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Beyond Millisecond Latency kNN Search on
Commodity Machine

Bailong Liao, Leong Hou U, Man Lung Yiu, Zhiguo Gong

Abstract—The k nearest neighbor (kNN) search on road networks is an important function in web mapping services. These services
are now dealing with rapidly arriving queries, that are issued by a massive amount of users. While overlay graph-based indices can
answer shortest path queries efficiently, there have been no studies on utilizing such indices to answer kNN queries efficiently. In this
paper, we fill this research gap and present two efficient kNN search solutions on overlay graph-based indices. Experimental results
show that our solutions offer very low query latency (0.1ms) and require only small index sizes, even for 10-million-node networks.

Index Terms—Nearest neighbor searches, Spatial databases, Overlay networks
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1 INTRODUCTION

Due to the increasing availability of smartphones1 and
the growing Internet penetration2 over the world, web
mapping services (Google Maps, Bing Maps, Yahoo! Maps,
MapQuest) are now dealing with rapidly arriving queries,
that are issued by a massive amount of desktop and mobile
users. In this paper, we focus on a typical query called the
kNN query, e.g., “find k nearest restaurants to my location
q (in terms of driving distance)”. Formally, given a point-of-
interest (POI) dataset P (e.g., restaurants, gas stations) and
a road network G, the kNN query reports k points pi ∈ P
such that their shortest path distances distN (q, pi) from q
are minimized.

We believe that, like modern search engines [1]–[3], big
(web mapping) providers have been deploying clusters of
commodity servers to handle high query rate and scale with
the usage. By designing better optimizations to reduce the
processing time per query, each server can provide a higher
query throughput, thus enabling the service provider to cut
the number of servers (and operational cost). For instance,
if the processing time per query can be shrunk by factor 10,
then we only need 1/10 of the original number of servers to
achieve the same query throughput.

The key in boosting performance is to replace disk-based
solutions by main-memory solutions, since main memory
has a page access latency (50ns) significantly lower than
that of hard disk (5ms). In the relational database area,
both the academia and the industry have developed main-
memory relational database systems, like Oracle TimesTen,
VoltDB, H-store3, to offer high performance boosts. Recently,
in the spatial database area, Nutanong and Samet [4] have
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proposed memory-efficient algorithms for processing kNN
queries on road networks.

In this paper, we aim to develop a compact main-
memory index for road network such that: (i) it can fit into
main memory, and (ii) it can process kNN queries efficiently.
This is important in reducing the number of servers and the
operational cost at the service provider.
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Fig. 1. Index overhead and response time of kNN solutions in the main
memory scenario, for London road network (#nodes: 203,383, #edges:
267,628) and a dataset (2,040 POIs)

Except Ref. [4], most existing methods for road network
kNN queries are disk-based solutions and do not carefully
exploit a commodity machine’s limited main memory size4

(e.g., 8 GB). This raises an interesting question: “Which
existing method(s) are applicable in the main memory scenario?”
To answer this question, we plot the storage space and
response time of existing methods (for a moderate-sized
road network and a POI dataset) in Figure 1, where the
measurements are obtained from our implementation or
from previous experimental studies [5], [6]. Note that the
storage space equates to the memory consumption in the
main memory scenario. The bars indicate the main memory

4. Experiments in Ref. [4] used a commodity machine with 8 GB
RAM.
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size of 10 existing methods. For no network indexing methods5,
like INE [7], LBC [8], SWH [4], the space is only occupied
by the road network G and POI dataset P (typically kept in
an object index), shown as solid bars in the figure. Among
these methods, SWH [4] outperforms LBC [8] and INE [7].
For network indexing methods, like G-tree [9], SWH-LM [4],
SPIE [5], ROAD [6], SILC [10], the space is occupied by an
index, indicated as slash bars in the figure. Observe that
both the Distance Index [11] and the SILC Index [10] will
soon exceed the main memory for larger moderate-sized
road networks. In fact, SILC occupies O(N1.5) space [10],
which is super-linear to the the number of network nodes
N . Moreover, ROAD [6] and SPIE [5] outperform Distance
Index [11] and VN3 [12], respectively, so we omit Distance
Index and VN3 from the experiments in this paper. We also
test on the USA road network (#nodes: 23,947,347, #edges:
58,333,344), however, only few methods remain feasible
(e.g., INE, LBC, SWH, G-tree, and SPIE). As a remark, SWH-
LM is a variant of SWH that utilizes a landmark index [13],
[14].
Contributions. In this work, we propose two memory
efficient kNN search solutions, Object-Last (OL) and Guide-
Forest (GF), that exploit the highway property of road
networks [15], [16]. This property manifests a fact that
a node is important if it is the bridge of many shortest
paths, which is thoroughly explored in modern shortest
path algorithms [16]–[20]. To utilize the highway property,
these methods typically organize network nodes into a
hierarchical graph structure, called an overlay graph.
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Fig. 2. kNN search on an overlay graph; node order: n1 ≺ n2 ≺ n3 ≺
· · · ≺ n8

We elaborate how the overlay graph answers shortest
path queries. In an overlay graph [16], every node is as-
signed into a hierarchy based on a node order. For example,
suppose the node order is based on node IDs (e.g., n1 ≺ n2),
then we can transform the road network in Figure 2(a)
into an overlay graph in Figure 2(b). The overlay graph
excludes three existing edges (e(n3, n8), e(n4, n7), e(n5, n8))
that cannot fall on shortest paths, and includes two new
shortcuts (i.e., dashed edges e(n4, n5), e(n5, n8)) that cover
the necessary shortest paths passing through lower level
nodes (e.g., n4 → n3 → n5). To find the shortest path
from ns to nt, it suffices to conduct a bi-directional search: a
forward search from ns, and a backward search from nt.

5. For clarity, no network indexing means there is no road network
index but a spatial index for objects (e.g., R-tree) may be used in these
methods.

Unfortunately, such a method cannot support kNN
search readily because the nodes of result objects (nt) are
unknown in advance. A naı̈ve solution is to traverse the
overlay graph in ascending network distance from q, i.e.,
visiting the nodes n1, n2, n3, n4, n5, and n8 in the above
example. However, this approach would visit too many non-
result nodes and defeat the purpose of using shortcuts.

In this work, we design two novel approaches that boost
the performance of kNN queries by revisiting the structure
of the overlay graphs. Our first approach, Object-Last (OL),
reduces the search space by half through optimizing the
overlay graph structure based on the objects’ distribution.
Our second approach, Guide-Forest (GF), adds guidance
information into the overlay graph structure and searches
on a heterogenous graph composed of both the original
graph and the overlay graph. Finally, we propose to extend
our solutions for queries on multiple object types and for
range queries in Section 5.

We experimentally evaluate OL and GF on a set of
real road networks. The experimental results demonstrate
that our approach is an order of magnitude faster than
most existing approaches (including SWH [4], G-tree [9],
ROAD [6], and SPIE [5]) and the size overhead is negligible
(just 30% to 60% times larger than the road network).
This enables us to process kNN queries in very large
road networks. To the best of our knowledge, we are the
first work that offers very low latency (0.1ms) per query
on 10-million-node networks on a commodity machine.
This translates to a query throughput of 10,000 queries per
commodity machine per second.

The rest of the paper is organized as follows. We give the
problem definition, preliminary background, and problem
challenges in Section 2. In Section 3 and Section 4 we present
our proposed solutions OL and GF respectively. Section 5
extends our solutions to support queries on multiple object
types and for range queries. We experimentally evaluate our
methods in Section 6 and discuss related work in Section 7.
Finally, we conclude our work and discuss future work in
Section 8.

2 PRELIMINARIES

2.1 Problem Definition and Settings

In this work, we focus on the k nearest neighbor (kNN)
search in a road network. Given a query location q, a set
of objects P , and a road network G = (N,E,W ) where
wi ∈W indicates the weight of edge ei ∈ E, our problem is
to find a set of k objects PNN where their network distances
to q are not worse than any other object p′ ∈ P \ PNN . The
network distance between q and p, denoted as dN (q, p), is
the shortest path distance from q to p according to the edge
weights W . Our objective is to develop a compact index so
that (i) it can fit in main memory, and (ii) it supports efficient
kNN search.

Like existing work [4]–[6], [10]–[12], we assume that both
queries and objects are always located at the nodes of G.
Nevertheless, our techniques can be extended to deal with
objects located on edges E, by simply regarding each object
as a network node.
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2.2 Overlay Graph
Recent experimental studies [20], [21] show that the overlay
graph is the most effective for answering shortest path
queries, as it offers fast response time, low construction cost,
and small index overhead. In general, an overlay graph can
be viewed as a hierarchial structure of the original graph,
where the hierarchy captures the importance of the nodes.
For instance, Figure 3(b) illustrates an overlay graph Go

derived from Figure 3(a). To answer a shortest path query in
Go, we traverse only important nodes such that the search
space is significantly reduced.
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Fig. 3. Overlay graph

To construct an overlay graph Go, a typical approach
is to prioritize the nodes of G into a set of level lay-
ers L1,L2, · · · ,L` and to iteratively contract the nodes in
ascending level order. Specifically, the contraction process
aims to remove unpromising edges from and add shortcuts
into the overlay graph. When contracting a node n at level
Li, an adjacent edge e(n, n′) of n is removed from the
overlay graph if e(n, n′) is not the shortest path from n
to n′ (i.e., w(n, n′) > dN (n, n′)). Besides, for any adjacent
node pair ni and nj of layer Li, if their unique shortest path
covers n and both ni and nj are located at a higher level
than n (i.e., n ≺ ni, nj), then we insert a shortcut e(ni, nj)
of weight dN (ni, nj) into the overlay graph.

We have shown an overlay graph with 8 levels in Fig-
ure 2(b). In the following example, suppose we categorize
the nodes in Figure 3(a) into 4 levels (i.e., {n1, n2} ≺
{n3, n4} ≺ {n5, n6} ≺ {n7, n8}), as shown in Figure 3(b).
When contracting the second level L2, we retain e(n3, n4),
e(n3, n5), e(n4, n8) in the overlay graph. However, we dis-
card e(n3, n8) and e(n4, n7) as they are not on any shortest
path. In addition, we add a shortcut e(n5, n8) (the dashed
line in the figure) since both n5 and n8 are adjacent to L2

and n3 and n4 fall on the shortest path between n5 and n8.
Note that we do not add e(n5, n7) as a shortcut since the
shortest path from n5 to n7 passes through an edge at a
higher contraction level (i.e., e(n7, n8)).

Definition 1 (Upward and downward graphs). Given an
overlay graph Go = (No, Eo) and the contraction order L,
an edge e(n, n′) ∈ Eo is in the upward overlay graph Go

↑ if
and only if n is contracted no later than n′. Verse vice, an edge
e(n, n′) ∈ Eo is in the downward overlay graph Go

↓ if and only
if n is contracted no earlier than n′.

Specifically, the overlay graph Go consists of an upward
graph Go

↑ and a downward graph Go
↓ (see Definition 1). For ex-
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Fig. 4. Bi-directional search in upward and downward graphs

ample, e(n3, n4) is included in both upward and downward
graphs since n4 is neither contracted earlier nor later than n3
(i.e., n3, n4 ∈ L2). To find a shortest path from a source ns to
a destination nt, typical overlay graph query processing [17]
conducts a bi-directional search with (i) a forward search from
ns (on Go

↑) and (ii) a backward search from nt (on Go
↓). We

illustrate the graphs Go
↑ and Go

↓ of the running example in
Figure 4. Suppose that n1 is the source and n4 is the destina-
tion. Since both the forward and backward searches settle at
n5 and dN (n1, n5) + dN (n5, n3) + dN (n3, n4) is minimum,
the bi-directional search returns n1 → n5 → n3 → n4 as the
shortest path. The correctness of the bi-directional search on
the overlay graph is secured by the shortcuts (see [17] for a
discussion).
Performance of overlay graph solutions. Bast et al. [22]
observe that real road networks typically have small val-
ues of maximum node degree ∆6 and low highway dimen-
sion h, where h is defined as the number of “important”
nodes (which fall on many shortest paths) within a region.
Thereby, the number of shortcuts is very small in practice.
As reported in [17], the size overhead ratio is negative since
the number of omitted edges (e.g., 2 edges are omitted in our
running example) is more than newly added shortcuts (e.g.,
only 1 shortcut is added in Figure 3(b)). Thus, the overlay
graph solutions incur fast response time and low storage
overhead for the shortest path queries.

2.3 Challenges of kNN Search on Overlay Graphs
An overlay graph is a compact index for answering short-
est path queries efficiently. This inspires us to investigate
whether it can also be applied to answer kNN queries
efficiently. Unfortunately, no existing work has attempted
to answer kNN queries on overlay graphs, to the best of our
knowledge.

We identify two challenges in conducting kNN search
on the overlay graph: (i) the locations (nodes) of result
objects are unknown in advance, and (ii) the construction
of overlay graphs ignores the distribution of objects. For
illustration, consider the example in Figure 2(b) and assume
that k = 1, query point q is at n1, and POIs are at n4, n6, n7.
Recall that the shortest path search on the overlay graph is a
bidirectional search that requires both the source ns and the
destination nt. Since the NN of q is unknown in advance,
a naive solution is to run shortest path searches (from q)

6. The maximum node degree ∆ is 9 of all evaluated road networks
in our experiments.
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to each POI (i.e., nodes n4, n6, n7). Obviously, this is very
expensive. In the worst case, some object (e.g., at n6) resides
at the leaf node of overlay graphs, causing the shortest path
search to examine many nodes in overlay graphs.

A better approach is to run the Incremental Euclidean
Restriction method (IER) [7], which incrementally retrieves
candidate objects o in ascending order of their Euclidean
distances dE(q, o) from q, and computes their shortest path
distances dN (q, o) from q (by calling the overlay graph
solution). However, the drawback of this approach is that
it may examine some edges multiple times (during shortest
path computation for different candidates). E.g., following
the above example, edges e(n1, n5), e(n5, n8) are examined
multiple times. Also, the cost of this method is very sensitive
to the number of results k.

In this paper, we aim to revisit the overlay graph struc-
ture in order to boost the performance of kNN queries. Our
first approach, called Object Last (OL), addresses the second
challenge. In the construction of the overlay graphs, we
rearrange the node contraction order so that the nodes with
objects are contracted later (and thus they appear in higher
levels of overlay graphs). Thereby, the kNN result can be
found by only forward search. Our second approach, called
Guide Forest (GF), addresses the first challenge. Its idea
is to add a guidance information to each node in overlay
graphs, where the guidance information indicates the object
existence of the corresponding subtree. During kNN search,
these information guide the pruning of subtrees (that do not
contain any objects). This elegant approach significantly re-
duces the search space of kNN queries. In our experiments,
GF is an order of magnitude faster than the state-of-the-art
competitors (including SWH, G-tree, ROAD, and SILC).

3 OBJECT-LAST HIERARCHIES

In this section, we develop a solution called Object-Last
hierarchies (OL), which exploits the distribution of objects
such that every node containing objects is rearranged to
the last (top) level of the upward graph. This enables the
kNN result of any query to be found by traversing edges in
GOL
↑ only. OL reduces the query response time significantly

since it reduces the search space (i.e., using only the upward
graph instead of two overlay graphs).

In the following, we first introduce the construction of
OL. Then, we show the query processing and correctness
subsequently. Lastly, we discuss the effectiveness of OL.

3.1 Construction

Intuitively, if the network contains only one object p (located
at node n), the ideal contraction order is to move n to the
last level. In this way, the forward search always discovers
p, regardless of the location of the query node nq .

We can extend this idea to support multiple objects. Let
L = {L1, · · · ,L`} be the node contraction layers (decided
by the method in [15]). We contract a node n if it has no
object. Otherwise, we omit n from contraction and rearrange
it to the object layer Lobj . This arrangement forces all objects
to appear at the last (top) level of the overlay graph. As
an example, suppose that we follow the contraction order
in Figure 3. Our proposed object-last overlay graph GOL

↑

objects

level 1

level 2

level 3

level 4

n1

n5

n6 n7
n462

n3

n2

n8

q

p3

p1 p2

Fig. 5. Illustration of the Object-Last Overlay Graph

is illustrated in Figure 5. We rearrange the contraction of
n4, n6, n7 to the layer Lobj since they have objects inside.
The object-last rearrangement constructs two shortcuts in
total, where e(n5, n4) and e(n4, n7) are added when con-
tracting L3 and L4, respectively.

Algorithm 1 OBJECT-LAST HIERARCHIES CONSTRUCTION

H : heap, NObj : set of object nodes, GOL
↑ : forward graph

ConstructOL ( Graph G = (N,E), Objects P )
1: decide a node contraction order L = {L1, · · · ,L`} . by [15]
2: Lobj := {∅} . object level
3: for i:= 1 to ` do
4: for n ∈ Li do . adding edges in Eo

5: if n has object(s) then add n into Lobj

6: else, contract n and add edges into GOL
↑

7: contract n ∈ Lobj and add edges into GOL
↑

8: return GOL
↑

Algorithm 1 shows the pseudo code of the OL construc-
tion. We only need to construct the upward overlay graph
GOL
↑ of OL since the query processing of OL only utilizes

the forward search (to be discussed shortly). The construction
contracts nodes by the contraction order (i.e., constructing
shortcuts and adding necessary adjacent edges into GOL

↑ )
and adds object nodes into the object level Lobj . Finally, it
contracts the object nodes in Lobj (i.e., only adding adjacent
edges into GOL

↑ but not constructing any new shortcut).

3.2 Query processing

To process a kNN query, OL applies the forward search in
the OL upward graph GOL

↑ only. The pseudo code is shown
in Algorithm 2. We prove its correctness in Lemma 1.

Figure 5 illustrates how this algorithm answers the 2NN
query at the query node n1. Initially, the heap content is:
H = (n1, 0). First, we deheap n1 and enheap entry (n5, 1)
for its (outgoing) neighbor. Second, we deheap n5 and
enheap entry (n4, 3) for its (outgoing) neighbor. Third, we
deheap n4 and discover object p2; also we enheap (n7, 9) for
its (outgoing) neighbor. Finally, we deheap n7 and discover
object p1; also the search terminates. In this example, OL
obtains the 2NN result by only visiting 4 nodes.

Lemma 1. OL computes the correct kNN result.

Proof. We first show that OL always returns correct 1st NN
by the forward search in Go

↑. Consider two cases for the
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Algorithm 2 OBJECT-LAST HIERARCHIES kNN
H : heap, R: kNN result
QueryOL ( Query node nq , OL graph GOL

↑ , Size k )
1: add (nq, 0) into H
2: while H is not empty or |R| < k do
3: pop (ni, δ) from H ; visit ni . in ascending order to δ
4: if ni has object(s) then add ni’s object(s) into R
5: for all e(ni, nj) ∈ EOL

↑ and nj is not visited do
6: add or update (nj , δ + w(ni, nj)) into H
7: return the first k result of R

location of query q: (i) q at object node and (ii) q at non-
object node. The former is trivial and the latter is secured
since there is no object node having lower hierarchy level
than the node of q.

Regarding the remaining neighbors (e.g., the kth NN
pkNN ), the search can be viewed as one of the following
cases.

If SP (q, pkNN ) does not cover any prior neighbor(s),
then the shortest path can be found by the forward search
in Go

↑.
Otherwise, SP (q, pkNN ) is composed of two parts

SP (q, piNN ) and SP (piNN , pkNN ). SP (piNN , pkNN ) is cor-
rect since every possible path at the object layer is secured by
the shortcuts (cf. the contraction process). Thus, SP (q, pkNN )
must be the shortest path.

3.3 Effectiveness of OL

Mong Kok

Tsim Sha Tsui

Causeway Bay

Central

Fig. 6. Skewed distribution of POIs; distribution of ‘boutique’ in Hong
Kong (using GoogleMap)

In the worst case, the number of additional shortcuts
can reach |NObj |2 (i.e., every object node pair has a shortcut
connected.), where NObj is set of nodes containing object(s).
In this section, we explain why the number of object short-
cuts is practically small due to the clustered distribution of
objects.

Observe that the distribution of shops in real world
follows a clustered distribution. This cluster effect7 occurs
because a cluster of shops can attract much more customers
than individual shops. We verify this effect in GoogleMap
search; Figure 6 illustrates that ‘boutique’ shops in Hong
Kong follow a clustered distribution.

7. https://en.wikipedia.org/wiki/Cluster effect

level i

objects

shortest edges object shortcuts

nb

na

nd

nc

nz

Fig. 7. The effect of clustered distribution of objects

For a clustered distribution of objects, not every pair
of object nodes has to build a shortcut. In the example
of Figure 7, 4 object nodes are distributed into 2 clusters:
{na, nb}, {nc, nd}. We may build at most four bi-directional
shortcuts (i.e., e(na, nc), (na, nd), e(nb, nc), and e(nb, nd))
since their shortest paths fall on a non-object node nz at
level i. However, the shortcuts in-between two clusters can
be viewed as the connection paths for internal object nodes.
Thus, e(na, nd), e(nb, nc), and e(nb, nd) need not be built
since their shortest paths pass through shortcut e(na, nc). In
our experiments, the number of additional shortcuts is 1.5%
of |NObj |2 in the Los Angeles road network when the object
ratio is 1%.
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(a) {n2, n3} ≺ {n1, n4, n5}

level 1

level 2

n2
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1
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(b) {n2, n5} ≺ {n1, n3, n4}

Fig. 8. The effect of contraction order

OL seems to be a promising solution to process kNN
queries as the entire search space is cut in half (i.e., the
search only traverses in GOL

↑ ). However, the contraction
of the object-last arrangement may no longer follow the
principle of the overlay graph solutions (i.e., contracting
nodes according to their importance). We use a concrete
example to demonstrate the effect of contraction order in
Figure 8. According to the topology of the road network,
n5 is an important node (cf. [17]) as the majority of the
shortest paths in this network go through n5. Suppose the
contraction order is {n2, n3} ≺ {n1, n4, n5}, there is no need
to add any shortcut since n5 is contracted at the last level.
However, if we swap n5 and n3, then the contraction adds
3 shortcuts to GOL

↑ . This example shows the importance of
the contraction order in the overlay graph construction.

Summary. OL offers low response time for kNN queries
since it successively applies the forward search paradigm
of the overlay graph by introducing the concept of object-
last arrangement. However, it suffers from two drawbacks.
First, the index size (e.g., number of shortcuts) is higher than
the original overlay graph. Second, the index maintenance
is costly since the entire structure may be affected by a few
object updates.
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4 GUIDE FOREST HIERARCHIES

Although OL provides low response time for kNN queries,
it loses some promising characteristics of the overlay graph
based solutions, e.g., light index overhead and fast construc-
tion/maintenance. We proceed to investigate an alternative
approach that avoids the drawback of OL.
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guidance labels ‘?’)

Fig. 9. Guide forest hierarchies

In this section, we reuse both overlay graphs Go
↑, G

o
↓ to

guide the search of kNN queries. We design a method called
Guide Forest (GF) since it utilizes guidance information to
accelerate kNN search in a forest (i.e., overlay graphs). To
obtain such guidance information, we use the reachability
of the downward graph Go

↓ to define the concept of object-
reachable node (see Definition 2). In Figure 9(b), each object-
reachable node is labeled with ‘?’, e.g., n3, n4, n5, n6, n7, n8.
Note that n2 is not object-reachable since it does not have
any outgoing edge in Go

↓.

Definition 2 (Object reachability in Go
↓). Given a downward

graph Go
↓, a node n is called object-reachable if there exists a path

(in Go
↓) from n to some object node.

Intuitively, during kNN search, we can skip relaxing an
edge e(ni, nj) if nj is not object-reachable. We illustrate this
idea with the kNN query q in Figure 9. First, we begin the
forward search at q in the upward graphGo

↑. When we reach
n5, we check the downward graph Go

↓ and finds an edge of
n5: e(n5, n3). Suppose n3 is the next node to traverse. We
only relax edge e(n3, n4) but not edge e(n3, n2) since n2
is not object-reachable. The correctness of this approach is
obvious since no object exists in n’s downward graph if n is
not object-reachable (by Definition 2). This elegant approach
guides the search towards object nodes, thereby significantly
boosting the performance of kNN search.

However, there are some unresolved issues in GF: (I1)
How do we construct the guidance information and maintain it
for updates?, (I2) How to exploit such guidance information to
speedup kNN search?, (I3) Can we optimize the overlay graph for
kNN queries?, and (I4) Can we adopt other guidance informa-
tion? In the remaining of this section, we carefully address
these concerns and thoroughly analyze our solution.

4.1 Bit-array construction and maintenance

In this work, we use a concise data structure called bit-
array B as the guidance information. We indicate the ob-
ject reachability of a node ni by the bit B(ni) (i.e., ‘?’ in

Figure 9(b)). This bit-array is a compact structure that only
requires N/8-byte space overhead.8 Its size is negligible as
compared to other existing kNN solutions (cf. Figure 1). In
addition, this bit-array also provides good construction time
and low maintenance cost, which are discussed shortly.
Bit-array construction. First we suppose the basic upward
and downward graphs are constructed in the same way as
in other overlay graph solutions (cf. Section 2.2). In this
subsection, we discuss how to compute the bit-array B for
object-reachable nodes. Given the downward graph Go

↓, we
can determine the bit value B(ni) based on the spread of
influence. Initially, we set each bit value B(ni) to false. Then
we access the object nodes in ascending contraction order.
To examine the object reachability of n, we apply a reverse
network traversal from n. We first add n into a queue S and
set B(n) to true. In each iteration, we dequeue a node ni
from S. For each incoming edges e(n′, ni) in Go

↓, we update
B(n′) to true and add n′ into S only if B(n′) is false (i.e., n′

is not yet discovered by any object). We repeat the above
process until S becomes empty. In Figure 9(b), n4 is the
first object node to be examined according to the contraction
order and its reverse search marks five nodes, i.e., n3, n4, n5,
n7, and n8, as true. The next object node to be examined is n6
and its reverse search relaxes only one edge e(n7, n6) since
n7 is already marked as true. The time complexity of the bit-
array construction is the same as a complete reverse network
traversal, which takes O(E+S) time where E indicates the
number of edges in the road network and S indicates the
number of shortcuts created by the overlay graph solutions
(cf. Section 2.2).

Algorithm 3 BIT-ARRAY CONSTRUCTION

S: Queue; B: Bit-array
ConstructBitArray ( Overlay Graph Go

↓, Objects P )
1: initialize each value of B to false
2: sort P according to the contraction order
3: for p ∈ P in this order do
4: ni := the node containing p
5: B(ni) := true; add ni into S
6: while S is not empty do
7: ni := pop(S)
8: for ni’s incoming edge e(n′, ni) ∈ Eo

↓ do
9: if B(n′) = false then

10: B(n′) := true; add n′ into S
11: return bit-array B

Bit-array updates. The bit-array can be maintained incre-
mentally with respect to object updates. For the insertion
of a new object, we first check whether the newly inserted
object affects the bit value of its located node. If the node
is affected, we add it into S and apply a partial reverse
traversal to discover the influenced nodes. This procedure
terminates when there is no more influenced node found.
Similarly, we can handle the object deletion in similar ap-
proach but for each traversed node we need to further
check whether the deleted object is the only object it can
reach. If yes, we unmark it and enqueue it; otherwise, we
do nothing. Note that the worst-case time complexity of
the maintenance is the same as the construction time. In

8. This bit-array is compact in practice. Even for a very large road
network (US, #node 23,947,347), the bit-array size is just 2.85 MB.
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practice, the maintenance cost is much smaller than the
construction time since the structure is maintained for the
set of nodes influenced by the update.

4.2 Query processing

To process a kNN query, a simple approach is to traverse the
edges in both upward and downward graphs based on the
bit-array. However, this approach searches back and forth in
graphs Go

↑ and Go
↓, causing unnecessary network traversal.

Figure 10 shows a worst-case example where most of the
nodes are object-reachable (those labeled with ‘?’). Suppose
p is the first NN of the query q (at n1). In this example,
the network traversal (at n1) discovers n4 via two paths:
n1 → n3 → n2 → n4, and n1 → n3 → n5 → n4. Recall
that, in Section 2.2, based on the bi-directional search of the
overlay graph solution, the shortest path between n1 and n4
is settled at n5. It means that the traversal from n2 to n4 is
unnecessary, and it should be omitted during kNN search.

level 4

level 5

level 1

level 2

level 3

n1

n3

n5

n2

n6

q

n4

n0p'

p

n7

(a) upward graph Go
↑

level 4

level 5

level 1

level 2

level 3

qn1

n3

n5

n2

n4

n6

n0p'

n7

p

(b) downward graph Go
↓ (with bit-

array)

Fig. 10. Query processing in GF

Algorithm 4 GUIDE-FOREST HIERARCHIES kNN
H : heap, R: kNN result
QueryGF ( Query node nq , GF graphs Go

↑, G
o
↓, Bit-array B,

Size k )
1: add (nq, 0, ↑) into H
2: while H is not empty and |R| < k do
3: pop (ni, δ, ρ) from H ; visit ni . in ascending order to δ
4: if ni has object(s) then add ni’s object(s) into R
5: if ρ =↑ then . preceding path on upward edges only
6: for all e(ni, nj) ∈ Eo

↑ and nj is not visited do
7: add or update (nj , δ + w(ni, nj), ↑) into H
8: for all e(ni, nj) ∈ Eo

↓ and nj is not visited do
9: if B(nj) is true then

10: add or update (nj , δ + w(ni, nj), ↓) into H
11: return the first k result of R

Algorithm 4 shows the complete pseudo code of query-
ing kNN in GF, which applies network traversal on two
overlay graphs. Each heap entry (ni, δ, ρ) is associated with
a boolean flag ρ that determines the way of relaxing edges.
Only when ρ is ↑, we relax edges in the upward graph (lines
5–7). For edges in the downward graph, we relax them when
the adjacent node nj is object-reachable (line 9). We prove
its correctness in Lemma 2.

As an example, suppose that all edges have the same
length (1 unit) in Figure 10. We illustrate the running steps

of Algorithm 4 in the following table. The search terminates
when we deheap the first object node n0.

iteration heap content settled nodes
1 (n1, 0, ↑) /
2 (n3, 1, ↑) n1

3 (n5, 2, ↑), (n2, 2, ↓) n1, n3

4 (n2, 2, ↓), (n4, 3, ↓), (n7, 3, ↑) n1, n3, n5

5 (n0, 3, ↓), (n4, 3, ↓), (n7, 3, ↑) n1, n3, n5, n2

6 (n4, 3, ↓), (n7, 3, ↑) n1, n3, n5, n2, n0

Lemma 2. GF computes the correct kNN result.

Proof. As shown in Section 2.2, the network traversal in the
overlay graph always returns the proper shortest path from
q to any node in the network. Thereby, the correctness of the
query processing can be viewed as a problem: Do we miss
any object by applying our downward pruning (in line 9) and
upward pruning (in line 5)?

The correctness of the downward pruning is trivial; if
B(nj) is false, then there is no object in any reachable node
from nj in Go

↓.
We show the correctness of the upward pruning as

follows. According to the bi-directional search of the overlay
graph, the shortest path between nq and nj must settle at a
node nz with a non-lower order, i.e., nq � nz ∧ nj � nz .
Moreover, the node order of the paths from nq to nz and
from nj to nz is monotonic increasing. For any node nk
whose node order is higher than nj , the shortest path
from nq to nk cannot pass through nj due to the order
monotonicity. Thereby, the upward pruning preserves the
proper shortest path from q to any node.

Complexity analysis. For the ease of the analysis, we
simply reuse the notations of [15], where N indicates the
number of nodes in the graph, h denotes the highway
dimension (cf. Section 2.2), ∆ indicates the maximum degree
of the road network, andD donates the diameter of the road
network. According to [15], the number of visited nodes for
any shortest path query in an overlay graph is bounded
by O(h logN logD). Suppose the degree of a node in the
overlay graph is F (i.e., ∆ + h logN logD [15]), the time
complexity of the forward search in GF is bounded by
O(F · h logN logD). Thus processing a kNN query in GF
takes O(F · (h logN logD)2) time as every relaxed node
of the forward search may issue an individual downward
search in the worst case.

4.3 Optimizing the overlay graph for kNN queries
In this section, we optimize the overlay graph structure
by two techniques, contraction early termination and local
contraction rearrangement. These two techniques not only
reduce the index size but also boost the query performance.
Contraction early termination. First, we observe that the
guidance information at the last few contraction levels are
not effective since almost every node is object reachable,
i.e., B(n)=true (cf. Section 4.1). In other words, the query
processing must relax edges along both search directions
(i.e., Go

↓ and Go
↑) at the top of the overlay graph such that

no search space can be pruned. To make things worse,
the construction becomes costly at the tail-end since more
shortcuts are inserted into the overlay graph due to the
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graph density. We demonstrate this finding in Figure 11
that plots the construction time and the number of added
shortcuts along the contraction processing (in terms of the
contraction ratio) for the Los Angeles and California road
networks. For instance, the last 10% contractions in the
Los Angeles road network takes around 50% of the total
construction time.
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Fig. 11. #Shortcuts and construction time among the contraction ratio

Obviously, the effectiveness of the bit-array is inversely
proportional to the contraction ratio. This leads to an inter-
esting idea: Can we early terminate the contraction processing?

level 1 n1

n3 n4

n5

1
1

n2

p2

n6

n8

p1
n7p3remaining graph

overlay graph

Fig. 12. A heterogenous structure

Inspired by the above discussion, we attempt to termi-
nate the contraction process early subject to the effectiveness
of the guidance information. An illustration is given in Fig-
ure 12 based on our running example, where the contraction
process is terminated while the nodes of the remaining
levels (e.g., L2, L3, and L4) are all object reachable. This
strategy returns a heterogenous network that consists of two
graphs, (1) a partial overlay graph and (2) a partial original
graph with shortcuts.

Regarding the query processing, relaxing a node in the
overlay graph and the remaining graph follows the proce-
dure of Algorithm 4 and Dijkstra’s algorithm, respectively.
The correctness of the query processing is easily verified
since the individual traversals in the overlay graph and the
remaining graph are secured by Lemma 2 and Dijkstra’s
algorithm.

According to the effect of the contraction ratio (cf.
Figure 11), the early contraction termination offers lower
construction time and smaller index overhead. In this work,
we recommend to terminate at level i where the remaining
nodes (from level i to `) are all object reachable. This
termination strategy likely optimizes the query performance
which is shown as follows.

• After level i: Suppose the process contracts level
i and creates ξ shortcuts. Note that every node
after level i must be object reachable so that these

ξ shortcuts cannot help to skip the search at level
i (i.e., each node must relax the edges till level i
due to the downward reachability). However, the
network traversal has to relax ξ more edges. Thus,
the performance of this strategy is worse than or
equal to the level i termination.

• Before level i: If we terminate to contract at a level
lower than i, then there are a group of non-reachable
nodes in the remaining graph. We cannot use the
reachability to prune their relaxations in the remain-
ing graph since they are at the same level with other
object reachable nodes. However, if we postpone our
contraction, some of these nodes are marked as false
(i.e., not object reachable) at a level lower than i
so that some of their relaxations can be omitted.
Thus, the level i termination likely outperforms this
strategy especially when the number of additional
shortcuts are moderate.

To early terminate the contraction process, we progres-
sively maintain the bit-array along the contraction process.
When contracting an object node, we reversely search all
object reachable nodes and mark them as true. For instance,
when contracting n4 in Figure 12, all remaining nodes (n3,
n5, n6, n7, and n8) are marked as true by the reverse search
process so that the contraction process is terminated.
Local contraction rearrangement. The second optimization
is a heuristic which attempts to postpone the contraction
of object nodes. The main difference from OL is that we
only arrange the contraction order locally instead of pushing
every object to the last level (cf. Section 3). According to
our discussion, the effectiveness of GF is sensitive to the
number of true values in the bit-array. However, if we
simply minimize the number of true values (i.e., equivalent
to OL), then this approach may construct many additional
shortcuts which significantly affects the query performance
and increases the space overhead of GF. We arrive at a
compromise that we only rearrange the contraction order
in a local scope. Given the contraction levels, every node
is only allowed to rearrange within λ levels such that the
number of true values in the bit-array is minimized. The
effectiveness of this approach is shown in our experimental
study.

4.4 Additional guidance information

In this subsection, we present an additional guidance infor-
mation, called distance-arrayD, to improve the performance
of GF.
Distance-array D construction. Like the bit-array, the
distance-array D indicates the reachability information but
the distance-array keeps the distance of the nearest reach-
able object (in both downward and upward graphs) instead
of the bit-flags. For instance, D(n5) in Figure 9(b) is 2 (i.e.,
the shortest distance from n5 to p2 in Go). D is constructed
by two network traversals, i.e., a bottom-up traversal in Go

↓
and a top-down traversal in Go

↑. In the bottom-up traversal,
we use the same strategy of Algorithm 3 to find the distance
of the nearest reachable object in Go

↓. More specifically, we
first initialize all D(ni) values to ∞. When updating D(n′)
(Line 10 of Algorithm 3), we set D(n′) to D(ni) + w(n′, ni)
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only if D(n′) > D(ni) + w(n′, ni) (i.e., a nearer downward
reachable object is found). In the top-down traversal, we
traverse Go

↑ and update the reachability information from
the highest contraction order to the lowest order. More
specifically, we update D(n′) (i.e., e(n′, ni) ∈ Eo

↑) only if
D(n′) > D(ni) + w(n′, ni) (i.e., a nearer upward reachable
object is found). After these two traversals, D(ni) records
the distance to the nearest object reachable from ni.
Query processing. Next we show how Algorithm 4 is
extended to support the distance-array. When adding nj
into H (Line 10 of Algorithm 4), we update the weight of nj
by additionally summing the downward reachable distance
D(nj), i.e., δ+w(ni, nj)+D(nj). This change does not affect
the correctness since the weight of nj is bounded by the
distance to the first downward reachable object.
Comparison with the bit-array. Obviously the distance-
array approach outperforms the bit-array approach since
the distance-array offers more informative information to
discover the nearest neighbor objects. The tradeoff is that
the distance-array occupies more space9. In practices, the
bit-array only approach is not far behind the distance-array
approach since the downward search unlikely traverses too
many nodes to discover the NNs (due to the distribution
of the objects). According to our experimental study, the
distance-array approach is 20% faster than the bit-array
approach on average. As the improvement is not significant,
the bit-array is still our recommended guidance information
due to its conciseness and the ease of maintenance. How-
ever, if the response time is the most important factor in the
system, then the distance-array is recommended.

4.5 Implementation detail
In order to save memory usage, only one graph structure is
used to represent both the upward and downward graphs
as their hierarchical structures are identical.
For bi-directional graphs. We can decide the existence of an
edge e(ni, nj) in upward or downward graph by the edge-
node level of ni and nj . For instance, e(n5, n1) in Figure 9(b)
exists in the downward graph since n5 is located at higher
level than n1.
For general cases. For each edge, we store a 2-bit structure
where the first (second) bit indicates the existence of an
edge in the upward (downward) graph. This overhead is
negligible as compared to the graph structure size.

5 EXTENSIONS

5.1 Supporting Multiple Types of Objects
In this section, we study how to support multiple types of
objects in kNN queries. This extension has useful applica-
tions but it was neglected in the past. An example query
looks like: show me the nearest Chinese restaurant or Japanese
restaurant. Surprisingly, this important extension is not well
addressed in existing work [4]–[8], [10]–[12].

A simple solution is to build a unified index for all
objects (ignoring their types) and then check the types of
objects on-the-fly at the query time. However, the object

9. The overhead is still negligible. For instance, the distance-array
size in US road network is just 45.66 MB.

cardinality reduces the effectiveness of the index. To make
things worse, the target group of kNN objects may be far
away from the query node, which may report many false
fits and render the index ineffective. Besides the straightfor-
ward solution, some approaches (e.g., SWH [4], G-tree [9],
ROAD [6], and SILC [10]) can build an individual index
for each type of objects since these approaches separately
index the road network and the objects. However, this
approach needs to search multiple indices if the kNN query
is interested in more than one single type of objects (e.g.,
Chinese restaurants or Japanese restaurants).
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Fig. 13. Support of multiple type of objects

We find that GF supports multiple object types in a
very convenient way. We simply employ m bit-arrays for
m types of objects. Suppose we use two bits to index two
types of objects, e.g., type-I: {p1} and type-II: {p2, p3}, in the
running example. Figure 13 shows their bit-flag values in the
downward graph. To construct this structure, we iteratively
execute lines 2–11 of Algorithm 3 for each object type.

The size overhead of GF increases linearly with the
number of object types m. To reduce the overhead, we
can merge multiple types of objects into a super type and
use one bit per node for it. Its effectiveness is justified
by these observations: (1) the object-to-node ratio is very
small in practice (e.g., the largest group of objects in our
California dataset falls on 9.5% of the network nodes), (2)
the distribution of different type of objects may be similar
(e.g., the restaurants and shopping malls fall on similar
distributions), and (3) some object types are likely searched
together in kNN queries (e.g., hotels and restaurants). These
observations suggest that we can group the object types by
standard clustering techniques [23] based on their distribu-
tion similarity, where the number of clusters is subject to an
index size constraint. More specifically, the similarity of two
object types, ti and tj , can be defined as

sim(Bti ,Btj ) =
one(Bti ∩ Btj )

one(Bti ∪ Btj )

where one(B) returns the number of 1’s in B and sim(·)
falls into [0,1]. Two object types of high similarity are likely
grouped into the same super type in the clustering process.
In the experiments, we will show the effectiveness of this
grouping approach.

5.2 Supporting Range Queries
The range queries are also popular in daily life applications.
For instance, people are interested in finding restaurants
within walking distances to their current location. To pro-
cess the range queries using GF, we traverse the graph using
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the same strategy of Algorithm 4 until the weight of the first
heap element is larger than the range threshold r. A minor
optimization is that we ignore an relaxed edge if its weight
is already larger than r.

6 EXPERIMENTAL STUDY

In this section, we experimentally compare our proposed
solutions with existing kNN solutions, including INE [7],
SWH [4], SWH+LM [4], SPIE [5], G-tree [9], ROAD [6],
and SILC [10]. Some solutions are omitted from our ex-
perimental study because they were shown to be domi-
nated by the above solutions, e.g., (i) INE [7], LBC [8] ≺
SWH [4], and (ii) Distance Index [11] ≺ ROAD [6], and (iii)
VN3 [12] ≺ SPIE [5]. We use the implementations from G-
tree [9] (including G-tree and ROAD) and implement other
methods by ourselves. We have verified the correctness of
every implemented method and their relative performance
is similar or even better than the result reported in G-
tree [9] and ROAD [6]. All experiments are conducted on
a 64-bit Ubuntu machine with Intel Core i7 3.2GHz CPU
and 103GB RAM. To fairly measure the response time of
different methods, we secure enough memory to store the
entire index and execute kNN search in the main memory.
In other words, the entire query process does not incur any
disk access.

6.1 Datasets and parameter setting

TABLE 1
Statistics of the roadmaps

city abbr. #vertices #edges #objs
Colorado CO 435,666 1,057,066 -

sy
nt

he
ti

c

California CA 1,890,815 4,657,742 -
Eastern US E-US 3,598,623 8,778,114 -
Western US W-US 6,262,104 15,248,146 -

United States US 23,947,347 58,333,344 -
California CAL 1,984,828 2,583,212 391,604

re
alNew York NY 831,938 1,068,548 98,539

Los Angeles LA 336,630 448,964 18,326

We conduct our experiments on 8 public available
roadmap datasets [24]–[26] as shown in Table 1. We ex-
tracted the last three road maps (California/CAL, New
York/NY, Los Angeles/LA) and their corresponding points-
of-interest datasets from OpenStreetMap10. For every object,
we map the object to the closest road segment by their
latitude and longitude based on Euclidean distance. As
shown in Section 2.1, we deal with the edge objects by
replicating them to two end nodes of their located edge and
keeping the distances from two end nodes to their actual
locations. For the real roadmaps (CAL, NY and LA), we
randomly pick objects according to an object-to-node ratio.
For other roadmaps, we randomly generate the objects on
the nodes according to an object-to-node ratio.

Table 2 shows the ranges of the investigated parameters,
and their default values (in bold). In each experiment, we
vary a single parameter, while setting the others to their
default values. For each method, we report its average
performance over 10,000 kNN queries.

10. http://www.openstreetmap.org

TABLE 2
Range of parameter values

Parameter Values
Result size k 1, 5, 10, 20, 50

Object-to-node ratio 0.05%, 0.1%, 0.25%, 0.5%, 1%,
2.5%, 5%, 10%, 20%, 50%

Length of shortest paths short, avg., above avg., long, mixed
#Object types per index 1, 4, 8, 12, 16, 20(for real object experiments only)

Range distance r (for range queries) 1, 2, 5, 10, 20 (times NN distance)
Local rearrangement λ 0, 10, 15, 20, 25, 30, 35

In this work, the overlay graph contraction order and
the number of levels are based on the suggestion of [17] as
the overhead of their overlay graph is the smallest among
other competitors [20]. Note that our work are applicable
to other overlay graph solutions (e.g., [20]). We omit the
investigation of the overlay graph since we concentrate
here on evaluating the proposed kNN query processing
techniques.

6.2 Scalability experiments

The effect of graph size. Table 3 shows the response
time of all methods on these road networks by setting
all parameters to their default values (e.g., object-to-node
ratio=1% and k = 10). A promising finding is that our
methods (OL and GF) scale very well, and it seems that
they are almost insensitive to the road network sizes. This
is because the overlay graph is flattened in general (i.e., a
minority of important nodes have large fan-out due to the
highway property.). The upward search remains efficient
due to the flattened index structure and the fact that the
downward search of GF is well guided by the bit-flag array.
Among all competitors, SPIE is the only method which is not
sensitive to the graph sizes; nevertheless, it is still one order
of magnitude slower than our proposed methods. Besides,
SPIE does not scale well with other factors (e.g., k) as its
search strategy is based on a local shortest tree. To make
things worse, SPIE requires to build one graph index for
one specific type of objects which limits its applicability in
real world applications. G-tree does not scale well with the
graph sizes. For instance, the response time of G-tree in the
entire US roadmap (US) is around 5.65 times slower than
in the western portion of US roadmap (W-US), although the
number of edges is just 3.82 times larger. SILC is the closest
method to ours in terms of response time. However, since
it occupies O(N1.5) space, the index sizes for larger road
networks (CA, E-US, W-US, US) exceed the memory size
of a commodity machine. Besides SPIE, G-tree, and SILC,
the response times of other competitors are two order of
magnitude slower than our proposed methods. Some result
are omitted due to their long construction time and memory
demand, e.g., the result of ROAD in E-US, W-US, and US.

For clarity, we also demonstrate the construction time
and index size11 of all discussed methods in Figure 14 on
two datasets, LA and CA. Obviously, our proposed meth-
ods, OL and GF, have a reasonable index size and construc-
tion time. Specifically, the index size of GF is just 26.7% and

11. The index size indicates the size of both network index and object
index.
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TABLE 3
The effect of graph size

Method
City no-network indexing network indexing

INE SWH OL GF G-tree SPIE SWH-LM ROAD SILC

R
es

po
ns

e
ti

m
e(

m
s) CO 37.38 69.06 0.20 0.070 0.79 1.97 89.73 384.09 0.63

CA 60.87 68.49 0.25 0.081 1.31 2.08 95.73 1082.49 n/a
E-US 74.98 73.96 0.24 0.067 3.62 2.12 94.67 n/a n/a
W-US 158.14 79.12 0.27 0.055 3.24 1.89 120.37 n/a n/a

US 412.35 134.80 0.27 0.078 18.31 2.05 236.49 n/a n/a
CAL 115.85 667.82 0.17 0.074 6.52 4.09 1912.08 n/a n/a
NY 54.56 34.35 0.094 0.057 2.29 1.88 109.73 623.04 n/a
LA 41.53 11.33 0.014 0.06 2.74 2.23 125.04 227.15 0.142
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Fig. 14. Construction time and index size of methods

37% larger than the size of no-network indexing methods on
LA and CA, respectively. Among these methods, SPIE is the
only method that offers competitive index size to OL and GF
which also provides very fast construction time. However,
SPIE does not scale with respect to other scalability factors
(e.g., object cardinality) since every object is required to keep
a local search tree in SPIE. Other methods like G-tree and
SWH-LM are only 4-6 times larger than GF. ROAD and
SILC are definitely infeasible for large road networks as
their sizes are one to two orders of magnitude larger than
GF. Also, the construction time of ROAD and SILC is very
slow since these methods require many pairwise shortest
path computations during index construction. For instance,
ROAD and SILC requires 59.6 and 336.0 hours, respectively,
to construct the index of LA while the construction of GF
only takes 24.5 seconds. In summary, our proposed methods
are superior to all competitors with respect to all three
performance factors (including response time, construction
time, and index size). More importantly, we are the first
work that process kNN queries within 0.1ms in 10-million-
node networks on a commodity machine. This translates to a
query throughput of 10,000 queries per commodity machine
per second.

In the remaining experiments, we omit less competi-
tive methods (like INE, SWH, SWH-LM, SPIE, ROAD, and
SILC) as they are far behind our proposed methods or
their applicability is limited. Moreover, we only report the
results on two datasets, LA (using real object datasets) and
CA (using synthetic object datasets). The results on other
datasets exhibit similar trends.

The effect of object-to-node ratio. Figure 15 shows the
average query time of k-NN queries on the LA, CA, NY,
and CAL datasets varying on object-to-node ratio. For the
real object roadmaps (i.e., LA, NY, and CAL) experiments,
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Fig. 15. The effect of object-to-node ratio

we sample the testing object sets from the entire dataset
according to different object-to-node ratios. If the object-to-
node ratio is higher than the amount of an object set (e.g.,
there are only 5.4% nodes containing object(s) in the LA
dataset), we randomly sample nodes from the roadmap as
object nodes. In general, the search executes faster when the
object-to-node ratio increases since the kNN result becomes
closer to the query location. Our method scales better on real
objects since both OL and GF are more effective on skewed
distributions (i.e., OL may have fewer object shortcuts and
GF may have fewer nodes having true bit-flag value). G-tree
is more sensitive to the object-to-node ratio due to its query
processing strategy. G-tree partitions the road network into
a set of subgraphs and the search space depends on the
number of subgraphs that have object(s) inside. G-tree nec-
essarily traverses more subgraphs if the object-to-node ratio
increases.
The effect of k. Figure 16 shows the average query time
of k-NN queries on the LA and CA datasets varying on k.
The response time of every method grows linearly with the
value of k. Again, our proposed methods are less sensitive
in LA than CA due to the mentioned effect of object-to-node
ratios. GF is superior to G-tree as it is 12.7 and 7.3 times
faster at k = 80 on LA and CA, respectively.
The effect of query distance. To evaluate the effect of
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Fig. 17. The effect of query distance

different query distances, we first calculate the diameter
of the road network, denoted as d, and then generate 4
query sets (containing 10,000 queries for each) based on
the average distance to their kNN object using d as a
metric reference. Specifically, the maximum object distances
in these 4 query sets are d

8 , d
4 , d

2 , and 3d
4 , respectively, which

are denoted as short, avg., above avg., and long in Figure 17.
The methods generally become more costly when the query-
object distances increase. OL and GF are 20-47 times faster
than G-tree in different query sets.
Object distributions. Next, we report the average response

TABLE 4
The effect of object distributions (LA)

object type bank cafe restaurant school place of worship
(object ratio) (0.12%) (0.2%) (0.48%) (1.3%) (2%)

SPIE 13.70ms 10.93ms 5.63ms 1.61ms 1.87ms
G-tree 3.19ms 3.12ms 2.86ms 2.45ms 2.33ms

OL 0.134ms 0.142ms 0.122ms 0.078ms 0.064ms
GF 0.081ms 0.077ms 0.057ms 0.035ms 0.034ms

time of the methods in different object distributions, on the
LA dataset. Our methods (both OL and GF) outperform G-
tree and SPIE by at least an order of magnitude since real
objects follow skewed distributions.
Summary. According to our experimental results, it is clear
that GF outperforms all competitors in terms of response
time and index size. More specifically, GF computes kNN
queries by one order of magnitude faster than existing
solutions. The index size of GF is negligible which is just
33.5% to 50.1% larger than the size of no-network indexing
methods in all evaluated datasets under the default settings.
The construction time of GF is also fast: for instance, the
index of the US roadmap can be constructed in 12.2 minutes
(while the construction of OL and G-tree takes 9.3 and 3.39
hours, respectively). The runner-up method OL is not far
behind GF in terms of response time; however, its construc-

tion time is one order of magnitude slower than GF. Thus,
we recommend GF as the best method for kNN search.

6.3 Extension experiments

The effect of multiple types. We also evaluate our group-
ing strategy for multiple type of objects (cf. Section 5.1).
We note that the multiple type extension is also applicable
to G-tree which only requires to keep some additional
information in every subgraph without affecting the road
network index. However, we omit to adopt this change to
OL since it requires to rearrange many contraction orders for
handling an extra type of objects. Thereby, we only evaluate
GF and G-tree in this experiment.

We group all 111 object types from the object dataset
of LA. To evaluate our grouping strategy, these 111 types
are grouped into 64, 32, 16, 8, 4, 2 and 1 indices by a stan-
dard clustering algorithm based on the similarity equation
discussed in Section 5.1. In this experiment, each query
searches a random type of objects. Figure 18(a) shows that
both GF and G-tree scale well with the number of indices. It
demonstrates the effectiveness of our grouping strategy in
Section 5.1. In addition, we also report the performance of
a method, GF (random), that groups object types arbitrarily.
Both GF and GF (random) outperform G-tree by a visible
margin.
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Fig. 18. Supplementary experiments on real objects

Range queries. We also evaluate the processing perfor-
mance of range queries by varying the range threshold r.
In this work, we simply multiply r by the first NN distance.
When r is set to 20, the range queries return several hundred
results on average. Figure 18(b) compares GF with two
closest competitors, G-tree and OL, in LA road network.
GF is clearly superior to the other competitors where it is
at least 3.5 times and 1.16 times faster than G-tree and OL,
respectively.

6.4 The effect of GF optimizations
We proceed to investigate the effectiveness of our optimiza-
tion techniques for GF proposed in Section 4.3 and 4.4.
Contraction early termination. Table 5 shows the effect
of the contraction early termination. As the query perfor-
mance is secured by the termination strategy discussed in
Section 4.3 so that we only demonstrate the gain of the index
size and construction time. Table 5 compares two methods,
where GF-Full searches in the fully contracted overlay graph
and GF searches in the heterogenous graph. GF saves 7.2%
index size and 50% construction time on average among
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TABLE 5
The effect of early termination

City Index size (MB) Construction time (s)
GF-Full GF gain GF-Full GF gain

CO 17.46 16.34 6.4% 10.83 8.15 24.7%
CA 78.32 72.71 7.2% 90.51 51.60 42.99%

E-US 148.72 137.07 7.8% 177.48 89.48 49.58%
W-US 256.27 238.4 7.0% 273.54 164.59 39.83%

US 996.11 914.19 8.2% 1667.15 734.77 55.93%
CAL 75.52 72.03 4.61% 239.56 132.10 44.86%
NY 31.87 30.39 4.64% 79.10 44.07 44.29%
LA 13.66 12.95 5.20% 42.03 20.35 51.57%

all evaluated road networks which matches the analysis in
Section 4.3.
Local contraction rearrangement. Next we demonstrate the
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Fig. 19. Local rearrangement

effect of local contraction rearrangement subject to different
level constraints λ by 19. When λ is set to 0, we do not allow
any contraction rearrangement. When we slightly increase λ
(e.g., λ = 10), the response time of the queries decreases
since the bit-array becomes more effective (i.e., less true
values). However, the improvement becomes less obvious
when λ rises above 20 since more shortcuts are added into
the graph due to the local rearrangement. We set λ to 20 as
our default setting as it achieves a good trade-off.
The effect of guidance information. Figure 20 shows the
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Fig. 20. The effect of guidance information

effect of adopting different guidance information, including
the bit-array and the distance-array. The response time of
GF with the distance-array is around 20% faster than the
bit-array on both road networks. Moreover, the distance-
array reduces the number of visited nodes by 20% and 10%
when k = 10 and k = 80, respectively, since it postpones
the relaxation of unpromising edges (cf. our discussion in
Section 4.4). This turns out to reduce the number of elements
kept in the heap. However, we still recommend the bit-array

as the default guidance information due to its conciseness
and the ease of maintenance.

7 RELATED WORK

No-network indexing methods for kNN. The methods in
this category only access the given data (the road network
G and POI index) and employ priority queues (i.e., heaps)
for processing queries. All of them can fit in main memory.

Incremental Euclidean Restriction (IER) [7] utilizes the
property that the Euclidean distance between two nodes
lower-bounds their network distance. IER incrementally
retrieves candidate POIs pi in ascending order of their
Euclidean distances dE(q, pi) from q, and computes their
network distances dN (q, pi) from q (e.g., by calling A* algo-
rithm). It terminates when the next Euclidean NN distance
exceeds the k-th nearest network distance found so far.
However, IER executes the network distance computation
multiple times, which may visit some nodes in the net-
work repeatedly. We can boost the performance of IER by
replacing the A* algorithm with modern shortest path algo-
rithms [14], [17]–[20]. However, it still suffers from multiple
network distance computations and visiting some network
nodes repeatedly.

Incremental Network Expansion (INE) [7] employs a
heap H to examine network nodes in ascending order of
their network distance dN (q, pi) from q. It guarantees that
each network node is visited at most once. However, since
it does not exploit the Euclidean lower-bound, it may visit
some irrelevant nodes that cannot lead to the kNN results.

Lower Bound Constraint (LBC) [8] integrates IER with
A* search such that each network node is visited at most
once. Specifically, for each candidate pi, LBC maintains a
heapHpi

to store the lower-bound distances from q via node
n to pi. In each iteration, LBC identifies the node n′ with the
smallest bound of all heaps, explores the neighbors of n′,
and updates all heaps Hpi

. Although LBC requires fewer
accesses to the road network, it incurs higher overhead
in maintaining multiple heaps Hpi

for candidates. Single
Wavefront Heuristics (SWH) [4] employs a single heap to
manage the lower bound distances above, while achieving
the same road network access cost as in LBC. Since SWH has
smaller overhead on maintaining a heap, it performs better
than LBC in terms of CPU time.
Network indexing methods for kNN. The methods in
this category require significant storage space for storing
precomputed information (i.e., the index), which can be
utilized to accelerate kNN search significantly. Due to large
index size, most of these indexes can only be stored in
hard disk instead of main memory, thereby outweighing the
benefit offered by the index.

For example, VN3 [12] requires precomputing the net-
work Voronoi diagram with respect to a POI dataset P .
SILC [10] requires O(N1.5) storage space, an amount that
is super-linear in the number of network nodes. Among ex-
isting methods, ROAD [6] and SPIE [5] outperform Distance
Index [11] and VN3 [12], respectively. G-tree [9] is the latest
network indexing method for kNN queries and its query
response time is shown to outperform that of ROAD and
SILC. First, it partitions the road network into sub-networks,
and then maintains a shortest path distance matrix for
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every pair of border nodes within each sub-network. At
query time, this information can be effectively utilized to
accelerate kNN search. Observe that these shortest path
distance matrices occupy much more memory space and
incur higher response time when compared to our proposed
solutions.

8 CONCLUSION

To the best of our knowledge, this is the first work that offers
very low latency (0.1ms) per kNN query on 10-million-
node networks on a commodity machine. This translates
to a query throughput of 10,000 queries per second per
commodity machine. Our experimental studies on large
scale road networks show that our solutions are 1-3 orders of
magnitudes faster than existing methods while our indexes
are compact and can fit into main memory. In the future,
we plan to further enhance the performance of kNN search
with keywords on objects.
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