tpow =4

(©) G at trow =5

Fig. 4. Example route log £ and time-tagged road
network G, with expiry time § = 2; solid edges have
valid travel times

(v2,v3) is invalid since its timestamp p(vg,v3) = 1 is less
than ¢, —0 =4 —2=2.

Maintenance. We then discuss how to maintain the route
log £ and the time-tagged road network G.

To support efficient lookup on £, we employ inverted
lists of routes for each node [31]. Specifically, each inverted
list of node v stores a list of route IDs that contain v. The
insertion/deletion of a route can be implemented to take
O(|¢|) time, where |¢| is the number of vertices on a route.

At time t,,,,,, We remove from L the routes 1); having
t < tpow — 0 (ie., expired). E.g., at t,o, = 5, we
remove 5 (vs, vg) from L (see Fig. 4a). Also, we update
the inverted lists for vy, vs,vs € 2(vs,vg). We need not
update G now because it stores the last-update timestamps
of edges.

When we retrieve a route 1), from online route API,
e.g., ¥s(vi,v7) : v1 — vg — v7, we insert it into L (see
Fig. 4a), and update the inverted lists for nodes v1, v7, vs.
For the edges on 5(v1,vr), e.g., (vi,vs), (vs,vy), we
update their w(e) and p(e) in G (see Fig. 4c).

4.2 Exact Travel Times and Their Bounds

In this section, we exploit the time-tagged road network
G and the route log £ to derive lower and upper bounds
of travel times for data points. As we will elaborate soon,
these bounds enable us to save route requests during query
processing.

Before presenting these techniques, we first show an
example of data stored at LBS (see Fig. 5). Besides G
and £, the LBS also stores a dataset P (points p; with
locations). Assume the current time t,,, = 9 and the
expiry time § = 5. The route log £ contains only valid
routes (not yet expired). For the time-tagged network G (see
Fig. 5c¢), solid edges are valid while dotted edges are not.
Each edge e is tagged with cw™(e) and w(e) (underlined),
and the icons of routes via e (if any). For clarity, we omit
u(e) (i.e., the last-update timestamp) of edges.

vs(a'y) O
o 2(6,10) V,(p;)

(¢) Road network G with travel time information

Fig. 5. Data stored at the LBS, at ¢,,,,, = 9 (6 = 5);
each edge is tagged with (cw™(e), w(e))

TABLE 1
Example travel time information (for user q), th00 = 9
I Point [p.T, [p.‘r'Gf [p.TG [1).7':;r [p.T; l
1 (V1) 26 40 40 40 20
D2 (Us) 30 45 NIL 50 40
p3 (vs) 41 41 NIL NIL NIL
pa (v2) 5 10 10 10 NIL
ps (v1) 10 10 NIL 20 NIL
p6 (v17) 37 42 NIL NIL NIL
D7 (V16) 10 10 NIL 71 41

We first introduce the concept of travel time bounds:

DEFINITION 3 (Travel time bounds). Given a query point
q and a data point p, we denote p.7~ and p.7+ as a lower
bound and an upper bound of the exact travel time 7(q, p).
Specifically, we require that p.t— < 7(q,p) < p.7T. For
convenience, we may denote 7(q,p) by p.T.

As an example, consider a data point p and a range query
with travel time limit 7". The upper-bound time p.7+ helps
detect true results early. If p satisfies p.7" < T, then p must
be a result. The lower-bound time p.7~ enables pruning
unpromising points. If p satisfies p.7— > T, then p cannot
be a result. In either case, we save a route request for p.
Observe that a tight upper bound should be as small as
possible because it is more likely to satisfy p.7+ < T.
Similarly, a tighter lower bound should be as large as
possible to satisfy p.7= > T'. Techniques discussed below
aim to derive tight bounding travel times for data points.

Conservative lower-bound. Let spt.,,— (g, p) be the short-
est travel time from ¢ to p defined on the edge weight
cw™ (e) (see Eqn.1). The conservative lower-bound travel
time from ¢ to p is:
p-T, = 8ptey—(q,p) (2)
We take the point p3 in Fig. 5c as an example. With
respect to the weight cw™ (e), the shortest path from ¢ to ps
is ¢ = v14 — p3, with length cw™ (g, v14)+cw™ (v14,p3) =

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

41. Table 1 shows p.7, for each data point p.

Bounding travel times based on w™ and w~. Recall
that the exact travel time 7(q, p) is defined as the shortest
travel time based on live traffic information. Thus, we have:
7(q,p) = sptw+(q,p), where w*(e) denotes the current
travel time for an edge e. We use the notations 7(q, p) and
spt,+ (g, p) interchangeably in the following discussion.
Our idea is to define upper-bound weight w™(e) and
lower-bound weight w™(e) for each edge e, by using the
information in the time-tagged road network G.

o) = w(e) if p(e) > thow — 0 3)
“ RS otherwise

_ Jw(e) if p(e) > tnow — 0
wile) = {cw_(e) otherwise @

Note that w*(e) is unknown to the LBS in general. If
w(€) > tnow — 0, then the last-update travel time w(e)
(in above equations) serves as an approximation of w*(e),
due to Assumption 1.

With these edge weights, we establish the upper and
lower bounds for travel times from g to p (Lemma 1).

LEMMA 1 (bounding travel times on w™,w™).

Let spt,,+(q,p) be the shortest travel time from q to p with
respect to the edge weight wt(e), on a time-tagged road
network G.

Similarly, let spt,,—(q,p) be the shortest travel time with
respect to the edge weight w™ (e). With Assumption 1, we

have: spt,,—(q,p) < sptu-(q,p) < spty,+(q,p).

Proof: We first aim to prove: spt,«(q,p) <
spt,+(q,p). Let SP* and SPT be the shortest path
between ¢ and p defined on the edge weights w*(e)
and wt(e), respectively. According to Eqn. 3, we have
w(e) < w'(e). By Assumption 1, we approximate w*(e)
by w(e). Thus, we have w*(e) < wT(e). Applying it
on all edges on SPT, we obtain:) opsw*(e) <
> ecsp+ w(e) —(A). By the definition of shortest path
on the edge weight w*(e), the travel time of SP* is no
larger than that of SP*. Thus, we have: 3, qp. w*(e) <
> ecgp+ w(e) —(¥). Combining inequalities (A) and (V),
we obtain: Y gp. w*(e) < 3. ogp+ wT(e). Therefore,
sptu=(q,p) < sptu+(q,p)-

The proof for spt,,— (¢, p) < sptu+(q,p) is similar to the
above proof, except that we apply Eqn. 4 instead. O

In subsequent discussion, we represent the bounds
spt+ (g, p) and spt,,- (g, p) by p.7 and p.7; respectively.
Observe that we can compute p.7., (or p.75) for all points
efficiently by running the Dijkstra algorithm using edge
weight w(e) (or w™(e)).

Table 1 shows the upper-bound p.Tg and lower-bound
p.7 for all data points. We take the candidate p» in Fig. 5c
as an example. After running Dijkstra on G using w™ (e),
the shortest path from ¢ to po is ¢ — v11 — v15 — P2 With
the length as w(q,v11) + cw™ (v11,v15) + cw™ (v15,p2) =
45. After running Dijkstra on G using w™ (e), the shortest
path from ¢ to py as ¢ — vi2 — vig —> vq4 — pg With

length as w(q, v12) + w(vi2, v10) + w(v10, v4) +w(v4, p2) =
50.

Condition for exact travel time. When a point p satisfies
certain condition (see Lemma 2), its lower-bound travel
time (p.7;) serves as its exact travel time from ¢ (denoted
by p.7¢). In this case, we save a route request for p
regardless of the value of p.7¢.

LEMMA 2 (Road network exact travel time).

Let SP~ (with travel time spt,,— (q,p)) be the shortest path
Sfrom q to p with respect to the edge weight w™(e), on a
time-tagged road network G. If each edge on SP~ satisfies
1(€) > thow — 0, then we have: spt,.(q,p) = spt,-(q,p).

Proof: If an edge e satisfies p(e) > tpow — 0 (i€,
valid edge), then we have: w™(e) = wt(e) = w(e) (=
w*(e)). Applying this to each edge on SP~, we obtain:
spte,- (Q?p) = ZeESP* w_(e) = ZeES’P* w*(e)’

We then claim that SP~ is the shortest path with respect
to the edge weight w*. For the sake of contradiction, assume
there exists a path SP’ shorter than SP~ on edge weight
w*. Then, SP’ has a shorter travel time than spt,- (g, p),
contradicting the fact that spt,,—(¢q,p) is a lower-bound.
Thus, this lemma is proved. O

Table 1 lists the exact travel time p.7¢ of all data points.
Take the candidate p; in Fig. 5¢ as an example. With respect
to edge weight w™(e), the shortest path from ¢ to p; is
q — via2 — V19 — p1. Since each edge on this path has
valid exact travel time, thus we obtain: p;.7¢ = w(g, v12)+
w(v12, v10) + w(v1g,v4) = 40.

Tightening the lower-bound using route log. As we will
illustrate soon, the lower-bound p.7 (derived from edge
weight w™ (e)) may not be tight for some data points.
Next, we utilize a shared node : among routes in £
to derive another lower-bound travel time for candidates
(see Lemma 3). We denote this lower-bound travel time as

prp = I7(g,2) = 7(p,2)l.

LEMMA 3 (Route log lower-bound travel time). Let 1;,;
be two different routes in the route log L such that they
share a node 1. If q,p fall on 1);,; respectively, then we

have: |1(q,1) — 7(p,1)| < 7(q,p) (i.e. spty-(gq,p)).

Proof: For the sake of contradiction, assume that:
7(¢,p) < |7(q,v) — 7(p,2)|. For case I (7(g,2) > 7(p,2)),
we obtain: 7(q,p) +7(p, 1) < 7(g,2). This contradicts with
that 7(g,2) is the shortest between ¢ and . For case II (
7(q,1) < 7(p,2)), we obtain: 7(p,q) + 7(q,2) < 7(p,2).
This contradicts with that 7(p,) is the shortest between p
and 2. Thus, the lemma is proved. OJ

Since 1);, 1; are routes in £, so the values 7(q, 1), 7(p,?)
can be directly obtained from L according to optimal
subpath property [15]. Through using the inverted node
index [31] of L, we can efficiently retrieve the subset of
routes which contains ¢ (i.e. L,) and the corresponding
subset for each remaining candidate point p (i.e. L,). Then,
we can identify the shared node between routes in L, and
L,, and use it to calculate p.7; .

Continuing with the example, we show how to derive

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

pr.7; of point p7 (in Fig. 5c). First, we find the subset
of routes that contain g, ie., Ly = {t5,%s}. Then, we
find the subset of routes that contain pr, i.e., L, = {17}
Next, we identify a shared node between L, and L,,., which
is the node vi2 on the routes g € L, and ¢7 € L,,.
With these routes, we obtain these exact travel times:
7(q,v12) = 15 and 7(pr,v12) = 56. Thus, we derive
pr.1; = |7(p7,v12) —7(g, v12)| = |56 — 15| = 41. Observe
that this bound p;.7; = 41 is tighter than the bound
p7.’7’5 = 10.

Nevertheless, the bound p.7;” can be looser or unavail-
able for some points, e.g., p1, p3 in Table 1. So, we combine
bounds 7 and p.7; into a tighter lower bound for p:

®)

p.7~ = max{p.75,p.7; }

4.3 Range Query Algorithm

In this section, we present our Route-Saver algorithm for
processing a range query (g, 7). It applies the travel time
bounds discussed above to reduce the number of route
requests. To guarantee the accuracy of returned results, it
removes all expired routes ; in L. The algorithm first
conducts a distance range search (¢, T - V4x) for P on
G [26] to obtain a set C' of candidate points. Algorithm 1
consists of two phases to process the candidate points in C
and store the query results in the set R.

The first phase (Lines 4—17) aims to shrink the candidate
set C, so as to reduce the number of route requests to
be issued in the second phase. First, we execute Dijkstra
on G two times, using edge weight w™(e) and w™(e)
respectively. Then, we obtain the bounds p.Tér , DT and
p.7¢ for every candidate p € C. If p.7}, < T or p.7g < T,
then p must be a true result so we place it into R. If
p.7 > T, then p cannot become a result and it gets
removed from C. Next, for each candidate p remaining
in C, we compute its exact travel time p.7, using optimal
subpath property in £ [15] [31], and use p.7 to detect true
result. Moreover, we derive the lower bound travel time
p.7; using route log £ for pruning.

In the second phase, we issue route requests for the
remaining candidates in C, based on a certain ordering.
We will elaborate the effect of candidate ordering at the end
of this section. For the moment, suppose that we examine
candidates in ascending order, i.e., pick a candidate p € C'
with the minimum p.7~ (Line 19). Next, we issue a route
request for p and then insert the returned route v, into
the route log L. For each edge on the returned route 1,
we update its w(e) and p(e) accordingly.

This route provides not only the exact travel time for
p, but also potential information for updating the bounds
for other candidate p’ € C. We remove p’ from C if (i)
it cannot become result, i.e., p’.7~ > T, or (ii) its exact
travel time p’.7, is known (i.e., p’ lies on route ;). In
case p'.7, < T, we insert p’ into R. Whenever C' becomes
empty, the loop terminates and the algorithm reports R as
the result set.

now?

Example. Consider the range query at ¢ with 7' = 40 in

Algorithm 1 Route-Saver Algorithm for Range Queries

function Route-Saver-RANGE (Query (g, T"), Dataset P)
> system parameters: time-tagged graph G, route log L, expiry time &

1: Remove from the log £ any route 1¢ with t < 00 — &
2: Create a result set R <+ ()
3: Cand. set C' <+ range search (¢, T - Vaprax) for P on G > By [26]
4: Run Dijkstra for ¢ on G using w?(e) and w”(e) to retrieve

p.Tg ,D-To PTG > Phase 1:detect results,prune objects
5: for each p € C do > use time-tagged graph G
6: if p.7q is known or p.75 > T or p.*r:;r < T then
7 Remove p from C
8 if p.r¢ < T or p.7d; < T then
9 Insert p into R
10: for each p € C do
11: if 3 route ¢» € L such that 1) contains p and ¢ then

> use route log £

12: Compute p.7z > optimal subpath property [15] [31]
13: if p.7, is known and p.7, < T then

14: Insert p into R

15: Compute p.7~ as max{p.75,p.7T; }

16: if p.7= > T or p.7¢ is known then

17: Remove p from C

18: while C is not empty do > Phase 2: Issue route requests

19: Pick an object p € C' with minimum p.7~ > ordering
20: Route ¢, ,,, < RouteRequest(g, p) > call external API
21: Insert 9¢,,,,, into £; Update w(e), u(e) in G for e € 9y,
22: Update p.7. for all p on vy,,,,,

ow

> optimal subpath property [15] [31]

23: Run incremental Dijkstra to update all p.7~ > By [14]
24: for each p’ € C do
25: if p’.7= > T or p’ .7, is known then
26: Remove p’ from C
27: if p’.7. < T then
28: Insert p’ into R
29: Return R
TABLE 2
Range/KNN query example for Route-Saver, T' = 40
’ ‘ P-Tg p.TG ‘ p.Tg ‘ p.TC p-Tr p.T by Is
route API result?
p1 40 40 40 / / / v/
P2 45 / 50 / / / X
P3 41 / / / / / X
Pa 10 10 10 / / / v/
Ps5 10 / 20 / / / v/
D6 42 / / / / / X
P 10 / 71 / 41 / X

Fig. 5c. We illustrate the running steps of Route-Saver in
Table 2. Entries without values are labeled as /.
Suppose that Vyjax = 110 km/h. First, we do a
range search at ¢ with distance T - V74 x, and obtain the
candidate set C' = p1, p2, p4, D5, D6, P7- Note that further
away points (e.g. p3) are not in C. Then, we derive the
p.Tér ,p.7; and p.7¢ using the time-tagged road network G,
as shown in the first three columns of Table 2. Candidates
p1, P4, Ps are inserted into the result set R, since their exact
or upper-bound travel times are smaller than T' = 40.
Candidates ps,pg are pruned with lower bounds larger
than 7" = 40. Then, we compute the lower bound for the
remaining candidate using L: p7.7; = 41, and p7 is pruned.
We skip the second phase as the candidate set becomes
empty. Thus, the algorithm returns R = {p1,p4, ps} to the
user. In this example, Route-Saver issues O route request.

Candidate ordering and its analysis. This section studies
the effect of candidate orderings on the cost of Algorithm 1,
i.e., the number of route requests issued. Various orderings
can be used for processing the candidates (in phase 2). We
consider two orderings for picking the next candidate p € C
(at Line 19):

Ascending order (ASC): Pick a candidate with the mini-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

mum p.7~. This order is the same as in Algorithm 1.

Descending order (DESC): Pick a candidate with the
maximum p.7 . The rationale is that longer routes are more
likely to cover other candidates and thus save route requests
for them.

We proceed to analyze the number of route requests
incurred by ASC and DESC.

For simplicity, we assume that the underlying graph
is a unit-weight grid network (in 2D space). Let ¢ be
at the origin (0,0) and T be the travel time limit. Let
« be the data density, i.e., the probability that a node
contains a point. Let the layer ¢ be the set of nodes whose
travel times from ¢ equal to ¢. Observe that, in layer i,
there are 47 nodes and 4as candidates. Summing up this
from layer 1 to layer 7', the number of candidates is:
Cand(a,T) =3 ";cp1 y dai = 2277

ASC issues route requests for candidates in ascending
order of their layers. Thus, it cannot save any route request
for candidates. The cost of ASC is:

Cost asc(a, T) = Cand(a, T) ~ 2aT?

On the other hand, DESC issues route requests for
candidates in descending order of their layers. Consider a
node v in the layer 7. Note that the number of candidates
from layer i+1 to layer T is: 2aT?—2ai? = 2a(T?—4?). If
the route from ¢ to any of these candidates passes v, then we
can save a route request for v. Since there are 4 -7 possible
locations for v, the probability of saving 2 route request

for v is: max{M 1} = max{ 1} Thus,
the cost of DESC is: Costppsc(a,T) = Z epn) Ao
(1- max{i 1}) To simplify the above equatlon we
find the maximum value for ¢ such that; “Z—%) > 1. By
m 1

solving this quadratlc inequality, we get: i <
When T' > =, the cost of DESC is upper-bounded by

Costppsc(a,T) < 4T

In summary, DESC incurs a much lower cost than ASC.

4.4 K NN Query Algorithm

In this section, we extend our Route-Saver algorithm for
processing KKNN queries. We will also examine suitable
orderings for processing candidates.

Unlike range queries, K NN queries do not have a (fixed)
travel time limit 7" for obtaining a small candidate set.
Instead, we first compute a (temporary) result set R so
that it contains K candidates with the smallest p.7'é|r or
p.7¢- Recall that we can obtain these bounds/values for all
candidates efficiently by two Dijkstra traversal on G. Let
v be the largest p.T&L or p.7¢ in R. Having this value 7,
we can prune each candidate p that satisfies p.7~ > 7, as
it cannot become the result.

Algorithm 2 is the pseudo-code of our KNN algorithm.
First, we initialize the candidate set C' with the dataset
P, insert K dummy pairs (with oo travel time) into the
result set R, and set v to the largest travel time in R.
The algorithm consists of three phases. In the first phase,

it obtains v by using the idea discussed above. In the
second phase, it prunes candidates whose lower bounds
or exact times are larger than . In the third phase, it
examines the candidates according to a certain order and
issues route requests for them. The algorithm terminates
when the candidate set contains exactly K objects, and then
reports them as query results.

Algorithm 2 Route-Saver Algorithm for KNN Queries

function Route-Saver-KNN (Query (g, K), Dataset P)
> system parameters: time-tagged graph G, route log £, expiry time &
1: Remove from the log £ any route ¢ with t < tnow — 0
2: Create a candidate set C < P
3: Create a result set R with K pairs (NULL, co)
4
5

. < the largest travel time in R

: Run Dijkstra for ¢ on G using w'(e) and w™(e) to retrieve
PTG P-Tg PTG > Phase 1: obtain the threshold ~

6: for each p € C do

7 Update R, v by p with p.‘r:;r or p.7G

8: for each p € C do

9 if p.7g¢ >y orp.7g > ~ then

10 Remove p from C

11 if 3 route ¢ € L such that ¢ contains p and g then

12 Compute p.7¢ > optimal subpath property [15] [31]

13 Update R, « by p with p.72

14: Compute p.7~ as max{p.75,p.7T; }

15

16

17

18

19

20

> Phase 2: prune objects

if p.77 > ~ or (p.7¢ is known and p.72 > <) then
Remove p from C
: while |C| > K do
Pick an object p € C' with minimum p.7~ > ordering
Route ¥,,,,, < RouteRequest(q, p) > call external API
: Insert v, ,,, into £; Update w(e), u(e) in G for e € 1y, ,
21: Update p.7 for all p on vy, ., > optimal subpath properly [15]

> Phase 3: Issue route requests

22: Run incremental Dijkstra to update all p.7~ > By [14]
23: for each p’ € C do

24: ifp’.77 > yorp .7z > 7 then

25: Remove p’ from C

26: if p’.7. < ~ then

27: Update R by p’ with p’.7¢

28: Return R

Example. Consider the KNN query with K = 3 in Fig. 5c.
We illustrate the running steps of Route-Saver in Table 2
Entries without values are marked as ’/’.

In the first phase, we derive the upper bounds
p.rg;r ,D-Tq,p-T;; using the time-tagged road graph G,
which are shown in the first three columns in Table 2. Since
p1-TG, Pa-Te and p5.TgI are the smallest three travel times,
we insert them into R and update v = 40. In the second
phase,first we prune candidates ps, ps, ps since their p.7,
are larger than . Then, we calculate the lower-bound travel
time for p7 using L: p7.7; = 41 >+, so py is pruned. We
skip the third phase as the candidate set contains exactly
K = 3 objects, the same as the result set R. Thus, the
algorithm returns R = {p1,p4,ps} as the query result.
Route-Saver issues 0 route request in this example. On the
other hand, SMashQ incurs 7 route requests when solving
this query (see the method description in Sec. 2.2).

Candidate ordering. For the orderings to rank candidates
in C' (Line 18) in Algorithm 2, in addition to the orderings
discussed in Section 4.3, we propose a new ordering:

Maximum difference (DIFF): Pick a candidate with the
maximum p.7T —p.7~. This order tends to tighten the lower
and upper bounds of candidates rapidly. A tight p.7+ helps
refine the value y whereas a tight p.7— helps prune the
candidate itself.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

4.5 Applicability of Techniques without Map

In this section, we discuss how to adapt the Route-Saver
in case the LBS cannot obtain the same map G used in the
route service. We observe that, if the LBS uses the map G’
(e.g., a free map [10]) which are not the same with that
used in route services, bounding travel times p.7 can be
over-estimated. For example, if the real shortest path from
q to p is missing in local map G’, then it is possible that
Route-Saver calculates a higher p.7, for p and mistakenly
prunes it from results. Therefore, the LBS is not allowed
to use inaccurate maps.

In case that the LBS cannot access to the map G used
in route services, the applicability of our techniques are as
follows:

e p.Tg, p.Tg and p.TéC are not applicable because they
are calculated based on (G, which is not available to
the LBS.

e p.7. is applicable, since it is solely calculated using
route logs which are obtained from route services.

e p.7; is applicable, as it is solely based on route logs.

. p.TG+L is applicable, where G, is a road network
formed by routes in the log. Observe that G must
be a subgraph of G.

5 PARALLELIZED ROUTE REQUESTS

Our objective (see Section 3) is to minimize the response
time of queries. Section 4 optimizes the response time
through reducing the number of route requests. Can we
further reduce the response time? In this section, we exam-
ine how to parallelize route requests in order to optimize
user response time further. We propose two parallelization
techniques that achieve different tradeoffs on the number
of route requests and user response time.

The execution of algorithms in Section 4 follows a
sequential schedule like Fig. 6a. The user response time
consists of: (i) the time spent on route requests (in gray),
and (ii) local computation at the LBS (in white).

Consider the sequential schedule in Fig. 6a. An exper-
iment (see Fig. 11) reveals that the user response time is
dominated by the time spent on route requests. Let a slot
be the waiting period to obtain a route from the route API?.
In Fig. 6a, the sequential schedule takes 5 slots for 5 route
requests. Intuitively, the LBS may reduce the number of
slots by issuing multiple route requests to a route API in
parallel. Fig. 6b illustrates a parallel schedule with 2 slots;
each slot contains 3 route requests issued in parallel.

Although parallelization helps reduce the response time,
it may prevent sharing among routes and cause extra route
requests (e.g., request for route py), as we will explain
later. Existing parallel scheduling techniques [18] have not
exploited this unique feature in our problem. We also want
to avoid extra route requests because a route API may
impose a daily route request limit [8] or charge the LBS
based on route requests [5].

2. Different route requests incur similar time (see Fig. 8).

9
slot 1 slot 2 slot 3 slot 4 slot 5
[[[ps| [pe[[pr] [ps] |
(a) sequential schedule
slot 1 slot 2 slot 1 slot 2 slot 3
thread 1: p1 D6 thread 1: p1
thread 2: D2 7 thread 2: p3
thread 3: 3 D5 thread 3: D6 pr [| ps []
(b) greedy parallelization (c) direction-based parallelization
' v, (p,) Vv1(py)
S - o0
ID |lp1 p2 |p3 |pa “\gfpﬂo\‘ LT
p.Tt~ |50 {40 [20 |5 Ve (Pe) ™~ - Vo (@)

vs(p9) &

ID |lps |ps |p7 V(p)b
4\Ma, \-\

p.t [|8 |15 |12

O Va(py)

(d) lower-bound travel times (e) actual routes

Fig. 6. Effect of parallelization on schedules

We proceed to present two parallelization techniques.
They achieve different tradeoffs on the number of route
requests and the number of slots. Our discussion focuses
on range queries only. Our techniques can be extended to
KNN queries as well.

Greedy parallelization. Let m be the number of threads
for parallel execution (per query). Our greedy paralleliza-
tion approach dispatches route request to a thread as soon as
it becomes available. Specifically, we modify Algorithm 1
as follows. Instead of picking one object p from the
candidate set C' (at Lines 19-20), we pick m candidate
objects and assign their route requests to m threads in
parallel. Observe that this approach minimizes the number
of time slots in the schedule (Fig. 6b).

We proceed to compare the sequential schedule with the
greedy schedule on the example. Consider a range query
at ¢ with 7' = 60. Suppose that the candidate set is C =
{p1,p2, 3, P4, Ps, D6, 7} Fig. 6d shows the lower-bound
travel time of each object and Fig. 6e depicts the locations
of all objects. Assume that the routes (dotted lines) are
missing from the the route log £ at the LBS. Here, we order
the candidates using DESC ordering (see Section 4.3), and
set the number of threads m = 3.

Fig. 6a shows a sequential schedule of route requests
(issued by the original Algorithm 1). By the DESC or-
dering, the candidates will be examined in the order:
P1, P2, D3, Pe, D7, Ps5, P4. First, a route request is issued for
p1. Since the route to p; covers ps, We save a route request
for po. Similarly, after issuing a route request for ps, we
save a route request for py. After that, route requests are
issued for the remaining candidates pg, p7, ps. Note that the
sequential schedule (Fig. 6a) takes 5 slots.

Fig. 6b illustrates a parallel schedule of route requests by
using the greedy approach. First, it selects m (= 3) objects
in the DESC order: p1,ps2,ps. Thus, 3 route requests are
issued for them at the same time. Since p4 lies on the route
from q to ps, the route request for p, is saved. After that, 3
route requests are issued for remaining candidates ps, pg, pr
at the same time. In summary, the greedy approach takes
only 2 slots, but incurs 6 route requests.

Direction-based parallelization. Observe that the extra
route request(s) in the greedy approach is caused by objects

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

at similar directions from ¢ (e.g., p1,p2 in Fig. 6e). If we
issue route requests to candidates in different directions
in parallel, then we may avoid extra route requests. This
is the intuition behind our direction-based parallelization
approach.

In this approach, the LBS divides the candidate set C'
into m groups (C1,C5,--- ,C},), based on the direction
angle £(q,p) of each candidate p from user g. A candidate
p is inserted into the group C; if % < L(gq,p) <
%. This step can be implemented just before Line 18
of Algorithm 1. Then, we modify Lines 19-20 as follows:
pick a candidate from each group C; and then assign their
route requests to m threads in parallel.

For example, in Fig. 6e, the candidates are divided into m
(= 3) groups based on their direction angles from ¢: C; =
{p1,p2}, C2 = {p3,pa}, and C3 = {ps, ps,pr}. Again,
the candidates within each C; are examined by the DESC
order. Fig. 6c illustrates the schedule of the direction-based
approach. First, this approach selects the candidates p; €
C1, ps € (s, and pg € Cs, and issues route requests for
them in parallel. Since the routes to p; and p3 cover ps
and py respectively, we saved two requests. After that, C;
and C5 become empty. In each subsequent slot, only one
route request (for a candidate in C'3) is issued to the route
APIs. In total, the direction-based approach incurs only 5
route requests, but it takes 3 slots.

Comparison. In summary, the greedy approach offers
the best response time but with considerable extra route
requests; the direction-based approach reduces the number
of extra route requests and yet provides a competitive
response time.

6 EXPERIMENTAL EVALUATION

In this section, we compare the accuracy and the per-
formance of our Route-Saver (abbreviated as RS) with
an existing method SMashQ (abbreviated as SMQ) [33].
Although SMQ handles only KNN queries, we also adapt
it to process range queries. Note that SMQ does not utilize
any route log to save route requests. We also consider an
extension of SMQ, called SMQ*, which keeps the routes
within expiry time into a route log. SMQ* applies only
the optimal subpath property [15] [31] and retrieves exact
travel times from the log; however, it does not apply the
upper/lower bounding techniques in this paper. By default,
RS uses the DESC and DIFF orderings for range and KNN
queries respectively.

Section 6.1 describes our experimental setting. We first
examine the accuracy of the methods on real traffic data in
Section 6.2. Then, we study the performance and scalability
of the methods in Section 6.3. Finally, in Section 6.4,
we conduct small-scale experiments on Google Directions
API [7], as it imposes a daily request limit 2,500 per
evaluation user [8]. Due to this limit, we use a simulated
route API in Sections 6.2, 6.3.

10
TABLE 3
Experiment Parameters
[Parameters [Default [Range l
Road map [only for simulation] Erie Chowan, Erie, Florida
Dataset size |P| 10 (K) 1, 5, 10, 15, 20 (K)
Distribution of query g uniform uniform, gaussian
For K'NN: Result size K 10 1, 5,10, 15, 20
For range: Time limit T" (seconds) 60 10, 30, 60, 90, 120
Expiry time 0 (minutes) 10 0,2,5,10,20,30
Query rate A\ (queries/minute) 60 30, 60, 120, 300
Number of threads 1 [sequential] 1,2,4,6,8, 10

6.1 Experimental Setting

Road networks. For accuracy experiments on real traffic
data, we will discuss the road network and traffic data in
Section 6.2.

For the performance and scalability study (Section 6.3),
we obtain three road maps in USA from [1]: Chowan
County, in North Carolina (14K nodes, 14K edges), Erie
County, in Pennsylvania (106K nodes, 115K edges) and
Florida State (1,049K nodes, 1,331K edges). Following
[32], the maximum speed limit V ;4 x is set to 110 km/h.
According to [2], the travel speed of each road segment is
set to a fraction of V;4x, based on its road category.

For the experiments on Google Directions API [7], we
consider the Manhattan region (in New York), whose area
is 87.5km?.

Performance measure and parameters. For each method,
we measure its result accuracy (Sec. 6.2), its number of
route requests and user response time (Sec. 6.3). Table 3
summarizes the default values and ranges of parameters
used in our experiments. The values for dataset size |P|,
K, T follow [32]. The default expiry time § is 10 minutes,
according to Fig. 2. To simulate the arrival of queries,
we set the default query rate A to 60 queries / min and
uniformly generate query points on the road network. This
query rate (60 queries / min) is justified by visit statistics?
from restaurant and travel guide websites [11].

All methods were implemented in C++ and ran on an
Ubuntu 11.10 machine with a 3.4GHz Intel Core 17-3770
processor and 16GB RAM. In experiments, the route log
contains at most 30,000 routes and occupies at most 30 MB.
The largest road network (Florida) and dataset occupies 87
MB and 1 MB respectively. Thus, the largest map, route
log, and dataset can fit in the main memory.

6.2 Accuracy on Real Traffic Data

In this section, we test the result accuracy of the methods
on real traffic data, for various expiry time ¢ (2, 5, 10, 20
and 30 minutes). Other parameters (|P|, K,T) are set to
default values in Table 3.

Real traffic data. We downloaded historical real traffic on
freeways in Los Angeles from PeMS*. The corresponding

3. E.g., Hotels has 2.38 million monthly visits, corresponding to the query rate A =
2,380,000/ (30 - 24 - 60) = 55.1 queries / min. Similarly, OpenTable and UrbanSpoon
have 2.9 and 4 million monthly visits respectively, corresponding to A = 67.1 and
A = 92.4. See the statistics at: http://www.quantcast.com/hotels.com
http://www.quantcast.com/opentable.com http://www.quantcast.com/urbanspoon.com

4. California Dept. of Transportation http://pems.dot.ca.gov/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

) range KNN
(Min) 0. 0.
2 99.97 99.95 99.99 99.99
5 99.89 99.75 99.95 99.94
10 99.36 99.28 69.04 99.68 99.65 52.95
20 99.02 98.60 99.12 99.10
30 98.63 98.11 98.95 98.86
(a) average accuracy (%) on a day
100 f= ————— 100 =
~ V " Y
RS2 — =2 —
=% REEZ | RRE2 —
& RS=10 — S0 RS=10 —
g% RED — .13 RRER —
g 1 NoAPI €20 NOAPI
g0 ; 8
< <g0
60
50F
50 -
0:00 08:00 16:00 23:.00 0:00 08:00 16:00 23:00
Time of aDay Time of aDay

(b) accuracy [range] (c) accuracy [KNN]
Fig. 7. Result accuracy on real traffic data [in color]

road network contains 17,563 nodes and 17,694 edges. We
use the traffic data on 31 Dec. 2012 for 24 hours; the travel
times on edges are updated every 30 seconds. We also
conduct this experiment with traffic data on other dates,
and obtain similar results.

Accuracy measure. Besides the methods discussed before,
we also consider a baseline method NOAPI, which uses
only local distance information to answer queries, without
issuing route requests.

We measure the accuracy of a method by the F'1 score:

F1 = 2-precision - recall/(precision + recall)
pTBCiSiCm == | Rmethod N R* | / | Rmethod |
recall | Rimethoa NR* |/ | R |

where R* is the exact result set derived from the current
traffic and R,,ethoq 1S the result set obtained by a method.

The accuracy of SMQ is always 100% because it does
not use route log. We only measure the accuracy of RS,
SMQ*, NoAPI in this experiment. Fig. 7a shows the
average accuracy of the methods on a day. NOAPI has low
accuracy as it does not use live traffic information. Our
proposed RS and SMQ* can find results with very high
accuracy. When the expiry time § increases, the route log
contains less accurate travel time information and thus the
accuracy decreases. The standard deviation of the accuracy
is within 1.5% for SMQ* and RS, whereas NOAPI has a
higher standard deviation. Fig. 7b, 7c show the accuracy of
RS and NoOAPI along the timeline. As a remark, the traffic
changes most rapidly during rush hours in the morning and
the evening. During those intervals, the accuracy of the
methods on range queries drops because their result sizes
are sensitive to the traffic. The accuracy on K'NN queries
is insensitive to the traffic due to the fixed result size.

As we will show in Section 6.3, RS issues much fewer
route requests than SMQ*. RS still achieves high accuracy
because our proposed bounding techniques offers tight
lower/upper bounds. We found in our experiments that, the
upper bounds, if exist, are almost equal to the exact travel
time in most cases, and the lower bounds are at least 60%
of the exact travel time.

6.3 Performance and Scalability Study

For the sake of obtaining the user response time in our
simulations, we measure the time of route requests on
Google Directions API [7]. On each roadmap, we randomly
sample 400 pairs of points and issue route requests for them
to Google Directions API. Fig. 8a plots the time of each
route request versus its length (exact travel time), on the
Erie roadmap. Fig. 8b summarizes the average and standard
deviation of route request time on all roadmaps.

204 -
2 + Average Request Time - Roadmap AVG. (s) STDEV. (s)
F o2 RPN b AN S Chowan 0.173 __ 0.060
J4 TR Eric 0.189 _ 0.0287
8Boo Florida 0.165 0.0490

0 1000 2000 3000 4000 New York 0.113 0.003

Exact Travel Time (s)
(a) Erie (b) statistics on all roadmaps

Fig. 8. Time of route requests on roadmaps

Section 6.3.1 studies the temporal stability of the meth-
ods along the timeline. Section 6.3.2 examines the effect
of our proposed optimizations. Section 6.3.3 tests the
scalability of the methods with respect to various param-
eters. Section 6.3.4 evaluates the performance of RS with
parallelization.

6.3.1 Temporal Stability

In this section, we simulate the arrival of queries along a
60-minute (1-hour) timeline, while fixing all parameters to
default. Thus, each test uses 60 - A = 3600 queries. The
route log L is initially empty. To report temporal behavior,
we measure (i) the route log size and (ii) the number of
route requests of each query.

We first conduct experiments with uniformly distributed
queries and datasets. Fig. 9a shows the number of routes in
L of RS and SMQ* versus the timeline, for range queries.
SMQ is not plotted here as it does not utilize the log L.
The log size rises steadily in the first 6 = 10 minutes
(the warm-up period) and then the expiration mechanism
starts its effect. Observe that the drop in the log size during
the [10,20) minutes matches with the drop in the number
of route requests during the [0,10) minutes (see Fig. 9b).
After that, the log size remains stable in subsequent minutes
because L contains only the routes requested by the latest
A -6 queries. SMQ* has a larger log size because it incurs
more route requests than RS.

Fig. 9b illustrates the number of route requests of each
query versus the timeline, for range queries. The perfor-
mance of SMQ remains constant since it does not utilize
the route log. In the first § = 10 minutes, as the log size of
RS rises, it could exploit more information, like deriving
exact values and tight lower/upper bounds for travel times,
to reduce the number of route requests. After that, its log
size keeps stable so its performance also keeps stable. The
trend of SMQ* is similar to RS, except that SMQ* incurs
much more route requests than RS. That is because SMQ*
uses only the optimal subpath property to derive exact
travel times from the route log, but it does not use the
lower/upper bounds applied in RS. Experimental results
on KNN queries are similar (see Fig. 9c,d).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

o
=}

= N}
@ Q
=} =]

nNoow
5 8 3

o
=}

Number of Route Requests
=
o

Number of Routesin Log (*100)
5
(=}

o

o

10 20 30 40 50 60 10 20 30 40 50 60
Simulated Query Time (minute) Simulated Query Time (minute)
(a) number of routes in log [range] (b) route requests [range]
g 280
S
240
3 200

0g

B
N @
S O

3

o

Number of Routesin
fes]
o

60 60

10 20 30 40 50
Simulated Query Time (minute)

(d) route requests [K NN]

10 20 30 40 50
Simulated Query Time (minute)
(c) number of routes in log [ANN]
Fig. 9. Temporal behavior, expiry time § = 10

As observed in the above experiments, the number of
route requests converges to a stable value after the first §
minutes (the warm-up period). Thus, in subsequent exper-
iments, we simulate the arrival of queries along 20-minute
time interval. We view the first § minutes as the warm-up
period, and the last § minutes as the stable period. We only
measure the average performance in the stable period.

6.3.2 Effect of Optimization Techniques

First, we investigate the effectiveness of our proposed
lower/upper bound techniques. Recall that RS exploits the
travel time information obtained from recent routes for
three techniques: (i) retrieve the exact travel time of a point
p, (i) prune p by its lower bound p.7, p.7; (excluding cases
using p.7¢), and (iii) detect p as a true hit by its upper bound
p.TCJ;r . We further divide technique (i) into two types: (i.a)
existing technique using the optimal subpath property [15]
on the route log £, and (i.b) our proposed technique using
Lemma 2 on the time-tagged network G. Note that SMQ*
applies only technique (i.a), but not techniques (i.b), (ii),
(iii).

Fig. 10 depicts the statistics of applying these tech-
niques in the methods, at the default setting. Observe
that our proposed lower-bound technique (for computing
p.Te,p-Tr) saves the largest number of route requests,
while the existing technique for computing exact travel time
p.7r (using optimal subpath property) saves the least. The
reason for p.7;,p.7; outperforming p.TéC is that, RS has
a higher chance to derive a tight p.7,p.7; for each data
point, but a finite p.ng may not exist for a data point.

Next, we study the effect of candidate orderings on RS in
terms of the number of route requests per query. It can apply
the ASC / DESC orderings for range queries, and ASC /
DESC / DIFF orderings for KNN queries. Table 4 shows
that RS-DESC and RS-DIFF achieve the best performance
for range and KNN queries, respectively.

6.3.3 Scalability Experiments

As discussed before, in this section, we simulate the arrival
of queries along 26-minute time interval. And we measure

60

T

TG g /4

25 TG and Tj TG and Ty
TG ERERA TG R

20 | — 40 | —

> -

20

Num. of Saved Requests
O
Num. of Saved Requests

w

RS SMQ* RS

SMQ*

Execution Method
(a) saved route request [range] (b) saved route request [/X NN]

Fig. 10. Effectiveness of techniques

Execution Method

TABLE 4
Effect of candidate ordering
RS [range] RS [KNN]
ASC DESC ASC DESC DIFF
route requests | 17.12 [11.57 [21.29 | 20.29 [18.39

the performance in terms of: (i) average number of route
requests per query in the stable period, and (ii) average user
response time per query in the stable period. Furthermore,
we also plot the breakdown of user response time into
server CPU time and the time spent on route requests,
as illustrated in Section 5. The server CPU time already
includes the overhead of maintaining the structures in
Section 4.1.

Effect of expiry time §. Fig. 1la shows the average
number of route requests for range queries with respect
to various d. To illustrate the trend of route requests for
smaller expiry times, we add the result for four more ¢ (20,
30, 60, 90 seconds) apart from the values listed in Table 3.
Since SMQ does not use the log, its cost remains constant
and much higher than that of RS and SMQ*. When §
increases, the route log of RS and SMQ* accumulates
routes requested from more warm-up queries (A -). Thus,
RS and SMQ* could exploit more information in the log
to reduce the cost. Fig. 11c illustrates the decomposition
of the user response time for various J. Here, ‘R’, ‘S’,
‘S** refer to RS, SMQ, SMQ*, respectively. To make
the server CPU time visible, we plot the y-axis in log
scale. Clearly, the time on route requests dominates the
user response time. RS achieves a low server CPU time
(0.1s) and user response time (1s). As a remark, the LBS’s
query throughput is decided only by its CPU time because it
remains idle while issuing route requests. Fig. 11b,d depict
the performance for KNN queries. The trends are similar
to those for range queries. Due to the overhead on using
route log, RS and SMQ* incur slightly higher server CPU
time than SMQ.

Since the user response time is mostly spent on route
requests, we only report the number of route requests in
experiments below.

Effect of query rate \. As shown in Fig. 12a,b, the effect
of query rate A on the performance is similar to that of
expiry time § as discussed above. The reason is that, the
route log of RS and SMQ* accumulate routes requested
from more warm-up queries (A -), as A increases.

Effect of dataset size |P|. In this experiment, we vary
dataset size |P| and plot the number of route requests
for range queries in Fig. 12c. The number of route re-
quests rises proportionally to |P| as more objects are

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE)

%3
S
-y
=)

s
&

IS
S
Z

a E
& A SMi 3
b e . Q g
g — g
=z P 30
220H SMQ* 2
2T 2 B....
%0 [RS %15 2} RS
(=3 q &
0 0
0 30 0 5 10 15 20 25 30

Expiry Time (minute)

(b) route requests [/XNN]

10 20
Expiry Time (minute)

(a) route requests [range]

T
T

3
3

Route request time B2 Route request time B
CPU

time C—1

ponse Time (s)
=)

=

ponse Time (s)
S

>
=

°©

S
3

User Res|
<
o
User Res
9

S

RSS*RSS* RSS* RSS* RSS* RSS* RSS* RSS* RSS* RSS* RSS* RSS*
0 2 5 10 20 30 0 2 5 10 20 30
Expiry Time (minute) Expiry Time (minute)

(c) user response time, log scale [range] (d) user response time, log scale [A\ NN]
Fig. 11. Effect of expiry-time ¢
TABLE 5

Effect of roadmap on range and K'NN queries

’ Roadmap route requests [range] route requests [KX NN]

Chowan 37.81 18.76 2.37 44.03 20.38 3.29
Erie 40.53 36.1 11.92 | 49.23 41.36 16.8
Florida 44.7 40.07 18.71 55.31 54.51 25.01

covered by the query range. The performance gap between
SMQ/SMQ* and RS widens because RS applies effective
bounding techniques. In contrast, for KNN queries, the
performance is insensitive to |P|, as depicted in Fig. 12d.
When |P| increases, the travel time from ¢ to its KNN
decreases. This enables pruning more candidates, canceling
out the effect of |P|.

Effect of time limit 7" and result size K. Fig. 12e shows
the performance of the methods on range queries versus
the travel time limit 7". As 7T increases, the number of
query results increases and so does the number of route
requests. RS outperforms SMQ/SMQ* by a wide margin.
As a remark, the average number of query results rises from
1.5 to 35.6 when T increases from 10s to 120s. Fig. 12f
depicts the performance of the methods by varying K.
Again, when the result size K increases, so does the number
of route requests.

Effect of roadmaps. We then examine the effect of the
roadmaps on the performance of the methods. Table 5 lists
the roadmaps in ascending sizes (Chowan, Erie, Florida),
together with the average number of route requests of the
methods, for range queries and K NN queries. We follow
the experimental methodology in [34] and fix the object
density (i.e., the ratio of |P| over the number of nodes in the
network) to 10%. That is, we have |P| = 1.4K, 10.6K and
104.9K for Chowan, Erie and Florida, respectively. As the
log routes have fewer intersections in larger road networks,
the derived lower/upper bounds become looser, and thus
the number of route requests increases in larger networks.

Effect of query distribution. This experiment illustrates
the effect of query distribution on the performance of
the methods. For each query set ‘Gau_xz%’, we select 30
Gaussian bells randomly, set the standard deviation of each
Gaussian to be 2% of the map domain length [13], and

TABLE 6
Effect of query distribution

Distribution | route requests [KXNN] |

route requests [range] [

of query ¢ [SMQ [SMQ* [RS | SMQ [SMQ™ [RS |
Gau_2.5% 42.43 17.44 3.83 48.61 15.33 5.51
Gau_5.0% 40.84 23.52 5.91 51.02 25.52 8.25
Gau_10% 41.42 28.53 8.51 51.24 28.43 11.52
Gau_20% 41.73 32.00 10.31 50.81 33.33 14.74
Gau_50% 40.92 33.21 10.98 48.85 36.53 15.65
Uniform 39.37 34.67 11.57 49.97 42.29 18.39
16 24
12 718
Z N
2 8 212
:g 4 RS-Greedy —8— é 6 RS-Greedy —8—
0 RS-Direction -6 0 RS-Direction O
0 2 4 6 8 10 0 2 4 6 10
Number of Threads Number of Threads

(a) route requests [range] (b) route requests [KNN]

Route request time R

Route request time ERzER i
CPU time ——

PU time ——1

IS}

o

User Response Time (s)
User Response Time (s)

GD GD GD GD GD GD
1 2 4 6 8 10

Number of Threads

GD GD GD GD GD GD
1 2 4 6 8 10
Number of Threads

(c) user response time [range] (d) user response time [F/XNN]

Fig. 13. Effect of the number of threads m

generate points in these bells following such distribution.
For comparison, we also use an uniformly generated query
set (‘Uniform’).

Table 6 shows that, SMQ is insensitive to the distribution
of the queries since it does not utilize the logs obtained from
recent queries. For Gaussian queries, when the standard
deviation is small, the current query is likely to be near to
some recent queries, and thus recent routes provide valuable
information for RS and SMQ* to save route requests.
Observe that uniform query distribution, i.e., our default
query distribution, leads to the the worst-case performance
because the current query can be located far from recent
queries and reuse less information from their routes.

6.3.4 Effect of Route Request Parallelization

This section studies the user response time of parallelization
variants of RS: (i) RS-Greedy using greedy parallelization,
and (ii) RS-Direction using direction-based parallelization.
Fig. 13a,c show their average number of route requests
and user response time versus the number of threads m,
for range queries. At m = 1, both variants are the same
as RS which issues route requests sequentially and incurs
the longest user response time. As expected in Section 5,
RS-Direction results in fewer route requests but a slightly
longer user response time than RS-Greedy. We obtain
similar experimental results for K NN queries in Fig. 13b,d.

6.4 Experiments on Google Directions API

We have implemented SMQ, SMQ* and RS with Google
Directions API [7], whose request/response format has been
described in Section 2.2. Due to the daily request limit
(2,500) for evaluation users [8], we conduct this experiment
on the Manhattan region (see Section 6.1). We randomly

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 14

60 150 105

60 80

il P e — SMQ = SMQ = SMQ >
nﬁsiw’ | w0 —— 60 wl SMA a1 100 85 : ‘1 0 gs : o
- - ha 7
2 SMS% B wofe M % e I 20 SMSQ s 50) 35 Z
Po B By 20 B B =]
= & & B B
0 0 0 0 0 0
0 100 200 300 0 100 200 300 0 5 10 15 20 0 5 10 15 20 0 40 80 120 0 5 10 15
Query Rate (query/min) Query Rate (query/min) Number of POIs (* 1000) Number of POIs (* 1000) Maximum Travel Time (s) K
(a) vary A [range] (b) vary A [KNN] (c) vary |P| [range] (d) vary |P| [KNN] (e) vary T [range] (f) vary K [KNN]
Fig. 12. Effect of various parameters [y-axis: route requests]
9 15 2
g " %60 [2] 9th DIMACS Implementation Challenge on Shortest Paths. http:
g € 40 /Iwww.dis.uniromal.it/challenge9/data/tiger/.
% 5 3 22 [3] Bing Data Suppliers. http://windows.microsoft.com/en-HK/
x 00 g P - - 100'1 0 20 40 60 80 100 windows-live/about-bing-data-suppliers/.
Simulated Query Time (s) Simulated Query Time (s) [4] Bing Maps APIL http://www.microsoft.com/maps/developers/web.
(a) route requests [range] (b) route requests [KNN] aspXx. o L)
. . . . [5] Bing Maps Licensing and Pricing Information. http://www.
Fig. 14. Temporal behavior vs. timeline, § = 10 microsoft.com/maps/product/licensing.aspx.

minutes, Manhattan region (in New YOI’k), on Google [6] Google Directions & Bing Maps: Live Traffic Information.
http://support.google.com/maps/bin/answer.py ?hl=en&answer=

Directions API 2549020&topic=1687356&ctx=topic _http://msdn.microsoft.com/
) .)) en-us/library/aa907680.aspx.
select 100 POIs’ in this region, and generate 100 queries [7] Google Directions APL https://developers.google.com/maps/

(along a 100-second time period). documentation/directions/.

. . [8] Google Directions API Usage Limits. https://developers.google.com/
Fig. 14 depicts the number of route requests of each maps/faqffusagelimits.

query versus the timeline, for range queries and KNN [9] Google Map Maker Data Download. https://services.google.com/fb/
queries. RS outperforms SMQ and SMQ* on both range forms/mapmakerdatadownload/.

. . [10] OpenStreetMap. http://www.openstreetmap.org/.
queries and KNN queries. Also, the performance gap [11] Statistics of Usage. http://www.quantcast.com.

between them widens with the timeline. The number of [12] US Maps from Government. http://www.usgs.gov/pubprod/.
route requests is still decreasing as the timeline has not yet [13] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: a multidimen-

reached the (default) expiry time ¢ = 10 minutes. sional workload-aware histogram. In SIGMOD, 2001.
[14] E.P. F Chan and Y. Yang. Shortest path tree computation in dynamic
graphs. IEEE Trans. Computers, 58(4):541-557, 2009.
7 NCL ION [15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
Co CLUSIO duction to Algorithms. The MIT Press, USA, 2009.

In this paper, we propose a solution for the LBS to [16] U.Demiryurek, F. B. Kashani, C. Shahabi, and A. Ranganathan. On-

: line computation of fastest path in time-dependent spatial networks.
process range/lKKNN queries such that the query results In SSTD, pages 92111, 2011,

have accurate travel times and the LBS incurs few num- [17] A. Dingle and T. Partl. Web cache coherence. In Proceedings of the
ber of route requests. Our solution Route-Saver collects Fifth International World Wide Web Conference, Paris, 1996.

recent routes obtained from an online route API (within § [18] M. Drozdowski. Scheduling for Parallel Processing. Springer
Publishing Company, Incorporated, Ist edition, 2009.

minutes). During query processing, it exploits those routes [19] H. Hu, D. L. Lee, and V. C. S. Lee. Distance indexing on road
to derive effective lower-upper bounds for saving route networks. In VLDB, 2006.

requests, and examines the candidates for queries in an [20] S. Jung and S. Pramanik. An efficient path computation model
for hierarchically structured topographical road maps. /IEEE TKDE,

effective order. We have also studied the parallehza.tlon 14(5):1029-1046, 2002.
of route requests to further reduce query response time. [21] E.Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on
Our experimental evaluation shows that Route-Saver is 3 a road network with speed patterns. In ICDE, page 10, 2006.
. . . . [22] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor
tlmes more efficient than a competitor, and yet achieves search for spatial network databases. In VLDB, 2004.
high result accuracy (above 98%). [23] H.-P. Kriegel, P. Kriger, P. Kunath, and M. Renz. Generalizing the
In future, we plan to investigate automatic tuning the optimality of multi-step k -nearest neighbor query processing. In
expiry time J based on a given accuracy requirement. This SSTD, pages 75-92, 2007.
piy g . yreq . [24] H.-P. Kriegel, P. Kroger, M. Renz, and T. Schmidt . Hierarchical
would help the LBS guarantee 1ts accuracy and 1mprove graph embedding for efficient query processing in very large traffic
their users’ satisfaction. networks. SSDBM, pages 150-167, 2008.

[25] H.-P. Kriegel, P. Kroger, M. Renz, and T. Schmidt. Proximity queries
in large traffic networks. In ACM GIS, 2007.
ACKNOWLEDGMENTS [26] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing
. in spatial network databases. In VLDB, 2003.
This work was supported by ICRG grant G-YN38 from [27] M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest

Hong Kong Polytechnic University. distance computing: A query-dependent local landmark scheme. In
ICDE, 2012.
[28] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
REFERENCES distance browsing in spatial databases. In SIGMOD, 2008.
[29] J. Sankaranarayanan and H. Samet. Distance oracles for spatial
[1] 2011 Census TIGER/Line Shapefiles. http://www.census.gov/ networks. In ICDE, pages 652-663, 2009.
cgi-bin/geo/shapefiles2011/main. [30] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor
search. In SIGMOD Conference, pages 154-165, 1998.
5. E.g, There are about 50 ATMs in the Manhattan region [31] J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective caching of

http://locators.bankofamerica.com/locator/locator/ListLoad Action.do shortest paths for location-based services. In SIGMOD, 2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 15

[32] D. Zhang, C.-Y. Chow, Q. Li, X. Zhang, and Y. Xu. Efficient
evaluation of k-nn queries using spatial mashups. In SSTD, 2011.

[33] D. Zhang, C.-Y. Chow, Q. Li, X. Zhang, and Y. Xu. Smashq:
spatial mashup framework for k-nn queries in time-dependent road
networks. In Distributed and Parallel Databases, 2012.

[34] R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient index
for knn search on road networks. In CIKM, 2013.

Yu Li received the bachelor’s degree in 2010
from Northwestern Polytechnical University,
China. She is currently a PhD student in
Hong Kong Polytechnic University, under the
supervision of Dr. Man Lung Yiu.

Man Lung Yiu received the bachelor’s de-
gree in computer engineering and the PhD
degree in computer science from the Univer-
sity of Hong Kong in 2002 and 2006, respec-
tively. Prior to his current post, he worked
at Aalborg University for three years starting
in the Fall of 2006. He is now an assistant
professor in the Department of Computing,
Hong Kong Polytechnic University. His re-
search focuses on the management of com-
plex data, in particular query processing top-
ics on spatiotemporal data and multidimensional data.

_ald

