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Identifying the Most Connected Vertices in
Hidden Bipartite Graphs using Group Testing

Jianguo Wang, Eric Lo, and Man Lung Yiu

Abstract—A graph is called hidden if the edges are not explicitly given and edge probe tests are required to detect the presence
of edges. This paper studies the kMCV (k most connected vertices) problem on hidden bipartite graphs, which has applications
in spatial databases, graph databases, and bioinformatics. There is a prior work on the kMCV problem, which is based on the
“2-vertex testing” model, i.e., an edge probe test can only reveal the existence of an edge between two individual vertices. We
study the kMCV problem, in the context of a more general edge probe test model called “group testing”. A group test can reveal
whether there exists some edge between a vertex and a group of vertices. If group testing is used properly, a single invocation
of a group test can reveal as much information as multiple invocations of 2-vertex tests. We discuss the cases and applications
where group testing could be used, and present an algorithm, namely, GMCV, that adaptively leverages group testing to solve
the kMCV problem.

Index Terms—H.2.4.h Query processing; E.1.d Graphs and networks
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1 INTRODUCTION

A graph is called hidden if the edges are not explicitly
given and edge probe tests are required to detect the
presence of edges [18]. Recently, Tao et al. [29], [28]
studied the k most connected vertices (kMCV) problem
on hidden bipartite graphs. Specifically, given a hid-
den bipartite graph G with two independent vertex
sets B (black vertex set) and W (white vertex set),
the kMCV problem is to find the top k vertices in
B that have the maximum degrees. Figure 1 shows
a hidden bipartite graph G, where B = {b1, b2} and
W = {w1, w2, . . . , w8}. The 1MCV aims to identify
the vertex b1 since it has the largest degree. The
problem is trivial on conventional bipartite graphs but
not in the case of hidden graphs because edge probe
tests are usually expensive operations (e.g., biological
experiments, graph operations). The applications of
finding the kMCV on a hidden bipartite graph include
distance join on road networks, bioinformatics, and
graph pattern matching [29], [28].
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Fig. 1. A (hidden) bipartite graph G(B,W); edges are
not explicitly given

• J. Wang, E. Lo and M. L. Yiu are with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong.
E-mail: {csjgwang, ericlo, csmlyiu}@comp.polyu.edu.hk

b
1

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

b
2

11 11

5 3

1

7

7 5 3

Fig. 2. Example of a road network

Example 1: Distance Join on Road Networks.
Let B and W be the hotel set and scenic spot set, which
constitute a bipartite graph G(B,W). A hotel b ∈ B and
a scenic spot w ∈ W has an edge if their distance is
less than a threshold θdist, e.g., 5 km, where the dis-
tances are shortest path distances. Therefore, the kMCV
problem could help discover the most convenient
hotels. While the edges on G are not given initially,
a shortest path algorithm could be executed to detect
their presence. Figure 2 shows a road network. Figure
1 is the hidden graph representation of distance join
on Figure 2, using θdist = 5. To detect whether hotel b1
and scenic spot w2 have an edge connecting in Figure
1, we can run a shortest path algorithm as the edge
probe test to find the shortest path between b1 and w2

in Figure 2. In this example, the shortest path distance
between b1 and w2 is 2, thus after the execution of
the shortest path algorithm, the edge that connects
b1 and w2 in Figure 1 becomes explicit. Shortest path
queries on large graphs are usually computationally
expensive [30]. Therefore, the goal of kMCV is to find
the answer using an efficient strategy.

Example 2: Bioinformatics.
In bioinformatics, interactions between proteins are
often represented as graphs. Specifically, the interac-
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tions between bait proteins (B) and prey proteins (W),
could form a hidden bipartite graph G(B,W) [21],
[22]. An edge (b, w) represents a bait protein b interacts
with a prey protein w and this interaction could be
discovered by carrying out an edge probe test in the
form of a biological experiment, which may take hours
or days [17]. The kMCV problem is to find the most
active proteins. And it would be beneficial if there is
a way to get the answer efficiently.

Example 3: Graph Pattern Matching.
Applications like drug discovery often need to iden-
tify the graph patterns that match the most num-
ber of data graphs [29], [28]. The discovery process
usually involves testing whether a graph pattern b
is a sub/super-graph of a data graph w. An edge
is present if such a containment relationship exists
between b and w. Such information, however, remains
hidden unless an explicit sub/super-graph contain-
ment test is carried out. Unfortunately, such testing is
known to be expensive, e.g., a subgraph isomorphism
test is NP-complete [9], [27]. Therefore, it is necessary
to devise an efficient algorithm for the kMCV problem
to speed up the drug discovery process.

As the pioneering work, [29], [28] developed an
algorithm, SOE1, to solve the kMCV problem. SOE is
based on 2-vertex edge probe testing, or simply 2-vertex
testing [7], i.e., each edge probe test Q(b, w) takes as
inputs one black vertex b ∈ B and one white vertex
w ∈ W , and returns 1 if b and w possesses an edge
in the hidden bipartite graph G and 0 otherwise. In
many applications [11], [13], [32], [7], the more general
vertex-group edge probe testing is used as a replacement
of the 2-vertex model. Specifically, a vertex-group
edge probe test, or simply, a group test, takes as inputs
one black vertex b ∈ B and a group of white vertices
W ⊆ W , denoted as Q(b,W ), and returns 1 if there
exists at least one white vertex w ∈ W possessing an
edge with b in the hidden graph G and 0 otherwise.
We observe that such a test model is also applicable
to the kMCV problem (in above applications).

• In the distance join application, if a road network
index [19], [25], [31] is available, a group test
Q(b,W ) can be implemented by asking the road
network index the nearest neighbor of a vertex b
(denoted as wnn) in a given group of vertices W .
If dist(b, wnn) > θdist, we learn that all vertices
in W are beyond θdist of b, therefore none of the
vertices in the group W connects with b in the
hidden graph, i.e., Q(b,W ) = 0. Otherwise, we
get Q(b,W ) = 1.

• In bioinformatics, literature does show that many
biological experiments can be set up to tell
whether there are reactions between a protein b
and a set of proteins W [22], [7].

1. Actually, [29], [28] proposed two algorithms: SS (Sample-and-
Sort) and SOE (Switch-on-Empty). Since SOE outperforms SS in
both theory and in practice, we therefore focus on SOE only.

• In the graph matching application, a graph index
IW (e.g., FG-index [9], cIndex [8], GPTree [33])
can be built on a set of data graphs W . A group
test Q(b,W ) can be regarded as a pattern query
b on the set W ⊆ W to check whether there
exists a data graph w ∈ W such that b and
w satisfy the containment relationship. If yes,
then Q(b,W ) = 1, and Q(b,W ) = 0 otherwise.
Notice that W corresponds to a particular subtree
of the index IW . Thus, the group test can be
implemented by issuing b as a graph query to
the corresponding subtree of IW .

Table 1 gives a summary of how the above ap-
plications associated with the kMCV problem in the
context of group testing.

The applicability of group testing on the kMCV
problem raises a very interesting research question:
Can we leverage group testing to solve the kMCV prob-
lem more efficiently? Specifically, a group test Q(b,W )
returning 0 is equivalent to revealing many hidden
edges in a row: Q(b, w1) = 0, Q(b, w2) = 0, ... ,
Q(b, wi) = 0, for all wi ∈ W . If an algorithm can
leverage it smartly and correctly, the number of tests
can be significantly reduced. However, although the
use of group test may reduce the number of tests
in solving the kMCV problem, we have to ensure
that the actual cost of solving the kMCV problem
can essentially be reduced. That is because the cost
(e.g., monetary cost, running time) of a group test
execution, in which we call that as external cost, may
be more than the external cost of a 2-vertex edge probe
test execution, because the former may take more than
two white vertices as input. Fortunately, in all of the
applications that we concern, the external cost of a
group test is indeed sub-linear to or even independent
of the input size. For example, in the distance join ap-
plication and the graph pattern matching application,
it has been shown that the external cost (running time)
of checking the nearest neighbor between a vertex b
and a set of vertices W using a road network index,
and the external cost (running time) of checking the
containment relationship between a pattern b and a
set of data graphs W using a graph index, are sub-
linear to the size of W [19], [25], [31], [9], [8], [33],
because of the indices’ high pruning effectiveness.
In bioinformatics, it is a well known fact that the
external cost of a group test, no matter in terms of the
monetary cost (e.g., the cost of the chemical used) or
the time to finish an experiment, is independent of the
number of input chemicals involved in the experiment
[4], [5], [3], [15].

To leverage group testing, we have to design the
algorithm carefully because it is tricky to determine
the input size of the white vertex set, i.e., |W |, for
each group testing. Even though the external cost of
a group test is usually sub-linear to or independent of
the group size, we still should not deliberately include
a lot of vertices in each group test because that would
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TABLE 1
Applications that can apply group testing

Application Meaning of
the Black
Vertex Set B

Meaning of
the White
Vertex Set W

Meaning of a Hidden Edge
(b, w)

Meaning of a Group Test
Q(b,W )

External
Cost of a
Group Test

Distance join locations
(hotel sets)

locations
(spot sets)

the distance of b and w is
less than a threshold θdist

Run shortest path algorithm:
the distance of b and at least one
vertex in W is less than θdist

sub-linear
to group
size

Bioinformatics bait proteins prey proteins b interacts with w Conduct biological experiment:
b interacts with at least one ver-
tex in W

constant

Graph pattern
matching

data graphs data graphs b is a sub/super-graph of w Query on graph index: b is a
sub/super-graph of at least one
data graph in W

sub-linear
to group
size

increase the chance of the testing result being 1. Such
a result is actually not informative because it does not
reveal any hidden edge between any pair of black
vertex and white vertex. However, if a very small
group size is used, the power of group testing may
not be well exploited. Therefore, it is challenging to
leverage the group test model in a productive manner.

Based on the discussions above, we propose an
algorithm, GMCV, that leverages group testing to
solve the kMCV problem. Note that if the group size
|W | is always set to 1, a group test is the same as
2-vertex testing. Therefore, GMCV is more general
than SOE. GMCV adaptively controls the group sizes
based on the data characteristics during execution.
For applications like distance join and graph pattern
matching, GMCV can be regarded as an usual com-
puter algorithm which aims to solve the kMCV prob-
lem efficiently. For applications like bioinformatics,
GMCV can serve as an offline human-involving tool
like [23] that assists human (scientists) in scheduling
their actions (experiments) using the least amount of
external resources. Specifically, GMCV can suggest
a scientist what experiment should to do next after
finishing the current experiment (which may take
days).

The rest of the paper is organized as follows. We
review the related work in Section 2. We formally
define the problem in Section 3. Then, we present the
technical contributions in the following order:

• First, we present the details of GMCV, a more
general algorithm for solving the kMCV problem,
in Section 4.

• Then, we present cost models of GMCV and SOE,
in Section 5. Notice that the total external testing
cost of an execution of GMCV not only depends
on (i) the number of group tests executed, but
also (ii) the input size to each group test and (iii)
the implementation of the group test. For exam-
ple, the time complexity of a group test in the
distance join application is sub-linear to the input
group size. However, in bioinformatics, a group
testing is an actual (chemical/biological) experi-
ment, in which its cost (running time/monetary
cost) is independent of the group size.

• Finally, we experimentally evaluate GMCV in
Section 6. The evaluation is done on both real life
datasets and synthetic datasets. The experimental
results show that GMCV is a good general alter-
native to SOE.

After presenting the above contributions, we con-
clude the paper in Section 7. Table 2 summarizes the
symbols used in the subsequent sections.

TABLE 2
Summary of notations

Symbol Meaning
B black vertex set
W white vertex set
B subset of B
W subset of W

W j
i (W

j) the j-th test set of bi (b)
R result set
b a black vertex
w a white vertex
bi a black vertex in R
bj a black vertex not in R

d (di) the degree of b (bi)
τ the k-th largest degree in R

µ
the maximum degree upper bound

of vertices not in R
Q(b, w) 2-vertex testing of b and w
Q(b,W ) group testing of b and W

β(b, w) or β(1) external testing cost of Q(b, w)
β(b,W ) or β(|W |) external testing cost of Q(b,W )

2 RELATED WORK

Hidden graph has been an active research topic in
the computing theory community [18], [4], [3]. Ap-
plications of hidden graph are mostly bioinformatic
related. One branch of hidden graph research is graph
testing: given a hidden graph G, the objective is to
test whether G possesses a certain property (e.g., k-
colorable [16]) using a minimal number of edge probe
tests (e.g., biological experiments). Another branch
of hidden graph research is graph learning: given a
hidden graph G, the objective is to reconstruct the
whole graph using a minimal number of edge probe
tests [18], [4], [3], [7], [15]. As argued by [29], [28], the
kMCV problem is different from those work because
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it neither tests the possession of any property of the
hidden graph, nor reconstructs the whole graph.

The works above are all based on the 2-vertex edge
probe test model [7]. They assume that the cost of
a 2-vertex test is a constant. So, the costs of those
algorithms are analyzed based on the number of tests
they invoked. Thus it is natural that those works focus
on reducing the number of tests. Recently, the more
general vertex-group edge probe test model is used
in both graph testing and graph learning [13], [32],
[7], because in those applications the cost of a group
test is independent of the group size. This paper aims
to investigate the use of group testing in solving the
kMCV problem.

Comparing with SOE [29], [28], the use of group
testing raises at least two new technical aspects: (1) In
terms of algorithm design, a kMCV algorithm that ex-
ploits the group test model has to determine the group
size carefully, in which algorithms that based on the 2-
vertex model do not. (2) In terms of solution analysis,
the analysis has to base on the external testing cost,
which depends on (i) the number of executed group
tests, (ii) the group size, and (iii) the cost function of
various group testing implementations.

3 PROBLEM DEFINITION

We formally define the kMCV (k most connected
vertices) problem under the group testing model.

Let G = (B,W, E) be a bipartite graph, where B is a
set of black vertices, W is a set of white vertices, and
E is a set of edges connecting vertices in B and W . G
is hidden if E is not explicitly given. An edge probe
test, or simply a test, can be carried out to detect the
presence of edges.

Definition 1 (2-vertex testing). An edge probe test
Q(b, w) is called 2-vertex testing if it asks whether a black
vertex b ∈ B connects with a white vertex w ∈ W :

Q(b, w) =

{
1 , if (b, w) ∈ E
0 , if (b, w) /∈ E

The 2-vertex testing method is used by SOE [29],
[28]. As mentioned earlier, in many applications, e.g.,
distance join, protein-protein interaction, we can test
a group of vertices together.

Definition 2 (group testing). Let W be a group of white
vertices, an edge probe test Q(b,W ) is called group testing
if it asks whether a black vertex b ∈ B connects with at least
one white vertex w ∈ W :

Q(b, w) =

{
1 , if ∃w ∈ W, (b, w) ∈ E
0 , if ∀w ∈ W, (b, w) /∈ E

When |W| = 1, group testing is the same as 2-vertex
testing. Hence, 2-vertex testing is a special case of
group testing. Depending on the actual applications,
the cost of group testing may or may not depend on
the input sizes.

Definition 3 (external testing cost β). Let Q(b,W ) be a
group test, the external cost (e.g., monetary cost, running
time) of carrying out such a test is denoted as β(b,W ).
For simplicity, we represent β(b,W ) using the input size,
i.e., β(|W|).

Definition 4 (kMCV). Given a hidden graph G =
(B,W, E), a user-threshold k, identify a minimal result
set R ⊆ B such that:

1) |R| ≥ k; and
2) di > dj for any bi ∈ R and bj ∈ B \ R, where di is

the degree of bi.

The goal of this paper is to minimize the total
external testing cost of solving the kMCV problem
using group testing. For ease of presentation, we
assume there is no tie on the vertex’s degree such
that there is exactly k vertices in the result set R. Our
techniques can be easily extended to handle the tie
case.

4 ALGORITHM GMCV
In this section, we present our GMCV algorithm that
solves the kMCV problem by the use of group testing,
which aims to reduce the external testing cost. We first
put down the relevant definitions.

Definition 5 (hidden vertex & hidden edge). For a
vertex pair (b, w) where b ∈ B and w ∈ W , w is a hidden
vertex of b if the connection between b and w in the hidden
graph G is unknown. If w is a hidden vertex of b, then (b, w)
is a hidden edge.

Definition 6 (solid & empty vertex). For a vertex pair
(b, w) where b ∈ B and w ∈ W , if (b, w) ∈ E , then w is a
solid vertex of b; otherwise w is an empty vertex of b.

Definition 7 (completed). A black vertex b is completed
if it has no hidden edges.

GMCV finds the top k black vertices with the high-
est degree in iterations. In each iteration, it examines
the black vertices b1, b2, · · · , b|B| in B one-by-one. For
a black vertex bi, some group tests are carried out
between it and some white vertices W ⊆ W in order
to tighten the degree bounds of bi, except when bi
is completed, or when bi is deliberately skipped in
that iteration because of the poor chance for bi being
in the final result (more on this later). After one
iteration, another iteration starts and the black vertices
b1, b2, · · · , b|B| in B are examined once again. Similar
to most top k processing algorithms (e.g., [14], [20]),
GMCV maintains the degree upper bound (denoted as
bi.maxDeg) and lower bound (denoted as bi.minDeg)
of each black vertex bi ∈ B throughout the execution
and stops when the following condition holds:

Property 1 (Stop condition). Let τ be the k-th largest
degree in the result set R, and µ be the maximum degree
upper bound of vertices not in R, GMCV can stop and
return R when τ > µ.
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With the skeleton of GMCV in place, we study the
following research issues:

R1 In an iteration, when a black vertex bi is being
examined by GMCV, how to leverage group test-
ing in order to refine bi’s degree bounds? Specific
issues include (a) how to determine the group of
white vertices that should be tested with bi? and (b)
when shall GMCV stop examining bi in this iteration
and switch to another black vertex?

R2 Black vertices with low degrees are unlikely to be
in the top k result set R, thus, the question is: how
to avoid unnecessary testing for low-degree vertices?

4.1 Dealing with Research Issue R1

GMCV follows the “switch-on-empty” principle [29],
[28] to deal with research issue R1(b). Within an
iteration, it continues to work on bi until a test returns
“empty”, i.e., Q(bi,W ) = 0, or bi becomes completed.
For a black vertex bi, let WCUR be the set of white
vertices that bi is going to carry out group testing
with, and W PRE be the previous set of white vertices
that bi carried out group testing with.

To deal with research issue R1(a), GMCV adap-
tively identifies WCUR based on W PRE and the two
possible “states” associated with bi: expanding, and
identifying. Initially, the state of every bi ∈ B is
expanding, W PRE is set to empty, and WCUR is set
to one random white vertex. For other cases (except
initialization), WCUR is determined as follows:

When bi is in the expanding state, the objective of
group testing between bi and a set of white vertices
is to reveal as many hidden vertices of bi as possible.

• [Case EXP-(a)]: if Q(bi,W
PRE) = 0, the number

of white vertices that should be involved in the
upcoming group test, denoted as |WCUR|, is set as
twice the size of |W PRE|, i.e., |WCUR| = 2 · |W PRE|.
This is called the doubling strategy, which is com-
monly used in problems to dynamically adjust
the value of some unknown parameters [6], [10]2.
The rationale is that, if Q(b,W PRE) = 0, it implies
bi might have a low degree. Thus, GMCV can
aim higher in this test—set bi to test with a larger
group of white vertices and hope that can reveal
even more hidden vertices of bi. The set WCUR is
then randomly chosen from bi’s hidden vertices.

• [Case EXP-(b)]: if Q(bi,W
PRE) = 1 and |W PRE| =

1, it means bi is a potentially high-degree vertex,
so GMCV keeps |WCUR| = 1.

• [Case EXP-(c)]: if Q(bi,W
PRE) = 1 and |W PRE| >

1, it implies that GMCV were too aggressive in
the previous group test. In this case, bi enters the
identifying state.

2. In fact, other strategies such as multiplying the group size by
3 [12] or 4 [26] do exist. However, the literature does emphasis on
the doubling strategy because of its stableness.

When bi is in the identifying state, the objective of
group testing becomes to identify at least one of the
solid vertices in W PRE of bi. Therefore,

• [Case IDF-(a)]: if |W PRE| > 1 and Q(bi,W
PRE) = 1,

GMCV will devote some more tests to locate the
white solid vertex in W PRE. To do so, GMCV
splits W PRE into two halves: W PRE

L and W PRE
R ,

and sets WCUR to be W PRE
L and saves W PRE

R as
an unexplored set WU .

• [Case IDF-(b)]: if |W PRE| = 1 and Q(bi,W
PRE) =

1, that means a white solid vertex of bi in W PRE

has been identified; in this case, GMCV resets bi’s
state back to the expanding state.

• [Case IDF-(c)]: if Q(bi,W
PRE) = 0, GMCV ex-

plores the unexplored set by setting WCUR to be
WU , but the test result of Q(bi,W

CUR) is explicitly
encoded as 1.

After identifying WCUR, GMCV then executes such
a group testing Q(bi,W

CUR). As mentioned, GMCV
follows the switch-on-empty principle, so it may carry
out a number of group tests, between bi and a number
of groups of white vertices, before it switches to
another black vertex in the same iteration.

Figure 4 shows an example that illustrates some
of the cases above. The corresponding input hidden
graph is shown in Figure 3. In the first iteration,
b1 is first considered and WCUR = {w1} (a random
white vertex) (Iteration 1-a). After the first group test
Q(b1,W

CUR), it is found that w1 is a solid vertex of
b1. This falls into [Case EXP-(b)] described above,
resulting WCUR is set to another random vertex w2

(Iteration 1-b). After the next group test Q(b1,W
CUR),

it is found that w2 is an empty vertex of b1. So, GMCV
follows the switch-on-empty principle and considers
b2 (Iteration 1-c). Since b2 is first visited by GMCV,
its WCUR is set as {w1}, like what happened to b1.
After the group test Q(b2,W

CUR), it is found that
w1 is an empty vertex of b2. Therefore, GMCV has
to switch to another vertex, leading to Iteration 2,
which considers b1 again (Iteration 2-a). At that point,
for b1, W PRE = {w2} (refer to Iteration 1-b), so, it
falls into [Case EXP-(a)] described above, causing
the size of WCUR to be doubled (Iteration 2-a). After
the group test Q(b1,W

CUR), it is found that w3, or
w4, or both, are solid vertices of b1, so, it falls into
[Case EXP-(c)] described above, b1’s state is thereby
switched to identifying (Iteration 2-b). At that point,
for b1, W PRE = {w3, w4}, so it falls into [Case IDF-(a)]
described above, resulting WCUR is set as {w3}. After
the group test Q(b1,W

CUR), it is found that w3 is an
empty vertex of b1 (which then also implies w4 is a
solid vertex of b1), which triggers GMCV to switch to
b2 (Iteration 2-c). After the group test Q(b2,W

CUR), it
is found that both w2 and w3 are empty vertices of b2,
making GMCV switches to b1 again (Iteration 3-a). By
that time, although Q(b1,W

CUR) supposes to test with
w4, it falls into the case of [Case IDF-(c)], in which the
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test result is already encoded as 1 without even test-
ing. So, after that, GMCV continues testing between
b1 and another white vertex w5 (Iteration 3-b), and the
process goes on until the stopping condition (Property
1) holds.

4.2 Dealing with Research Issue R2
For each black vertex bj /∈ R, the “necessary” tests are
to reduce its degree upper bound, until below τ . In
other words, it should not have any further testing once
its degree upper bound below τ , as it is not part of
the result set. However, the value of τ is unknown in
advance, therefore, bj may get redundant tests even if
bj .maxDeg is really less than τ during the execution.

Thus, the question is, for any bj /∈ R (i.e., low-
degree vertex), how to prevent it from any further
unnecessary testing even though τ is unknown be-
forehand? In other words, how to guarantee for any
bj /∈ R, it does not have any unnecessary testing once
bj .maxDeg < τ?

GMCV employs a skipping policy to achieve the goal.
If Q(bj ,W

CUR) = 0, then, bj is skipped for a skip
factor of |WCUR| − 1 iterations. E.g., if at iteration i,
Q(b, {w1, w2, w3}) = 0, then, GMCV skips b in the
iterations i + 1 and i + 2. In Theorem 1 (Section 4.3),
we will show that, with our skipping policy, vertices
not in the result set do not have unnecessary testing.
Then, we will show in Lemma 4 (Section 4.3) that the
skip factor |WCUR|−1 is the optimal one among all the
possible choices, so GMCV will use that as the skip
factor. In the following, we first present the algorithm
GMCV.

4.3 Algorithm: GMCV
The pseudo-code of GMCV is listed below. It is self-
explanatory. It employs a skip factor of |WCUR| − 1.
Each black vertex b is associated with a field skip,
which gets incremented whenever a group test has
identified a group of b’s empty vertices in a single
group test, resulting in the skipping of processing b
in a number of subsequent iterations.

Algorithm GMCV
Input
G(B,W): Hidden bipartite graph; k: User-threshold
Output
R: k black vertices that have the maximum degree

1 τ : the degree of the k-th ranked vertex in R
2 µ: the maximum degree upper bound for those vertices

not in R, i.e., maxb/∈R b.maxDeg
3 R is initialized to k dummy vertices with degree −1
4 for each b ∈ B do
5 b.minDeg ← 0 /*degree lower bound*/
6 b.maxDeg ← |W| /*degree upper bound*/
7 b.skip← 0 /*implement the skip policy*/
8 repeat

/*start an iteration*/
9 for each b ∈ B do

10 if b is completed then continue

11 if b.skip > 0 then /*skip policy*/
12 b.skip ← b.skip − 1
13 continue
14 find a group of white vertices W CUR to test

/*Section 4.1*/
15 if Q(b,W CUR) = 0 then /*external testing*/
16 b.maxDeg ← b.maxDeg − |W CUR|
17 b.skip← b.skip+ (|W CUR| − 1)
18 else
19 if |W| = 1 then
20 b.minDeg ← b.minDeg + 1
21 goto line 10
22 let C be the completed vertices in this iteration
23 R← R ∪ C
24 update τ /*k-th largest degree in R*/
25 R← {bi ∈ R : di ≥ τ} /*update the result set R*/
26 update µ /*upper-bound score of vertices not in

R*/
27 until µ < τ

Table 3 shows the detailed execution steps of
GMCV in finding the 1MCV of the hidden graph
presented in Figure 3. The final τ value is 10, which is
the degree of b1 but is unknown till the end of GMCV.
After the fourth iteration, b2.maxDeg = 9, which is
below τ . Since then, b2 is skipped for any further tests,
until the end of GMCV.

Lemma 1. GMCV correctly reports the results, i.e., black
vertices with top k maximum degrees.

Proof: The stopping condition µ < τ (Property 1)
guarantees that, for any vertices not in R will not have
a higher degree than those in R.

Theorem 1. In GMCV, a black vertex bj /∈ R stops any
further testing, once its degree upper bound is just smaller
than the final τ .

Proof: The statement is equivalent to, any black
vertex bj /∈ R stops for any further testing once the
number of empty vertices it has detected is greater
than or equal to |W| − (τ − 1). Let θ = |W| − (τ − 1).

Formally, let Ebj be the number of empty vertices
detected with bj during GMCV, then Ebj is increasing
during the execution of the algorithm. Let Em

bj
be the

value of Ebj after the m-th change of Ebj . (Thus, Em
bj

≤
Em+1
bj

). Let Ez
bj

be the value of Ebj of the last change
of Ebj before GMCV terminates, we have (I) Ez

bj
≥ θ

and (II) Ez−1
bj

< θ.
We prove (I) by contradiction. At the end of GMCV,

if Ebj < θ (i.e., Ez
bj

< θ), we have bj .maxDeg = |W| −
Ez
bj

> |W|−θ = τ−1. In order words, bj .maxDeg ≥ τ .
According to the stop condition of GMCV (Property
1), µ < τ , where µ is the the maximum degree upper
bound of vertices not in R, meaning that bj .maxDeg <
τ , which is a contradiction.

Next, we will prove (II) Ez−1
bj

< θ by contradiction.
Let us assume

Ez−1
bj

≥ θ (1)

We state the supplementary Lemmas 2 and 3, which
are proved in the appendix.
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Fig. 4. Running example

TABLE 3
Detailed execution steps of GMCV on Figure 3

Iterations Vertex Testing Sequence Discovered Vertices Skip Degree Bound
0(initialization) b1 - - 0 [0,16]

b2 - - 0 [0,16]
1 b1 Q(b1, w1) = 1, Q(b1, w2) = 0 w1, w2 0 [1,15]

b2 Q(b2, w1) = 0 w1 0 [0,15]
2 b1 Q(b1, w3w4) = 1, Q(b1, w3) = 0 w3 0 [1,14]

b2 Q(b2, w2w3) = 0 w2, w3 1 [0,13]
3 b1 Q(b1, w5) = 1, Q(b1, w6) = 0 w4, w5, w6 0 [3,13]

b2 - - 0 [0,13]
4 b1 Q(b1, w7w8) = 0 w7, w8 1 [3,11]

b2 Q(b2, w4w5w6w7) = 0 w4, w5, w6, w7 3 [0,9]
5 b1 - - 0 [3,11]

b2 - - 2 [0,9]

6 b1
Q(b1, w9w10w11w12) = 1

Q(b1, w9w10) = 1, Q(b1, w9) = 0
w9 0 [3,10]

b2 - - 1 [0,9]

7 b1

Q(b1, w11) = 1, Q(b1, w12) = 1
Q(b1, w13) = 1, Q(b1, w14) = 1
Q(b1, w15) = 1 Q(b1, w16) = 1

w10, w11, w12

w13, w14, w15, w16
0 [10,10]

b2 - - 0 [0,9]
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Lemma 2. Let the (z − 1)-th change of Ebj value occurs
at the end of iteration-I of GMCV, if bj .skip = 0, then
iteration-I is the last iteration of GMCV.

Lemma 3. Let the (z − 1)-th change of Ebj value occurs
at the end of iteration-I of GMCV, if bj .skip > 0, then at
the end of the iteration-(I + bj .skip), GMCV must have
terminated.

With Lemma 2 proven, it implies that the (z − 1)-
th change of Ebj is the last change of Ebj , which
contradicts the fact that Ez

bj
is the last change of Ebj .

With Lemma 3 proven, and together with the
fact that the value of Ebj does not change between
iteration-I and iteration-(I+bj .skip) (because by that
time bj .skip > 0 and thus bj is skipped), so the value
of Ebj at iteration-(I + bj .skip) is equal to the value
of Ebj at the end of the iteration-I, which is equal to
Ez−1
bj

. So, if we can prove that GMCV has terminated
by that time, it implies that Ez−1

bj
is the value of Ebj

before GMCV terminates, which contradicts the fact
that Ez

bj
is the last change of Ebj .

With Lemmas 2 and 3 proven, we can conclude that
the assumption Ez−1

bj
≥ θ (1) is false and the proof is

completed.

Lemma 4. Let Cs be the external testing cost of our solu-
tion with skip factor of s, then, for any s, C|WCUR|−1 ≤ Cs.

Proof: First, each b ∈ B has a sequence of group
tests and stops when the stopping condition (Property
1) is met. Obviously, for a bi in the final result set
R, its whole sequence of group tests must be carried
out. So, we care about only those bj not in the final
result set R. For bj /∈ R, its degree upper bound,
denoted as bj .maxDeg, gets reduced along the iter-
ations when more tests are done. Its corresponding
aggregated external testing cost is the minimum if
its test sequence stops once bj .maxDeg is just smaller
than τ . We denote that cost as minCbj .

Let C
bj
s be the external testing cost of bj with any

skip factor s. We first show that C
bj
s = minCb when

s = |WCUR−1|. That is, we show C
bj
|WCUR−1| = minCbj .

If that is proved, then it is straightforward to deduce
the total cost of all bj /∈ R as minimum and thereby
proved the lemma.

As mentioned above, if C
bj
|WCUR−1| = minCbj , it

implies GMCV stops processing bj once its degree
upper bound bj .maxDeg gets refined so that it is
smaller than τ , which is proved in Theorem 1.

5 COST MODEL

Although SOE is proven to be instance-optimal (i.e.,
for any given problem instance, it incurs at most a
constant factor of tests of the optimal solution), it is
not applicable to the context with group testing. In
SOE, minimizing the number of tests is equivalent to
minimizing the total external testing cost because the
external cost of a 2-vertex test function is a constant.

However, the overall external cost of a group test
function depends not only on the number of tests
invoked, but also on the input size to each test as
well as the implementation of the group test.

In this section, we provide cost models to capture
the total external testing costs of GMCV (Section 5.1)
and SOE (Section 5.2), and compare their external
costs based on different group test cost functions
(Section 5.3). For every black vertex bi, we assume
that its degree di ̸= 0 and di ̸= |W|, as it is trivial to
deal with these two cases.

5.1 External Testing Cost of GMCV

In an execution of GMCV, a particular black vertex
bi ∈ R is associated with a series of expanding-
and-identifying processes that may span across mul-
tiple iterations. Initially, a test Q(bi,W

1
i ) is carried

out. If Q(bi,W
1
i ) = 0, another group test Q(bi,W

2
i )

is carried out. The expanding phase Q(bi,W
1
i ) =

0, Q(bi,W
2
i ) = 0, · · · , continues until the s-th test

in which Q(bi,W
s
i ) = 1 (while all the previous

tests return 0), where s is called the turning point in
the process. After that, the identifying phase starts:
Q(bi,W

s+1
i ), · · · , Q(bi,W

2s−1
i ), i.e., recursively drill

into the set W s
i to locate the solid vertex.

Lemma 5. Let Cj
i be the external testing cost of the j-

th expanding-and-identifying process of bi, and s be the
turning point, then Cj

i = 2
∑s−1

j=1 β(2
j−1) + β(2s−1).

Proof: Note that the size of the vertex set W j
i has

the following property

|W j
i | =

{
2j−1 , 1 ≤ j ≤ s

22s−j−1 , s < j ≤ 2s− 1

As Cj
i denotes the external testing cost of the j-th

expanding-and-identifying process of bi, then Cj
i =∑2s−1

j=1 β(|W j
i |) = 2

∑s−1
j=1 β(2

j−1) + β(2s−1).

Lemma 6. For bi ∈ R, the total external testing cost
Cost(bi) associated with bi is:

Cost(bi) = di · Cj
i

where di is the degree of bi, and the value of turning point
s in Cj

i is set as ⌊lg |W|
di

⌉+1 (⌊x⌉ denotes the randomized
rounding [24] of x).

Proof: Lemma 5 gives the external testing cost
of any expanding-and-identifying process. Since in
GMCV, every black vertex bi in R is completed, i.e.,
it has the exact degree di, and each expanding-and-
identifying process locates one solid vertex, the cost
of bi ∈ R is thus di · Cj

i . The value of s in Cj
i is derived

as follows.
An expanding-and-identifying process reveals 1

solid vertex plus at least
∑s−1

j=1 2
j−1 = 2s−1 − 1 empty

vertices, a total of at least 2s−1 vertices. Let ω = 2s−1.
Since GMCV algorithm randomly picks white vertices
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to carry out group testing on bi, ω can be approxi-
mated as |W|/di. So, we have s − 1 = ⌊lg |W|

di
⌉, i.e.,

s = ⌊lg |W|
di

⌉ + 1. We use randomized rounding here
because s is an integer.

Next, we derive Cost(bj), the external testing cost
associated with a vertex bj /∈ R. Before that, we
define A(t) be the accumulated external testing cost in
order to identify t empty vertices through a series of
group tests whose results are all zero (i.e., the external
testing costs spent on the doubling strategy during
the expanding phase). It is thus trivial to see that
A(t) =

∑⌊lg t⌋
j=0 β(2j).

Lemma 7. For bj /∈ R, the external testing cost Cost(bj)
associated with bj is:

Cost(bj) = λj · Cj
i +A(θ − λj · (2s − 1))

where θ = |W| − τ + 1, λj = ⌊ θ
|W|
dj

−1
⌋, s = ⌊lg |W|

dj
⌉+ 1,

and dj is the degree of bj .

Proof: In Theorem 1, we show that a black vertex
bj /∈ R does not need any further testing in GMCV,
once its degree upper bound is smaller than τ . Mean-
ing that bi needs to detect |W|−(τ−1) empty vertices.
Let θ = |W|−(τ−1). Next, the analysis is redirected to
analyze the external testing cost of detecting θ empty
vertices for bj /∈ R.

As mentioned, an expanding-and-identifying pro-
cess discovers 1 solid vertex plus at least 2s−1 − 1

empty vertices, where s = ⌊lg |W|
di

⌉+1. Thus, in order
to detect θ empty vertices, it requires ⌊ θ

2s−1−1⌋ =

⌊ θ
|W|
di

−1
⌋ (denoted as λ) expanding-and-identifying

processes.
For the remaining θ − λ · (2s − 1) empty vertices,

it requires a follow-up expanding phrase, which costs
A(θ − λ · (2s − 1)).

Summing up the external testing cost gives the
result, which completes the proof.

Theorem 2. The external testing cost of GMCV is:

CostGMCV =
∑
bi∈R

Cost(bi) +
∑
bj /∈R

Cost(bj) (2)

where Cost(bi) and Cost(bj) are defined in Lemma 6 and
Lemma 7 respectively.

5.2 External Testing Cost of SOE
According to [29], [28], the number of tests NSOE

consumed by SOE for a hidden partite graph with
|B| black vertices and |W| white vertices is

NSOE = k · |W|+
|B|∑

i=k+1

(|W| − τ + 1)(|W|+ 1)

li · |W|+ 1

= k · |W|+
|B|∑

i=k+1

θ(|W|+ 1)

|W| − di + 1

where li = 1− di

|W| .
Since each 2-vertex test has the cost of β(1), the

external testing cost of SOE is:

CostSOE = NSOE · β(1) (3)

5.3 Cost Comparison

We compare the external testing costs of GMCV and
SOE based on the cost models established in Equa-
tions (2) and (3). Following [29], [28], we assume
the degrees of the bipartite graph follow power-law
distribution such that for each b ∈ B, its degree equals
d (between 0 and |W|) has the probability:

Pr(d) =
1/(d+ 1)γ∑|W|
i=0 1/(i+ 1)γ

(4)

where γ is the skewness factor to control the sparse-
ness of a graph (γ > 0). The smaller the γ is, the
denser the graph is.

We consider four group testing implementations:
(I) Const, where β(|W |) = β(1)

(II) Log, where β(|W |) = lg |W | · β(1)
(III) Sqrt, where β(|W |) =

√
|W | · β(1)

(IV) Linear, where β(|W |) = |W | · β(1)
The Const implementation is to simulate the group

test implementation in the biological domain, in
which both the monetary cost and the running time
of an experiment is a constant [17]. The Log and
the Sqrt implementations are to simulate the group
test implementations in the graph pattern matching
and distance join applications, where the external cost
(running time) is sub-linear to the input size. Applica-
tions for the Linear group test implementation are not
clear; however, we include it in our study to show that
GMCV should not be misused in applications where
the external cost of a group test is (super) linear to its
input size.
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Fig. 5. Derived Costs of SOE and GMCV
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Figure 5 plots the external testing costs of GMCV
and SOE (k = 10) based on Equations (2) and (3),
on hidden partite graphs of varying sizes (|B| = |W|)
and different sparseness γ. It can be seen that GMCV
outperforms SOE in almost all graph sizes and graph
sparseness, except when the graphs are unusually
dense (γ is close to 0)3 or when GMCV is deliberately
misused on applications where the external cost of
a group testing is (super) linear to the size of the
input. In those cases, we found GMCV and SOE have
comparable performance.

6 EXPERIMENTS

In this section, we evaluate GMCV on both real life
datasets and synthetic datasets.

PPI4. It consists of the interactions between Yeast
proteins, where B and W represent all the proteins.
Particularly, a protein b ∈ B connects with w ∈ W if
they can interact with each other.

Germany5. It is a real road network from Germany.
In our problem setting, B and W contains all the
nodes. A vertex b ∈ B and a vertex w ∈ W has an
edge if their distance (in terms of the shortest path
distance) is less than a predefined threshold, which is
set to 10km by default.

Actor-W6. It is an actor collaboration network data
based on IMDB (http://www.imdb.com). In which, B
and W include all the actors. In particular, two actors
b and w have an edge if they have co-appeared in at
least one movie.

Actor-D, available from [29], [28]. It is derived
from the actor collaboration social network data by
extracting 10,000 actors that have the largest number
of collaborators, i.e., B and W . Two actors b and w
have an edge if they have 2-hop relationship, i.e.,
either they appeared in at least one common movie,
or they have a common collaborator.

Table 4 summarizes the properties of the four real
datasets above. Actor-D is unusually dense—in a
hidden graph with only 10,000 black and 10,000 white
vertices, a black vertex connects to more than 7,000
white vertices on average. In fact, Actor-D does not
follow power-law distribution as its γ < 0.

TABLE 4
Statistics of real graphs

dataset # black
vertices

# white
vertices # edges avg. deg. raw

data size
PPI 2,617 2,617 11,855 4.53 68KB

Germany 28,867 28,867 30,429 1.05 113KB
Actor-W 392,340 392,340 29,088,772 74.14 189MB
Actor-D 10,000 10,000 73,801,472 7,380 352MB

3. Normally, γ is larger than 2.0 in real graphs [1], [2].
4. http://turing.cs.iastate.edu/PredDNA/dataset.html
5. www.maproom.psu.edu/dcw
6. http://www.datatang.com/DataRes/Detail.aspx?id=1624
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Fig. 9. Results on Actor-D data

Synthetic Data. We follow [29], [28] to generate
graphs of different sizes and sparseness. By default,
|B| = |W| = 5, 000.

Following [29], [28], we simulate the implementa-
tion of a (group) test. We use the four group testing
functions Const, Log, Sqrt, and Linear mentioned in
Section 5.3. For example, we regard the external cost
of a group test with an input of 4 vertices is 2, if
the Sqrt group test function is used. The experimental
results are reported in terms of external testing cost.

6.1 Experimental Results on Real Datasets

Figure 6 (the bigger graph) shows the external testing
costs of GMCV (based on different group testing
cost functions) and SOE of different k values, on the
PPI dataset. It is clear that, GMCV outperforms SOE
significantly, except when the inappropriate Linear
group testing is deliberately used. Specifically, the
costs of GMCV are 36 times (Const), 10 times (Log),
and 7 times (Sqrt) less than SOE, respectively. Since
their costs differ so much and we cannot see the effect
of k when putting them together in one graph, so we
plot their individual costs as well (smaller graphs).
We can observe that all methods scale well with the
value of k.

The experimental results on Germany and Actor-
W datasets are are shown in Figure 7 and Figure 8.
We can also observe that GMCV outperforms SOE
significantly, again except when the Linear group
testing function is deliberately used.

Figure 9 shows the external testing costs of GMCV
and SOE on Actor-D. We can see that, even on such
an unusually dense dataset, SOE and GMCV have
comparable performance. This is because, GMCV uses
the doubling strategy to adaptively determine the
group size based on the outcome of the previous
testing, i.e., double the group size if the previous test
result is 0 and halve the group size otherwise. On
dense graphs, however, a group testing has a high
chance to return 1. Therefore, GMCV seldom employs
the doubling strategy, which makes GMCV behave
like SOE, but with a little overhead.
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Fig. 10. Varying graph sparseness; k = 10

6.2 Experimental Results on Synthetic Datasets
6.2.1 Sparseness
Figure 10 shows the external testing costs of GMCV
and SOE running on synthetic graphs of different
sparseness. The skewness factor γ ranges from 0.1
(average degree is 2,389) to 4.0 (average degree is
0.108). We can see that GMCV outperforms SOE from
sparse to dense graphs, except when the improper
Linear group test function is deliberately used. SOE
is comparable with GMCV only when the graph is
extremely dense (γ = 0.1).

6.2.2 Scalability
In this experiment, we evaluate the scalability of
GMCV on synthetical graphs of different sizes (from
5,000 black vertices and 5,000 white vertices to 500,000
black vertices and 500,000 white vertices). The graphs
here are generated using γ = 2.0, which is found in
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Fig. 11. Varying num. of black vertices |B|, with |B| =
|W|; k = 10

many real life graph data [1], [2]. Figure 11 shows the
external testing costs of GMCV running on synthetic
graphs of different sizes. We can see that GMCV scales
well on graphs of different sizes.

7 CONCLUSIONS

This paper studies the kMCV (k most connected
vertices) problem on hidden bipartite graphs in the
context of group testing. Group testing is a common
testing model in hidden graph literature. Instead of
testing the presence of edge between only two vertices
(which is called the 2-vertex testing model), a group
test takes as input a group of vertices and returns
whether there is any edge among them. If group test-
ing is used properly, a single group test can reveal the
same information as multiple 2-vertex tests. Therefore,
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if the external cost of a group test is constant to or sub-
linear of the input size, the external cost of solving an
kMCV problem can be significantly reduced. To that
end, an algorithm that based on group testing, called,
GMCV, is developed. GMCV adaptively determines
the size of the vertices to be input to each group test
based on the data characteristics. Our cost analysis as
well as experimental results show that GMCV outper-
forms SOE, a 2-vertex testing based kMCV algorithm,
except in some extreme cases (e.g., when the linear
implementation of group testing is deliberately used
or the graphs are unusually dense). In those cases,
GMCV still has comparable performance with SOE,
making GMCV is a robust and more effective choice
than SOE in the usual settings.
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[10] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive
set intersections, unions, and differences. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 743–752, 2000.

[11] R. Dorfman. The detection of defective members of large
populations. The Annals of Mathematical Statistics, 14:436–440,
1943.

[12] D. Du and F. Hwang K. Combinatorial group testing and its
applications. World Scientific Press, 2000.

[13] D. Eppstein, M. T. Goodrich, and D. S. Hirschberg. Improved
combinatorial group testing algorithms for real-world problem
sizes. SIAM Journal on Computing (SICOMP), 36:1360–1375,
2006.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In Proceedings of ACM Symposium
on Principles of Database Systems (PODS), pages 102–113, 2001.

[15] W. I. Gasarch and C. H. Smith. Learning via queries. Journal
of the ACM (JACM), 39:649–674, 1992.

[16] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation. Journal of
the ACM (JACM), 45:653–750, 1998.

[17] E. Golemis and P. Adams. Protein-protein interactions: a molecu-
lar cloning manual. Cold Spring Harbor Laboratory Press, 2005.

[18] V. Grebinski and G. Kucherov. Reconstructing a hamiltonian
cycle by querying the graph: application to DNA physical
mapping. Discrete Applied Mathematics, 88:147–165, 1998.

[19] H. Hu, D. L. Lee, and V. C. S. Lee. Distance indexing on road
networks. In Proceedings of Very Large Data Bases (VLDB), pages
894–905, 2006.

[20] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-
k query processing techniques in relational database systems.
ACM Computing Surveys (CSUR), 40(4):1–58, 2008.

[21] N. T.-M. Laurent, L. Trilling, and J. louis Roch. A novel pooling
design for protein-protein interaction mapping, 2004.

[22] Y. Li, M. T. Thai, Z. Liu, and W. Wu. Protein-protein interaction
and group testing in bipartite graphs. International Journal of
Bioinformatics Research and Applications, 1:414–419, 2005.

[23] A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzo-
tis, and J. Widom. Human-assisted graph search: it’s okay to
ask questions. Proceedings of the VLDB Endowment (PVLDB),
4(5):267–278, 2011.

[24] P. Raghavan and C. D. Tompson. Randomized rounding:
a technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7(4):365–374, 1987.

[25] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable
network distance browsing in spatial databases. In Proceedings
of ACM Management of Data (SIGMOD), pages 43–54, 2008.

[26] J. Schlaghoff and E. Triesch. Improved results for competitive
group testing. Combinatorics, Probability and Computing, 14:191–
202, 2005.

[27] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification
hardness: an efficient algorithm for testing subgraph isomor-
phism. Proceedings of the VLDB Endowment (PVLDB), 1:364–375,
2008.

[28] C. Sheng, Y. Tao, and J. Li. Exact and approximate algorithms
for the most connected vertex problem. ACM Transactions on
Database Systems (TODS), 37(2):1–39, 2012.

[29] Y. Tao, C. Sheng, and J. Li. Finding maximum degrees in
hidden bipartite graphs. In Proceedings of ACM Management of
Data (SIGMOD), pages 891–902, 2010.

[30] J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective caching
of shortest paths for location-based services. In Proceedings of
ACM Management of Data (SIGMOD), pages 313–324, 2012.

[31] F. Wei. TEDI: Efficient shortest path query answering on
graphs. In Proceedings of ACM Management of Data (SIGMOD),
pages 99–110, 2010.

[32] Y. Xuan, I. Shin, M. Thai, and T. Znati. Detecting applica-
tion denial-of-service attacks: A group-testing-based approach.
IEEE Transactions on Parallel and Distributed Systems (TPDS),
pages 1203–1216, 2010.

[33] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for
efficient supergraph query processing on graph databases. In
Proceedings of Extending Database Technology (EDBT), pages 204–
215, 2009.



14

Jianguo Wang received the bachelor’s de-
gree in 2009 from Zhengzhou University,
China. He is currently an MPhil student in
the Hong Kong Polytechnic University, Hong
Kong, under the supervision of Dr. Man Lung
Yiu. His research interests include informa-
tion retrieval and database.

Eric Lo received his PhD degree in 2007
from ETH Zurich. He is currently an assis-
tant professor in the Department of Com-
puting, Hong Kong Polytechnic University.
He research interests include query process-
ing, query optimization, and large-scale data
analysis.

Man Lung Yiu received the bachelor’s de-
gree in computer engineering and the PhD
degree in computer science from the Univer-
sity of Hong Kong in 2002 and 2006, respec-
tively. Prior to his current post, he worked
at Aalborg University for three years starting
in the Fall of 2006. He is now an assistant
professor in the Department of Computing,
Hong Kong Polytechnic University. His re-
search focuses on the management of com-
plex data, in particular query processing top-

ics on spatiotemporal data and multidimensional data.


