Fast Error-Bounded Distance Distribution
Computation

Jiahao Zhang,

Man Lung Yiu,

Bo Tang, Qing Li

Abstract—In this work we study the distance distribution computation problem. It has been widely used in many real-world
applications, e.g., human genome clustering, cosmological model analysis, and parameter tuning. The straightforward solution for the
exact distance distribution computation problem is unacceptably slow due to (i) massive data size, and (ii) expensive distance
computation. In this paper, we propose a novel method to compute approximate distance distributions with error bound guarantees.
Furthermore, our method is generic to different distance measures. We conduct extensive experimental studies on three widely used
distance measures with real-world datasets. The experimental results demonstrate that our proposed method outperforms the
sampling-based solution (without error guarantees) by up to three orders of magnitude.

Index Terms—cumulative distance distribution, error-bound guaranteed approximation, lower and upper bounds

1 INTRODUCTION

In recent years, more and more datasets become available
in many research areas (e.g., trajectory data [1], scientific
celestial data [2], points-of-interests data [3]), making it
possible to apply data-driven exploratory analysis in var-
ious applications. In this work, we focus on computing
the distance distribution in a dataset, which can be used
in dozens of exploratory analysis applications. We study
cumulative distance distribution and distance distribution
histogram in this paper. Specifically, a given dataset D is
converted to a collection of distances among objects. Those
distances are sorted, then plotted as the cumulative dis-
tance distribution or distance distribution histogram. Data
analysts may exploit the distance distribution among data
objects to reveal the characteristics/insights of a dataset.
We introduce four applications of distance distributions in
different areas below.

Human genome clustering: Biologists examine the cumu-
lative distance distribution of human genes to explore the
characteristics of different gene patterns [4]. Specifically, the
cumulative distance distribution of genes provides clear and
intuitive insights for human genome clustering, aggregation
degree, etc. For example, in Figure 1(a), snRNAs (a class
of human microgenes) have several rapid ascents in its
cumulative distance distribution (the blue curve). Hence,
these distance values at rapid ascents may be used as cluster
radii in clustering algorithms.

Cosmological model analysis: Given billions of celestial
objects, astronomy scientists could plot the distance dis-

o Jighao Zhang, Man Lung Yiu and Qing Li are with the Department of
Computing, The Hong Kong Polytechnic University. E-mail: {csjhzhang,
csmlyiu}@comp.polyu.edu.hk, qing-prof.li@polyu.edu.hk

e Bo Tang is with Research Institute of Trustworthy Autonomous Systems,
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Com-
putation, Department of Computer Science and Engineering in Southern
University of Science and Technology, and PCL Research Center of
Networks and Communications in Peng Cheng Laboratory. He is the
corresponding author. E-mail: tangb3@sustech.edu.cn

1
- 1012
2
g 8
g £
g L10°
- o
g) b
£ rapid ascent 210t
Q =3
3 z
0 100
100 102 10* 10° 108 1073 1072 107! 10° 10 102
Distance (nucleotides) Euclidean Distance
(a) Human genes [4] (b) Celestial objects [5]
1 —: June-1977
3 i —: April-1978
o - 10
2 Threshold 2
£ point S10*
2 z
% noise Eq¢2 i
o« =z Expansion
clusters —
0 10°
. Xo 0 20 40 60 80
4-NN Distance Radius

(c) Spatial objects [6] (d) Graph nodes [7]

Fig. 1. Distance distribution applications, (a) and (c) are cumulative
distance distributions, (b) and (d) are distance distribution histograms

tribution histogram of those celestial objects in order to
analyze cosmological models [5]. Figure 1(b) is an exact
distance distribution histogram among 4.5 billion celestial
objects, which takes hundreds of hours of computation.
This statistical function can be applied to classify unknown
celestial objects into different systems (e.g., inner solar sys-
tem, outer solar system), and assist astronomy scientists in
identifying relationships among galaxies.

Parameter tuning: Data mining algorithms may utilize
cumulative distance distributions to determine parameter
values, instead of trial-and-error. DBSCAN [6], a well-
known clustering algorithm in spatial databases, adopts the
cumulative distribution of k-NN distance to determine the
parameter ¢, the radius of a neighborhood with respect to
some points. Consider the example in Figure 1(c), € can be
set as the x-axis value (z() of the “transition” point (see the
red dot) in the cumulative distribution of 4-NN distance.

Graph analysis: The distance distribution histogram be-

tween node pairs from large graphs is an effective tool
to discover fascinating properties (e.g., temporal variation
tendency and central nodes) [7]. Figure 1(d) shows two
distance distribution histograms of the graph dataset Ya-
hooWeb [8] in June-1977 and April-1978, respectively. The
radius (x-axis) means the distance between one node and
its farthest reachable node. The gray region shows that
YahooWeb experienced a significant expansion from June-
1977 to April-1978.

In addition to the above applications, distance distri-
butions are also adopted to capture the characteristics of
high dimensional datasets, e.g., building indexes for metric
spaces [9], estimating CPU and I/O cost models for M-
tree [10].

Given a set of object pairs Dyq;y, its distance distribu-
tion histogram can be derived from its cumulative distance
distribution easily. Thus, we focus on computing the cumu-
lative distance distribution problem first, then discuss how
to derive its corresponding distance distribution histogram
efficiently. A naive solution for the cumulative distance
distribution problem is: (i) compute the distance between
every pair of objects, then (ii) sort those distances and plot
the cumulative distance distribution. The time complexity of
the naive solution is O(|Dpair |- c0stdaist +|Dpair| 108 | Dpair|),
where costgis; is the time complexity of computing the
distance of an object pair.

Obviously, the naive solution is unacceptably slow due
to (i) massive data size and (ii) expensive distance compu-
tation. We observe that the distance computation dominates
the computation time. Distance measures like dynamic time
warping (DTW) and discrete Fréchet distance (DFD), require
O(m?) computation time, where m denotes the number of
attributes per data object. For example, the OSM-FULL [11]
dataset contains 2.4 million trajectories. The top-2 longest
trajectories in the dataset OSM-FULL contain 960,160 and
733,523 GPS points, respectively. It takes 2484.81 seconds
to compute the discrete Fréchet distance (DFD) between
these two trajectories. Moreover, given a random selected
trajectory in OSM-FULL, it takes 8.68 hours to compute
its exact distance distribution with DFD as the distance
measure.

In the database community, approximate query pro-
cessing techniques [12] are widely used for answering
queries approximately over voluminous data. Specifically,
such techniques help data scientists identify insights from
data that needs further exploration, enabling visualization,
and supporting interactive exploratory analysis. For appli-
cations that cost too much time to compute the distance
distributions, the approximate approach can be adopted
to accelerate them with acceptable results. Besides, subject
to time limit, some existing applications have to generate
distance distribution offline or use synthetic distributions
(e.g., random distributions) to simulate and predict results.
Approximate distance distributions enable them to update
distance distribution interactively and produce distance
distributions for real datasets. To support interactive and
scalable data analysis applications, this paper aims at com-
puting an approximate distance distribution quickly with
worst-case error guarantees.

Sampling [13], [14], [15] is the gold standard of approxi-
mate query processing in the world of big data. For example,

2

the SQL:2008 standard allows user to choose the sampling
fraction. The sampling idea can be adapted to compute the
approximate cumulative distance distribution. Specifically,
it first picks the objects uniformly-at-random with the given
sampling fraction, then computes the distances (and dis-
tance distribution) on the sampled dataset and scale-up the
distribution. Unfortunately, it does not provide any worst-
case guarantee on the error of approximate results.

The challenge of our problem is how to offer worst-case
error guarantees on approximate results (without comput-
ing the exact results). In this work, we propose a novel com-
putation framework that renders fast approximate result
computation with worst-case error guarantees. Moreover,
our proposal is generic, i.e., it can be used with different
distance measures. The major contributions of this paper
are summarized as follows.

e To our knowledge, this is the first work that studies the
approximate distance distribution computation problem
with error bound guarantees. We formally define the ap-
proximate cumulative distance distribution problem and
the approximate distance distribution histogram problem
in Sections 2 and 5, respectively.

e We design a computation framework for the error-
bounded cumulative distance distribution computation
problem and devise a suite of optimization techniques in
Sections 3 and 4, respectively.

e We extend the solution in Sections 3 and 4 to compute
error-bounded distance distribution histogram efficiently
in Section 5.

o We evaluate the efficiency and effectiveness of our pro-
posal on three real datasets with widely used distance
measures in Section 6. Comparing with the sampling-
based solution, our solution not only provides worst-
case error guarantees but also is up to three orders of
magnitude faster.

The rest of this paper is organized as follows. We define
the approximate cumulative distance distribution compu-
tation problem in Section 2. Our solution framework is
presented in Section 3, together with a suite of performance
optimization techniques in Section 4. In Section 5, we ex-
tend our proposed techniques to solve the error-bounded
distance distribution histogram computation problem. We
evaluate the effectiveness and efficiency of our proposal on
real datasets with various distance measures in Section 6. Fi-
nally, we review the related work in Section 7 and conclude
the paper in Section 8.

2 PROBLEM DEFINITION

We first define our research problem in Section 2.1, then
present an existing sampling-based solution in Section 2.2.

2.1 Problem Formulation

In data mining, similarity or distance measures are used
to quantify how much alike two data objects are. Let
dist(0;,0;) denote the distance between two data objects
o; and o;. It is expensive to compute distance functions for
complex data objects (e.g., time series, trajectories, image
color histograms).

TABLE 1
Distance measures for complex data objects

[Data type | Distance measure [Cost |
Time series Euclidean distance (ED) O(m)
Time series | dynamic time warping (DTW) | O(m?)
Trajectories | discrete Fréchet distance (DFD) | O(m?)

a dataset of objects

(a) pairs of objects formed
by a query object o,

(b) all pairs of objects

Fig. 2. The set Dy, of object pairs

Table 1 shows three representative distance measures
and computation costs for such data objects. Observe that
computation costs grow linearly or super-linearly with m,
the number of attributes per object. We are aware that Agar-
wal et al. [16] proposed an algorithm to compute the exact
DFD with O(m? &8) cost recently, which is slightly
lower than O() in Table 1. The reasons why we do not
apply it in this work are as follows: (i) the development of
faster exact distance algorithms is orthogonal to our work;
they can be directly applied in our proposed framework,
and (ii) the algorithm in [16] achieves O(leolgo{%) cost
theoretically, however it is hard to implement in practice.

Given a dataset D of objects, the user could formulate
a set Dpqir Of object pairs and then study the distance
distribution of object pairs in D). Figure 2 illustrates two
examples for formulating a set D,,4;, of object pairs.

e By a query object (e.g., human genome clustering). In
Figure 2(a), we take a query object o, and form the set
Dpair as

Dpair = {(04,0:) : 0; € D}

e By correlation (e.g., cosmological model analysis). In
Figure 2(b), we form the set D, by using all pairs of
objects from D, i.e.,

Dpair = {(0i,05) : 0; € D,0; € D,0; # 0;}.

With the above concepts, we define a generic problem
for cumulative distance distribution as follows.

Problem 1 (Cumulative Distance Distribution). Given a set
Dpair of object pairs and a distance measure dist, the cumula-
tive distance distribution (CDD) problem returns a function of
distance d, i.e., F : RT — N such that

F(d) = |{(0i;0j) € Dpair : diSt(Oi,Oj) < d}|

3

This problem is generic with respect to (i) distance
function, and (ii) the way of formulating the set Dy-.
Observe that the function F'(d) is a piecewise step func-
tion because it is defined by finite pairs in Dyq;,-. Hence, it
requires the range and the function value of every interval.
A straightforward method for this problem is shown in
Algorithm 1. First, we compute the distance dist(o;, 0;) for
each object pair (0;,0;) € Dpair, and insert it into a distance
array L. We then sort the distance values in £, and com-
pute the cumulative distance distribution F'(d). Specifically,
given the sorted array £ which includes the distance values
of all pairs, the cumulative distance distribution F'(d) is
expressed as follows.
0, delo,L[1])
F(d) = 1, del[L[1],L[2]) 1)

n, d € [L[n],+0)

Algorithm 1 CDD(D,)
1: initialize distance value array £
: for each object pair (0;,0;) € Dpgir do
append dist(0;,0;) to L

: compute F(d) with £ by using Equation (1)

2
3
4: sort distance values in £ by ascending order
5
6: return F'(d)

The cost of Algorithm 1 consists of: (i) computing all
distance values, i.e., O(|Dpqir| - cOstaist), where costg;s
denotes the cost per distance computation, (ii) sorting all
distance values, i.e., O(|Dpgir| - 108 |Dpair|), and (iii) com-
puting cumulative distance distribution F(d), it is linear to
O(|Dpair|)- In total, this method takes O(|Dpgir| - costgist +
|Dpair| - 108 | Dpair|) time. Clearly, this method is not scalable
when D, has a massive size or distance computation
costgist is expensive, as discussed before.

To enable interactive exploratory analysis and visual-
ization on cumulative distance distribution, we propose to
compute a function F'(d) quickly such that it approximates
to F(d) with worst-case error guarantee. We define this
approximate version of Problem 1 as follows:

Problem 2 (Error-bounded Approximate Cumulative Dis-
tance Distribution). Given a set Dyqir of object pairs, a
distance measure dist and an error threshold &, the approximate
cumulative distance distribution (ACDD) returns a function of
distance d, i.e., F' : RT — N such that the condition

|[F(d) = F(d)] <6
holds for every value of d.

Example: In this example, we use a trajectory dataset
(GeoLife [17]) with DFD as the distance measure. Figure 3(a)
shows the exact (black) and approximate (red) cumulative
distance distribution. For the approximate curve in Fig-
ure 3(a), the error threshold 0 is fixed to 1% of the size of
Dpair-

2.2 Sampling-based Solution

Sampling is a common approach to deal with massive
datasets [15]. In this section, we present a sampling-based

N
o

N
o

CDD —
ACDD —,

=
3
=
o

Emax(F/F)=145

13.2

[$2]
a1

T[Emax(F*2™,F)=168

1 1.75 3

12.7]

247 2494 25.2

o

o

Number of Objects (103)
=

Number of Objects (103)
=
o

0 5,10 L5
Distance (10'3)

(b) Sampling-based Solution

(a=1%)

20 25 210_3 15
Distance (107)

(a) Error-bounded solution
(0 = [Dypair| - 1%)

Fig. 3. Exact and approximate cumulative distance distributions on
GeolLife with DFD

method, which can be used to address our problem partially,
i.e.,, it provides approximate cumulative distance distribu-
tions but without worst-case error guarantees. Specifically,
the sampling-based solution picks a subset D,i"" from
Dpair based on a given sampling fraction . Next, it applies
the straightforward method (see Algorithm 1) to compute
the cumulative distance distribution on D7, and then
scale-up the distribution by the factor 1 to obtain the
approximate cumulative distance distribution F'**"?(d).

The sampling-based solution allows users to control
response time via the sampling fraction a. However, it can-
not provide worst-case error guarantee on the approximate
cumulative distance distribution. In order to quantify the re-
sult qualities of the sampling-based solution, we define the
maximum error between a given approximate cumulative
distance distribution function G(d) and exact cumulative
distance distribution function F'(d) as follows.

Definition 1 (Maximum Error). The maximum error between
a given approximate cumulative distance distribution function
G(d) and exact cumulative distance distribution function F(d)
is defined as

Fies (G, F) = max |G(d) — F(d)|

0<d<©

Example: Take the approximate cumulative distance distri-
bution function F(d) as an example, we have E,,.,(F, F)

= max |F(d) — F(d)| < 6. Thus, the maximum error
<d<oo

between F(d) and F(d) does not exceed 4, e.g., the max-
imum error is 145 in Figure 3(a), which is less than the
given 0 = 1% - |Dpqir| = 186. Consider the approximate
cumulative distance function F**"?(d) in Figure 3(b), which
is returned by the sampling-based solution (SAMP) with
sampling-ratio @« = 1%. The maximum error between
F#*m?(d) and F(d) is 1680.

Observe that F(d) is better than F*“"?(d) to approx-
imate F(d) on Geolife with DFD (see Figure 3) because

Ermaz(F, F) = 145 < Eppop (F*4 F) = 1680.

3 OUR PROPOSED METHOD

In this section, we propose a novel framework to compute
the approximate cumulative distance distribution F'(d) with
error-bounded guarantees (see Problem 2). Our idea is to
develop lower and upper bound functions for the exact
cumulative distance distribution F'(d), as defined below:

4

Definition 2 (Distribution Bound Functions). The functions
F\(d) and F'(d) are said to be the lower bound and the upper
bound of F(d), respectively, if

Fy(d) < F(d) < F'(d)
holds for every value d € [0, 4+00).

The above concept enables our proposed framework
as illustrated in Figure 4. First, we compute the bound
functions F|(d) and F'(d). An intuitive way is to take the
approximate distance distribution as:

F(d) = AFT(d) + (1 = M) F,(d), Xe[0,1])

As we will prove in Section 3.2, Equation (2) offers worst-
case error guarantees on the approximate result without
computing the exact result F'(d) when A\ = 1. We next verify

2
~ B
whether F(d) = w satisfies the error requirement.
If the verification is not passed, then we tighten the bound
functions F|(d) and F'(d). This process repeats until the
verification can be passed.
set of object pairs Z),

pair

[(1) compute bounds of }

cumulative distribution

upper bound M
approx. function F(d)i/g

. (3) tighten

No | bound functions

lower bound F(d)

Fig. 4. Our proposed solution framework

Algorithm 2 ACDD(D,,;, 9)

> Section 3.1
> Section 3.2
> Section 3.3

1: compute F| and F'
2: while Verify(F|, FT,§) = False do
3: tighten F| and F'

4: return F(d) = w

The pseudocode of our proposed solution is summarized
in Algorithm 2. Our research questions are as follows:

e How to compute the bound functions F|(d) and
F(d) efficiently? (Section 3.1)

« How to verify whether the approximate distance dis-
tribution F'(d) satisfies the error requirement without
computing the exact result F'(d)? (Section 3.2)

o How to tighten those bound functions? (Section 3.3)

3.1 F'(d)and F|(d) Computation

Recall that the cumulative distance distribution F'(d)
involves many calls to distance computation, e.g.,
DTW(o;, 0;), which are expensive as shown in Table 1. To

avoid expensive distance computation, we leverage bound-
ing functions for distance computation to construct F)(d)
and FT(d) efficiently. We first introduce the concept of
distance bound functions.

Definition 3 (Distance Bound Functions). Vo; € D, Vo, € D,
LBg;st(0i,05) and U Ba;s: (04, 05) are said to be the lower bound
and upper bound functions of dist(o;,0;), respectively. It holds
that

LBg;st(0i,05) < dist(0;,0;) < UBgist(0;,05).

For instance, according to the literature, the representa-
tive distance lower and upper bounds for several distance
measures (e.g., ED, DTW, DFD) are listed in Table 2. These
bound functions incur lower computation cost than exact
distance measures. For example, exact DFD computation
takes O(m?) time but the lower bound LBy (0;,0;) takes
only O(1) time [18]. For the sake of presentation, we omit
the exact definition of these distance bound functions and
refer interested readers to the corresponding references
shown in Table 2.

TABLE 2
Bounds for distance measures
Distance lower bounds upper bounds
Ep | [Braa [19], LBrnn [20] [UBpaa [19], UBrnw [20]

DTW LBKimFL [21]/ LBIE(gogh [22] UBKeogh [22]/ UBEp [23]

LBecen [18], LBrow [18] UBy [18], UBgreedy [24]

DFD

We next exploit distance bound functions, LBg;st(0q, 0;)
and U By;st(04, 0;), to construct the bound functions F (d)
and FT(d) for cumulative distance distribution F(d), as
described by the following lemma.

Lemma 1. Define the following functions:
F\(d) = [{(04,0i) € Dpair : UBgist(04,0;) < d}|
F1(d) = |{(0g,0:) € Dpair : LBuaist(04,0;) < d}|
Vd € [0, +00), it holds
Fi(d) < F(d) < F'(d).

Proof. We first prove that Vd € [0,+00),F|(d) < F(d).
Given a distance value dy, suppose S| = {(04,0;) €
Dpair : UBdist(0q7Oi) < do} and S = {(Oq,O,’) € Dpaz’r :
dist(0q,0;) < do}. We then have S| C S as dist(og,0;) <
UByisi(04,0;). Hence, Vd € [0,+00), F|(d) = |S|]
|S| = F(d). Similarly, we can prove Vd € [0, +00), F(d)
F1(d).

It is worth to note that, like the function F'(d), both F) (d)
and FT(d) can be expressed as piecewise step functions.
Moreover, it is cheap to derive F|(d) and F(d), e.g., reduce
O(|Dpair| - costaist) to O(|Dpair|) if it employs O(1) cost
lower and upper bounds.

A

COIA

Example: Consider the demo example in Figure 5(a). Let
S|, S and ST be the set of object pairs with U Bg;st (04, 0;) <
4, dist(og,0;) < 4 and LBgist(0q,0;) < 4, respec-
tively. We have S| = {(04,01),(0q,02),(04,03)},S =

Pair LBdiSt dist UBdiSt 8 ———————
(go)| 0 | 1 | 3 7| F'(d) o= i :
(04,02) | © 2 3 6 — —
(0g:03) | O 3 4 5 — —
(0g.00) | 1 4 5 4l +—
00| 2 | 5 | 6 31F(a) Fi(d)

(0g,06) | 3 5 9 2 — !

a» %6 H
(0g,07) | 4 6 10 (1)

(0g:08) | 5 6 | 10 01234567 8910d

(a) distances (b) cumulative curves

Fig. 5. lllustration example of F| (d) and F'T(d)

{(04,01), (04,02), (04, 03), (04, 04)}, and ST = {(0g, 01),
(0g,02), (0g,03), (0g,04), (04, 05), (0g,06), (0g; 07) }. We have
S, C S C ST thus Fi(4) = |S)| =3 < F4) = |S] =
4 < F'(4) = |ST| = 7, as shown in Figure 5(b). The black,
red and blue curves in Figure 5(b) show the lower bound,
exact and upper bound of cumulative distance distribution
in dataset Dpqy, respectively.

3.2 Verification of F(d)

Our next issue is to verify whether the approximate dis-
tance distribution F'(d) satisfies the error requirement. The
challenge is to avoid computing the exact distance distri-
bution F'(d), which is expensive. Lemma 2 offers a simple
verification condition; it suffices to test whether the function
F1(d)— F(d) is below the error threshold 26 for all d. When
this verification condition evaluates to true, it guarantees
. . =~ _ FYd)+F (d) .
that the approximate function F(d) = ——5—+~ (ie.,
A = 3 in Equation (2)) satisfies the error requirement.

Lemma 2 (Error-bounded Guarantee). Suppose F(d) =
AFT(d)+(1=X)F,(d) (see Equation (2)). If FT(d)—F (d) < 20
for every d € [0, +00), then it satisfies |F(d) — F(d)| < 6 for

=

every d € [0, +00) when X\ =

Proof.

|[F(d) = F(d)] = PNET(d) + (1 = N Fy(d) — F(d)]

= IAE(d) = F(d)) + (1 = N)(F(d) — F(d))]

S AFN(d) = F(d)| + (1= N)|F,(d) - F(d)]

= MNF"(d) — F(d)) + (1 — N\)(F(d) — F,(d)), by Definition 2

= AFT(d) + (1 = 2\)F(d) — (1 — \)Fy(d)

_ F'(d) - F(d)
2

=4, since F(d) — Fy(d) < 26.

3

N2

DN | =

, by setting A =
20

< 22
-2

O

It remains to discuss how to efficiently compute the con-
tinuous function F'(d) — F|(d), which involves infinitely-
many possible values of d in the range [0, 4+00). The main
challenge is to do verification exactly, yet in a form of finite
distance terms. Since both F'T(d) and F'| (d) can be expressed
as piecewise step functions, it is possible to compute the
function F''(d) — F| (d) efficiently, by applying the following
lemma.

Lemma 3. Let F|(d) and F'(d) be the lower bound and the
upper bound of cumulative distance distribution function for the
dataset Dpq;r. It holds that the difference function

diff(d) = F'(d) — F|(d) 3)
can be expressed as a piecewise step function with at most

2|Dpair| + 1 intervals.

Proof. F|(d) and FT'(d) are non-decreasing piecewise step
functions because they are cumulative distance distribution
functions defined by finite pairs in D). Thus, we express
F(d) and F'(d) as follows:

lo,d € [071'1)
li,de [l‘l,wg)

uo,d € [0,91)

w1, d € [y1,y2)

F(d) = F'(d) =

n,d € [xn, +00) n,d € [Yn, +00)

where n = |Dpgir|, i, Yi, li, u; are constants.

The endpoints of intervals of diff(d) must be in the
following set: {0, +oco}U{x1, -+ , 2, }U{y1, - ,yn}. There
are at most 2n + 2 endpoints. Thus, there are at most 2n + 1
intervals. O

The above observation suggests that the merge-join al-
gorithm can be used to compute the piecewise step function
diff(d) and verify whether each step satisfies the error re-
quirement diff(d) < 24 efficiently.

For example, in Figure 5(b), F''(d) and F(d) are piece-
wise step functions with at most 8+1 intervals, as the set
Dypair contains 8 pairs. The function diff (d) contains at most
2-84 1 = 17 intervals (in fact it contains only 9 intervals).

3.3 Tightening of F(d) and F''(d)

We proceed to discuss how to tighten the bound functions
F\(d) and F'(d) efficiently if F'(d) cannot pass the verifi-
cation. For a given data object pair (o4,0;), the lower and
upper bound will be tighter during the refinement process.
For the widely used distance measures, e.g., dynamic time
warping (DTW), discrete Fréchet Distance (DFD), there are
many research works devised lots of lower and upper
bounds for them [18], [21], [22], as shown in Table 2.

However, it is not trivial to decide which bound should
be used. We benchmark all DFD bounds by the tightness
and computation cost. Figures 6(a) and (b) illustrate the
computation cost (z-axis) and the tightness (y-axis) of DFD
lower bounds (LB/DFD) and upper bounds (DFD/UB),
respectively.

A straightforward strategy is that all bounds are applied
from quick-and-dirty one to slow-and-accurate one in Fig-
ure 6. However, some of bounds are dominated by others,
for example, LB,.,,, is dominated by LB, in Figure 6(a). In-
tuitively, L By, can be ignored if it employs LB,. To exploit
this property, we propose another strategy, called Prioritizing
bounds, to tighten the bounds of each object pair (o, 0;)
efficiently. In particular, we only employ these bounds in
the skyline of Figure 6, instead of all bounds in the straight-
forward strategy. For example, only LB ., LBy, UB, will
be used for DFD. We evaluate the effect of both strategies in
Section 6.5. For ED and DTW bounds, we use the same idea
and refer the reader to the bound benchmark result of DTW

1 DFDe
_ LBy~ qmrisrsssmssssssssssssssssssssnsd

2 N g
¢ X S
%D E LByow OLBcross
= =2 LBcell o

0

(a) DFD lower bounds

1 DFDe
” E .- i
2 i
‘E E UBgreedy
o =

0 i

o) 0(m) 0(m?)

(b) DFD upper bounds

Fig. 6. The evaluation of DFD lower and upper bounds

in [22]. Moreover, our solution is generic to the distance
measures which have existing lower or upper bounds.

In summary, our solution exploits the lower and upper
bound functions of each distance measure (which incur
cheap computation cost) to render error-guaranteed ap-
proximate results efficiently. It provides worst-case error
guarantees on the distance distribution for different distance
measures, which do not rely on the specific lower and upper
bound functions. Obviously, the distance lower and upper
bound functions will affect the performance of our solution.
We will evaluate their effectiveness in the experimental
section shortly.

4 OPTIMIZATION TECHNIQUES

In this section, we devise a suite of optimization techniques
to improve the performance of our proposal in Section 3.
In particular, the performance improvements are from (i)
we exploit data index to compute the lower and upper
bounds of a group of data objects, instead of computing
them one by one (see Section 4.1); (ii) we devise a lazy lower
and upper bound refinement method, which only refine the
lower and upper bounds of data object pairs which may
lead to invalid intervals (see Section 4.2); and (iii) we reduce
the exact distance computations to ensure the approximate
distance distribution F'(d) satisfies the error requirement
(see Section 4.3).

4.1 Computing Index-based Bounds

We first compute the distance lower and upper bound of
every object (04,0;) € Dpair, then obtain F|(d) and F'(d)
accordingly. When the data set is large enough, the cost
to compute F|(d) and F(d) is also very expensive even
the O(1) cost bounds are used. In this section, we employ
well-studied data object index to accelerate F| (d) and F''(d)
computation. For example, R-tree [25] is a standard index to
maintain spatial objects. Given a dataset D of spatial points,
it first constructs the R-tree index r. For each entry e in r has
a minimum bounded rectangle, i.e. MBR(e), which could
provide a common distance lower and upper bound for all
object pairs (oq,0;), where o; € e. Through this, F (d) and
F1(d) can be derived without computing the lower and up-
per bound of each object pair (04, 0;) € Dpqir. Moreover, the

| r
(quos)
—
(Dq'odl)
(0q103)
(oqvoz)
LByist(0g, 02) - UBgist(0q,02)
(O 0)UB dist| Oq'Oz)
) 01

012 3 45 6 7 8 9 10

Fig. 7. Distance lower and upper bound updates

tightness of the lower and upper bound between MBR(e)
and o, depends on the height of entry e in R-tree r. In other
words, different levels in the index r serve as different lower
and upper bound functions in our framework. Obviously,
the effectiveness of index-based bounds are relying on the
underlying objects. For example, the performance of R-
tree index will degenerate due to the curse of dimensionality
in high dimensional data objects. In this case, users may
disable index-based bound option in our framework as it
does not improve the overall performance.

4.2 Refining Optimized Invalid Interval

In this section, we consider how to tighten F| (d) and F'(d)
with tighter LBg;5;(04, 0;) and U By, (04, 0;) efficiently. The
major contributions are: (i) it only updates the lower and
upper bounds of data object pairs which affect the output of
verification function, (ii) it employs a lazy bound updating
method which computes the tighter lower and upper bound
if and only if it is necessary.

Consider the example shown in Figure 7 with error
threshold 6 = 1.Vd € [4,8), F'(d) = 4and F|(d) = 1. Thus,
Vd € [4,8),diff(d) = FT(d)—F,(d) =4-1=3>2=21ts
approximate distance distribution F'(d) does not satisfy the
requirement, i.e., Verify(F|(d), FT(d),d) return false. Our
method will refine F|(d) and F'(d) by tighter lower and
upper bound functions LB, ,(04,0;) and UBJ, . (04,0:),
respectively. A simple strategy is to compute the lower and
upper bound by LB/, ,(04,0;) and UBJ; (04, 0;) for every
object pair in dataset Dyq;-. However, this strategy wastes
computation cost as many object pairs in Dpq;,- do not affect
the verification result.

Returning to the example in Figure 7, the interval [4, 8)
is invalid. The functions F|(d) and FT(d) will be refined
by tighter LBg;si(04,0;) and UByg;si(04,0;). However, it
is not necessary to update all object pairs” lower and up-
per bounds. For example, object pair (04,01) and (o4, 05)
can be ignored because UBygist(0q,01) = 3 < 4 and
LBg;st(0g,05) =9 > 8, as shown in Figure 7.

Let [I,r) be an interval of the function diff(d) such that
it violates the error bound requirement. With the above
observation, we have only the object pairs which lower
and upper bounds overlap with [I,r) should be refined.
Formally, the refinement object pair set R is defined as:

R = {(Oq, O,‘) : [LBdist(quoi)a UBdist(Ocpoi)) n [l, 7’) 75 @}

For example, the refinement set for interval [l = 4,7 = 8) is
R = {(0g,02), (04, 03), (0q,04) } in Figure 7.

— diff(d)
6 — refined diff(d)
4
N 28
00 1 2 3 4 5 6 7 d
([
(0q, 01)
(Oq’ 02) \qu 03) p
~ (0g,04)
(oq' 05) P
0g, 0¢)| (
(04, 05) (0g, 07)
v e (0g,00)

Fig. 8. Exact distance computation example

Moreover, we propose to update the distance bounds of
(0g,0i) € Rin alazy manner. Specifically, its tighter distance
bounds will be computed if and only if the distance value
interval [I,r) is still invalid. Take Figure 7 as an example,
the distance value interval [[= 4,7 = 8) is invalid and the
refinement object set is R = {(04, 02), (04, 03), (04, 04) }. The
upper bound of pair (04, 02) is updated to UBY, (04, 02),
shown as the blue line. With this update, we have: F'T(4) —
Fi(4) = 4—2 = 2 < 2§. Now the interval [l = 4,r = 8)
becomes valid, then the refinement process terminates. It
improves the performance as it does not compute the up-
dated distance bounds of (04,03) and (o4, 04) by the lazy
manner.

4.3 Reducing Exact Distance Computations

We consider the case that the approximate distance dis-
tribution F'(d) still violates the error bound requirement
after all lower and upper bounds have been applied in this
section. The exact distances of object pairs in refinement
set R will be computed in this situation. Our proposed
optimization reduces the exact distance computations then
the approximate distance distribution F'(d) still satisfies the
error requirement, i.e., Vd € [0, 00), diff(d) < 20.

We commence the presentation by considering the
example in Figure 8 with error bound § = 1. Af-
ter applying all possible lower and upper bounds,
vd € [1,3), Fid) = || = 0 and F'(d) =
[{(04:01), (04,02). (04,05), (04, 04). (03,05)}| = 5. Thus,
vd € [1,3),diff(d) = FT(d)—F|(d) = 5 > 26 = 2, it violates
the error bound requirement. Consider data object (o4, 01)
in Figure 8, its distance lower and upper bound are 0 and 3,
respectively. Suppose its exact distance is dist(o,4, 01) = 1.5,
we are able to reduce diff(d) from 5 to 4 Vd € [1,3) due to
(i) Vd € [1,1.5), diff(d) = F'(d) — F|(d) =4 —0 =4 and
(ii) Vd € [1.5,3), diff(d) = F'(d) — F|(d) =5 — 1 = 4. That
is, computing the exact distance of (04, 01) reduces 1 from
diff(d) for every d € [1,3). Through the above observation,
we have Lemma 4 as follows.

Lemma 4. Given an invalid interval [I,r) in diff function,
ie, Vd € [l,r),diff(d) = F'(d) — F|(d) > 25. It re-
quires diff(l) — 28 exact distance computations to guarantee
vd € [l,r),diff(d) < 20.

Proof. We have that each exact distance computation will
reduce 1 from diff(d) for every d € [l,r) via the above
discussion. In order to turn diff(d) to 26, i.e., to guarantee
that Vd € [I,r),diff(d) = 26, it needs diff(d) — 2§ exact
distance computation among data object pairs. O

Returning to the example in Figure 8, Vd ¢
[1,3),diff(d) = F'(d)—F(d) = 5. According to Lemma 4, it
requires diff(I) —2d = 5—2 = 3 exact distance computations,
then Vd € [1,3),diff(d) < 2§, e.g., compute the exact
distances of (04,01), (04,02) and (o4, 03).

With Lemma 4, we conclude the corollary as follows, we
omit its proof as it is applying Lemma 4 directly.

Corollary 1. Let @ = {[l,r) : Vd € [I,r),diff(d) > 24}, it
requires at most 3 Sy e (diff(1) — 20) exact distance compu-

tations, then the approximate distance distribution F(d) satisfies
the error requirement, i.e., Vd € [0, 00), diff(d) < 24.

Consider diff(d), as the blue curve shown in Figure 8,
we have ® = {[1,3),[4,5)}. It requires at most (diff(1) —
2) + (diff(4) — 2) = (5 —2) + (6 — 2) = 7 exact distance
computations then F'(d) satisfies the error requirement, i.e.,
Vd € [0,00),diff(d) < 2. For example, compute exact
distances of (04,01), (04,02) and (o4, 03) for ¥d € [1,3),
and (0g4,04), (04,05), (04,06) and (o4, 07) for Vd € [4,5),
thus, the approximate distance distribution F'(d) satisfies
the error requirement.

Through Corollary 1, for any diff(d) = F'(d) — F|(d)
function, we can obtain the number of exact distance com-
putations then let diff(d) satisfy the error bound require-
ment. But the qualified diff(d) can be derived with fewer
exact distance computations. Take the example in Figure §,
we can compute exact distances of (04,01), (04,04) and
(0g,05) for ¥d € [1,3). Vd € [4,5), diff(d) changes from
6 to 4 at the same time as the lower and upper bounds
of (04,04) and (o4, 05) also overlap with interval [4,5), as
shown in Figure 8. Thus, we only need compute 2 more
exact distance pairs for interval [4,5), e.g., compute (04, 0g)
and (o4, 09). In summary, Vd € [0, +00), diff(d) < 2§ (shown
as the red curve in Figure 8) holds through 5 exact distance
computations (i.e., (0q4,01), (04,04), (0g,05), (04,08) and
(0g,09)), it is less than 7 (computed by Corollary 1) in this
example.

With the above observation, we propose a simple greedy
strategy to reducing the exact distance computations as
follows.

1) identify (04, 0;) € Dpqir whose distance lower and
upper bound has the largest number of intersected
intervals in ®;

2) compute dist(og4,0;) to update diff function and ®;

3) repeat step 1) until ¥d € [0, o0), diff (d) < 20.

This greedy strategy reduces the exact distance compu-
tations as it refines diff (d) in multiple intervals in ® by one
exact distance computation.

5 DISTANCE DISTRIBUTION HISTOGRAM

As the example shown in Figures 1(b) and (d) (see
Section 1), distance distribution histograms also have been
widely used in many applications. In this section, we extend
our solution for error-bounded ACDD problem to error-
bounded approximate distance distribution histogram com-
putation problem (ADDH). We first define the exact distance
distribution histogram (DDH) in Definition 4 formally.

8

Definition 4 (Distance Distribution Histogram). Given a
set Dpqir of object pairs and a distance measure dist, the
distance distribution histogram H is defined as an array of
buckets which covers a domain interval, e.g., [0, dmaz]'. All
buckets in H have the equi-width . The total number of buckets
in His B = [dm%} The ith bucket stores the total num-
ber of object pairs which distance value in the interval, ie.,
H(i) = {(04:0;) € Dpasr : (i — L < dist(og,0;) < i}
Without loss of generality, we have H(0) = 0.

We formally define the error-bounded approximate dis-
tance distribution histogram H as follows.

Problem 3 (Error-bounded Approximate Distance Distribu-
tion Histogram). Given a set Dpq;y of object pairs, a distance
measure dist, an error threshold e and a histogram bucket width
1, the approximate distance distribution histogram (ADDH) re-
turns a function of bucket i such that the condition

H(0) —
holds for every value of i € [1, B.

H@@)| < e

Lemma 5 provides a solution for Problem 3 by utilizing
the result of approximate cumulative distance distribution
F(d) in Problem 2.

Lemma 5. Given € = 26, suppose ﬁ(d) is the returning result
of Problem 2 with inputs dataset Dpqsr and a distance measure
dist. The result of Problem 3, H(i), can be derived from F(d) by
O(B) time.

Proof. We first prove that Vi € [1, B],|H(i) — H(i)| < e.
Combining with the definition of cumulative distance dis-
tribution function F'(d) in Problem 1, the distance distri-
bution histogram function H(i) in Definition 4 could be
transformed to

H(i) = F(i*p) —

Similarly, the approximate distance distribution histogram
function H(¢) could be computed by

H(i) F((i—1)%p),Vie
Letd=idi*pandd = (i —1)xu, Vi€ [1,B],w

F((i—1) % p),Vi € [1, B].

= F(i*p) — 1, B].

we have

Iﬁ(i)—H(i)|=l(lj(d)— F(d)) = (F(d) - F(d)|
=|(F(d) - F(d)) + (F(d) — F(d)
< |F(d) - F(d)| + | F(d) - F(d)

<d+6=20=¢

Next, we analyze the time complexity to derive H(i)
from F(d). Obviously, it is O(B) as 4 is from 1 to B and
for each 7 it takes O(1) time to compute H(i) from F(d). O

Example: Given a set of object pairs Dpqr in Geolife dataset
with histogram bucket width y = 0.005. We use DFD to
measure the distance between each pair (04,0;) € Dpair-
The solid bars in Figure 9 show the exact distance dis-
tribution histogram of Dp;,. The patterned ~bars are the
approximate distance distribution histogram H(¢) of Dpgir
with error bound € = |Dpqir| - 2%.

1. dinas is the largest distance of object pair (o4, 0;5) € Dpair

DDH mm
6000 ADDH =3
§2}
o
2
Qo
O 4000
S
9]
Qo
E
3 2000
0 ol Lo P 21 g K 20l -
0.01 0.02 0.03 0.04 0.05
Distance

Fig. 9. Exact and approximate (e = |Dpqir| - 2%) distance distribution
histogram on GeolL.ife with DFD

TABLE 3
Real dataset information
Dataset | Data type {# of objects# attributes| Size
TAO [Time series| 41,149 1,008 (312 MB
ECG [Time series 380,522 421 1.2 GB
OSM-FULLTrajectories| 2,433,433 1096 9.7 GB

6 EXPERIMENTAL EVALUATION

In this section, we present our empirical findings. In Sec-
tion 6.1, we describe the experimental setting. In Section 6.2,
we conduct a case study on a real taxi trajectory dataset
to demonstrate the applicability of ACDD and ADDH. In
Section 6.3, we investigate the accuracy of our proposed
approximate solutions for ACDD and ADDH, respectively.
In Section 6.4, we evaluate the efficiency of our solutions
with three distance measures: (i) Euclidean distance (ED),
(if) dynamic time warping (DTW) and (iii) discrete Fréchet
distance (DFD). Finally, in Section 6.5, we investigate the
effectiveness of the optimizations proposed in Section 4. For
the sake of experimental reproducibility, we have posted the
datasets and source codes at [26].

6.1 Experimental Setting

Dataset: We used three real world datasets with diverse
fields and scales of size, i.e., TAO?, ECG® and OSM-FULL*
for ED, DTW, and DFD, respectively. They have been stud-
ied in some existing work (e.g., [27], [22] and [11]). Table 3
summarizes the information of these datasets.

Implementation and methods: In the experimental study,
we compare the following methods:

e SAMP. The sampling-based solution picks objects ran-
domly to calculate approximate distance distributions
with a fixed sampling fraction « (see Section 2.2).

e ACDD. Our proposed error bound guaranteed solution,
which is presented in Section 3.

e ACDD*. ACDD with all proposed optimization techniques
in Section 4.

Table 4 summarizes the indices and bounds used
in ACDD and ACDD*. The PAA-based and group-based

2. https:/ /tao.ndbc.noaa.gov/
3. https:/ /www.physionet.org/content/edb/1.0.0/
4. https:/ /ftp5.gwdg.de/pub/misc/openstreetmap /

TABLE 4
Index and bounds for different distance measures
Measure Index Lower bound Upper bound
ED M-tree [28] LBpaa, LBrnn {UBpaa, UBrENN
DTW | Retree |LBrimrr, LBjey,,|UBsp, UBrnN
DFD | R-tree LBceu, LBy UBy
TABLE 5

Tested parameters in experiments

[Parameter [Tested values]
No. of groups in LBpaa for ED 16, 32, 64
No. of groups in LBy, U B, for DFD], 2, 4, 8, 16, 32, 64, 128
Error threshold (§/n) 1%,2%,3%,4%,5%
Cardinality of Dpa;r (n) 10%,10%,10°,107, 10

bounds (e.g., LBpaa, UB,) are parameterized bounds that
take the number of groups as a parameter. We summarized
the tested number of groups for PAA-based bounds (ED)
and group-based bounds (DFD) in Table 5. In all subsequent
experiments, we tighten F|(d) and F'(d) by enumerating
these values from small to large for both PAA-based and
group-based bounds. In addition, Table 5 also includes the
tested values of error threshold and the cardinality of Dy
for scalability evaluation.

All methods are implemented in C++. We measure the
performance of our proposal in three widely used distance
measures: ED, DTW and DFD. The reported response time
includes both index construction and error-bounded dis-
tance distribution computation. The experiments (with sin-
gle thread) run on a PC with Intel Xeon Gold 5122 3.60GHz
processor and 32 GB main memory.

6.2 Case Study

We start by presenting the utility of ACDD and ADDH with
a case study on the real trajectory dataset, Taxi Service
Trajectory (TST) [29]. It includes 1,710,660 taxi trip trajec-
tories generated by 442 vehicles in Porto, Portugal from
1 July 2013 to 30 June 2014. The average number of GPS
points in each trajectory is 48.76. We compute the ACDD and
ADDH with DFD of all taxi trajectory pairs in December 18,
2013 (weekday) and December 25, 2013 (Christmas holiday),
respectively. We compare the distribution histograms of
weekday and holiday by relative frequency as they have
different number of trajectories.

Figures 10(a) and (b) show the ACDD and ADDH in the
two days with 6 = n-3% and € = n-3%, respectively. As we
will present shortly in Section 6.3, both ACDD and ADDH
capture the trend of exact distance distributions precisely.
Moreover, ACDD and ADDH have much cheaper computa-
tion cost. For example, it only takes 5.98s to compute the
ACDD at Christmas holiday, as Holiday curve shown in
Figure 10(a), but it incurs 28.9s to compute its corresponding
exact cumulative distance distribution. It is interesting to
note that for ADDH in Figure 10(b), the taxi trajectories
in the weekday have more similar pairs than the holiday,
especially when the distance threshold is less than 0.002, as
the blue circle shown in Figure 10(b). On the one hand, the
above observation indicates the distribution histograms of

[

Holiday

> =02 Weekday
208 2
Q : [}
> =z
© 0.6 9
I p=
2 o4 g 0.1
£ 2
[7)
¢ 02 Holiday — @

0 Weekday — 0

0 0.01 0.02 0 0.005 0.01

Distance

(b) ADDH (e = n - 3%)

Distance

(a) ACDD (6 = n - 3%)

Fig. 10. Taxi trip distance distribution with DFD on weekday (December
18, 2013) and holiday (December 25, 2013)

taxi trajectories in weekday and holiday are not the same,
which can be exploited to improve the trajectory retrieval
performance as different distance distribution histograms
can affect the index performance [30]. On the other hand,
it also reveals the difference of taxi trips in weekday and
holiday in Porto, Portugal, which can be utilized to optimize
the taxi scheduling and other smart-city applications.

6.3 Accuracy Evaluation

In this section, we study the accuracy of our proposed
approximate solutions for ACDD and ADDH problem, as
defined in Problems 2 and 3, respectively.

Figures 11(a), (b) and (c) illustrate the cumulative dis-
tance distributions with three distance measures ED, DTW
and DFD, respectively. In each figure, it includes three
cumulative distance distribution curves, i.e., black dashed
exact cumulative distance distribution (CDD), solid red ap-
proximate cumulative distance distribution curve (ACDD
with § = n - 1%), and solid blue sampling based distance
distribution curve (SAMP with o = 1%). Obviously, ACDD
curve demonstrates excellent approximation power to the
exact cumulative distance distribution in all distance mea-
sures. The margins between CDD and SAMP are quite large,
especially, in DTW. This also confirms the inefficiency of
the sampling method on computing the cumulative distance
distribution. Moreover, SAMP cannot provide the theoreti-
cal worst-case error guarantees.

The distance distribution histograms in Figures 12(a),
(b) and (c) are derived from the cumulative distance dis-
tributions in Figure 11 with the histogram bucket width
= 5,1000, and 70 for ED, DTW and DFD, respectively.
Obviously, ADDH with € = 2§ = n - 2% captures the trend
of exact distance distribution histogram (DDH) excellently.
Visually, SAMP solution performs worse than ADDH in all
three distance measures, as shown in Figure 12.

We then quantify the approximation error of our pro-
posed solutions, by using E,,q, (defined in Section 2.2),
in Figure 13. For each distance measure, we randomly se-
lected 100 objects as queries. Figures 13(a) and (b) show the
maximal E,,,, and average E,,,, between ACDD and CDD
amonyg all selected queries by varying ¢ from n-1% to n-5%,
respectively. Obviously, the maximal E,,,, and average
FE, 00 in all three distance measures are below the error-
bounded requirement ¢ (see red dotted line) as our solution
guarantees the worst-case error theoretically. In Figure 13(a),
the maximal E,,,, of ACDD in DFD performs excellently.
Specifically, the maximal . is less than n - 1% even with

10

d = n - 5% setting. Considering the average E,,q, among
all selected queries, ACDD performs even more better than
expected. For example, the average E),q is always less than
n-2% and n - 0.7% with § ranged from n - 1% to n - 5%
in ED and DFD, respectively, as shown in Figure 13(b). We
omit the approximate ability study for approximate distance
distribution histogram (ADDH) as it has similar observations
with its on ACDD in Figure 13.

6.4 Efficiency Evaluation

In this section, we focus on the efficiency of our methods on
different datasets with various distance measures. We omit
ADDH in Section 6.4 and 6.5 since it is derived from ACDD
with low cost and all optimization techniques in ACDD can
be extended into ADDH directly.

We compare our error-bounded approximate cumulative
distance distribution methods (ACDD and ACDD*) with
SAMP (the approximate method without error bound guar-
antee) in Figure 14. In each experiment, the maximum error
E\nas (see Definition 1) ranges from n - 1% to n - 5%. Each
value point in ACDD and ACDD" is plotted with its error
threshold and the average response time of 100 randomly
selected queries from the dataset. However, SAMP does not
guarantee the maximum error bound. In order to provide
meaningful comparison, SAMP method is incurred with
different sample ratio from 1% to 99% with step size 1%.
For each SAMP execution, we plot its average response time
and average E,,q, (see squares in Figure 14) if and only if
its average E,q is in the range of n - 1% to n - 5%.

Performance of ACDD*: The experimental results of ED,
DTW and DFD on real datasets TAO, ECG and OSM-FULL
are shown in Figures 14(a), (b) and (c), respectively. First,
ACDD” outperforms SAMP in all three datasets in terms of
both performance and result quality. Especially, ACDD* is
up to 278.6 times faster than SAMP on the largest dataset
OSM-FULL. Second, the running time of ACDD and ACDD*
falls with the rising of E,,,; as expected. Third, ACDD
is slower than ACDD* in all cases as ACDD* is equipped
all proposed optimizations. We omit the weaker methods
SAMP and ACDD in subsequent experiments.

Scalability of ACDD™: We then evaluate the scalability of
ACDD* by varying n with ED, DTW and DFD in Fig-
ures 15(a), (b) and (c), respectively. We randomly choose
a set of objects in the corresponding dataset and construct
Dpair by correlation (see Section 2.1). The number of pair-
wise distances in the subset is from 10* to 10%. The error
bound is fixed at 6 = n - 3%.

ACDD* demonstrates its superior scalability in all three
distance measures. For example, with millions of object
pairs and DFD as the distance measure, ACDD* outperforms
the exact solution by 9217.1 times. Our method guarantees
n - 3% worst-case error on the result and returns it within
0.3 seconds. Moreover, the superiority of ACDD* is more
obvious when the distance measure is more complex, e.g.,
the performance gain of ACDD* in DTW and DFD is larger
than it in ED, as shown in Figure 15.

6.5 Effectiveness of Optimizations

Before we evaluate individual optimizations in our opti-
mized solution ACDD*, we first evaluate the benefits gained

11

ACDD =— ACDD =— ACDD =—
CDD == 40 CDD s=: 20 CDD ==
o0 40 [SAMP — < SAMP == o SAMP ==
2 = =
@2 230 2 15
830 8 g
¢ ¢ o
2 2 40 = 20 20 5 10 15
£ £ £
5
210 35 310 20 2 10
80 90 100 15 35 1 2
0 0 0
0 100 200 300 0 20 40 60 0 1 2 3 4
Distance Distance (103) Distance (103)
(a) ED on TAO (b) DTW on ECG (c) DED on OSM-FULL
Fig. 11. Cumulative distance distribution study (6 = n - 1%, o = 1%)

OOHNw-blﬂ

No. of Objects (10°%)
OO P NWN
No. of Objects (104)

300

Distance Distance (103)

(a) ED on TAO

Fig. 12. Distance distribution histogram study (e = n - 2%, o = 1%)

5% 5%
A
4% h 4% A
w w

= 3% © 3%
% 2% g 2%

= z 0
1% 1%
0%

0% (]
0% 1% 2% 3% 4% 5% 0% 1% 2% 3% 4% 5%
8 (as percentage of n) 3 (as percentage of n)

(a) Maximal Erqx (b) Average Ernax

Fig. 13. The maximal and average Emqz (F, 13)

from prioritizing bounds (see Section 3.3) in Figure 16.
For each distance measure, we compare ACDD* with all
bounds and ACDD* only with the prioritized bounds in
the real dataset. We denote ACDD* with all bounds of
the distance measures as ALL-ACDD*. The bounds applied
strategy is from dirty-and-quick one to accurate-and-slow
one. As shown in Figure 16, ACDD* performs better than
ALL-ACDD* in all distance measures on three real datasets.

Next, we evaluate the effect of our proposed optimiza-
tion techniques in Section 4 separately. To isolate the effect
of each proposed optimization, we investigate the efficiency
of ACDD* with and without the evaluated optimization
technique in each experiment while enabling the rest opti-
mization techniques. In other words, the evaluation results
only demonstrate the effectiveness of each individual op-
timization in ACDD*. For sake of presentation and space
limitation, we present the experimental results on DFD in
Figure 17, and briefly mention the results on ED and DTW
in context.

Effect of index-based bounds: We verify the effect of index-
based bound techniques (see Section 4.1) on OSM-FULL

(b) DTW on ECG

No. of Objects (10%)

60 . 5
Distance (10%)

(c) DFD on OSM-FULL

with DFD in Figure 17(a). The experimental result of ACDD*
with index and without index are plotted as ACDD* and
ACDD*-w/o0-index curves, respectively. Interestingly, ACDD*
and ACDD*-w/o-index perform similarly when § is small,
e.g., n - 1%. The reason is the index-based bound is too
loose when the error bound requirement is strict. However,
ACDD* shows its superiority over ACDD*-w/o-index with
the rising of 4. For example, the performance gap between
ACDD*-w/o-index and ACDD* widens from n - 2% to n - 5%,
as illustrated in Figure 17(a).

Effect of optimized interval refinement: We then evaluate
the effect of optimized interval refinement strategy in Sec-
tion 4.2 in Figure 17(b). We compare the time cost of bound
updating with and without optimized interval refinement
strategy in DFD, as ACDD* and ACDD*-non-opt bars shown
in Figure 17(b). Obviously, ACDD* outperforms ACDD*-non-
opt in all cases as it could save lots of unnecessary bound
computations. In particular, the bound refining cost can be
reduced up to 50.9% (from 0.0611s to 0.0302s) in DFD. For
ED and DTW, it can be up to 62.5% (from 0.0056s to 0.0021s),
and 40.5% (from 0.8661s to 0.5161s), respectively.

Effect of exact distance computation reduction: In Sec-
tion 4.3, we propose an optimization to reduce exact dis-
tance computation. To evaluate the effectiveness of this
optimization, we compare the time cost of exact distance
computation in ACDD* with and without exact distance
computation reducing technique in Figure 17(c). We set
worst-case error guarantees § = n-0.1%, ..., n-0.5% to show
the gains clear °. As ACDD* and ACDD*-non-min shown in
Figure 17(c), this optimization reduces 41.7% to 51.1% of the
exact distance computation time in DFD. It reduces 28.6% to

5. When ¢ is large, our method usually will return results without
exact distance computation.

Response Time (sec)

ACDD*
ACDD
SAMP &

1%

2% 3% 4%
Emax (@s percentage of n)

(a) ED on TAO

5%

Fig. 14. Response time Vs Eumaq (F, F)

Response Time (sec)

10%

H

= = =
o o o o
= o [N

=
S
N

ACDD*
cDD
10* 10° 10° 10" 10°
n
(a) ED on TAO

Fig. 15. Response time vs n

Response Time (sec)

Fig.

Response Time (sec)

0.12 ALL-ACDD* A~
ACDD* B
V.
0.08
i
0.04 \
1]
0
1% 2% 3% 4% 5%
d (as percentage of n)
(a) ED on TAO
16. Effect of prioritizing bounds in Section 3.3
2
10 ACDD*-w/o-index -4
ACDD* B
10
A L\
0
10
1]

1%

2% 3% 4%
d (as percentage of n)

5%

(a) Effect of indexing

in Section 4.1

1% 2% 3% 4% 5%

d (as percentage of n)

(b) Effect of invalid interval

refinement in Section 4.2

Fig. 17. Effect of optimizations in Section 4 on OSM-FULL with DFD

2
10 ACDD*
ACDD
~ SAMP &
[$)
[}
o
© y
£
o 10t
(%2}
c
o
o
7]
()
24
10° £]
1% 2% 3% 4% 5%
Emax (@s percentage of n)
(b) DTW on ECG
4
10" ["aCpp~
CDD
s
()
5 102
£
=
Q
%]
c
2 10°
[}
o
1072
104 10° 10® 10" 10°
n
(b) DTW on ECG
15 ALL-ACDD* -A-
ACDD* &
s 4
Q
o
1
2
E
Q
[72]
c
2 5
& N
1l
0
1% 2% 3% 4% 5%
3 (as percentage of n)
(b) DTW on ECG
. 0.08 ACDD*-non-opt
2 ACDD* &=z
2
o 0.06
£
B
c
£ 0.04
3
[}
Q
X
i1}
T 0.02
3
o
s3]
0

Response Time (sec) Response Time (sec)

DFD Execution Time (sec)

12

3 ACDD*
10° | o ACDD
= LN SAMP &
2 RN
@ &
~ 2
o 10
£
[y.
8 I
s 10
0w
& A A
0
10 0
1% 2% 3% 4% 5%
Eax (@s percentage of n)
(c) DFD on OSM-FULL
6
10" "AcDD*
CDD
10*
102
10°
1072
104 105 10° 10”7 108
n
(c) DFD on OSM-FULL
A
0 ALL-ACDD* -A-
y ACDD* £
30
2000
10
o & A)
1% 2% 3% 4% 5%
d (as percentage of n)
(c) DED on OSM-FULL
ACDD*-non-min 3
600 ACDD* ==
400
200

RS
3%

3%

B

0.1% 0.2% 0.3% 0.4%

3 (as percentage of n)

0.5%

(c) Effect of distance computation

reduction in Section 4.3

61.8% in ED and 14.6% to 41.9% in DTW, respectively.

7 RELATED WORK

Multiple research areas are relevant to our problem. In the
following, we briefly review the related work in two major
areas.

Distance distribution computation problems: In applica-
tions like graph analysis [7], [31], time series analysis [32]
and natural resource evaluation [33], the distribution of dis-
tances among data objects is exploited to reveal the charac-
teristics of a dataset. Kang et al. [7] focus on social networks
and develop the radius plot to show the distribution of the
“effective radius” of nodes in a social network, where the
effective radius of a node v is taken as the 90th-percentile
of all distances from v. Qiao et al. [31] consider a wider
variety of graphs (e.g., webgraphs, social networks, road
networks) and plot a histogram of shortest path distances
among nodes for each type of graph. In our problem context,
we focus on the data objects in a dataset, instead of nodes in
a graph. In addition, the distance between nodes (e.g., the
number of edges, shortest path distances) are different from
the distance measures (e.g., ED and DTW) in our problem.
Linardi et al. [32] explore time series datasets and plot
the distribution of Euclidean distance among subsequences
in time series datasets. In the geostatistics community [33],
the Ripley’s K function [34] is used to summarize a dataset
D of points by the following cumulative distribution func-
tion K(x) = ¢ |(05,05) : 0; € D,0; € D,dist(0;,0;) < z|,
where ¢ is a constant and dist(o;, 0;) represents the distance
function. All of above problems compute exact distance
among objects, their solutions are not scalable with either
billions of objects or expensive distance computations. Our
solution in this work could provide a fast and accuracy
guaranteed solution for the above problems. Fu et al. [5]
compute the exact and approximate histogram of pairwise
distances between astronomical objects. Our problem differs
from [5] in two ways. First, [5] does not provide theoretical
guarantee on its approximate result and it only works for
Euclidean distance. Second, our proposed framework and
optimization techniques have not been studied in [5].

Approximate query processing: Approximate query pro-
cessing techniques are gold standards for massive data an-
alytical applications, e.g., approximate kernel k-means [35],
approximate clustering and outlier detection [36], [37], sam-
pling cube [38], and histogram matching [39], etc. We omit
the discussion of these works and refer readers to the recent
overview papers [12], [40]. Unlike these works, we focus
on computing the approximate cumulative distance dis-
tribution and approximate distance distribution histogram
with accuracy guarantee, which is different from the above
existing problem inherently. It also cannot be addressed by
adapting the above proposed techniques for different prob-
lems. In big data era, sampling techniques [13], [14], [15] are
widely used in approximate query processing applications.
However, they do not provide worst-case guarantee on the
error of the results. On the contrary, we propose a novel
method to compute approximate distance distributions with
error bound guarantees in this work.

13

8 CONCLUSION

In this paper, we propose the problem of computing approx-
imate cumulative distance distribution ACDD and approx-
imate distance distribution histogram ADDH with worst-
case guarantees on the error of the result. They can be
used as building bricks in various areas, e.g., data min-
ing, geostatistics analysis, and cosmological analysis. We
present a generic and scalable solution for them. We devise
a suite of optimizations to improve its performance. Our
experimental results confirm the efficiency and superiority
of our proposal for three widely used distance measures, i.e.,
Euclidean distance (ED), dynamic time warping (DTW), and
discrete Fréchet distance (DFD). The interesting directions
for future work are: (i) devising other techniques to further
speedup its performance, and (ii) supporting interactive
error-bound distance distribution computation at arbitrary
granularity.

ACKNOWLEDGMENT

Jiahao Zhang, Man Lung Yiu and Qing Li were supported
by General Research Funds PolyU 152050/19E and PolyU
112114/17E from the Hong Kong Research Grants Council.
Bo Tang was supported by the National Science Foundation
of China (NSFC No. 61802163), the Guangdong Provincial
Key Laboratory (Grant No. 2020B121201001), the Education
Department of Guangdong (Grant No. 2020KZDZX1184),
and the PCL Future Greater-Bay Area Network Facilities for
Large-scale Experiments and Applications (LZC0019).

REFERENCES

[1]1 Y. Yu, L. Cao, E. A. Rundensteiner, and Q. Wang, “Detecting
moving object outliers in massive-scale trajectory streams,” in
KDD, 2014, pp. 422-431.

[2] K. Heitmann, M. White, C. Wagner, S. Habib, and D. Higdon, “The
coyote universe. i. precision determination of the nonlinear matter
power spectrum,” The Astrophysical Journal, vol. 715, no. 1, pp.
104-121, 2010.

[3] T. Guo, K. Feng, G. Cong, and Z. Bao, “Efficient selection of
geospatial data on maps for interactive and visualized explo-
ration,” in SIGMOD, 2018, pp. 567-582.

[4] Y. Altuvia, P. Landgraf, G. Lithwick, N. Elefant, S. Pfeffer, A. Ar-
avin, M. J. Brownstein, T. Tuschl, and H. Margalit, “Clustering and
conservation patterns of human micrornas,” Nucleic acids research,
vol. 33, no. 8, pp. 2697-2706, 2005.

[5] B. Fu, E. Fink, G. Gibson, and J. Carbonell, “Exact and approxi-
mate computation of a histogram of pairwise distances between
astronomical objects,” in Proceedings of the 2012 workshop on High-
Performance Computing for Astronomy Date, 2012, pp. 17-24.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in KDD, 1996, pp. 226-231.

[7] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec, “Radius plots for mining tera-byte scale graphs:
Algorithms, patterns, and observations,” in SDM, 2010, pp. 548-
558.

[8] G2. Yahoo! AltaVista Web Page Hyperlink Connectivity Graph, circa
2002, http:/ /webscope.sandbox.yahoo.com/.

[9] T.Bozkaya and M. Ozsoyoglu, “Distance-based indexing for high-
dimensional metric spaces,” in SIGMOD, 1997, pp. 357-368.

[10] P. Ciaccia, M. Patella, and P. Zezula, “A cost model for similarity
queries in metric spaces,” in PODS, 1998, pp. 59-68.

[11] D. Xie, E. Li, and J. M. Phillips, “Distributed trajectory similarity
search,” PVLDB, vol. 10, no. 11, pp. 1478-1489, 2017.

[12] S. Chaudhuri, B. Ding, and S. Kandula, “Approximate query
processing: No silver bullet,” in SIGMOD, 2017, pp. 511-519.

[13] H. Toivonen, “Sampling large databases for association rules,” in
VLDB, 1996, pp. 134-145.

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

G. H. John and P. Langley, “Static versus dynamic sampling for
data mining.” in KDD, 1996, pp. 367-370.

G. Cormode and N. G. Duffield, “Sampling for big data: a tuto-
rial,” in KDD, 2014, pp. 1975-1975.

P. K. Agarwal, R. B. Avraham, H. Kaplan, and M. Sharir, “Com-
puting the discrete fréchet distance in subquadratic time,” SIAM
Journal on Computing, vol. 43, no. 2, pp. 429-449, 2014.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting
locations and travel sequences from gps trajectories,” in WWW,
2009, pp. 791-800.

B. Tang, M. L. Yiu, K. Mouratidis, and K. Wang, “Efficient motif
discovery in spatial trajectories using discrete fréchet distance,” in
EDBT, 2017, pp. 378-389.

J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel
symbolic representation of time series,” Data Mining and knowledge
discovery, vol. 15, no. 2, pp. 107-144, 2007.

Y. Hwang and H.-K. Ahn, “Convergent bounds on the euclidean
distance,” in NIPS, 2011, pp. 388-396.

S.-W. Kim, S. Park, and W. W. Chu, “An index-based approach
for similarity search supporting time warping in large sequence
databases,” in ICDE, 2001, pp. 607-614.

T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions
of time series subsequences under dynamic time warping,” in
KDD, 2012, pp. 262-270.

N. Begum, L. Ulanova,]. Wang, and E. Keogh, “Accelerating
dynamic time warping clustering with a novel admissible pruning
strategy,” in KDD, 2015, pp. 49-58.

K. Bringmann and W. Mulzer, “Approximability of the discrete
fréchet distance,” Journal on Computational Geometry, vol. 7, no. 2,
pp. 46-76, 2016.

A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in SIGMOD, 1984, pp. 47-57.

Source codes and datasets for experimental
http:/ /bit.do/frdPe.

Y. Li, L. H. U, M. L. Yiu, and Z. Gong, “Discovering longest-
lasting correlation in sequence databases,” PVLDB, vol. 6, no. 14,
pp- 1666-1677, 2013.

P. Ciaccia and M. Patella, “Pac nearest neighbor queries: Ap-
proximate and controlled search in high-dimensional and metric
spaces,” in ICDE, 2000, pp. 244-255.

L. Moreira-Matias, J. Gama, M. Ferreira,]J. Mendes-Moreira, and
L. Damas, “Predicting taxi—passenger demand using stream-
ing data,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 3, pp. 1393-1402, 2013.

H. Zhu, G. Kollios, and V. Athitsos, “A generic framework for ef-
ficient and effective subsequence retrieval,” PVLDB, vol. 5, no. 11,
pp- 1579-1590, 2012.

M. Qiao, H. Cheng, L. Chang, and J. X. Yu, “Approximate shortest
distance computing: A query-dependent local landmark scheme,”
in ICDE, 2012, pp. 462-473.

M. Linardi, Y. Zhu, T. Palpanas, and E.]. Keogh, “Matrix profile
X: VALMOD - scalable discovery of variable-length motifs in data
series,” in SIGMOD, 2018, pp. 1053-1066.

P. Goovaerts, Geostatistics for Natural Resources Evaluation. Oxford
University Press, 1997.

B. D. Ripley, Spatial Statistics. Wiley-Interscience, 1981.

R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, “Approximate kernel
k-means: solution to large scale kernel clustering,” in KDD, 2011,
pp- 895-903.

G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold, “Efficient
biased sampling for approximate clustering and outlier detection
in large data sets,” IEEE TKDE, vol. 15, no. 5, pp. 1170-1187, 2003.
Q. Lin, W. Ke, J.-G. Lou, H. Zhang, K. Sui, Y. Xu, Z. Zhou, B. Qiao,
and D. Zhang, “Bigin4: Instant, interactive insight identification
for multi-dimensional big data,” in KDD, 2018, pp. 547-555.

X. Li, J. Han, Z. Yin,]J. Lee, and Y. Sun, “Sampling cube: a
framework for statistical olap over sampling data,” in SIGMOD,
2008, pp. 779-790.

S. Macke, Y. Zhang, S. Huang, and A. G. Parameswaran, “Adap-
tive sampling for rapidly matching histograms,” PVLDB, vol. 11,
no. 10, pp. 1262-1275, 2018.

T. Milo and A. Somech, “Next-step suggestions for modern inter-
active data analysis platforms,” in KDD, 2018, pp. 576-585.

study, 2021,

multidimensional data.

14

Jiahao Zhang received his bachelor degree in
computer science from Jilin University in 2017.
He is a PhD candidate in the Department of
Computing, The Hong Kong Polytechnic Univer-
sity. His research interest is trajectory similarity
search.

Man Lung Yiu received the bachelor’s degree
in computer engineering and the PhD degree in
computer science from the University of Hong
Kong in 2002 and 2006, respectively. Prior
to his current post, he worked at Aalborg Univer-
sity for three years starting in the Fall of 2006.
He is now an associate professor in the Depart-
ment of Computing, the Hong Kong Polytech-
nic University. His research focuses on the man-
agement of complex data, in particular query
processing topics on spatiotemporal data and

Bo Tang received the PhD degree in computer
science from The Hong Kong Polytechnic Uni-
versity in 2017. He is currently an assistant pro-
fessor in Southern University of Science and
Technology. He was an visiting researcher at
Centrum Wiskunde & Informatica and Microsoft
Research Asia, respectively. His research inter-
ests include similarity search on high dimen-
sional dataset and data exploration on multidi-
mensional dataset.

Qing Li is a Chair Professor of Department of
Computing, the Hong Kong Polytechnic Univer-
sity. He received his B.Eng. from Hunan Uni-
versity (Changsha), and M.Sc. and Ph.D. de-
grees from the University of Southern California
(Los Angeles), all in computer science. His re-
search interests include multi-modal data man-
agement, conceptual data modeling, social me-
dia, Web services, and e-learning systems. He
has authored/co-authored over 400 publications
in these areas. He is actively involved in the re-

search community and has served as an associate editor of a number of
major technical journals including IEEE Transactions on Knowledge and
Data Engineering (TKDE), ACM Transactions on Internet Technology
(TOIT), Data Science and Engineering (DSE), World Wide Web (WWW),
and Journal of Web Engineering, in addition to being a Conference and
Program Chair/Co-Chair of numerous major international conferences.
He also sits/sat in the Steering Committees of DASFAA, ER, ACM
RecSys, IEEE U-MEDIA, and ICWL. Prof. Li is a Fellow of IEE/IET (UK),
a senior member of IEEE, and a distinguished member of CCF (China).

