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On Computing Farthest Dominated Locations
Hua Lu, Member, IEEE, Man Lung Yiu

Abstract—In reality, spatial objects (e.g., hotels) not only have spatial locations but also have quality attributes (e.g., price, star). An
object p is said to dominate another one p′, if p is no worse than p′ with respect to every quality attribute and p is better on at least
one quality attribute. Traditional spatial queries (e.g., nearest neighbor, closest pair) ignore quality attributes, whereas conventional
dominance-based queries (e.g., skyline) neglect spatial locations. Motivated by these observations, we propose a novel query by
combining spatial and quality attributes together meaningfully. Given a set of (competitors’) spatial objects P , a set of (candidate)
locations L, and a quality vector Ψ as design competence (for L), the farthest dominated location query (FDL) retrieves the location
s ∈ L such that the distance to its nearest dominating object in P is maximized. FDL queries are suitable for various spatial decision
support applications such as business planning, wild animal protection, and digital battle field systems. As FDL queries are not solved
by existing techniques, we develop several efficient R-tree based algorithms for processing FDL queries, which offer users a range of
selections in terms of different indexes available on the data. We also generalize our methods to support the generic distance metric
and other interesting query types. The experimental results on both real and synthetic datasets disclose the performance of those
algorithms, and identify the most efficient and scalable one among them.

Index Terms—Spatial Objects, Query Processing, Database Management.
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1 INTRODUCTION

Spatial objects (e.g., hotels [1]) in reality are associ-
ated with multiple quality attributes (e.g., price, star),
in addition to their spatial locations. Traditional spatial
queries and joins (e.g., nearest neighbor [12], closest
pair [10]) focus on manipulating only spatial locations
and distances, but they ignore the importance of quality
attributes.

The dominance comparison is suitable for comparing
two objects with respect to multiple quality attributes.
For the sake of simplicity, we assume that the domain
of each quality attribute is fully ordered (e.g., integer
domain). An object A is said to dominate another object
B, if A is no worse than B for all quality attributes
and A is better than B for at least one quality attribute.
The skyline query [5], [22], [15], [8], [18], built upon the
dominance comparison, retrieves the objects that are not
dominated by any other. However, the skyline query
neglects the significance of spatial locations.

In practice, spatial data analysts are interested in com-
bining both distance and dominance comparison to find
results satisfying their specific applications. Consider the
example that a hotel chain is planning to open a new
hotel in a metropolitan city. The city already has several
existing hotels (as competitors), each associated with its
location and quality values. The new hotel will be built
such that its quality values reach the design competence.

Among a predefined set of candidate locations for the
new hotel, a candidate location is desired if it is far
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away from its nearest existing hotel that dominates its
design competence. This way, the new hotel will not be
in a disadvantaged position in business competition with
other hotels within its proximity.

Figure 1 shows the locations of a set of competitors’
hotels (dots) and a set of candidate locations (triangles)
for building the new hotel. Candidate locations can be
obtained in different ways, e.g., from urban planning de-
partment or from private sectors. The quality attributes
of existing hotels are listed in Figure 2a, where lower
price and higher star values are preferable. Suppose that
the hotel chain wishes the new hotel to be at 4-star
quality with $200 room price, i.e., the design competence
of the new hotel is Ψ = ($200, ?4).
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Fig. 1. Example of farthest dominated location

hotel price $ star ?
h1 180 4
h2 150 3
h3 190 4
h4 250 3
h5 190 4
h6 220 5

loc. NN ND
s1 h3 h3

s2 h4 h3

s3 h4 h5

s4 h6 h5

(a) qualities of hotels (b) candidates at Ψ = (200, 4)

Fig. 2. Lists of hotels and candidate locations

Unfortunately, both the skyline query and traditional
spatial queries fail to find a desirable location for build-
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ing the new hotel. By issuing a skyline query on the
quality attributes of hotels in Figure 1, we obtain the
result set {h1, h2, h6}, which however offers no rec-
ommendation at all regarding the candidate locations
{s1, s2, s3, s4}. Therefore, the skyline query is unable to
select an appropriate location for building the new hotel.

Existing spatial queries are also not helpful here. Let
dist(si, hj) denotes the Euclidean distance between a
location si and a hotel hj . The nearest neighbor (NN) of si
is the hotel hj having the minimum value of dist(si, hj)
[19]. Figure 2b shows the NN of each si. One may
suggest finding the location si (for the new hotel) such
that its distance to its NN is maximized; however, this
totally ignore quality attributes of the hotels.

Similar needs are also seen in other spatial decision
support applications. In wild animal rehabilitation [3],
an appropriate location is selected from a set of options
for returning an animal to the nature, after its treatment
in a rehabilitation center. A location is preferred if it is
far away from (competing) animals with multiple better
abilities (e.g., speed, weight, age). Since those animals
are much stronger in fighting for essential resources,
e.g., water and food, and hence they will endanger
the rehabilitated animal that is still unaccustomed to
wildlife. By maximizing the distances to potential nearest
dominators, the preferred location improves the survival
chance of the rehabilitated animal in the nature.

In an example of airborne landing (in a digital battle
field system [2]), serious threats come from nearby lo-
cations where enemies have multiple advantages (e.g.,
better equipment, more soldiers). Among the set of
candidate locations for landing, the one with the largest
distance to its nearest threat is desired, in order to
enhance the safety of landing.

Motivated by these real-life examples, in this paper we
combine both spatial locations and quality attributes to
define a novel query that retrieves practically meaning-
ful locations as expected in the above examples.

1.1 Problem Statement
Let c be the number of (numeric) quality attributes. A
quality vector is a point ψ in the c-dimensional space Rc,
where each dimension refers to a quality attribute. As
a shorthand notation, we use ψ[i] to represent the i-th
(quality) attribute value of ψ.

The notion of dominance [5] is used to compare quality
vectors. A quality vector ψ is said to dominate another
one ψ′ (denoted as ψ ≺ ψ′), if ∃ 1 ≤ i ≤ c, ψ[i] is better
than ψ′[i] and ∀ 1 ≤ i ≤ c, ψ[i] is not worse than ψ′[i].

A location is a pair (x, y) in the Euclidean space R2,
where x and y are coordinate values. A spatial object o =
〈loc, ψ〉 consists of both a location o.loc and a quality
vector o.ψ. The notation dist(o, o′) denotes the Euclidean
distance between the locations of the spatial objects o and
o′. Given two spatial objects o and o′, o is said to be a
dominator of o′ when o.ψ ≺ o′.ψ.

We proceed to present the definitions of the nearest
dominator (ND) and nearest dominator distance (ndd) [16]

of a location s, as follows.
Definition 1: (Nearest Dominator, Nearest Dominator

Distance) Given a location s, its quality vector Ψ, and a
set of spatial objects P , the nearest dominator of s in P
is defined as

ND(s,Ψ, P ) = argmin
o∈P, o.ψ≺Ψ

dist(s, o) (1)

i.e., the nearest neighbor of s in P among those that
dominate Ψ.

The nearest dominator distance ndd(s,Ψ, P ) of s is
then defined as: ndd(s,Ψ, P ) = dist(s,ND(s,Ψ, P )).

Refer to the example in Figures 1 and 2. The ND of
si is the hotel hj that minimizes the dist(si, hj) value,
among those hotels dominating the design competence
Ψ. Figure 2b lists the NN and ND of each location si. It is
important to note that NN is not necessarily the same as
ND. For example, the NN of s2 is h4 which however does
not dominate s2 with respect to its design competence.
Whereas its next nearest neighbor h3 does, which exactly
is s2’s ND. It is also noteworthy that a location’s ND is
not necessarily a skyline point, as indicated by h3 here.
By considering the distance of each location si from its
ND, we pick the largest one (i.e., dist(s3, h5)), and take
its location (i.e., s3) as the result location for building the
new hotel.

Specifically, we define the novel farthest dominated
location query as follows.

Definition 2: (Farthest Dominated Location Query)
Given a set of (competitors’) spatial objects P , a set
of (candidate) locations L, and a quality vector Ψ as
the design competence, the farthest dominated location
query (FDL)1 returns from L a location s such that the
distance ndd(s,Ψ, P ) is maximized, i.e.,

∀ s′ ∈ L, ndd(s,Ψ, P ) ≥ ndd(s′,Ψ, P )

Refer to the hotel example in Figures 1 and 2. There
are c = 2 quality attributes (i.e., price and star). The set
of objects is P = {h1, h2, · · · , h6} and the set of locations
is L = {s1, s2, · · · , s4}. Hotel h1 is a spatial object, with
a fixed location in the Euclidean space and the quality
vector h1.ψ = (180, 4). Let the design competence be Ψ =
(200, 4). Location s3 is the farthest dominated location
and its nearest dominator is h5.

1.2 Technical Contributions and Paper Organization
The processing of the FDL query raises non-trivial chal-
lenges. First, the ND of a location s is not necessarily the
NN of s, because the NN may not have quality attributes
that dominate s (See Figure 2b). Although it is possible to
solve the FDL query using incremental NN queries, as to
be detailed in Section 3.1, such a straightforward solution
is not efficient because it makes little use of non-spatial
quality attributes in designing efficient query processing.

Second, the ND of a location s is not necessarily in the
skyline of all locations in P with respect to their quality

1. The definition of the FDL query can be extended to return the k
farthest dominated locations.
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attributes. If an object o in P dominates s, it can still be
dominated by some other objects in P and therefore it is
not in the skyline. This is exemplified by h3 and locations
s1 and s2 in Figures 1 and 2. On the other hand, even if
object o is in the skyline of P , it is not necessary for o
to be the ND of a location s. There are two reasons for
this: (1) o is unable to dominate s (e.g., h2 and h6 in the
example); (2) another object o′ nearer to s dominates s
(e.g., h5 to s3 in the example).

As a result, there is no deterministic relationship be-
tween the result of a FDL query and that of a skyline
query. Particularly, a FDL query cannot be answered by
obtaining the skyline of P followed by some postprocess-
ing on the skyline. Refer to the example again. Taking
into account all objects in P , the FDL is s3 and its ND is
h5. Whereas, if only skyline points in P are considered,
namely {h1, h2, h6}, s4 will be the FDL and its ND is
h1. However, this is not desired because the existing
competence from non-skyline points is totally ignored.

We in this paper make the following major contribu-
tions. First, to the best of our knowledge, this paper is
the first to formulate the FDL query that captures prac-
tical needs involving not only spatial locations but also
quality attributes. Second, we adapt the incremental NN
search algorithm to process the FDL query. This makes
it possible to find the FDL on legacy implementations
without much additional investment. Third, we design
specific and more efficient methods for the FDL query.
Fourth, we conduct a thorough theoretic analysis on the
performance of proposed methods. Fifth, we generalize
our proposals to deal with the generic distance metric
and other interesting query types. Finally, we conduct an
extensive experimental study for the proposed methods
on both real and synthetic datasets, and show that our
best algorithm is indeed efficient and scalable.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 elaborates on our
FDL query algorithms. Section 4 covers the technical
generalizations. Section 5 experimentally evaluates the
proposals, followed by conclusion in Section 6.

2 RELATED WORK

Location selection queries. In the past, different con-
straints have been combined with conventional spatial
queries to select semantically optimal locations or ob-
jects. Du et al. [11] proposed the optimal-location query.
Involving a site set S, a weighted object set O, and a
spatial region Q, an optimal-location query returns a
location in Q with maximum influence. The influence
of a location l is the total weights of objects in O, each
of which has l as its nearest neighbor in S∪{l}. In other
words, the influence of a location is the sum of weights of
all its reversed nearest neighbors (RNNs). With the same
influence definition, Xia et al. [24] defined a different top-
t most influential spatial sites query, which returns t sites
(from S and within Q) with the largest influences. Within

the same context, Zhang et al. [26] proposed the min-
dist optimal-location query. Different from maximizing
influence, such a query selects from Q a location l which
minimizes the average distance from every object in O to
its nearest site in S ∪ {l}. Such location-optimal queries
differ from our FDL query in that they do not con-
sider multi-dimensional dominance relationship among
possible locations and existing objects. This makes their
solutions inapplicable to our specific problem.

Yiu et al. [25] formalized the top-k spatial prefer-
ence query, which returns the k spatial objects with
the highest ranking scores. Objects are ranked based
on an aggregate score function that is defined for the
feature qualities in their spatial proximity. Such score
functions, however, do not support multi-dimensional
dominance relationship. Therefore, the top-k spatial pref-
erence query is essentially different from our FDL query.

Li et al. [16] defined the concepts of ND and ndd,
combined dominance relationship with spatial distance,
and defined complex location selection problems. Two
fundamental differences distinguish our work from that
one. First, only one set is considered in [16], from which
desirable objects are selected. Whereas our problem in-
volves two datasets with different practical semantics,
and selects best locations from the location set. Second,
a linear restriction on quality attributes is used in [16].
The distance from an object to that restriction within
the quality attributes space is to be minimized. Whereas
our problem employs a design competence vector, and
the Euclidean distance from a location to its nearest
dominator is to be maximized. Because of the different
constraints and contrary optimization objectives, our
problem in this paper is not a bichromatic version of
the problem in [16]. As a result, the approaches in [16]
cannot be directly applied to solve the problem in this
paper. Also, Li et al. [16] have not studied the prob-
lem for generic distance metric like the road network
distance or Manhattan distance. In contrast, we develop
technical solutions for such generic cases in this paper.

Skylining in spatial and spatiotemporal context. Dom-
inance relationship has been adopted in spatial and
spatiotemporal database to define specific problems.
Huang and Jensen [13] proposed a in-route skyline query
for location-based services. When moving along a pre-
defined road route towards her/his destination, a user
may visit points of interest in the network. Points to
visit are selected in terms of multiple distance-related
preferences like detour and total traveling distance. The
authors optimize such selections using skyline queries
involving specific interesting dimensions.

Sharifzadeh and Shahabi [20] defined a spatial skyline
query (SSQ) in spatial databases. Given a set of query
points Q = {q1, . . . , qn} and two points p and p′, p is
said to spatially dominates p′ iff dist(p, qi) ≤ dist(p′, qi)
for any qi ∈ Q and dist(p, qi) < dist(p′, qi) for at least
one qi ∈ Q. The spatial skyline of a set of points P is
the subset of all points not spatially dominated by any
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other point of P .
Note that making the location set L in our FDL query

be Q as described above does not make the FDL query
equivalent to the SSQ. The FDL query is not a sky-
line query characterized by multi-criteria optimization;
the SSQ is still a skyline query in a transformed n-
dimensional space, in which each dimension indicates
the distance from a spatial point to a query point. The
FDL query involves spatial distances in “ranking” and
quality attributes in dominance definition; the basic form
of SSQ does not involve any non-spatial attributes and
define dominance based on distances to multiple query
points. These major differences make the SSQ unsuitable
for our FDL query. The extended version of SSQ [20],
which takes into account non-spatial quality attributes,
is still a skyline operator.

Huang et al. [14] defined continuous skyline query in
a spatiotemporal context. A spatial object p dominates
another object p′ with respect to a query location q, if p
is closer to q than p′ and p dominates p′ on all non-spatial
attributes. A continuous skyline query then maintains all
spatial objects not dominated by any others, while the
query q is continuously moving along a known line in
the Euclidean space. Within the similar setting, Zheng
et al. [27] addressed how to search for the result valid
scope for such a query without a known moving pattern.

Those works construct multiple dimensions of interest
and then issue skyline queries on those dimensions to
solve their specific problems. In contrast, our FDL query
is not a skylining problem in a transformed space.

3 ALGORITHMS FOR FDL QUERIES

Table 1 lists the notations used throughout the paper.
Without the loss of generality, we assume that smaller
values are preferred in quality attribute comparisons.

Notation Meaning
L a set of spatial locations (candidates)
P a set of spatial objects (competitors)
RL an R-tree indexing the set L
RP an R-tree indexing the set P
c number of quality attributes/dimensions
p.ψ c-dimensional vector (qualities of object p)
Ψ c-dimensional vector (design competence)

p.ψ[i] or Ψ[i] i-th value of the vector
Ψ ≺ Ψ′ Ψ dominates Ψ′ (w.r.t. qualities)

e a (spatially) minimum bounding rectangle
dist(p, q) distance between two points/locations p and q

mindist(e, e′) minimum distance between e and e′

maxdist(e, e′) maximum distance between e and e′

ndd(s,Ψ, P ) nearest dominator distance of location s over P
Φ(e) bit value for the entry e in a bitmap Φ

TABLE 1
List of notations

3.1 Baseline Algorithms
3.1.1 Naive Iterative Incremental NN Search
We first present the naive iterative incremental NN search
(NII) for processing the FDL query. NII takes as input
(i) a 2-dimensional R-tree RP on the spatial object set

P , (ii) a set of locations L, (iii) a c-dimensional design
competence Ψ. It examines each location s of set L and
computes the nearest dominator (ND) of s, by perform-
ing the incremental nearest neighbor search [12] of s on
the tree RP . During the iterative search, the largest ndd
is maintained together with the corresponding location.
After all locations are examined, the maintained location
is returned as the query result.

Example of NII. In this example, the competitors’ set
P of objects contain p1, p2, · · · , p6, whose qualities are
shown in Figure 3a, and their locations in the Euclidean
space are depicted in Figure 3b. The R-tree RP (indexing
P ) has two root entries e1 and e2, pointing to a leaf node
with p1, p2, p3, and a leaf node with p4, p5, p6 respectively.

Let the design competence Ψ be (3, 3). We need to
find the nearest dominator of the location s in Figure 3b.
The NII algorithm retrieves the first NN object p1 (of s),
whose quality vector (4, 9) cannot dominate Ψ. Similarly,
the next three NN objects p2, p3, p4 also cannot dominate
Ψ. After that, the next NN object p5 has the quality vector
(2, 3), which dominates Ψ. Thus, the nearest dominator
of s is p5. Observe that both leaf nodes are accessed.

Object p p.ψ[1] p.ψ[2]
p1 4 9
p2 6 7
p3 8 5
p4 4 1
p5 2 3
p6 3 5

p1

p2
p3

p4

p6

p5

e
1

e
2

s

y

x

(a) competitors’ objects’ qualities (b) NII example
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e
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(c) EII example (d) BFS score derivation

Fig. 3. Running example with Ψ = (3, 3)

3.1.2 Enhanced Iterative Incremental NN Search
As shown above, the NII algorithm accesses many un-
necessary objects (of P ) that cannot dominate Ψ, before it
finds the nearest dominator of the location s. Motivated
by this observation, we propose to include additional
information into non-leaf entries of the tree RP , for
reducing the number of accesses to those unqualified
spatial objects (and R-tree nodes).

We propose an R-tree variant called ψ-augmented R-
tree, for indexing the competitors’ object set P . Like
the traditional R-tree, this tree also groups the nodes
according to their spatial extent. The only difference is
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that, in our ψ-augmented R-tree, each non-leaf entry e
stores an additional c-dimensional vector e.ψ. The i-th
value of the vector is recursively defined as:

e.ψ[i] = min{e′.ψ[i] | e′ is in the child node of e} (2)

In words, the value e.ψ[i] indicates the minimum value
of objects in its subtree, for the i-th quality attribute. The
following lemma represents a pruning rule for pruning
a non-leaf entry whose subtree cannot contain any object
that dominates the design competence Ψ.

Lemma 1: Let RP be the ψ-augmented R-tree of the
object set P . Let e be a non-leaf entry of RP . If e.ψ 6≺ Ψ,
e’s subtree cannot contain any object p dominating Ψ.

Proof of this lemma is straightforward according to
dominance transitivity. With this lemma, we extend the
NII algorithm into the enhanced iterative incremental
NN search algorithm (EII), as shown in Algorithm 1.

Algorithm 1 EII(Augmented R-tree RP of P , Set L,
Competence Ψ)

1: fdl :=null; ndd := 0
2: for each location s ∈ L do
3: s.ND:=null; initialize a min-heap H
4: for each entry e′ in RP ’s root do
5: if e′.ψ ≺ Ψ then
6: enheap(H, 〈e′,mindist(s, e′)〉)
7: while H is not empty and s.ND is null do
8: e := deheap(H)
9: if e is a non-leaf entry then

10: for each child e′ of e do
11: if e′.ψ ≺ Ψ then
12: enheap(H, 〈e′,mindist(s, e′)〉)
13: else
14: s.ND := e
15: if dist(s, s.ND) > ndd then
16: ndd := dist(s, s.ND); fdl := s

17: return fdl

Basically, the EII algorithm applies the incremental
NN search [12] in Lines 3–16. The notation mindist(s, e)
represents the minimum Euclidean distance between the
location s and an R-tree entry e [19]. A min-heap H
is used to organize its entries 〈e,mindist(s, e)〉 to be
visited in ascending order of the distance mindist(s, e).
The difference from [12] is that, in Lines 5–6 and 11–
12, an entry e is enheaped only if e.ψ ≺ Ψ. This way,
unnecessary entries are pruned and the number of node
accesses is dramatically reduced.

Example of EII. The structure of the ψ-augmented
R-tree (in Figure 3c) is the same as that of the tra-
ditional R-tree (in Figure 3b), except that each non-
leaf entry e in the ψ-augmented R-tree stores its qual-
ity vector e.ψ. For instance, the entry e1 points to a
leaf node containing p1, p2, p3, whose quality vectors
appear in Figure 3a. Thus, the entry e1 stores e1.ψ =
(min{4, 6, 8},min{9, 7, 5}) = (4, 5). Similarly, the entry e2

stores e2.ψ = (2, 1).
Apply Algorithm 1 to Figure 3c. The root entry e1 is

pruned as its quality vector e1.ψ cannot dominate Ψ.
Next, the root entry e2 is enheaped into H because its

quality vector e2.ψ dominates Ψ. The entry e2 is then
deheaped from H and then its child entries (p5) that
dominate Ψ are enheaped. Eventually, the object p5 is
deheaped and it is taken as the nearest dominator of s.

3.1.3 Access Locality Optimization
Both the NII and EII algorithms are able to exploit an
available memory buffer for reducing the number of
accesses. To improve the access locality of the algorithms
(and thus the buffer’s hit rate), it is beneficial to process
the locations of L by the Hilbert curve ordering [7], [17].

Therefore, we sort the locations in L by the Hilbert
curve ordering, and then process them accordingly in
both NII and EII algorithms. In Section 5, we will study
the effect of the Hilbert curve ordering.

3.2 Best-First Search Algorithm
Observe that the algorithms discussed above do not
require any spatial index on the location set L. In this
section, we index the location set L by an R-tree RL, and
exploit the grouping of these locations for accelerating
the computation of the query result.

We first design a technique for computing the upper
bound of nearest dominator (ND) distance of any loca-
tion s in a group eL (i.e., a rectangle). Then, we discuss
how to prioritize the traversal on tree RL based on such
upper bound ND distance of tree entries.

Deriving upper bound ND distance for a group. Let
maxdist(e, e′) denote the maximum Euclidean distance
between two rectangles e and e′ [19]. Given the design
competence Ψ and a minimum bounding rectangle eL
from RL, our question is how to derive the upper bound
of the distance ndd(s,Ψ, P ), for any possible location
s in eL. The following lemma shows that the distance
ndd(s,Ψ, P ) is upper bounded by maxdist(eL, p∗), when
there is an object p∗ ∈ P satisfying p∗.ψ ≺ Ψ.

Lemma 2: Let p∗ ∈ P be an object such that p∗.ψ ≺
Ψ, where Ψ is the design competence. For any location
s in a minimum bounding rectangle eL, it holds that
maxdist(eL, p

∗) ≥ ndd(s,Ψ, P ).
Proof: Since p∗.ψ ≺ Ψ, the nearest dominator

distance of s on P must be less than or equal to
dist(s, p∗), i.e., we have dist(s, p∗) ≥ ndd(s,Ψ, P ). As s
falls in the minimum bounding rectangle eL, we obtain
maxdist(eL, p

∗) ≥ dist(s, p∗). Combining both inequali-
ties, we get maxdist(eL, p∗) ≥ ndd(s,Ψ, P ).

Obviously, the above upper bound ND distance can
be tightened by finding an object p∗ ∈ P that satisfies
p∗.ψ ≺ Ψ and at the same time its location stays close to
eL in the Euclidean space.

Based on the above observation and Lemma 2, we
develop Algorithm 2 for computing the above upper
bound ND distance. It takes the following as input: the
spatial object set P ’s augmented R-tree RP , a minimum
bounding rectangle eL (of a group of locations in L), and
the design competence Ψ. The algorithm employs a min-
heap to access all entries in RP in ascending order of
mindist between them and the rectangle eL. In addition,
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Lemma 1 is applied to rule out irrelevant entries in RP
(Lines 3–4 and 9–10). When a spatial object e is met
(Lines 11–12), it returns the distance maxdist(eL, e) as
the upper bound ND distance for all locations in eL.

The above algorithm regards the input eL as a rectan-
gle. In case eL is a location (i.e., degenerated rectangle),
the returned distance maxdist(eL, e) (at Line 12) degen-
erates to dist(eL, e). This means that the algorithm in-
deed computes the exact ND distance if eL is a location.

Algorithm 2 score(Augmented R-tree RP of P , Mini-
mum bounding rectangle eL of a group of locations in
L, Competence Ψ)

1: initialize a min-heap H
2: for each entry e′ in RP ’s root do
3: if e′ψ ≺ Ψ then
4: enheap(H, 〈e′,mindist(eL, e′)〉)
5: while H is not empty do
6: e := deheap(H)
7: if e is a non-leaf entry then
8: for each child e′ of e do
9: if e′.ψ ≺ Ψ then

10: enheap(H, 〈e′,mindist(eL, e′)〉)
11: else
12: return maxdist(eL, e)

Example of upper bound ND distance derivation. We
then illustrate the above technique for computing the
upper bound ND distance of s in Figure 3d. Suppose
that the design competence is Ψ = (3, 3). The root entry
e1 is pruned as e1.ψ cannot dominate Ψ. Next, the root
entry e2 is enheaped into H because e2.ψ dominates Ψ.
After deheaping the entry e2 from H , its child entries
(p5) that dominate Ψ are enheaped into H . Eventually,
the object p5 gets deheaped from H and the distance
maxdist(eL, p5) is returned as the upper bound ND
distance of e (shown as dotted line in Figure 3d).

Best-first search algorithm. We proceed to develop
a best-first search algorithm that traverses the location
set L’s R-tree RL in descending order of the upper
bound ND distances of tree entries. The best-first search
algorithm (BFS) is shown in Algorithm 3.

It uses a max-heap H (Line 1) to organize R-tree entries
encountered in the search, prioritizing those entries with
higher scores which indicate farther dominated locations
(Lines 3 and 8). Due to the property of the max-heap
H and the upper bounding property of score(RP , e

′,Ψ),
the first location deheaped from the max-heap has the
largest nearest dominator distance among all locations.
In addition, score(RP , e,Ψ) refers to the exact ND dis-
tance of e when e is a location. Therefore, such a location
e is returned as the farthest dominated location (Line 10).

3.3 Spatial Join Based Algorithm
In both the EII and BFS algorithms, the ψ-augmented
R-tree is used to index the spatial object set P . The
extra field ψ stored in a non-leaf entry is used to prune
the search space; however, it does not fully prevent
unnecessary accesses of tree nodes. Suppose that the
design competence is Ψ = (7, 6). In Figure 3c (and Figure

Algorithm 3 BFS(Augmented R-tree RP of P , R-tree RL
of L, Competence Ψ)

1: initialize a max-heap H
2: for each entry e′ in RL’s root do
3: enheap(H, 〈e′, score(RP , e

′,Ψ)〉)
4: while H is not empty do
5: e := deheap(H)
6: if e is a non-leaf entry then
7: for each child e′ of e do
8: enheap(H, 〈e′, score(RP , e

′,Ψ)〉)
9: else

10: return e

3d), despite the fact that the quality vector e1.ψ = (4, 5)
of e1 dominates Ψ, it does not guarantee that its subtree
contains an object pi such that pi.ψ ≺ Ψ. In this example,
all objects p1, p2, p3 located within e1 cannot dominate Ψ.

In following, we first use an R-tree RP to index the
set P and discuss how to compute a bitmap based on
P . Then, we present a spatial join based algorithm that
exploits the above bitmap to reduce the number of node
accesses effectively.

Dominance bitmap. We proceed to give the definition
of the dominance bitmap Φ as follows.

Definition 3: (Dominance Bitmap) Given the design
competence Ψ and an R-tree RP (for indexing the object
set P ), the dominance bitmap Φ stores a bit value Φ(e)
as follows, for each non-leaf entry e in RP : The bit Φ(e)
is set to 1 if the subtree of e contains at least an object p
such that p.ψ ≺ Ψ; otherwise, Φ(e) is set to 0.

At query time, we compute the dominance bitmap Φ
by performing a complete depth-first traversal on the
R-tree RP . The bitmap occupies f · NL bits, where the
average tree node fanout is f , and the tree contains NL
non-leaf nodes. The size of Φ is small and it fits into
main memory. E.g., for an R-tree (with average fanout
f = 50) containing 1 million objects, the bitmap occupies
only 20000 bits, i.e., 2500 bytes.

We illustrate how to derive Φ, by performing depth-
first search on the R-tree in Figure 3b. Suppose that the
design competence is Ψ = (7, 6). After accessing the child
node of e1, none of its objects dominate Ψ so we set
Φ(e1) = 0. We then access the child node of e2, find out
that (at least) p5.ψ dominates Ψ so we set Φ(e2) = 1.

Pruning rules using dominance bitmap. In the follow-
ing, we discuss how the dominance bitmap can be used
to prune unqualified entries from the trees RP and RL.

Let eL be an entry of the tree RL. Let eL.PL be the
set of entries eP of the tree RP (visited so far) such that,
for any location s ∈ eL, there exists an entry eP ∈ eL.PL
whose subtree contains the nearest dominator of s.

First of all, we apply the following pruning rule on
eL.PL as any entry ei satisfying Φ(ei) = 0 cannot contain
objects that dominate the design competence Ψ.

Pruning Rule 1: (Bitmap-based Pruning) Each non-
leaf entry ei from eL.PL is pruned if Φ(ei) = 0. Each
leaf entry ei from eL.PL is pruned if ei.ψ 6≺ Ψ.
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After applying Pruning Rule 1, the subtree of each
entry ei ∈ eL.PL must contain at least an object p∗ that
dominates Ψ. We then have the following lemma.

Lemma 3: Let ei be a minimum bounding rectangle
such that it contains an object p∗ ∈ P satisfying p∗.ψ ≺ Ψ,
where Ψ is the design competence. For any location s in a
rectangle eL, it holds that maxdist(eL, ei) ≥ ndd(s,Ψ, P ).

Proof: We get maxdist(eL, p
∗) ≥ ndd(s,Ψ, P ) by

Lemma 2. We have maxdist(eL, ei) ≥ maxdist(eL, p
∗)

since ei contains p∗. Thus we get: maxdist(eL, ei) ≥
ndd(s,Ψ, P ).

By Lemma 3, the distance maxdist(eL, ei) provides an
upper bound of the distance ndd(s,Ψ, P ) for any location
s ∈ eL. Suppose that Pruning Rule 1 has been applied on
eL.PL. By taking the minimum of these upper bounds
over all ei’s in eL.PL, we define the upper bound ndd
distance of the rectangle eL as follows:

UBndd(eL) = min
ei∈eL.PL

maxdist(eL, ei) (3)

The upper bound distance UBndd(eL) of the entry eL
enables us to apply: (i) Pruning Rule 2, a local pruning
technique for discarding entries ei ∈ eL.PL that do not
contain nearest dominator of any location in eL, and (ii)
Pruning Rule 3, a global pruning technique for removing
an entry eL (and its set eL.PL) that does not lead to
better (higher) ND distances.

Pruning Rule 2: (Local Pruning) Each entry ei from
eL.PL is pruned if mindist(eL, ei) > UBndd(eL).

Pruning Rule 3: (Global Pruning) Let s′ ∈ L be a
location, and p′ ∈ P be its nearest dominator object
with respect to the design competence Ψ. An entry eL
(together with its set eL.PL) is pruned if dist(s′, p′) >
UBndd(eL).

These two rules are easy to prove with the defi-
nition of UBndd(eL). Figure 4a illustrates the deriva-
tion of the upper bound distance UBndd(eL) of the
entry eL (from the tree RL). In this example, the set
eL.PL contains three entries ep1, ep2, ep3, all of them
have the bit value 1 in the dominance bitmap Ψ.
We then compute UBndd(eL)=min{maxdist(eL, ep1),
maxdist(eL, ep2), maxdist(eL, ep3)} = {0.5, 0.6, 0.9} =
0.5. The local pruning rule is applied to remove ep3 from
eL.PL, since mindist(eL, ep3) = 0.65 > UBndd(eL) =
0.5. Note that ep2 cannot be pruned, because for a
location s ∈ eL, ND(s,Ψ, P may come from ep2 though
maxdist(eL, ep2) > maxdist(eL, ep1).

eL

y

x

0.5 eP1

0.6

0.65
eP2

eP3

0.9

eL

y

x

0.5 eP1

eP2

p’

s’

0.53

(a) local pruning of eP3 (b) global pruning of eL

Fig. 4. Illustration of pruning rules

In Figure 4b, we have found a location s′ with its ND
distance as 0.53, which is greater than UBndd(eL) = 0.5.
Thus, the global pruning rule is used to discard the entry
eL (and its set eL.PL) from searching.

Spatial join based algorithm. With the above pruning
rules, we are ready to present our spatial join based
algorithm (SJB). Its pseudo-code is shown in Algorithm 4.
Each heap entry is of the form 〈eL, eL.PL, UBndd(eL)〉,
where eL is an entry in the tree RL, eL.PL is the set of
potential tree entries of RP that could be joined with eL
to produce better results. Entries in eL.PL are sorted in
ascending order of mindist(eL, ej) where ej ∈ eL.PL.
A max-heap H is employed for organizing its heap
entries to be visited in descending order of upper bound
distances UBndd(eL) of its entries.

Algorithm 4 SJB(R-tree RP of P , R-tree RL of L, Com-
petence Ψ)

1: initialize a max-heap H
2: create the dominance bitmap Φ for RP w.r.t. Ψ
3: eroot := RL.root; eroot.PL := {RP .root}
4: enheap(H, 〈eroot, eroot.PL, 0〉)
5: while H is not empty do
6: 〈eL, eL.PL〉 := deheap(H)
7: if eL is a leaf entry then
8: if eL.PL contains only leaf entries then
9: return eL

10: else
11: goto Line 20
12: else
13: if eL.PL.first is an object or
14: an RP entry is expanded in previous iteration then
15: for each entry ei in eL do
16: ei.PL := eL.PL
17: apply local pruning (Rule 2) on ei.PL
18: enheap(H, 〈ei, ei.PL, UBndd(ei)〉)
19: else
20: eP := eL.PL.first
21: remove the first entry from eL.PL
22: for each entry ei in eP do
23: if ei is a dominating object or Φ(ei) = 1 then
24: add ei to eL.PL
25: apply local pruning (Rule 2) on eL.PL
26: enheap(H, 〈eL, eL.PL, UBndd(eL)〉)

During the joining, RP entries and RL entries are
basically expanded in an alternative way (Lines 13–
26). An RL entry eL is expanded as follows. For each
subentry ei in eL, all joining entries from eL are copied
(Line 16), local pruning (Pruning Rule 2) is then applied
on ei.PL, and finally ei is inserted into max-heap H with
its upper bound distance UBndd(ei) (Lines 17–18).

When an RP entry is to be expanded, the first one in
the current eL’s PL list is picked as eP and removed
from the list (Lines 20–21). Each subentry ej in this eP
is added to eL.PL, if ej itself is an object that dominates
Ψ or it is an entry that contains dominating object(s)
in its subtree (i.e., Pruning Rule 1). After all subentries
of eP have been processed, the entry eL together with
its eL.PL set and upper bound distance UBndd(eL), is
reinserted into max-heap H (Lines 25–26). The algorithm
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returns when a location and a spatial object is to be
joined, according to Pruning Rule 3 (Lines 8–9).

Our SJB algorithm differs from the spatial join and
R-tree join (RJ) algorithm [6]. They consider only the
spatial relationship between the objects in S and P , but
not their dominance relationship on quality attributes of
objects in our FDL query. Our SJB algorithm also differs
from RJ algorithm in that SJB does not employ recursion.
Instead, SJB algorithm joins S and P incrementally,
integrating our specific dominance check efficiently in
each increment step.

3.4 Analysis of Pruning Effectiveness

In this section, we analyze the pruning effectiveness of:
(i) a ψ-augmented tree (used in EII and BFS) and (ii) an
R-tree with a dominance bitmap Φ (used in SJB).

Suppose that there are N objects in the object set P .
For the sake of analysis, we assume that the quality
vectors of these objects are uniformly distributed in
the domain [0, 1]c, where c is the number of quality
attributes/dimensions.

Observe that the ψ-augmented tree achieves a group-
ing of nodes similar to the R-tree, since both of them
group the objects into leaf nodes solely based on their
spatial locations. Thus, the following analysis focuses on
only the quality dimensions but not spatial locations.

Let the average fanout of both R-trees be f .2 Observe
that an entry at tree level j contains f j objects in its
subtree. Let e.QR be a hyper-rectangle in the space [0, 1]c,
defined as the minimum bounding rectangle of quality
vectors (of objects) in e’s subtree. Note that e.QR is only
used as a convenient notation in our analysis, it is not
explicitly stored in our trees. According to Theodoridis
et al. [23], the side length λj of e.QR equals to:

λj =

(
f j

N

) 1
c

(4)

We proceed to examine the example of Figure 5,
with c = 2 quality attributes/dimensions. Specifically,
we consider three design competencies Ψ1,Ψ2,Ψ3 (for
different queries) and check whether a non-leaf entry e
in the tree can be pruned. We first study the case of ψ-
augmented tree and then investigate the case of an R-tree
with dominance bitmap.

Figure 5a depicts the augmented quality vector e.ψ of
the entry e, in the c-dimensional space defined by quality
dimensions. In case the design competence falls into
the gray region (e.g., Ψ1), we guarantee that e.ψ cannot
dominate Ψ1 and thus the entry e is pruned (in the
EII/BFS algorithms). On the other hand, the child node
of e needs to be accessed when the design competence
stays in the remaining region (e.g., Ψ2,Ψ3).

Figure 5b illustrates the bit value Φ(e) for the entry
e in the dominance bitmap Φ. Recall from Section 3.3
that, the dominance bitmap is constructed by a complete

2. In practice, a ψ-augmented tree stores additional information per
entry so its fanout is expected to be slightly smaller than an R-tree.

e.QR

Ψ1

ψ [1]

ψ [2]

e .ψ
Ψ3

Ψ2

region for 

pruning e

λj

Ψ1
ψ [1]

ψ [2]

Ψ3

Ψ2

(Φ(e) = 0)

(Φ(e) = 1)

Pr(Φ(e) = 0) 
= 0.52

prob. with
no points

e.QR
λj

r

(a) ψ-augmented entry (b) dominance bitmap
(for EII and BFS) (for SJB)

Fig. 5. Analysis of pruning effectiveness, at c = 2

depth-first traversal of the tree. Regarding the design
competence Ψ1, none of the points in e.QR can dominate
Ψ1, so we have Φ(e) = 0, meaning that the entry e will
get pruned (in the SJB algorithm). For the case of Ψ2, any
point in e.QR dominates Ψ2, we obtain Φ(e) = 1 and the
entry e cannot be pruned. Notice that the dominance
bitmap has the same pruning effectiveness as the ψ-
augmented tree, for the design competencies Ψ1 and Ψ2.

The real advantage of using the dominance bitmap is
that, even if a design competence (e.g., Ψ3) resides in
e.QR, it is still possible to obtain Φ(e) = 0 (and prune
the entry e), for the scenario that the subtree of e indeed
contains no objects with quality vectors dominating Ψ3

(i.e., empty space in gray area). Our next question is to
derive the probability of such an event.

The following analysis considers the case that the
design competence Ψ falls into e.QR. For simplicity, we
assume that the i-th coordinate Ψ[i] (of Ψ) deviates from
the i-th dimension lower bound value of e.QR, by an
offset value r. Suppose that the entry e is at the j-th
tree level. As illustrated in Figure 5b, our objective is to
find out the probability that the subtree of e contains no
objects in the gray region. Observe that the ratio of the
gray region’s area to e.QR’s area is given by: (r/λj)

c.
Since the subtree of e contains f j objects, the probability
that the bit value Φ(e) equals to 0 is given by:

Pr( Φ(e) = 0 ) =

(
1−

(
r

λj

)c)fj

=

(
1− Nrc

f j

)fj

(5)

Interestingly, the probability rises rapidly when c in-
creases. Thus, the dominance bitmap offers better prun-
ing power at higher dimensionality.

Continuing with the example of Figure 5b, we have
r = λj/4 for the design competence Ψ3. Substituting the
value j = 1 and f = 10 into the equation, we obtain
Pr(Φ(e) = 0) = 0.52 for the case of Ψ3.

3.5 Handling Undominated Ψ

So far we have implicitly assumed that the design
competence Ψ is dominated by some object(s) in P . As
a matter of fact, it is possible that an input Ψ is too
advantaged to be dominated. For such an input, SJB
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algorithm is able to stop with reasonable overhead to
create the dominance bitmap only, whereas none of the
other algorithms stop early.

To avoid unnecessary high overhead, we adjust these
algorithms slightly to make them able to handle undom-
inated Ψs efficiently. For the iterative incremental NN
search based algorithms (NII and EII), after processing
the first location we check if the result fdl is null. If
positive, which means the input Ψ is not dominated,
we return without processing any remaining location.
As a result, the overhead for NII is to retrieve all spatial
objects via the incremental NN search; the overhead for
EII is much lower because of the pruning effectiveness
in the augmented R-tree RP .

For BFS algorithm, the score algorithm (Algorithm 2)
returns nothing if the input design competence Ψ is not
dominated. We instead let it return a value that cannot
be the distance maxdist(eL, e), e.g., -∞. Accordingly, we
in BFS check each score value returned. If it is -∞, we
discard the corresponding entry e′ and exit immediately.
This way, the overhead for BFS to handle an undomi-
nated Ψ is merely calling score algorithm for the first
entry in RL root. The effect will be seen in Section 5.2.

4 TECHNICAL GENERALIZATIONS

4.1 Generalization of Distance Metrics
So far we have employed the Euclidean distance as
the distance metric in the FDL query definition. How-
ever, other distance metrics, e.g., the road network dis-
tance [21] and Manhattan distance, are also of impor-
tance in many scenarios. Therefore, we in this section
generalize the FDL query definition and algorithms to
support generic distance metrics.

Let distg(o1, o2) denote the generic distance between
two spatial objects or locations. Given a location s, its
quality vector Ψ, and a set of spatial objects P , the
definitions of ND and ndd in Section 1.1 are generalized
as follows.

Definition 4: (Generalized Nearest Dominator, Gener-
alized Nearest Dominator Distance)

NDg(s,Ψ, P ) = argmin
o∈P, o.ψ≺Ψ

distg(s, o) (6)

nddg(s,Ψ, P ) = distg(s,NDg(s,Ψ, P )) (7)

Accordingly, the FDL query is generalized as follows.
Definition 5: (Generalized Farthest Dominated Loca-

tion Query) Given a set of (competitors’) spatial objects
P , a set of (candidate) locations L, and a quality vector
Ψ as the design competence, the generalized farthest
dominated location query (FDLg) returns from L a
location s such that the generic distance nddg(s,Ψ, P ) is
maximized, i.e., ∀ s′ ∈ L, nddg(s,Ψ, P ) ≥ nddg(s′,Ψ, P )

To process the FDLg query, our algorithms for Eu-
clidean distance based FDL query are generalized as
follows.

Generalizing NII is straightforward. Instead of using
R-tree as the index, we use the M-tree [9] to index

the spatial object set P based on the generic distance
metric. Accordingly, the incremental nearest neighbor
search on R-tree is replace by its counterpart on M-
tree [12]. According to the definition of M-tree, all objects
in a subtree T are within the covering radius T.cr from
the routing object T.ro. Given a location s and a M-tree
subtree T , the lower bound distance between them, i.e.,
mindistg(s, T ) is distg(s, T.ro)− T.cr.

To generalize the EII algorithm, we augment the M-
tree on P as we have done in Section 3.1.1, adding a
c-dimensional vector e.ψ in each node entry of M-tree
MP . Then, by replacing dist with distg and mindist with
mindistg defined above, we generalize EII (Algorithm 1)
to the generic distance metric.

To generalize the BFS algorithm, we also use the
augmented M-tree MP instead of the augmented R-
tree RP on P . In addition, we use the M-tree ML

instead of the R-tree RL on L. Accordingly, we gen-
eralize the score algorithm (Algorithm 2) by using the
generic mindist and maxdist. Specifically, the general-
ized maxdist between a location s and a M-tree subtree T
is maxdistg(s, T ) = distg(s, T.ro)+T.cr. The generalized
mindistg between two M-tree subtrees T1 and T2 is
mindistg(T1, T2) = distg(T1.ro, T2.ro)− T1.cr − T2.cr.

To generalize the SJB algorithm, we use the M-tree
MP on P without augments. The dominance bitmap Φ is
created by a depth-first traversal on MP . All the pruning
rules still work, with generic mindistg and maxdistg
replacing their Euclidean counterparts. In particular, the
upper bound defined in Equation 3 should use maxdistg
for two M-tree subtrees. Specifically, maxdistg(T1, T2) =
distg(T1.ro, T2.ro) + T1.cr + T2.cr.

Figure 6 illustrates the generalized distance metrics.

T1.ro

T1.crmindist(T1,T2)
maxdist(T1,T2)

T2.ro
T2.cr

s mindist(s, T1)
maxdist(s,T1)

Fig. 6. Generalized mindistg and maxdistg

4.2 Nearest Dominated Location Queries

The FDL queries are intended to maximize the nearest
dominator distance (ndd) and find the location with the
largest ndd. Sometimes, it is of interest to know the
location with the smallest ndd. Such locations indicate
the least competitive option (e.g., in business planning),
or the most endangered option (e.g., in wild animal
protection). Identifying them also makes sense as they
are the worst cases that decision makers want to avoid.

Therefore, we define the Nearest Dominated Location
Query as follows.

Definition 6: (Nearest Dominated Location Query)
Given a set of (competitors’) spatial objects P , a set
of (candidate) locations L, and a quality vector Ψ as
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the design competence, the nearest dominated location
query (NDL) returns from L a location s such that
the Euclidean distance ndd(s,Ψ, P ) is minimized, i.e.,
∀ s′ ∈ L, ndd(s,Ψ, P ) ≤ ndd(s′,Ψ, P )

We proceed to adapt our FDL algorithms to process
NDL queries. It is apparent that both our NII and
EII algorithms can be easily modified to process NDL
queries. To modify both of them, the minimum ndd
and the corresponding location in L are maintained
in the iteration on all locations in L. At the end of
the iteration, the maintained location is returned as the
nearest dominated location.

To adapt BFS, the challenge is to figure out the appro-
priate score function for a location entry eL. It should be
the lower bound (instead of the upper bound) of ndd
for any location s in eL. Particularly, score(RP , eL,Ψ)
= min{mindist(eL, eP ) | eP ∈ RP ∧ eP .ψ ≺ Ψ}. The
modified score function, to be called by the adapted
BFS, is presented in Algorithm 5. For a leaf entry eL,
the score actually is its ndd (lines 9–11). Otherwise, the
score calculation stops at level 1 of R-tree RP on P
(lines 6–8). This way, we are able to derive a tight lower
bound without incurring too many node accesses. Also,
the max-heap used in BFS should be replaced by a min-
heap to give priority to smaller ndd.

Algorithm 5 NDL score(Augmented R-tree RP of P ,
Minimum bounding rectangle eL of a group of locations
in L, Competence Ψ)

1: for each entry e′ in RP ’s root do
2: if e′ψ ≺ Ψ then
3: enheap(H, 〈e′,mindist(eL, e′)〉)
4: while H is not empty do
5: e := deheap(H)
6: if eL is a non-leaf entry then
7: if e is a level-1 entry then
8: return mindist(eL, e)

9: else
10: if e is a leaf entry then
11: return mindist(eL, e)

12: if e is a non-leaf entry then
13: for each child e′ of e do
14: if e′.ψ ≺ Ψ then
15: enheap(H, 〈e′,mindist(eL, e′)〉)

When adapting the SJB algorithm to NDL queries, two
points are noteworthy. First, Pruning Rule 1 still works
as the dominance bitmap still tells which P R-tree nodes
are unqualified. Second, Pruning Rule 2 also works as it
discards P entries that do not contain nearest dominator
of any location in a location entry. To return the nearest
dominated location, we need a lower bound LBndd(eL)
in addition to the upper bound (Equation 3). The lower
bound should be defined as

LBndd(eL) = min
ei∈eL.PL

mindist(eL, ei) (8)

Accordingly, the max-heap in SJB is replaced by a min-
heap that prioritizes L entries according to the aforemen-
tioned lower bound instead of the upper bound.

Following the same line of reasoning as in Section 4.1,
NDL queries and the relevant processing algorithms can
be generalized to generic distance metric. Due to the
space limitation, we omit the details in this paper.

5 EXPERIMENTAL STUDY

In this section, we conduct intensive experiments to
evaluate and compare those farthest dominated location
query processing algorithms: NII, EII, their Hilbert curve
variants (NII-Hil and EII-Hil respectively), BFS and SJB.
All algorithms were implemented in Java and were run
on a Windows XP PC with a 2.8GHz Intel Pentium
D CPU and 1GB RAM. We used real and synthetic
datasets for both object set P and location set L. For
each dataset, its spatial coordinates were normalized to
Euclidean space [0, 10,000] × [0, 10,000]; while all its
quality attributes were normalized to space [0, 1]c, where
c is the number of quality attributes. Each coordinate and
attribute value is of 8-byte double type.

We set the page size to 4K bytes for both data and
R-tree indexes. Each pointer in R-trees uses 4 bytes. The
page fanout in the location R-tree (RL) is 113; that in
other R-trees (RP ) varies from 35 to 78. We used an LRU
memory buffer whose default size was set to 0.5% of
the sum of data sizes. We measure both the IO cost (i.e.,
number of page faults) and total response time of each
query, and report the average measure obtained from 10
instances of Ψ randomly drawn from the c-dimensional
space. If not explicitly stated, then each generated Ψ is
dominated by some existing object. For SJB algorithm,
the construction cost of the dominance bitmap (e.g., a
traversal of the tree RP ) is included in the measurement.

5.1 FDL Query Performance on Real Datasets
In this part, we used two real datasets from All-
Stays.com [1] that maintains datasets of hotels, resorts,
campgrounds, etc. around the world. We chose the
dataset of hotels in US and cleaned it up as follows. We
removed all records without longitude and latitude, and
gave up quality attributes with too many null values.
For all quality attributes remained, any null value was
replaced by a value randomly picked from its attribute
domain. As a result, 30,918 hotel records were obtained
with the schema (longitude, latitude, review, stars, price).

We then normalized all 30,918 hotel records as de-
scribed above, and call the normalized dataset USH.
Value conversion was carried out on a quality attribute
if necessary, e.g., a higher stars value was converted
to a lower value in the normalized range [0, 1]. This
way, lower values are preferable to higher ones. After
that, two thirds (20,612) records are randomly picked
as the basis to generate the P datasets. Specifically,
we used different quality attribute combinations from
USH and got four variants of USH dataset, as shown
in Table 2. Each USH variant was used as the P set in
our experiments. Whereas all locations of the remaining
one third (10,306) hotel records form the L dataset. The
results are reported in Figure 7.
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USH Variant Quality Attributes
USH-rs review, stars
USH-rp review, price
USH-sp stars, price
USH-rsp review, stars, price

TABLE 2
Use of USH dataset in experiments

The node access of each algorithm is shown in Fig-
ure 7a. It is not surprising that NII algorithm performs
worst because it carries out a naive search without any
pruning. Then NII-Hil, the NII version processing all
locations in L according to the Hilbert curve ordering
(see Section 3.1.3), performs slightly better than NII.
The Hilbert ordering of all locations helps to increase
the buffer hit ratio, however, the naive nature of NII
provides little space for improvement. Because of the
ψ-augmentation in the R-tree RP on object set P , EII
algorithm is able to prune considerable number of un-
qualified nodes and thus incurring significantly fewer
node accesses.
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Fig. 7. Performance on real datasets

The performance of BFS algorithm is between EII-Hil
and SJB. Although BFS processes all locations in a best-
first way via the R-tree RL, it calls the score algorithm
each time it enheaps an RL entry eL. In order to find
the correct upper bound ND distance for eL, the score
algorithm has to access a number of nodes in the ψ-
augmented R-tree RP .

Our SJB algorithm outperforms all other ones on all
USH variants. This demonstrates that the overhead of
creating the dominance bitmap in SJB pays off. The
dominance bitmap not only preserves the pruning ef-
fectiveness owned by the ψ-augmented RP entries, but
also offers additional pruning power, as analyzed in
Section 3.4. Moreover, the dominance bitmap is created
once but used by all joining entry pairs in SJB. This share
manner considerably reduces the overall overhead.

The results on query response time are plotted in
Figure 7b. BFS and SJB algorithms incur considerably
shorter query response time than others. The much
longer response time of NII and NII-Hil is attributed
to the fact that they both have to check dominance
between the design competence Ψ and every data point
they meet as the current nearest neighbor. In contrast,
other methods do not conduct so many CPU-intensive
dominance checks that compare double type attribute
values. As NII and EII perform worse than NII-Hil and

EII-Hil respectively, we will omit NII and EII in the
subsequent experiments on synthetic datasets.

5.2 FDL Query Performance on Synthetic Datasets
We generated synthetic datasets and evaluated all far-
thest dominated location algorithms on them. The cardi-
nality of synthetic P sets changes from 100K to 1000K. Its
quality attribute dimensionality changes from 2 to 5. For
all quality attributes in each P set, we generated values
following both independent (IN) distribution and anti-
correlated (AC) distribution in the same way introduced
in previous work [5]. For each P set, the cardinality
of the corresponding L set used in the experiment is a
percent of that of P . The percent changes from 10% up
to 60%. For both P sets and L sets, all locations in each
set are generated randomly in the normalized Euclidean
space [0, 10,000] × [0, 10,000]. The parameters of all
synthetic datasets are listed in Table 3. Those default
settings are shown in bold fonts.

Parameter Setting
Object set card., |P | 100K, 200K, . . ., 1000K
Quality attri. dimen., c 2, 3, 4, 5
Quality attri. distri. Indep.(IN), Anti-corre. (AC)
Location set card., |L| 10%·|P |, 20%·|P |, . . ., 60%·|P |

TABLE 3
Parameters of synthetic datasets

5.2.1 Pruning Effectiveness
In this part, we study the pruning effectiveness of aug-
mented R-tree and dominance bitmap with respect to
design competence Ψ. We accordingly used augmented
R-trees and basic R-trees on 100K spatial object sets. We
changed the quality attribute dimensionality c from 2 to
5. Each design competence Ψ is a c-dimensional vector
of the form (v, . . . , v), where v ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

For each basic R-tree, we create the dominance bitmap
with respect to the given design competence Ψ. For each
R-tree (either augmented or basic), we perform a depth-
first traversal to access each node that may contain some
object(s) dominating the Ψ. We measure the percent of
R-tree nodes accessed in the depth-first traversal.

According to the results reported in Figure 8, domi-
nance bitmaps always exhibit better pruning effective-
ness than augmented R-trees. Compared to an aug-
mented R-tree, a counterpart dominance bitmap has
no false positive because of its bit definition. There-
fore, it helps rule out considerable number of R-tree
nodes which has a dominating ψ in the counterpart
augmented R-tree. Dominance bitmaps obtain higher
pruning effectiveness when the dimensionality is higher.
In an attribute space of higher dimensionality, a design
competence is expected to be dominated by fewer objects
when the object cardinality is fixed. A dominated bitmap
is able to adapt to this and set fewer bits to 1, which
renders more R-tree nodes to be pruned.

Note Ψ values 0.1 and 0.3 are not included in the ex-
periments on AC attributes, as in shown Figure 8b. This
is because their corresponding Ψs are not dominated by
any spatial object with AC attributes.
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Fig. 8. Pruning effectiveness

We validated the analysis of pruning effectiveness
in Section 3.4, by comparing the probability obtained
from Equation 5, i.e. the estimated R-tree node prun-
ing ratio, with the actual R-tree node pruning ratio in
the experiments. We validated on IN quality attributes
which the analysis assumes. According to Figure 8(a),
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Fig. 9. Validation of Equ. 5

we fixed v to 0.1. We
also focused on R-tree
leaf nodes because
upper levels contain
insufficient nodes for
validation. According
to the validation results
shown in Figure 9,
Equation 5 tends to
make underestimates

compared to the actual pruning effects.

5.2.2 Effect of Design Competence Ψ

We also investigated the effect of design competence Ψ,
using the default synthetic dataset settings: 100K P with
2-dimensional quality attributes, and 20%·|P | location set
L. Each design competence Ψ is of the form (v, v), where
v ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results on node access are
reported in Figure 10.
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Fig. 10. Node access vs. Ψ

On IN quality attributes, each design competence Ψ
is dominated. Referring to Figure 10a, NII-Hil incurs
higher overhead if Ψ is closer to (0, 0). Such a Ψ is
dominated by fewer objects. As a result, NII-Hil has to
search a larger spatial range in object R-tree RP , and
thus accessing more R-tree nodes, before finding the
nearest dominator for each individual location. Whereas
the effect is different to other algorithms. Such high node
accesses do not apply to EII-Hil because it is able to
prune unpromising nodes when Ψ is closer to (0, 0).
A Ψ closer to (0, 0) causes ψ in an RP entry unlikely

to be dominating. Therefore fewer entries are accessed
by the score algorithm in BFS. A Ψ closer to (0, 0) also
renders fewer bits to be set in the dominance bitmap,
which causes fewer entries to be accessed by SJB.

The results on AC quality attributes are shown in
Figure 10b. Here the first two Ψs, (0.1, 0.1) and (0.3, 0.3),
are dominated by no objects in P . In these cases, each
algorithm stops early without processing all locations,
as discussed in Section 3.5. Nevertheless, NII-Hil is still
the worse because it has no pruning at all; SJB is still the
best for it only needs to create the dominance bitmap.
For other cases, the results are similar to those on IN
quality attributes.

5.2.3 Effect of Buffer Size

We also investigated into the effect of buffer size with all
other parameters set to default. We varied the buffer size
from 0.25% to 2% of the sum of data sizes. The relevant
results are shown in Figure 11.

As expected, larger buffer size helps reduce node
access. For datasets with IN attributes, larger buffer
size benefits NII-Hil and EII-Hil most, as shown in
Figure 11a. Whereas for datasets with AC attributes, SJB
gains most from a larger buffer, according to Figure 11b.
A given design competence Ψ is more likely to be
dominated by points of IN distribution. This renders
a candidate location more likely to be dominated by
nearby neighbors. As a result, when all locations are
accessed according to the proximity preserving Hilbert
curve, more nodes are likely to be found in the buffer.

On the other hand, the total query response time is not
too sensitive to the buffer size value. This is because the
in-memory processing of each algorithm is not affected
by the buffer size.

5.2.4 Experiments on Scalability

In this part, we study the scalability of FDL query
processing algorithms with respect to data cardinality
and dimensionality. In each experiment, we report the
query response time.

Effect of P Cardinality. We first fixed the quality
attribute dimensionality to 2, L cardinality to 20% of P
cardinality, and varied the P cardinality to observe its
impact on the performance of all algorithms. Relevant
results are reported in Figure 12a and Figure 13a.

Figure 12a plots the results on synthetic datasets with
independent (IN) attributes. Our SJB algorithm outper-
forms all other three ones: NII-Hil, EII-Hil and BFS. The
performance difference between SJB and others is mainly
attributed to the pruning effectiveness discrepancy be-
tween the dominance bitmap and the augmented R-tree.
The slight higher overhead of BFS compared to EII-Hil
is due to two factors. First, the pruning effectiveness of
augmented R-tree used by BFS is low for low dimen-
sionality, as we see in Section 5.2.1. This makes the score
algorithm tend to access more nodes for each input RL
entry eL. Second, BFS involves two heaps (in BFS itself
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Fig. 11. Query performance vs. Buffer Size
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Fig. 12. Query performance on synthetic datasets with IN attributes
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Fig. 13. Query performance on synthetic datasets with AC attributes

and the score algorithm) which consume more time in
their specific operations.

Figure 13a plots the results of response time on syn-
thetic datasets with anti-correlated (AC) attributes. The
superiority of SJB to others is more significant compared
to datasets with IN attributes. A random design com-
petence Ψ has lower chance to be dominated by a set
of anti-correlated points than by a set of independent
points. This means that all algorithms but SJB access
more nodes before the ND is located. Whereas, SJB
employs the dominance bitmap, which saves consider-
able node access in query processing. Note BFS gains
advantage over NII-Hil and EII-Hil, which is attributed
to Lemma 2 favored by anti-correlated quality attributes.

Effect of L Cardinality. We then fixed the P cardinality
to 100K, the attribute dimensionality to 2, and varied L
cardinality to observe its impact on the performance. Rel-
evant results are reported in Figure 12b and Figure 13b.

Referring to Figures 12b, the increase of L cardinality
causes longer query response time for each algorithm
on independent quality attributes. NII-Hil still performs
worst, whereas SJB is still the best.

Referring to Figures 13b, NII-Hil performs much
worse than others when L cardinality increases on AC
quality attributes, as it is not equipped with any prun-
ing mechanism. SJB still performs best and scales very
slowly as L cardinality increases. Whereas BFS degrades

moderately and outperforms both NII-Hil and EII-Hil,
because the augmented R-tree is more powerful in terms
of pruning on anti-correlated quality attributes.

Effect of Quality Dimensionality. Finally, we fixed |P |
to 100K, |L| to 20% of |P |, and varied the quality attribute
dimensionality from 2 to 5. Relevant results are reported
in Figure 12c and Figure 13c.

Both NII-Hil and EII-Hil degrade seriously when
dimensionality goes up, especially on anti-correlated
(AC) quality attributes. In contrast, BFS degrades more
slightly, especially on anti-correlated (AC) quality at-
tributes. As the dimensionality becomes higher, the
chance for the design competence ψ to dominate a given
design competence Ψ is lower. This, together with the
effect of AC distribution, renders the augmented R-tree
RP higher pruning capability. When working on a higher
dimensionality following AC distribution, the score al-
gorithm called by BFS benefits more from augmented R-
tree RP , because it utilizes the pruning mechanism more
often for location groups from R-tree RL.

It is noteworthy that SJB is still the best algorithm on
both attribute distributions; it even improves as dimen-
sionality increases. Given a design competence ψ and
a fixed number of points, ψ tends to be dominated by
fewer points if the dimensionality increases. This renders
fewer nodes set in the resulting dominance bitmap,
which subsequently saves processing time in the spatial



14

joining employed by SJB algorithm.

5.3 Performance of Generalizations
We proceed to evaluate our generalization proposals
presented in Section 4. We used the real San Joaquin
County road network [4] with 18,263 vertices and 23,797
edges. We randomly picked 20% of the vertices as the
location set L, and attached 2 to 5 quality attributes (both
IN and AC distributions) to the remaining vertices to
obtain the object sets P s. The network distance metric
was used in all FDL queries.

The node access costs are reported in Figure 14. The
SJB algorithm outperforms the alternatives by 2–3 orders
of magnitude. This indicates that the pruning techniques
employed by SJB works effectively and efficiently on
generic distance based M-trees.
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Fig. 14. Network distance based FDL queries
The node access costs of network distance based NDL

queries are reported in Figure 15. The SJB algorithm is
still the best. Referring to Figure 15a, objects in P with
IN attributes have similar likelihood to be a dominator,
which renders the lower bound (Equation 8) used in
SJB less effective in pruning candidate M-tree entries.
Referring to Figure 15b, P objects with AC attributes
differ markedly in terms of likelihood to be a dominator,
which makes more room for the lower bound used in
SJB to prune candidate M-tree entries. This trend is
intensified as the dimensionality increases.
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Fig. 15. Network distance based NDL queries

6 CONCLUSION
In this paper, we propose a novel complex type of
query: farthest dominated location (FDL) query. Given
a set of (competitors’) spatial objects P with both spatial
locations and non-spatial attributes, a set of (candidate)
locations L, and a design competence vector Ψ (for
L), a FDL query retrieves the location s ∈ L such
that the distance to its nearest dominating object in P
is maximized. Although FDL queries are suitable for

various spatial decision making applications, they are
not solved by any of the existing techniques.

We develop several efficient R-tree based algorithms
for processing FDL queries, which offer users a range
of selections in terms of different indexes available on
the data. We also generalize our proposals to support
the generic distance metric and other interesting query
types. We conduct an extensive experimental study with
various settings on both real and synthetic datasets. The
results disclose the performance of our proposals, and
identify our spatial joint based algorithm (SJB) as the
most efficient and scalable query processing algorithm.
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