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Abstract—The widespread location-aware applications produce a vast amount of spatio-textual data that contains both spatial and
textual attributes. To make use of this enriched information for users to describe their preferences for travel routes, we propose a
Bounded-Cost Informative Route (BCIR) query to retrieve the routes that are the most textually relevant to the user-specified query
keywords subject to a travel cost constraint. BCIR query is particularly helpful for tourists and city explorers to plan their travel routes.
We will show that BCIR query is an NP-hard problem. To answer BCIR query efficiently, we propose an exact solution with effective
pruning techniques and two approximate solutions with performance guarantees. Extensive experiments over real data sets
demonstrate that the proposed solutions achieve the expected performance.
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1 INTRODUCTION

THE constantly increasing volume of spatio-textual data
brings abundant information about travel routes. Ex-

amples include comments and check-ins from Foursquare,
geo-tagged photos with textual descriptions from Facebook,
geo-tagged posts from twitter, and location-based adver-
tisements from various business promotion platforms. It is
appealing to take full advantage of such spatio-textual data
to retrieve interesting routes.

Although there already exist some studies on route
query over road networks using the spatio-textual data [1],
[2], [3], [4], [5], they aim to find a route that covers a set of
query keywords while minimizing or bounding the travel
cost (e.g., travel distance). These queries are analogous to the
Boolean keyword query in Web search engines and suitable
for trip planning that aims at visiting particular types of
points of interest (POIs), e.g., a route passing a restaurant
and a bank. However, if users want to find a route whose
text description is textually relevant to the given query
keywords, keyword coverage route query cannot be applied
because it does not compute a textual relevance score with
respect to the query keywords for each route.

In this paper, we propose a Bounded-Cost Informative
Route (BCIR) query which retrieves the optimal route that is
the most textually relevant to the user-specified query key-
words, subject to a travel cost constraint (e.g., the maximum
travel distance or time). The reason for introducing a travel
cost budget is that users usually have a cost budget in mind
to avoid a high travel cost. Specifically, given a start location
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s and a destination d, query keywords K and a travel cost
budget B, BCIR query finds the optimal route R∗ from s
to d such that: (i) the travel cost of R∗ is bounded by the
given travel cost budget B and (ii) the textual relevance
(also called route score henceforth) between the keyword
description of R∗ and the query keywords K is maximized.
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Fig. 1. The shortest route (SR), keyword-aware optimal route (KOR)
and bounded-cost informative route (BCIR), where query keywords are
“scenic, nature-friendly ” and the textual description of each route can be
extracted from online maps, Foursquare, social networks, etc.

For example, a tourist may issue a query with query
keywords “scenic, nature-friendly” to find a route that is
scenic and nature-friendly. Figure 1 illustrates the difference
between shortest route (SR) query, keyword-aware optimal
route (KOR) query [1] and BCIR query, where KOR query is
the representative for the keyword coverage route queries.
The number beside each route is the corresponding travel
cost. The SR route is the shortest route from s to d yet
contains no query keywords. The KOR route is the optimal
route that passes all the query keywords once. In contrast,
the BCIR route is the most relevant to “scenic, nature-friendly”
than the other two routes.

BCIR query has many potential applications, e.g., finding
interesting tourist routes, identifying emotional routes, and
detecting those routes that are most relevant to complaint.
Particularly, two representative applications are discussed
below.
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Application scenario I: Finding interesting tourist routes
Tourists usually would like to explore interesting attractions
when visiting a new city. With the BCIR query, tourists
can easily specify what they are interested in by query
keywords and search for the routes that are most relevant
to these query keywords. As discussed in Figure 1, one
tourist may issue a query to find a route relevant to “scenic,
nature-friendly” from her current location to the hotel. More
interestingly, BCIR query can retrieve routes of some specific
topics. For example, a route with the topic “shopping” can be
retrieved by specifying some query keywords relevant to
shopping such as “sale”, “mall” and “shop”.

Application scenario II: Identifying emotional routes
In addition to finding efficient routes that are short or fast,
users may also want to find routes that are emotionally
pleasant [6]. Existing studies mainly focuses on computing
the emotion scores for routes from different aspects such as
happiness, quietness and beauty. Novelly, BCIR contributes a
general and flexible way to compute emotionally pleasant
routes by specifying some emotion-aware query keywords.
For example, if someone wants to find a happy route, a BCIR
query with query keywords “happy”, “joy” and “delight”
will help. Moreover, some dangerous and negative routes
can be also identified by using query keywords like “crime”,
“robbery” and “accident” in BCIR query.

Challenges and Contributions
It is non-trivial to process BCIR query efficiently due to
its non-additive property (cf. Section 2.2.2), i.e., the route
score is computed based on the text description of the
entire route rather than simply summing the scores of the
edges. This characteristic differentiates BCIR query from
existing keyword coverage route queries which have ad-
ditive route scores. Furthermore, BCIR query is actually an
NP-hard problem (cf. Section 2.2.1). For such a computa-
tionally expensive problem, we propose three solutions, an
exact solution with efficient pruning techniques and two
approximate solutions with performance guarantees. The
exact solution with multiple pruning methods can greatly
reduce the search space and promptly return exact results
for BCIR queries of small travel cost budgets. In contrast, the
two approximate solutions report good approximate results
for BCIR queries of large travel cost budgets.

In sum, our contributions in this work are threefold as
listed below.

• We propose the bounded-cost informative route (B-
CIR) query to retrieve interesting routes based on
the textual relevance and analyze its hardness (Sec-
tion 2).

• We design an exact solution with effective pruning
techniques to compute exact results for BCIR queries
of small travel cost budgets and propose two scalable
approximate solutions which can compute satisfying
query results for BCIR queries of large travel cost
budgets efficiently (Sections 3, 4, 5 and 6).

• We conduct extensive experiments on real data sets
of different sizes to evaluate the performance of
proposed solutions (Section 7).

Then, the related work is reviewed in Section 8 and the
conclusion with future work is presented in Section 9.

2 PROBLEM STATEMENT AND THE HARDNESS

In this section, we first formally define the BCIR query
problem. Then, we prove that BCIR query is an NP-hard
problem and discuss its non-additive property. Table 1 lists
those notations frequently used in this work.

TABLE 1
Frequently used notations.

notation meaning
G(V,E) a road network
ei,j the edge from vertex vi to vertex vj
ci,j the travel cost of edge ei,j
R a route
ER the set of edges on route R
VR the set of vertices on route R
SRi,j the shortest route from vi to vj
q = (s, d,Kq , B) a BCIR query
R∗ the optimal route of BCIR query
Ki,j the keywords on edge ei,j
KR the keywords on route R
CBs,d all candidate routes from s to d
| ∗ | the cardinality of ∗
fk,e the frequency of keyword k on edge e
fk,R the frequency of keyword k on route R
λ(R) the travel cost of route R
τ(R) the score of route R

2.1 Problem Definition
Before defining BCIR query, we first give the definition of
road network.
Definition 1 (Road Network). A road network is modeled

by a directed graph G(V,E), where each vertex vi∈V
represents an intersection of roads; each edge ei,j∈E
represents the directed road segment from vi to vj and
is associated with a travel cost ci,j and a set of keywords
Ki,j with their numbers of occurrences.

Example 1. Figure 2 illustrates a small road network. For
simplicity, all edges are assumed to be bi-directed. The
travel cost and keywords are labelled beside each edge.
For example, the travel cost of edge es,3 is cs,3=5 and
its keywords are Ks,3={k1: 1, k3: 1} where the numbers
count the occurrences of the corresponding keywords on
edge es,3.

BCIR Example
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Fig. 2. A small road network with labelled travel costs and keywords for
edges, and an example of BCIR query q=(s, d,Kq={k1}, B=12).

The travel cost ci,j of edge ei,j can be any non-negative
metric, e.g., the length of ei,j and the time to travel through
ei,j . The keywords Ki,j of edge ei,j can be extracted
from various sources like the geo-textual comments on
Foursquare and Facebook.

A route R=〈vx1
, . . . , vxγ 〉 consists of a sequence of

vertices, where edge (vxi , vxi+1
)∈E and vxi 6=vxj if xi 6=xj

(1≤i, j≤γ). We use ER and VR to denote those edges and
vertices on route R, respectively. The travel cost of R, λ(R),
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is computed by summing the travel costs of its edges,
i.e., λ(R)=

∑
ei,j∈ER ci,j . The shortest route from vi to vj

is denoted by SRi,j whose travel cost is λ(SRi,j). The
keywords of route R, KR, are computed by merging the
keywords of its edges, i.e.,KR =

⊎
ei,j∈ER Ki,j , where

⊎
is a

union operator for multi-set that allows duplicate instances.
The BCIR query is then defined as below.

Definition 2 (Bounded-Cost Informative Route (BCIR)
Query). Given a road network G, a BCIR query is de-
noted by q=(s, d,Kq, B), where s and d specify the start
location and destination, respectively,Kq is a set of query
keywords, and B is a travel cost budget. The objective of
q is to find the optimal route R∗ from s to d such that:

R∗ = arg max
R∈CBs,d

τ(R) (1)

where τ(R) computes the textual relevance between KR
and Kq ; CBs,d represents the set of candidate routes, from
s to d, with travel costs less than or equal to B, i.e.,

CBs,d = {R|R ∈ Cs,d ∧ λ(R) ≤ B} (2)

and Cs,d represents the entire set of simple routes (routes
without duplicate vertices) from s to d.

The cost budget B is specified by a deviation ratio µ ≥ 0
from the shortest route between two query locations, i.e.,
B=(1 + µ) · λ(SRs,d). However, the travel cost budget B
can be also specified by users directly.

In this work, we compute route score τ(R) by utilizing
the TF-IDF model [7] which is widely used in information
retrieval. Concretely, we have

τ(R) =

∑
k∈(KR∩Kq)

(wk,R) · (wk,q)√∑
k∈KR

(wk,R)2 ·
∑
k∈Kq (wk,q)2

(3)

where wk,R=1+ln(fk,R) and fk,R counts the occurrences of
keyword k in KR; wk,q=ln(1+ |E|

|Ek| ) and Ek are those edges
containing keyword k.
Example 2. Figure 2 also illustrates a BCIR query, where the

start and destination locations are s and d, respectively;
Kq={k1} specifies one query keyword, and the travel
cost budget is B=12. As listed in Table 2, there are five
possible routes. Specifically, for route R1=〈s, v1, d〉, we
have

KR1
= Ks,1 ] K1,d = {k1 : 3, k2 : 1}

where the numbers record the occurrences of the corre-
sponding keywords. For example, k1 : 3 indicates that
keyword k1 appears three times on route R1. We then
have wk1,R1

=1 + ln 3 and wk2,R1
=1 + ln 1. Meanwhile,

we have |Ek1 |=4, |Ek2 |=2 and |Ek3 |=3, which count the
numbers of edges containing keywords k1, k2 and k3,
respectively. For query keyword k1, we have

wk1,q = ln(1 +
|E|
|Ek1 |

) = ln(1 +
7

4
) = ln

11

4
.

Accordingly, the score of route R1 is

τ(R1) =

∑
k∈(KR1

∩Kq) (wk,R1) · (wk,q)√∑
k∈KR1

(wk,R1)2 ·
∑
k∈Kq (wk,q)2

=
(1 + ln 3) · (ln 11

4
)√

((1 + ln 3)2 + (1 + ln 1)2) · (ln 11
4

)2

= 0.903

The scores of the other four routes can be computed
in the same way. The details of the five routes are
summarized in Table 2. Routes R4 and R5 should be
pruned since their travel costs are larger than the travel
cost budget B=12. The other three routes are candidate
routes and R1 is returned as the query result because its
score is larger than that of routes R2 and R3.

TABLE 2
All possible routes for the BCIR query in Figure 2

Route Cost Keyword Score
R1 = 〈s, v1, d〉 12 {k1 : 3, k2 : 1} 0.903
R2 = 〈s, v2, d〉 10 {} 0
R3 = 〈s, v3, d〉 11 {k1 : 1, k2 : 2, k3 : 2} 0.385
R4 = 〈s, v2, v1, d〉 15 {k1 : 3, k3 : 1} 0.903
R5 = 〈s, v1, v2, d〉 17 {k1 : 2, k2 : 1, k3 : 1} 0.767

2.2 Problem Hardness
2.2.1 NP-hardness
BCIR query can be proved to be NP-hard. First, we define
the decision problem of BCIR query, Decision-BCIR, as
below.
Definition 3 (Decision-BCIR). Given a road network G, a

BCIR query q=(s, d,Kq, B) and a score thresholdX > 0,
Decision-BCIR decides whether there exists a route from
s to d such that its cost is at most B and its score is at
least X .

Then, we have the following theorem.
Theorem 1. Decision-BCIR problem is NP-hard.

Proof: This theorem can be proved by a reduc-
tion from the Hamiltonian Route/Path (Ham-Route for
short) problem, a well-known NP-Complete problem, to
the Decision-BCIR problem. Given a road network G(V,E),
Ham-Route problem decides whether there exists a route
passing each vertex in V once and only once. We can
formulate an instance of the Decision-BCIR problem based
G as below.

• Road network G′(V ′, E′): We create a new road
network G′(V ′, E′) by letting V ′=V ∪ {vs, vd} and
E′=E ∪ {(vi, vj)|vi∈{vs, vd} ∧ vj∈V }, where vs and
vd are two new vertices. For each edge ei,j∈E′, we
set its cost ci,j=1. In addition, we assume that each
edge ei,j∈E in G′ contains one unique keyword and
the edges in E′−E do not contain any keywords.

• Decision-BCIR problem q=(s, d,Kq, B): The start
location s and destination d correspond to vertices
vs and vd in G′, respectively. Query keywords Kq
contains all the keywords in G′, i.e., |Kq|=|E|. We set
the cost budget B=n+ 1, and set the score threshold
X=

√
n−1
|E| , where n=|V |.

Then, we can prove that G has a Ham-Route R if and
only if there exists a route R′ from vs to vd on G′ such that
the cost of R′ is at most n+ 1 and the score of R′ is at least√

n−1
|E| .
One the one hand, assuming that there is a Ham-Route

R in G that passes all the n vertices in V , we can get a new
route R′ in G′ by adding vs and vd to the two ends of R,
respectively. The cost of R′ is n + 1 because R′ has n + 2
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vertices and the cost of each edge is exactly 1. Meanwhile,
the score of R′ is

τ(R′) =

∑
k∈(KR′∩Kq)

(wk,R′) · (wk,q)√∑
k∈KR′

(wk,R′)2 ·
∑
k∈Kq (wk,q)2

. (4)

Considering that each edge (except for the edges connect-
ing to vs and vd) in G′ contains one unique keyword,
we have |E′k|=1 for keyword k and |KR′ |=n − 1. Fur-
thermore, we have wk,q=ln(1 + |E′|

|E′k|
)=ln(1 + |E′|) and

wk,R′=1 + ln(fk,R′)=1 + ln(1)=1. We then have

τ(R′) =

∑
k∈(KR′∩Kq)

1 · ln(1 + |E′|)√∑
k∈KR′

12 ·
∑
k∈Kq (ln(1 + |E′|))2

=
|KR′ | · ln(1 + |E′|)√
|KR′ | · |Kq| · ln(1 + |E′|)

=

√
|KR′ |
|Kq|

=

√
n− 1

|E| (5)

where
∑
k∈(KR′∩Kq) (wk,R′) · (wk,q) = |KR′ |·ln(1+|E′|) be-

cause Kq contains all the keywords and KR′⊆Kq . Therefore,
if there is a Ham-Route R in G, we can find a route R′ in
G′ such that its cost is at most n+ 1 and its score is at least√

n−1
|E| .
On the other hand, we assume that there is a route

R′ in G′ such that its cost is at most n + 1 and its
score is at least

√
n−1
|E| . According to Eq. (5), we have

τ(R′)=
√
|KR′ |
|Kq| =

√
|KR′ |
|E| , where |KR′ | is the number of key-

words on routeR′.R′ should contain at least n−1 keywords
if its score is at least

√
n−1
|E| . Accordingly, R′ must have at

least n + 1 edges considering that each edge in G′ contains
one unique keyword and the edges connected to vs and vd
have no keywords. Meanwhile, R′ has at most n + 1 edges
because its cost is at most n + 1 and the cost of each edge
is 1. Therefore, R′ has exactly n + 1 edges. By removing vs
and vd from R′, we get one Ham-Route R in G.

It completes the proof.

2.2.2 Non-additive Property
The route score in BCIR query is non-additive, i.e., the score
of a route cannot be computed by adding the scores of its
sub-routes.

Example 3. We take the BCIR query in Figure 2 for exam-
ple and consider route R1=〈s, v1, d〉 and its sub-routes
R11=〈s, v1〉 and R12=〈v1, d〉. With Eq. (3), we have
τ(R1)=0.903, τ(R11)=0.707, and τ(R12)=1.0. Obvious-
ly, the score of R1 cannot be computed by summing the
scores of its sub-routes, i.e., τ(R1)6=τ(R11) + τ(R12).

The non-additive property not only makes BCIR query
more difficult than existing keyword coverage route
queries [1], [2], [3], [4], [5] in which the route scores are
additive, but also prevents us from leveraging existing
techniques to process BCIR query.

3 SOLUTION OVERVIEW

Considering the hardness of BCIR query, we propose three
solutions for different application scenarios.

Scenario I: Requiring the optimal result
In this scenario, users request for the exact results. BCIR
query is NP-hard, indicating that it is impossible to devise
an exact solution of polynominal time complexity to process
BCIR query. Nevertheless, it is still possible to evaluate all
the candidate routes if the travel cost budget is small. There-
fore, we propose an exact solution to BCIR query problem
by designing effective pruning techniques to reduce the
search space (Section 4).

Scenario II: Limiting response time
In this scenario, users wish to obtain the query results
within a specified time limit. To satisfy this requirement, we
propose the time-bounded solution (TBS) which receives as
input a processing time limit and aims to maximize the score
of the returned route within the time limit (Section 5).

Scenario III: Guaranteeing answer quality
Some users would like to sacrifice a certain degree of ex-
actness to reduce the running time as long as the answer
quality is guaranteed. To meet this requirement, we propose
the error-bounded solution (EBS) which imposes an approx-
imation error threshold on the returned route (Section 6).

4 EXACT SOLUTION

4.1 Algorithm Sketch for Exact Solution
BCIR query retrieves the optimal route with the largest score
among all the candidate routes CBs,d that satisfy the travel
cost budget B. Therefore, one straightforward solution for
solving BCIR query problem is to evaluate all the candidate
routes and select the route with the largest score as the
query result. Algorithm 1 sketches this exact solution which
explores the candidate routes by a depth-first expansion
from the start location s. Initially, a partial route set U is
created to store partial routes (i.e., routes starting from s but
not reaching the destination d) during the query processing
and R∗ is used to record the current optimal route. The
initialization of U and R∗ will be discussed in Section 4.5. In
each iteration, a partial route is selected from U to generate
more partial routes by expanding the adjacent vertices of its
end vertex. Once a partial route reaches the destination d
and its score is larger than the current optimal route R∗, R∗

is updated. The algorithm terminates until U is empty.
However, it is computationally expensive to conduct

such an exploration because the number of candidate routes
could be considerably large. To reduce the search space, we
design effective pruning techniques to avoid checking those
candidate routes that cannot be the optimal result as soon
as possible (line 6 in Algorithm 1, cf. Sections 4.3 and 4.4).

4.2 Indexing
In order to facilitate the query processing, we build a Short-
est Route Index and an Inverted Index for road network G.
Shortest Route Index: Shortest route computation will be
frequently invoked to check whether a route is feasible
when processing the BCIR query. In order to facilitate the
shortest route computation, we build a Contraction Hierar-
chy (CH) [8] index, one of the most efficient index structures
for shortest route computation, for road network G.

Inverted Index: In order to check which edges contain the
query keywords, an inverted index is built for all the edges
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Algorithm 1 Algorithm sketch for the exact solution
Input: BCIR query q=(s, d,Kq, B)
Output: The optimal route R∗

1: Initialize partial route set U
2: Initialize optimal route R∗ by heuristics . Section 4.5
3: while U is not empty do
4: select a partial route R from U
5: generate new partial routes CR based on R
6: prune unpromising routes in CR . Sections 4.3 and

4.4
7: for R′ ∈ CR do
8: if R′ reaches the destination d then
9: update R∗

10: else
11: add R′ to U
12: return R∗

E. Inverted index is widely used for indexing documents
by listing for each keyword those documents containing it.
Table 3 is an example of the inverted index for the road
network in Figure 2, where the numbers after the colon
record the occurrences of the corresponding keywords.

TABLE 3
The inverted index for the edges in Figure 2

Keywords Edge list
k1 〈es,1 : 1〉, 〈es,3 : 1〉, 〈e1,2 : 1〉, 〈e1,d : 2〉
k2 〈es,1 : 1〉, 〈e3,d : 2〉
k3 〈es,3 : 1〉, 〈e1,2 : 1〉, 〈e3,d : 1〉

Shortest Route Cost Caching: In addition, during the query
processing of each BCIR query, we build a temporary hash
table S to cache the shortest route costs, λ(SRi,j), that
have been computed. Then, λ(SRi,j) can be obtained from
S directly if it is in the hash table, which will further
facilitate the query processing. The corresponding algorithm
for looking up λ(SRi,j) is detailed in Algorithm 2.

Algorithm 2 Look up the shortest route cost λ(SRi,j)

Input: Cached hash table S, start and end vertices vi and vj
Output: The shortest route cost λ(SRi,j)

1: λ(SRi,j)←∞
2: if S contains λ(SRi,j) then
3: get λ(SRi,j) from S
4: else
5: compute SRi,j by CH index
6: for each vertex vx on route SRi,j do
7: if S does not contain λ(SRi,x) then
8: add λ(SRi,x) to S
9: return λ(SRi,j)

In what follows, we will detail the proposed pruning
techniques (cf. Sections 4.3 and 4.4) and the query pro-
cessing algorithm that combines these techniques (cf. Sec-
tion 4.5).

4.3 Cost Pruning
The goal of cost pruning is to prune those partial routes that
violate the cost budget B during the query processing. In
other worlds, the pruned partial routes cannot expand to
generate any candidate routes.

Given a partial route R=〈s, . . . , vi〉, the set of candidate
routes, from the start location s to the destination d, gener-
ated by expanding R is

CR = {R′|R′ = R⊕Rx, Rx ∈ CB
′

i,d} (6)

where CB
′

i,d is the set of candidate routes from the end vertex
vi of R to the destination d (cf. Eq. (2)), B′=B−λ(R), and
⊕ is an operator of concatenating two routes with duplicate
vertices being removed.

The essential idea of cost pruning is to compute a lower
bound cost λ−(R) for all the candidate routes CR generated
by expanding partial route R, and verify whether λ−(R)
violates the cost budget B. First, we define the lower bound
cost λ−(R).
Definition 4 (Lower Bound Cost). Given a partial route

R=〈s, . . . , vi〉, a lower bound cost λ−(R) satisfies
λ−(R) ≤ λ(R′), ∀R′∈CR.

With the lower bound cost λ−(R), the partial routeR should
be pruned if λ−(R)>B.

Considering that the shortest route cost between two
vertices is a lower bound for all the routes between them,
we compute λ−(R) by

λ−(R) = λ(R) + λ(SRi,d) (7)

where SRi,d is the shortest route from the end vertex vi of
R to the destination d. We then have the following lemma.
Lemma 1. Given a partial route R, the λ−(R) computed by

Eq. (7) is a lower bound for the cost of each candidate
route in CR.

Proof: For any candidate route R′∈CR, we assume
that R′=R⊕Rx, where Rx∈CB

′

i,d . Since SRi,d is the shortest
route from vi to d, we have λ(SRi,d)≤λ(Rx),∀Rx∈CB

′

i,d .
Therefore, for any candidate route R′∈CR, we have
λ(R′)=λ(R)+λ(Rx)≥λ(R)+λ(SRi,d)=λ

−(R). λ−(R) is
thus a lower bound for the cost of each candidate route in
CR.
Example 4. We take the BCIR query in Figure 2 for exam-

ple. Assuming that the partial route is R=〈s, v2, v1〉, R
should be pruned since λ−(R)=λ(R) + λ(SR1,d)=10 +
5>B, where the cost budget B=12.

Computing λ(SRi,d) to compute λ−(R) will incurs a
high computation cost. With the observation that the des-
tination d is fixed for all the shortest routes SRi,d, we pre-
compute the shortest route costs to the destination d for
those vertices that are within the travel cost budget from
d via a reverse Dijkstra’s algorithm. With these computed
shortest route costs, λ(SRi,d) can be retrieved directly in-
stead of being computed from the scratch during the query
processing.

4.4 Score Pruning
Intuitively, a partial route R should be pruned if all of
its expanded candidate routes, CR, are not better than the
current optimal route R∗. Therefore, we seek to compute an
upper bound score, τ+(R), for all the candidate routes CR
and exploit τ+(R) to verify whether there exists a route in
CR that is better than the current optimal route R∗.

First, we define the upper bound score τ+(R) as below.
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Definition 5 (Upper Bound Score). Given a partial route
R=〈s, . . . , vi〉, an upper bound score τ+(R) satisfies
τ+(R)≥τ(R′), ∀R′ ∈ CR.

Then, we have the following lemma about score pruning.

Lemma 2. Given a partial route R and the current optimal
route R∗, R should be pruned if τ+(R) ≤ τ(R∗), where
τ+(R) is an upper bound score for all the candidate
routes generated by expanding R, i.e., CR.

Proof: Since τ+(R) is an upper bound score for
all the candidate routes in CR, we have τ(R′)≤τ+(R)
for each route R′∈CR. By inequality transition, we have
τ(R′)≤τ(R∗), indicating that the candidate routes generat-
ed by expanding partial route R cannot be better than the
current optimal route R∗. Therefore, R can be pruned.

4.4.1 Computing τ+(R)

The challenge for computing τ+(R) is twofold. First, τ+(R)
should be computed based on a route set, CR, rather than a
single route. Second, as discussed in Section 2.2.2, the route
score in BCIR query is non-additive and we cannot sum
the scores of routes Rx and Ry to obtain the score of route
Rx⊕Ry . With these two challenges, the proposed techniques
for computing the upper bounds of route scores in existing
studies cannot be applied to the BCIR query directly.

In this study, according to the definition of route score
in Eq. (3), we compute the upper bound score τ+(R) by the
following equation:

τ+(R) =

∑
k∈Kq (1 + ln(fk,R + F+(k, i, d, B′))) · (wk,q)√∑

k∈KR
(1 + ln(fk,R))2 ·

∑
k∈Kq (wk,q)2

(8)

where fk,R is the frequency of keyword k on route R, and
F+(k, i, d,B′) is a function that computes an upper bound
for the occurrences of keyword k on all the sub-routes CB′i,d
such that fk,Rx≤F+(k, i, d,B′), ∀Rx∈CB

′

i,d . The computation
of F+(k, i, d,B′) will be discussed in Section 4.4.2.

Then, we have the following lemma.

Lemma 3. The τ+(R) computed by Eq. (8) is an upper
bound for the score of each candidate route in CR, i.e.,
τ(R′)≤τ+(R),∀R′∈CR.

Proof: We use R′ to represent any candidate route in
CR and let R′=R ⊕ Rx, where sub-route Rx∈CB

′

i,d . Accord-
ingly, the frequency of keyword k on route R′ is the sum
of the frequencies of keyword k on routes R and Rx, i.e.,
fk,R′=fk,R+fk,Rx .

According to the definition of route score in Eq. (3), we
have

τ(R′) =

∑
k∈(KR′∩Kq)

(wk,R′) · (wk,q)√∑
k∈KR′

(wk,R′)2 ·
∑
k∈Kq (wk,q)2

≤
∑
k∈Kq (wk,R′) · (wk,q)√∑

k∈KR′
(wk,R′)2 ·

∑
k∈Kq (wk,q)2

(9)

For simplicity, we denote wq=
√∑

k∈Kq (wk,q)2 and then
have

τ(R′) ≤
∑
k∈Kq (wk,R′) · (wk,q)

wq ·
√∑

k∈KR′
(wk,R′)2

(10)

On the one hand, for Eq. (10), we have∑
k∈Kq

(wk,R′) · (wk,q)=
∑
k∈Kq

(1 + ln(fk,R + fk,Rx)) · (wk,q) (11)

Since F+(k, i, d,B′) computes an upper bound for the oc-
currences of keyword k for all the sub-routes Rx∈CB

′

i,d , we
have∑
k∈Kq

(wk,R′) · (wk,q) ≤
∑
k∈Kq

(1 + ln(fk,R + F+(k, i, d, B′))) · (wk,q)

(12)
On the other hand, the denominator in Eq. (10) has the
following derivation.

wq ·
√ ∑
k∈KR′

(wk,R′)2 =wq ·
√ ∑
k∈KR′

(1 + ln(fk,R + fk,Rx))2

≥wq ·
√ ∑
k∈KR

(1 + ln(fk,R))2 (13)

Combining Eq. (10), Eq. (12) and Eq. (13), we have

τ(R′) ≤
∑
k∈Kq (wk,R′) · (wk,q)

wq ·
√∑

k∈KR′
(wk,R′)2

≤
∑
k∈Kq (1 + ln(fk,R + F+(k, i, d, B′))) · (wk,q)

wq ·
√∑

k∈KR
(1 + ln(fk,R))2

= τ+(R)

Therefore, we have τ(R′)≤τ+(R) for any candidate route
R′∈CR. Thus, the τ+(R) computed by Eq. (8) is an upper
bound for the score of any candidate route in CR.

4.4.2 Computing F+(k, i, d,B′)

Given a partial route R=〈s, . . . , vi〉, function F+(k, i, d,B′)
computes an upper bound for the occurrences of keyword
k on each sub-route in CB′i,d , where i and d are the sub-
scripts of the end vertex vi of R and the destination d, and
B′=B−λ(R). Since F+(k, i, d,B′) will be invoked frequent-
ly during the query processing to compute the upper bound
score, an efficient method for computing F+(k, i, d,B′) is
required.

One simple method for computing F+(k, i, d,B′) is to
evaluate the occurrences of keyword k, fk,Rx , on each route
Rx∈CB

′

i,d and report the maximum fk,Rx . However, CB′i,d
could be considerably large, making it time prohibitive to
evaluate all the routes in CB′i,d . Therefore, instead of evalu-
ating all the routes in CB′i,d , we utilize those edges on routes
CB′i,d to directly estimate the maximum possible number of
occurrences of keyword k on each sub-route Rx∈CB

′

i,d .
With the end vertex vi of R, destination d and the

remaining cost budget B′, the set of edges EB
′

i,d that may
appear on routes CB′i,d and contain keyword k is computed
by

EB
′

i,d(k) = {ef,g|ef,g /∈ R ∧ k ∈ Kf,g ∧ Γ(i, f, g, d) ≤ B′} (14)

where function Γ(i, f, g, d)=λ(SRi,f )+cf,g+λ(SRg,d) com-
putes the shortest travel cost from vi to d when passing ef,g .

In Eq. (14), inverted index is utilized to check whether
edge ef,g contains query keyword k and Algorithm 2 is in-
voked to compute λ(SRi,f ). Note that we can get λ(SRg,d)
in Eq. (14) directly since a reverse Dijkstra’a algorithm has
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been conducted at the beginning of query processing to
compute the smallest cost to the destination d for each
vertex (cf. the last paragraph in Section 4.3).

Straightforwardly, F+(k, i, d,B′) can be computed by
counting the total occurrences of k on all edges in EB

′

i,d(k).
Nonetheless, the upper bound F+(k, i, d,B′) computed in
this way could be very loose sinceEB

′

i,d(k) covers much more
edges than each route Rx∈ CB

′

i,d .

Road Network

𝑠 𝑣𝑖

𝑣2

𝑑𝑣4 𝑣5

𝑣8𝑣7𝑣6

𝑣3𝑣1

……

1

2 2
1

3

2
21

1

3

11

1 1

2 3

{𝒌:3}{𝒌:6}

{𝒌:3}

{𝒌:4} {𝒌:4}

Fig. 3. Road network example for computing F+(k, i, d, B′).

Example 5. We take Figure 3 for example and assume that
the remaining travel cost budget is B′=6. With Eq. (14),
the set of edges on routes CB′i,d and containing keyword
k is EB

′

i,d(k)={e1,2, e2,3, e5,7, e7,8, e8,d} whose total key-
word occurrences is 20. However, the corresponding
total cost is 9 which is larger than B′=6, indicating that
the computed upper bound is loose.

To obtain a tighter F+(k, i, d,B′), we compute the max-
imum number of keywords k that each route Rx∈CB

′

i,d could
have by selecting a sub-set of edges from EB

′

i,d(k) rather
than using the whole set. To this end, we build an average
keyword frequency histogram H for those edges in EB

′

i,d(k)
and leverage this histogram to compute F+(k, i, d,B′).

Edge selection histogram
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ҧ𝑓𝑘,𝑒3
ҧ𝑓𝑘,𝑒𝛽

ҧ𝑓𝑘,𝑒𝛾

Fig. 4. Average keyword frequency histogram

First, with the frequency of keyword k on edge e, fk,e,
the corresponding average keyword frequency is f̄k,e=

fk,e
ce

,
where ce is the travel cost of edge e. All the edges in
EB

′

i,d(k) are then sorted based on the average keyword
frequency. Without loss of generality, we assume that the
sorted edges are e1, e2, . . . , eγ , where f̄k,ei≤f̄k,ej if i<j.
The corresponding average keyword frequency histogram
H for these sorted edges is illustrated in Figure 4, where
the accumulated cost xi=xi−1 + cei and x1=ce1 . Given the
remaining travel cost budget B′ and the average keyword
frequency histogram H, F+(k, i, d,B′) is computed by

F+(k, i, d, B′)

= f̄k,e1 · x1 + f̄k,e2 · (x2 − x1) + · · ·+ f̄k,eβ · (B
′ − xβ−1)

= fk,e1 + fk,e2 + · · ·+ f̄k,eβ · (B
′ − xβ−1) (15)

where B′ is assumed to be located at edge eβ , i.e., xβ−1 <
B′ ≤ xβ . We then have the following lemma.

Lemma 4. The F+(k, i, d,B′) computed by using the aver-
age keyword frequency histogram H is an upper bound
for the keyword frequency fk,Rx of any route Rx∈CB

′

i,d .

Proof: We first assume that the optimal route in
route set CR is R∗ and the corresponding sub-route of R∗

from vertex vi to the destination d is R∗x. Assuming that
those edges containing keyword k on sub-route R∗x are
ER∗x(k)={ei, ei+1, . . . , eα}, we then have ER∗x(k)⊆EB′i,d(k)

since any edge that contains keyword k and is not in EB
′

i,d(k)
will violate the cost budget constraint (cf. Eq. (14)).

The frequency of keyword k on route R∗x is
fk,R∗x=

∑
e∈ER∗x (k) fk,e and the cost of R∗x satisfies λ(R∗x) ≤

B′. In Figure 4, we record those edges on the left side of the
cost budget B′ or insects with B′ as EH={e1, e2, · · · , eβ}.
Then, for any edge e on route R∗x, if e/∈EH, the average
keyword frequency of e cannot be larger than any edge in
EH. Therefore, the F+(k, i, d,B′) computed based on EH
is an upper bound for the keyword frequency fk,Rx of any
route Rx∈CB

′

i,d .
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Fig. 5. Average keyword frequency histogram for Figure 3

TABLE 4
The edges EB

′
i,d(k) containing keyword k in Figure 3

Edge Cost Keyword frequency Average keyword frequency
e1,2 2 6 3.0
e2,3 2 3 1.5
e5,7 1 4 4.0
e7,8 2 3 1.5
e8,d 2 4 2.0

Example 6. Continued with Example 5, the costs, keyword
frequencies, and average keyword frequencies of these
edges in EB

′

i,d(k) are summarized in Table 4. The cor-
responding average keyword frequency histogram is
illustrated in Figure 5. With Eq. (15), we have

F+(k, i, d, B′) = fk,e5,7 + fk,e1,2 + fk,e8,d + f̄k,e2,3 · (B
′ − 5)

= 4 + 6 + 4 + 1.5 · (6− 5)

= 15.5

4.5 Query Processing Algorithm
Algorithm 3 presents the algorithm for the exact solution.
The initialization and processing procedures are elaborated
below.

Initialization: Initially, a max-priority queue U is created
to store partial routes during the query processing and a
partial route R with the start location s is enqueued (lines
1-3). Meanwhile, route R∗ stores the optimal route and is
initialized to the shortest route from s to d, i.e., SRs,d (line
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4). Note that R∗ can be also initialized by other heuristic
methods without modifying the algorithm. In addition, a
reverse Dijkstra’s algorithm is conducted to compute the
shortest route cost of each vertex to the destination d (line
5).

Query Processing: In each iteration, the partial route R with
the largest lower bound cost is dequeued from U (line 7). If
the upper bound score of R is not larger than that of the
current optimal route R∗, R is pruned (line 8). Otherwise,
the end vertex vi of R is computed (line 9). Each adjacent
vertex vj of vi is then concatenated to R to generate a longer
route R′ if vj has not been visited by R (lines 10-11). R′ will
be pruned if it is impossible to generate a candidate route
(cost pruning, line 12). If R′ survives from the cost pruning,
arrives at the destination d and has a score larger than the
current optimal route R∗, it is used to update R∗ (lines 13-
14). If R′ is just a new partial route, its upper bound score
τ+(R′) is computed (lines 15-16). If τ+(R′) is not larger
than that of the current optimal route R∗, R′ is pruned (line
17). Otherwise, R′ is add to the priority queue U for further
exploration (line 18). The algorithm terminates when U is
empty (line 6) and the optimal route R∗ is returned (line
19).

Algorithm 3 The exact solution
Input: BCIR query q=(s, d,Kq, B)
Output: The optimal route R∗

1: Initialize U ← an empty priority queue
2: Initialize R← 〈s〉
3: U .enqueue(R, 0)
4: R∗ ← SRs,d
5: Compute λ(SRi,d) for each vi by reverse Dijkstra’s

algorithm
6: while U is not empty do
7: R← U .dequeue()
8: if τ+(R) ≥ τ(R∗) then . score pruning
9: vi ←endVertex(R)

10: for vj ∈ adj(vi) do
11: R′ ← R⊕ {vj}
12: if λ−(R′) ≤ B then . cost pruning
13: if vj = d and τ(R′) > τ(R∗) then
14: R∗ ← R′ . update the optimal route
15: else
16: Compute upper bound score τ+(R′)
17: if τ+(R′) > τ(R∗) then
18: U .enqueue(R′, λ−(R′))
19: return R∗

5 TIME-BOUNDED SOLUTION

In some applications, users would like to impose a con-
straint on the response time to avoid waiting for a long
time. To meet this requirement, we propose time-bounded
solution (TBS) which returns query results within the user-
specified response time limit.

The idea of TBS is based on the observation that can-
didate routes CBs,d between two query locations s and d
often share edges with each other. Therefore, it is possible
to convert one candidate route to another by changing their

sub-routes. One candidate route can be enhanced if we can
replace its sub-routes with other sub-routes such that the
new candidate route has a larger route score.

1

Route

Enhancement (Section 5.1.3)

Inferior Sub-route

Identification (Section 5.1.2)

Route 

Initialization (Section 5.1.1)

Input Road Network 

𝐺(𝑉, 𝐸)

BCIR Query 

𝑞 = (𝑠, 𝑑, 𝐾𝑞 , 𝐵)
Response time 

limit 𝑇

Time Out Query result
No Yes

Framework for time bounded solution

Candidate route set

Identified sub-routes

Enhanced candidate 

routes

Select the optimal route in 

candidate route set

Fig. 6. Framework of time-bounded solution

Figure 6 illustrates the framework of TBS which takes
as input the road network, the BCIR query and a response
time limit, and returns an approximate query result. In this
framework, we have three major components:

• Routes Initialization generates a set of candidate
routes;

• Inferior Sub-route Identification randomly selects
one candidate route from the generated candidate
route set and identifies an inferior sub-route with
limited contribution to the score of the selected can-
didate route for enhancement;

• Route Enhancement generates a new sub-route to re-
place the identified inferior sub-route and enhances
the selected candidate route.

When response time limit permits, inferior sub-route identi-
fication and route enhancement repeat continuously. Finally,
the optimal route in the candidate route set is returned as
the query result. The details of the three components are
elaborated in the subsequent sub-sections.

5.1 Routes Initialization
Route initialization generates a set of h candidate routes C
so that time-bounded solution can further enhances these h
candidate routes continuously until reaching the response
limit.

The reason for generating h candidate routes rather than
one is twofold. First, it is of high probability for one can-
didate route to get stuck in a local optimum, thus reducing
the probability of obtaining the optimal route. Second, en-
hancing h candidate routes is faster to approach the optimal
route than enhancing one. As illustrated in Figure 7 where
the grey ellipse represents the whole search space, if only
route R1 is generated, it will be a long way to enhance R1

to get the optimal route R∗. In contrast, if four routes R1,
R2, R3 and R4 are generated, it should be fast to enhance
R4 to get the optimal route R∗.

The setting of h concerns two aspects. On the one hand,
though a large h could have a good coverage of the search
space, it also requires much time to generate and enhance
the candidate route set. On the other hand, a small h cannot
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5

Step 0: Route initialization

𝒔 𝒅

𝑅1

𝑅2
𝑅3

𝑹∗ 𝑅4

Why k candidate routes

Fig. 7. Initialized candidate routes and search space.

reflect the advantage of route set initialization since it only
covers a small search space. Therefore, we will tune h in the
experiments to determine the appropriate value.

To generate h candidate routes that are distributed
randomly over the whole search space, we propose two
methods below.

A. Random Route Sampling
Random route sampling samples a candidate route by grad-
ually expands edges from the start location s. Initially, a
route R with the start location s is generated. In each expan-
sion, one more adjacent edge ei,j is randomly selected to ad-
d to the end of R. To ensure that the added edge ei,j satisfies
the cost budget, ei,j should satisfy λ(R)+ci,j+λ(SRj,d)≤B,
where SRj,d is the shortest route from vj to the destination
d. Finally, R reaches the destination d and is returned as a
candidate route.

Example 7. We take the BCIR query in Figure 2 for example.
Initially, we have R=〈s〉. There are three edges adjacent
to s, i.e., es,1, es,2 and es,3. We randomly select one
edge from the three edges and assume es,2 is selected,
thus R=〈s, v2〉. Next, we consider the two adjacent
edges e2,1 and e2,d of the end vertex v2 of R. Since
λ(R) + c2,1 + λ(SR1,d)=5 + 5 + 5>B=12, only e2,d is
feasible. Therefore, we have R=〈s, v2, d〉 which reaches
the destination d, thus a candidate route.

B. Route Sampling by Adapted Nearest Neighbour
Heuristics
Since random route sampling generates candidate routes
without considering the query keywords on edges, the ini-
tialized candidate routes may have very small scores. In this
case, it will take a long time to enhance the candidate routes.
To deal with this issue, we propose to sample candidate
routes by adapted nearest neighbours (NN) heuristics. Tra-
ditional NN heuristics method [9] starts from the start query
location and gradually adds the nearest edge containing
query keywords until reaching the destination. In this way,
we can only generate one candidate route. However, time-
bounded solution requires h candidate routes. Therefore, we
adapt traditional NN heuristics method so as to generate h
candidate routes.

The initialization of adapted NN heuristics method is
the same as random route sampling. In each expansion, we
compute the h nearest edges Eh containing query keywords
for the end vertex vi of R. Then, one edge is randomly
selected from Eh and added to the end of R. The remaining
issue is how to compute the h nearest edges for vertex vi.
For each BCIR query q, we compute all those edges, Eq , that
contain at least one query keyword in Kq and satisfy the
cost budget B, i.e.,

Eq = {ef,g|ef,g ∈ E ∧ (Kf,g ∩Kq 6= ∅)∧Γ(s, f, g, d) ≤ B} (16)

where function Γ(s, f, g, d)=λ(SRs,f ) + cf,g + λ(SRg,d) is
the same as that in Eq. (14). For ease of discussion, we call
Eq positive edges. Then, we select the h nearest edges Eh

for vertex vi from Eq .
Example 8. We still take the BCIR query in Figure 2

for example and initialize R=〈s〉. First, we have pos-
itive edges Eq={es,1, es,3, e1,2, e1,d}. If h=2, we have
Eh={es,1, es,3}. Assuming that es,3 is selected, we have
R=〈s, v3〉. Then, we consider the two nearest edges
containing query keywords for v3. However, we cannot
find a feasible edge containing query keywords to add
to v3. Therefore, R goes directly to the destination d and
generates a candidate route R=〈s, v3, d〉.

5.2 Inferior Sub-route Identification
After generating h candidate routes C, the next step is to
refine these h candidate routes until reaching the response
time limit T . Each time, a candidate route R is randomly
selected from C. The goal of inferior sub-route identification
is to find a sub-route of R for enhancement.

8

Step 1: Sub-route identification

 Randomly select one candidate route 𝑹 from 𝑪
 Find a sub-route of 𝑹 for refinement

Cost 

𝜃

A1

A2

Fig. 8. The distribution of all sub-routes of R

Figure 8 plots the distribution of all the sub-routes of R
with respect to their costs and ∆τ(R) values, where ∆τ(R)
value of sub-route Ri,j is computed by

∆τ(R) = τ(R)− τ(R−Ri,j) (17)

where τ(R−Ri,j) computes the route score after removing
sub-route Ri,j from R. Obviously, ∆τ(R) quantifies the
change of route score after removing the sub-route Ri,j .

Since it is difficult to bound the value of ∆τ(R)
λ(Ri,j)

, we
compute the corresponding angle θ(Ri,j) in Figure 8 by

θ(Ri,j) = arcsin
∆τ(R)

λ(Ri,j)
(18)

Angle θ(Ri,j) quantifies the ratio between ∆τ(R) and the
cost of sub-route Ri,j . According to Eq. (18), we have
θ(Ri,j)∈(−90◦, 90◦) since λ(Ri,j) is always positive while
∆τ(R) could be both positive and negative.

Intuitively, to increase the score of candidate route R, we
need to replace those sub-routes whose costs are large while
∆τ(R) values are small, i.e., sub-routes with small θ. To this
end, we devise two methods as below.

A. Ranking-based Inferior Sub-route Identification
Ranking-based identification orders all sub-routes according
to the θ value. First, the sub-route with the minimum θ value
is selected. If we can replace this sub-route with a better
one, this sub-route is identified. Otherwise, the second sub-
route is checked. ranking-based identification repeats this
operation until one sub-route is identified. For example, In
Figure 8, ranking-based inferior sub-route identification will
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first select the sub-route corresponding to the black pointA1

since it has the smallest angle θ.

B. Threshold-based Inferior Sub-route Identification
In threshold-based inferior sub-route identification, we set a
threshold φ for θ and compute the longest sub-route Ri,j of
R such that

Ri,j = arg max
Ri,j∈R∧θ(Ri,j)≤φ

λ(Ri,j) (19)

In Figure 8, assuming that the threshold is the dashed
line, threshold-based inferior sub-route identification will
select the sub-route corresponding to the grey point A2

since it locates below the threshold line and has the largest
cost. During the query processing, we first set φ=−80 and
increase it by 10 gradually until a sub-route is identified.

5.3 Route Enhancement
After identifying the inferior sub-route Ri,j of candidate
route R, we need to find a new sub-route to replace Ri,j
such that the new candidate route is better than R. Actually,
any route between vi and vj such that its cost is less
than B′=B−(λ(R)−λ(Ri,j)) can be used to replace Ri,j .
However, it is computationally prohibitive to evaluate all
these routes to select the optimal one to replace Ri,j .

Intuitively, adding those edges containing query key-
words to an existing candidate route is of high probability
to increase the route score. Therefore, given sub-route Ri,j
of candidate route R, we compute a candidate route set C′
by evaluating all the positive edges in Eq .

Time-bounded Solution

𝑠 𝑑

𝑣𝑓 𝑣𝑔
𝑒𝑓,𝑔

𝑣𝑖
…… 𝑣𝑗

……

Fig. 9. Route enhancement in TBS.

For each edge ef,g∈Eq , according to Figure 9, the new
candidate route generated by replacing sub-route Ri,j with
respect to edge ef,g is

Rnew = Rs,i ⊕ SRi,f ⊕ ef,g ⊕ SRg,j ⊕Rj,d (20)

where Rs,i is the sub-route (from s to vi) of R, Rj,d is the
sub-route (from vj to d) of R, SRi,f is the shortest route
from vertex vi to vertex vf , and SRg,j is the shortest route
from vertex vg to vertex vj .

The algorithm for computing the candidate route set
C′ is presented in Algorithm 4 which receives as input a
candidate route R with its sub-route Ri,j , and the positive
edges Eq . Initially, an empty route set C′ is created to store
potential candidate routes (line 1). In each iteration, one
edge from Eq that is not in R is evaluated (line 2), and
a new route Rnew is computed (line 3). The new route
Rnew may contain duplicate edges since the two shortest
routes, SRi,f and SRg,j , may contain edges in sub-routes
Rs,i and Rj,d. After removing duplicate edges (line 4), Rnew
is added to the candidate route set C′ if λ(Rnew)≤B and
τ(Rnew)>τ(R)(lines 5-6). By evaluating all the edges in
Eq , algorithm generates a set of candidate routes C′ whose
scores are larger than R (line 7).

With the computed candidate routes C′, we have two
methods to update the original candidate route R.

Algorithm 4 Enhance route(R, Ri,j , Eq)
Input: Candidate route R and its sub-route Ri,j , and posi-

tive edges Eq
Output: A set of new candidate route C′

1: C′ ← ∅ . Store the candidate routes
2: for ef,g ∈ Eq − ER do
3: Rnew ← Rs,i ⊕ SRi,f ⊕ ef,g ⊕ SRg,j ⊕Rj,d
4: remove duplicate edges of Rnew
5: if λ(Rnew) ≤ B and τ(Rnew) > τ(R) then
6: add Rnew to C′
7: return C′

A. Score-aware Enhancement
In score-aware enhancement, the optimal route in C′ is
selected to replace R in C.

B. Randomness-aware Enhancement
Since score-aware enhancement only considers the optimal
route in C′, it is of high probability to get the local optimum.
Therefore, we introduce randomness-aware enhancement in
which one candidate route is randomly selected from C′ to
replace the original candidate route R.

6 ERROR-BOUNDED SOLUTION

In some cases, users would like to sacrifice the quality of
query answer to reduce processing time as long as the worst
case is under control, i.e., the approximation error of the
query result is bounded. Given an approximate route R̂, the
corresponding approximate error ε is computed by

ε =
τ(R∗)− τ(R̂)

τ(R∗)
(21)

where R∗ is the optimal route. Obviously, we have ε ∈ [0, 1].
Formally, an error-bounded solution (EBS) returns ap-

proximate query results such that the given approximation
error threshold is guaranteed. In the exact solution, we can
relax the upper bound score based on the approximation
error threshold ε to search an approximate route instead of
the optimal one, i.e., the following lemma.
Lemma 5. Given a partial route R and the current optimal

routeR∗c , if (1−ε)·τ+(R)≤τ(R∗c),R can be pruned while
guaranteeing that the approximation error of final result
is at most ε.

Proof: For each candidate route R′∈CR generated by
expanding R, we have τ(R′)≤τ+(R). With the assumption
that (1− ε) · τ+(R)≤τ(R∗c), we have (1− ε) · τ(R′)≤τ(R∗c).
Assuming that the optimal route is R∗, R∗ will be pruned
if and only if there exists a route R∗c such that (1 − ε) ·
τ(R∗)≤τ(R∗c). Accordingly, we have τ(R∗) − ε · τ(R∗) ≤
τ(R∗c), i.e., τ(R∗)−τ(R∗c )

τ(R∗) ≤ε. Therefore, the approximation
error of route R∗c is at most ε.

Therefore, we can adapt the exact solution to an error-
bounded solution by using the relaxed score pruning. In
addition, we also employ the time-bounded solution to
improve the efficiency of EBS, thus EBS-T. For EBS-T, we
call a time-bounded solution with a time limit T after Line
4 in Algorithm 3. By doing this, we can obtain a good route
efficiently, thus improving the score pruning. The setting of
time limit T will be discussed in the experiments.
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Though EBS and EBS-T can further reduce the number
of iterations in Algorithm 3 by using a tighter score bound,
they still require a high time cost to compute the final query
results if the approximation error threshold is small and the
travel cost budget is large, which will be analyzed in the
experiments.

7 EXPERIMENTS

7.1 Data Sets and Setup
We evaluate the performance of the proposed solutions over
three data sets, i.e., the road networks of New York (NY),
California (CA) and United Kingdom (UK), where NY data
set is used as default. All data sets are extracted from the
OpenStreetMap (OSM)1 and their details are summarized in
Table 5. The text descriptions of edges are extracted from the
text descriptions of those POIs residing on them. Distance is
used as the travel cost in the experiments.

The settings of those parameters in the experiments are
listed in Table 6, where the default values are highlighted
in bold. Particularly, the travel cost budget is specified by
a deviation ratio µ≥0 from the shortest route between two
query locations, i.e., B=(1 + µ) · λ(SRs,d). We randomly
generate 50 queries for each setting and compute the av-
erage value of the corresponding results for plotting. All
algorithms were implemented in Java and run on a PC
equipped with Intel(R) Core(TM) i3-2100 CPU @3.10 GHz, 8
GB RAM.

TABLE 5
Statistics of data sets

Data set #vertices #edges average #keywords
NY 6, 393 13, 885 4.25
CA 90, 870 202, 250 2.46
UK 338, 838 738, 610 2.65

TABLE 6
Parameter setting

Parameter Meaning Value
|Kq | number of query keywords 1, 2, 3, 4, 5
λ(SRs,d) the shortest distance (km)

from s to d
4, 6, 8, 10, 12, 14, 16, 18,
20

µ deviation ratio 0.05, 0.10, 0.15, 0.20, 0.25
h number of initialized candi-

date routes
1, 3, 5, 9, 11, 13, 15, 17,
19

T time threshold in TBS 0.5, 1.0, 1.5, 2.0, 2.5 (sec)
ε approximation error thresh-

old in EBS
0.0, 0.1, 0.3, 0.5, 0.7

7.2 Experimental Results
7.2.1 BCIR query vs. KOR query
In order to compare BCIR query with KOR query [1], we
need to adapt KOR query. The cost budget is the same for
KOR query and BCIR query. For each edge ei,j∈E, we set
the objective score in KOR query as OS(ei,j)=

|Ki,j |
ci,j

, where
|Ki,j | and ci,j are the number of keywords and travel cost of
ei,j , respectively. Then, the adapted KOR query computes
the optimal route such that (1) it covers the given query
keywords, (2) its cost is less than the travel cost budget,
and (3) it has the maximum objective score. Differently,
BCIR query is targeted at computing the optimal route

1. https://www.openstreetmap.org

within the travel cost budget such that it is most textually
relevant to the query keywords. Figure 10(a) shows the
scores (i.e., textual relevance) of the routes returned by KOR
query and BCIR query. The route scores of KOR query are
much smaller than that of BCIR query. Therefore, existing
route planning applications using keyword coverage query
cannot effectively find the route that is the most textually
relevant to the query keywords. In addition, Figure 10(b)
presents the number of edges in returned routes for two
queries. With the increase of the shortest distance between
two query locations, both queries return routes of more
edges. However, there is no obvious difference between the
sizes of edges for two queries.
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Fig. 10. Effect of the shortest distance λ(SRs,d) between two query
locations, where travel cost budget B=(1 + 0.15) · λ(SRs,d)

7.2.2 Exact Solution
We evaluate the performance of exact solution while using
no pruning (Exact-N), cost pruning (Exact-C) and cost-score
pruning (Exact-CS), where Exact-N does not involve any
pruning techniques, Exact-C employs the cost pruning, and
Exact-CS leverages both cost pruning and score pruning.
Pruning effectiveness: Figure 11 shows the response time
and the number of iterations in Algorithm 1 while using d-
ifferent pruning settings. Note that, we set the upper bound
running times of Exact-N and Exact-C to 200 seconds since
the real running times could be much longer than 200 sec-
onds when the travel cost budget is large. As suggested by
Figure 11, the cost pruning reduces the number of iterations
by several orders of magnitude and the score pruning can
further iterations by around one order of magnitude. After
applying both cost and score pruning methods, the number
of iterations is greatly reduced, thus making the algorithm
efficient for BCIR queries of small travel cost budgets.
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Fig. 11. Varying the shortest distance λ(SRs,d), where cost budgetB =
(1 + 0.15) · λ(SRs,d)

Varying deviation ratio µ: Figure 12(a) illustrates the
response time of exact solution while varying the travel
cost deviation ratio µ, where the cost of the shortest route is
λ(SRs,d)=10 km. With the increase of µ, the response time
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of Exact-C increases rapidly. In contrast, if both cost pruning
and score pruning are used, i.e., Exact-CS, the increase rate
of response time is moderate.

Varying the number of query keywords |Kq|: Figure 12(b)
illustrates the results while varying the number of query
keywords. With the increase of the number of query key-
words, the response time of Exact-CS gradually increases
since it needs more time to compute the upper bound score.
In contrast, the response time of Exact-C keeps almost the
same because it only utilizes cost pruning and does not need
to compute upper bound score, thus being less dependent
on the number of query keywords.
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Fig. 12. Varying the deviation ratio µ and number of query keywords

Scalability test: We also evaluate the performance of the
exact solution on two large data sets, i.e., CA and UK data
sets. As illustrated in Figure 13, exact solution still performs
well when the road network have hundreds of thousands of
vertices. In fact, the response time on these two data sets is
smaller than that on NY data set because the query locations
are randomly selected and could be out of city on the two
large data sets. In general, the density of road network out of
city is sparse, thus reducing the number of candidate routes
in BCIR queries.
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Fig. 13. Varying the shortest distance λ(SRs,d) on CA and UK data sets

7.2.3 Time-Bounded Solution
Method combination comparison: Time-bounded solution
has three components and each component has two meth-
ods, thus 8 combinations in total. For ease of presentation,
we record these combinations as X-Y-Z where X represents
routes initialization method, including random route sam-
pling (R) and adapted NN heuristics route sampling (N); Y
represents inferior sub-route identification method, includ-
ing ranking-based identification (R) and threshold-based
identification (T); and Z represents enhancement method,
including score-aware enhancement (S) and randomness-
aware enhancement (R). For example, R-R-S indicates that
random route sampling, ranking-based identification and
score-aware enhancement are used. Figure 14 presents the

approximation error (cf. Eq. (21)) of returned routes using
different combinations. According to Figure 14(a), we set the
number of initialized candidate routes h=11. Since combi-
nation R-T-S performs the best among all the combinations,
we only report the results of R-T-S in the subsequent plots.
In addition, Figure 15 illustrates the distribution of response
time for all combinations. Obviously, random route sam-
pling consumes less time than adapted NN heuristics route
sampling in route initialization.
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Fig. 14. Varying the number of initialized candidate routes h and the
response time limit, where λ(SRs,d)=15 (km).
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GRASP vs. TBS: To demonstrate the performance of time-
bounded solution, we adapted the GRASP [10] solution
for arc orienteering problem (AOP) to our BCIR query.
Similar to TBS, GRASP also gradually refines the current
optimal route by generating new candidate routes. How-
ever, GRASP generates candidate routes by searching the
whole road network and needs to pre-compute the shortest
routes for all pairs of vertices. Since it is inapplicable to
pre-compute all pair shortest routes for large-scale road
networks, we utilize CH index to compute the shortest
route between two locations for GRASP online. Figure 16(a)
illustrates the results of R-T-S and GRSAP while varying
the response time limit T . According to Figure 16(a), R-T-
S greatly outperforms GRASP. The performance of GRASP
is not satisfying because it needs to search the whole road
network in each iteration and cannot iterate enough times to
improve the quality of query results. Figures 16(b) and 16(c)
present the results while varying the deviation ratio µ and
the number of query keywords |Kq|. With the increase of µ,
the approximation error first increases because the search
space increases. However, the approximation error then
decreases when µ is larger than 0.15 because the increase
of the optimal route score slows down. Differently, with the
increase of |Kq|, the approximation error always decreases.
Still, R-T-S outperforms GRASP in all cases.
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Fig. 16. Varying the processing time limit T , the deviation ratio µ, and the number of query keywords |Kq |, where the travel cost budget B=(1 +
µ) · λ(SRs,d) and λ(SRs,d)=15 (km)

7.2.4 Error-Bounded Solution

Figure 17(a) illustrates the response time while varying the
time limit T of time-bounded solution in EBS-T. According
to Figure 17(a), the response time reduces the most when
setting T=0.2 second. Figure 17(b) presents the approxima-
tion error of EBS and EBS-T (T=0.2 second) while varying
the approximation error threshold ε. With the increase of ε,
the approximation errors of both solutions increase. How-
ever, the increase speed of EBS-T is much smaller than that
of EBS. In addition, we also evaluate the performance of
EBS and EBS-T while varying the deviation ratio µ and the
number of query keywords. As suggested by Figure 18, the
response time will increase with the increase of µ and |Kq|
and EBS-T performs better than EBS.
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Fig. 17. The response time while varying time limit T , and the approx-
imation error while varying the approximation error threshold ε, where
the travel cost budget B = (1 + 0.15)∗ 15 (km)

0.05 0.10 0.15 0.20 0.25
Deviation ratio 

0

2

4

6

8

10

R
es

po
ns

e 
tim

e 
(s

ec
) EBS EBS-T

(a) Varying µ

1 2 3 4 5
Number of query keywords

0

2

4

6

8

10

R
es

po
ns

e 
tim

e 
(s

ec
) EBS EBS-T

(b) Varying |Kq |

Fig. 18. The response time while varying the deviation ratio µ and the
number of query keywords |Kq |, where ε=0.5 and the travel cost budget
B=(1 + µ)∗ 15 (km)

8 RELATED WORK

BCIR query is relevant to spatial keyword query and preference
route query, which are elaborated as below.

8.1 Spatial Keyword Query

Spatial keyword query retrieves geo-textual objects based
on the textual relevance and spatial proximity, where geo-
textual objects refers to these objects that contain both
spatial locations and keyword descriptions, e.g., POIs and
geo-tagged comments. A comprehensive survey on spatial
keyword query can be found in [11]. According to the gran-
ularity of query results, existing studies on spatial keyword
query can be classified into three categories, i.e., individual
geo-textual objects queries [12], [13], [14], [15], [16], [17], [18],
group geo-textual objects queries [4], [19], [20], [21], [22],
[23], [24], [25], [26], and region of geo-textual objects queries
[27], [28], [29], [30]. Concretely, individual geo-textual object
queries, e.g., range spatial keyword queries and top-k spa-
tial keyword queries, retrieve individual geo-textual objects
such that each returned object satisfies the query keyword
requirement independently. Differently, group geo-textual
objects queries search for a set of geo-textual objects that
collectively satisfy the query keyword requirement. In re-
gion of geo-textual objects queries, a region, e.g., rectangle
and circle, is predefined and the objective is to retrieve a
region which has the largest number of geo-textual objects
relevant to the given query keywords.

Both spatial keyword query and BCIR query are part-
ly motivated by the constantly increasing geo-textual da-
ta. However, spatial keyword query is generally targeted
at locating geo-textual objects according to user-specified
query keywords and the spatial proximity between query
locations and the locations of geo-textual objects. Therefore,
spatial keyword query generally has no routing function. In
contrast, BCIR is designed for finding a route that is relevant
to the query keywords within a certain travel cost budget.

8.2 Preference Route Query

In addition to shortest route query, many preference route
queries have been proposed to provide personalized route
query services, including arc orienteering problem [31], [10],
[32] object coverage route query [33], [34], [35], [36], [37], [38],
and keyword coverage route query [1], [2], [3], [4], [5], [39].

Arc Orienteering Problem (AOP): Arc orienteering problem
is a variant of the classical orienteering problem (OP). In
orienteering problem, each vertex is associated with a score
and each edge is associated with a cost, and the objective
is to find a route such that the cost is less than a given
cost budget while the total score is maximized. Different
from orienteering problem, the score in AOP problem is
associated with edge instead of vertex. The objective of AOP
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is also to search a route such that its total score is maximized
and its cost is within a cost budget. BCIR is relevant to
AOP because both problems have constrained cost and the
score is associated with edge. However, the route score in
BCIR query captures the textual relevance between the text
description of the whole route and query keywords rather
than summing up the separate scores of all edges on the
route in AOP.

Object Coverage Route Query: In this line of studies, the
whole set of geo-textual objects, e.g., POIs, is classified into
different categories. The goal of this kind of query is to find
a route that covers at least one object in some required
categories of geo-textual objects with the smallest travel
distance. In addition, the required categories can be visited
sequentially [34], [38] or partially sequentially [35].

Keyword Coverage Route Query: Keyword coverage route
query retrieves routes to cover user-specified query key-
words. Cao et al. proposed the keyword-aware optimal
route (KOR) query [1] in which each edge of the road
network was associated with a cost and a score. Given a cost
budget, KOR query is targeted at finding a route that covers
a set of user-specified query keywords and maximizes the
objective score within the given cost budget. Taking into
account the weights of different keywords of query objects,
Zeng et al. [4] proposed an optimization problem to opti-
mize the keyword coverage on the required route. However,
it is non-trivial to compute the accurate weights for the
keywords of each object. Yao et al. [2] proposed approximate
keyword route query to retrieve routes that cover the query
keywords according to an approximate string similarity
function rather than perfect match. Li et al. [3] contribute
an extension to the KOR query by searching all those routes
that are not dominated by others. In addition, the Route of
Interest (ROI) [5] query is proposed to search for the optimal
route that collects the most number of query keywords.
Different from BCIR query, ROI query does not compute
the textual relevance between routes and query keywords.
Another relevant work is [39] which introduced the problem
of identifying Streets of Interest (SOIs) to identify individual
street segments that have dense relevant POIs around them.

BCIR query is different from the existing studies on pref-
erence route query in two folds. First, BCIR computes the
textual relevance between the text description of the entire
route and query keywords directly while existing studies
on preference route queries usually focus on the keyword
coverage or score collection. Second, if each road edge is
associated with a score, the score is usually pre-computed
in existing route queries, which makes it inflexible for users
to describe their personal preferences. In contrast, users
can easily specify the query keywords to describe their
preferences in BCIR query.

9 CONCLUSION

In this paper, we propose the BCIR query to retrieve the
route that is most textually relevant to the user-specified
query keywords within a travel cost budget. To efficiently
process BCIR queries, we propose an exact solution with
effective pruning techniques and two approximate solutions
regarding the response time and the quality of results,

respectively. As demonstrated via extensive experiments,
the proposed solutions achieve satisfying performance over
different data sets. BCIR provides a new type of route
query that can be applied in various applications ranging
from route planning to location-aware recommendation. In
addition, the future extensions may include 1) searching the
top-k optimal routes rather than the optimal one, 2) finding
a BCIR route that allows duplicate vertices and edges, 3)
removing the query location constraints and retrieving the
optimal route over the whole road network.
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