
1

Joint Top-K Spatial Keyword Query Processing
Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S. Jensen, Fellow, IEEE

Abstract—Web users and content are increasingly being geo-positioned, and increased focus is being given to serving local content
in response to web queries. This development calls for spatial keyword queries that take into account both the locations and textual
descriptions of content. We study the efficient, joint processing of multiple top-k spatial keyword queries. Such joint processing is
attractive during high query loads and also occurs when multiple queries are used to obfuscate a user’s true query. We propose a
novel algorithm and index structure for the joint processing of top-k spatial keyword queries. Empirical studies show that the proposed
solution is efficient on real datasets. We also offer analytical studies on synthetic datasets to demonstrate the efficiency of the proposed
solution.

Index Terms—H.2.4.k Spatial databases, H.2.4.n Textual databases.

�

1 INTRODUCTION

A range of technologies combine to afford the web and its

users a geographical dimension. Geo-positioning technologies

such as GPS and Wi-Fi and cellular geo-location services, e.g.,

as offered by Skyhook, Google, and Spotigo, are being used

increasingly; and different geo-coding technologies enable the

tagging of web content with positions. Studies [21] suggest

that some 20% of all web queries from desktop users exhibit

local intent, i.e., query for local content. The percentage is

likely to be higher for mobile users.

This renders so-called spatial keyword queries [1]–[3], [6],

[26], [27] important. Such queries take a location and a

set of keywords as arguments and return the content that

best matches these arguments. Spatial keyword queries are

important in local search services such as those offered by

Google Maps and a variety of yellow pages, where they

enable search for, e.g., nearby restaurants or cafes that serve a

particular type of food. Travel sites such as TripAdvisor and

TravellersPoint may use spatial keyword queries to find nearby

hotels with particular facilities.

As an example, in Figure 1, a service provider’s database

D stores the spatial locations and textual descriptions (sets

of keywords) of restaurants p1, p2, p3, and p4. For instance,

restaurant p1 is described by the keywords: ‘pizza’ and ‘grill.’

User q1 (shown as a shaded dot) issues the following query:

Find the nearest restaurant that serves ‘curry’ and ‘sushi.’ The

service returns restaurant p2, which is the closest one that

contains all the keywords in q1.

• D. Wu is with the Department of Computer Science, Aalborg University,
DK-9220, Aalborg, Denmark.
E-mail: dingming@cs.aau.dk

• M. L. Yiu is with the Department of Computing, Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong.
E-mail: csmlyiu@comp.polyu.edu.hk

• G. Cong is with the School of Computer Engineering, Nanyang Techno-
logical University, Singapore.
E-mail: gaocong@ntu.edu.sg

• Christian S. Jensen is with the Department of Computer Science, Aarhus
University, DK-8200 Aarhus, Denmark.
E-mail: csj@cs.au.dk

p1

q3 q1
{pizza, grill}

{curry, sushi}{curry, seafood}

Q

p3

p2
q2

{sushi, soup, curry}

{seafood, grill, sushi}

{seafood, sushi}

p4

{soup, steak}

Q

Fig. 1. Top-k Spatial Keyword Queries

A top-k spatial keyword query retrieves k objects that are

closest to the query location and that contain all the argument

keywords [3]. We study the joint processing of sets of such

queries.

Consider again Figure 1 where the dashed rectangle rep-

resents a theater. After a concert, users q1, q2, and q3 each

wish to find a nearest restaurant (k = 1) that matches their

preferences. User q1 prefers ‘curry’ and ‘sushi,’ user q2 prefers

‘seafood’ and ‘sushi,’ and user q3 prefers ‘curry’ and ‘seafood.’

The result returned to q1 is p2, as this is the nearest object that

contains all keywords of this user’s query. Similarly, the result

returned to q2 is p3, and the result returned to q3 is empty, as

no object contains ‘curry’ and ‘seafood.’

These three queries can be processed jointly as a single

joint top-k spatial keyword query Q that consists of three

subqueries. The joint processing is motivated by two main

applications.

Application I: Multiple Query Optimization.
Multiple query optimization is well-studied. Existing work can

be roughly divided into three categories.

Grouping/partitioning a large set of queries. Papadopoulos

et al. [17] use a space filling curve to group queries so as to im-

prove the overall performance of processing all queries. Zhang

et al. [28] study the processing of multiple nearest neighbor

queries; they propose R-tree-based solutions and heuristics for

the grouping of queries. However, the joint query we consider

is actually one group of queries. We thus aim to compute

2

one group of queries efficiently. Any grouping/partitioning

approach can be applied before our algorithm.

Caching historical information for future queries. Hu et

al. [9] cache the result objects as well as the index that supports

these objects as the results so as to optimize query response

time. Zheng et al. [29] consider a scenario where objects are

stationary while queries are mobile. They develop a semantic

caching scheme that records a cached item (object) as well

as its valid range (Voronoi cell). However, their approach

cannot be directly applied to our problem because their valid

range concept ignores the query keywords in our problem. In

our experiments, traditional caching, i.e., LRU buffering, is

considered as a competitor to our proposals.

Techniques for the efficient processing of one group of
queries [8], [10], [18], [22]. For example, sub-expressions

shared among a set of SQL queries can be evaluated once

and then subsequently reused. This reduces the cost when

compared to processing each query separately. None of these

existing works consider keyword-based queries. However, we

adopt the same general philosophy and aim to share compu-

tation across multiple queries.

With a high load of queries, joint processing is possible

and can contribute to offering robustness to peak loads. For

example, many users who attend or follow the same event,

e.g., a sporting event, may issue similar queries that can be

processed jointly with significant performance gains when

compared to one-at-a-time processing. Furthermore, a variety

of services are seeing very large and increasing volumes of

queries, e.g., status updates and buzz posts in Facebook, tweets

in Twitter, and web queries in Bing, Google, and Yahoo!

Specifically, Google is reported to currently receive on average

some 34,000 queries per second. This suggests a need for

means of joint query processing.

The top-k spatial keyword query supports a range of im-

portant location based services. According to a new report

by Juniper Research1, revenues from mobile location-based

services are expected to reach more than $12.7 billion by 2014,

driven by smartphone proliferation, a surge in application

storefront launches, and developments in hybrid positioning

technologies. We may anticipate that the high load of top-k
spatial keyword queries will become a challenge at the server

side in the future.

Application II: Privacy-Aware Querying Support.
A service provider may not be fully trusted by users. For

example, service providers are vulnerable to hackers, and

authorities can gain access to a service provider’s query logs

by means of a search warrant.

A fake-query approach has been proposed that offers loca-

tion privacy by hiding the true query among multiple fake

queries [4], [12], [13]. However, the keywords in a query

may also disclose sensitive information about a user, e.g., of a

medical, financial, political, or religious nature [19]. The joint

processing of top-k spatial keyword queries enables extension

of the fake-query approach to also offer keyword privacy.

Specifically, the user submits a set of queries Q = {q1,

q2, · · · , qC} to the server such that qi is the user’s original

1. https://www.juniperresearch.com/reports/mobile location based services

query. In regards to keyword privacy, query Q is said to satisfy

C-plausible deniability [15] if each subquery of Q has same

chance of being the original query and different subqueries

belong to different topics. Murugesan et al. [15] study how

to generate a set Q of keyword queries such that C-plausible

deniability is achieved. We aim at efficient query evaluation

of a set of spatial keyword queries.

Challenges and Contributions.
While efficient for individual queries, existing top-k spatial

keyword query processing techniques [2], [3], [26], [30] are

inefficient for the joint processing of such queries. Thus, better

techniques are needed. These should preferably be generic and

applicable to a variety of tree-based index structures for spatial

keyword data [2], [3], [26], [30].

The paper contributes as follows. First, we formulate the

joint top-k spatial keyword query processing problem and

identify applications (Sections 1 and 2). Second, we propose a

generic group-based algorithm (GROUP) for the joint process-

ing of top-k spatial keyword queries that effectively shares the

processing among queries and also introduce a basic algorithm

ITERATE in Section 3. Third, we present a new index structure

for efficient query processing in Section 4. Fourth, we develop

cost models for two representative indexes in Section 5.

Fifth, we offer empirical insight into the performance of the

proposed algorithm and index structure, in Section 6. We

review existing indexes in Section 7 and conclude and offer

research directions in Section 8.

2 PROBLEM STATEMENT

Let D be a dataset in which each object p ∈ D is a pair (λ, ψ)
of a spatial location p.λ and a textual description p.ψ (e.g.,

the facilities and menu of a restaurant).

Similarly, a spatial keyword query [3] q = 〈λ, ψ〉 has two

components, where q.λ is a spatial location and q.ψ is a set

of keywords. The answer to query q is a list of k objects that

are in ascending order of their distance to the query location

q.λ and whose descriptions contain the set of query keywords

q.ψ.

Formally, let the function dist(·, ·) denote the Euclidean

distance between its argument locations, and let D(q.ψ) =
{p ∈ D | q.ψ ⊆ p.ψ} be the objects in D that contain all

the keywords in q. The result of the top-k spatial keyword
query q, q(D), is a subset of D(q.ψ) containing k objects

such that ∀p ∈ q(D) (∀p′ ∈ D(q.ψ)− q(D) (dist(q.λ, p.λ) ≤
dist(q.λ, p′.λ))). The joint top-k spatial keyword query Q is

a set {qi} of such queries.

We introduce the following notion to capture useful in-

formation on a joint query Q: (i) Q.λ = MBRqi∈Q qi.λ
is the minimum bounding rectangle (MBR) of the locations

of the subqueries in Q, (ii) Q.ψ = ∪qi∈Q qi.ψ is the

union of the keyword sets of the subqueries in Q, and (iii)

Q.m = minqi∈Q |qi.ψ| is the smallest keyword set size of a

subquery in Q.

We later define a variable qi.τ that captures the upper bound

kth nearest neighbor distance of subquery qi. The value Q.τ =
maxqi∈Q qi.τ then represents the maximum upper bound kth

nearest neighbor distance of all the subqueries in Q.

3

Referring to Figure 1, the joint query Q contains three

subqueries q1, q2, and q3 (shown as shaded dots). The objects

(e.g., restaurants) are shown as white dots. We have that:

q1.ψ = {curry,sushi}, q2.ψ = {seafood, sushi}, q3.ψ =
{curry, seafood}. Note that Q.λ denotes the MBR of the

shaded dots in the figure. We also have: Q.ψ = {curry,

seafood, sushi} and Q.m = 2.

The paper addresses the problem of developing efficient

solutions for the processing of the joint top-k spatial keyword

query Q. The underlying data is assumed to contain not only a

large number of locations, but also a large number of keyword

sets. Due to data size and storage cost considerations, the data

is stored on disk.

3 PROPOSED ALGORITHMS

We present the existing IR-tree in Section 3.1 and then

proceed to develop a basic and an advanced algorithm, in

Sections 3.2 and 3.3, respectively, for processing joint top-

k spatial keyword queries. The algorithms are generic and are

not tied to a particular index.

3.1 Preliminaries: the IR-Tree

The IR-tree [2], which we use as a baseline, is essentially an

R-tree [5] extended with inverted files [32]. The IR-tree’s leaf

nodes contain entries of the form (p, p.λ, p.di), where p refers

to an object in dataset D, p.λ is the bounding rectangle of p,

and p.di is the identifier of the description of p. Each leaf

node also contains a pointer to an inverted file with the text

descriptions of the objects stored in the node.

An inverted file index has two main components.

• A vocabulary of all distinct words appearing in the

description of an object.

• A posting list for each word t that is a sequence of

identifiers of the objects whose descriptions contain t.

Each non-leaf node R in the IR-tree contains a number of

entries of the form (cp, rect , cp.di) where cp is the address

of a child node of R, rect is the MBR of all rectangles in

entries of the child node, and cp.di is the identifier of a pseudo

text description that is the union of all text descriptions in the

entries of the child node.

As an example, Figure 2a contains 8 spatial objects

p1, p2, . . . , p8, and Figure 2b shows the words appearing

in the description of each object. Figure 3a illustrates the

corresponding IR-tree, and Figure 3b shows the contents of

the inverted files associated with the nodes.

3.2 Basic Algorithm: ITERATE

The ITERATE algorithm (Algorithm 1) for computing the

joint top-k spatial keyword query is adapted from an existing

algorithm [2] that considers a single query.

Recall that a joint top-k spatial keyword query Q consists

of a set of subqueries qi. The ITERATE algorithm computes

the top-k results for each subquery separately. The arguments

are a joint query Q, the root of an index root , and the number

of results k for each subquery.

p5

p1

p2

R1

R3

R

p9

Q

p7

p6

p4

p3

p8

R2

R4

R5

R6

object words

p1 a, b
p2 a, c
p3 a, d
p4 e, f
p5 a, b
p6 d, e
p7 e, f
p8 d, f
p9 a, d

(a) object locations (b) object descriptions

Fig. 2. A Dataset of Spatial Keyword Objects

When processing a subquery qi ∈ Q, the algorithm main-

tains a priority queue U on the nodes to be visited. The key of

an element e ∈ U is the minimum distance mindist(qi.λ, e.λ)
between the query qi and the element e. The algorithm utilizes

the keyword information to prune the search space. It only

loads the posting lists of the words in qi. A non-leaf entry

is pruned if it does not match all the keywords of qi. The

algorithm returns k elements that have the smallest Euclidean

distance to the query and contain the query keywords.

Algorithm 1 ITERATE (Joint query Q, Tree root root , Integer

k)
1: for each subquery qi do
2: Vi ← new max-priority queue; � maintain the top k objects
3: Initialize Vi with k null objects with distance ∞;
4: U ← new min-priority queue;
5: U .Enqueue(root , 0);
6: while U is not empty do
7: e ← U.Dequeue();
8: if e is an object then
9: update Vi by (e, dist(qi.λ, e.λ));

10: if Vi has k non-null objects then
11: break the while-loop;
12: else � e points to a child node
13: read the node CN of e;
14: read the posting lists of CN for keywords in qi.ψ;
15: for each entry e′ in the node CN do
16: if qi.ψ ⊆ e′.ψ then
17: U .Enqueue(e′,mindist(qi.λ, e′.λ));
18: return {Vi}; � top-k results of each subquery

Example 1: Consider the joint query Q = {q1, q2, q3} in

Figure 2, where q1.ψ = {a, b}, q2.ψ = {b, c}, q3.ψ = {a, c},

and all subqueries (and Q) have the same location λ. Table 1

shows the minimum distances between Q and each object and

bounding rectangle in the tree.

We want to find the top-1 object. For each subquery qi,

ITERATE thus computes the top-1 result. Subquery q1 =
〈λ, {a, b}〉 first visits the root and loads the posting lists of

words a and b in InvFile-root . Since entries R5 and R6 both

contain a and b, both entries are inserted into the priority queue

with their distances to q1. The next dequeued entry is R5, and

the posting lists of words a and b in InvFile-R5 are loaded.

Since only R1 contains a and b, R1 is inserted into the queue,

while R2 is pruned.

Now R6 and R1 are in the queue, and R6 is dequeued. After

loading the posting lists of words a and b in InvFile-R6, R3

is inserted into the queue, while R4 is pruned. Now R1 and

R3 are in the queue, and R1 is dequeued. Its child node is

loaded, and the top-1 object p1 is found, since the distance

4

R1 R2 R3 R4

R5 R6
InvFile- root

p1 p2 p3 p4 p8 p5 p9 p6 p7

InvFile- R1 InvFile- R2 InvFile- R3 InvFile- R4

InvFile- R5
InvFile- R6

InvF -root InvF -R5 InvF -R6 InvF -R1 InvF -R2 InvF -R3 InvF -R4

a: R5, R6 a: R1, R2 a: R3 a: p1, p2 a: p3 a: p5,p9 d: p6

b: R5, R6 b: R1 b: R3 b: p1 d: p3, p8 b: p5 e: p6, p7

c: R5 c: R1 d: R3,R4 c: p2 e: p4 d: p9 f: p7

d: R5, R6 d: R2 e: R4 f: p4, p8

e: R5, R6 e: R2 f: R4

f: R5, R6 f: R2

(a) IR-Tree (b) Content of Inverted Files

Fig. 3. Example IR-Tree

of p1 is smaller than that of the first entry (R3) in the queue

(2 < 4). Similarly, the result of subquery 〈λ, {b, c}〉 is empty,

and the result of subquery 〈λ, {a, c}〉 is p2. �
The disadvantage of the ITERATE algorithm is that it may

visit a tree node multiple times, leading to high I/O cost.

TABLE 1
Distances From Q to Objects/Rectangles in Figure 2

Objects Dist. Rectangles Dist.
p1 2 R1 2
p2 5 R2 2
p3 6 R3 4
p4 7 R4 5
p5 3 R5 0.5
p6 9 R6 1
p7 8 R7 0
p8 8
p9 3

3.3 The GROUP Algorithm
The GROUP algorithm aims to process all subqueries of Q
concurrently by employing a shared priority queue U to

organize the visits to the tree nodes that can contribute to

closer results (for some subquery). Unlike ITERATE, GROUP

guarantees that each node in the tree is accessed at most once

during query processing.

Pruning Strategies.
The algorithm uses three pruning rules. Let e be an entry in

a non-leaf tree node. We utilize the MBR and keyword set of

e to decide whether its subtree may contain only objects that

are farther from or irrelevant to all subqueries of Q.

Pruning Rule 1 prunes a non-leaf entry whose subtree

contains objects that have too few relevant keywords for

subqueries of Q. This rule is effective when the union keyword

set Q.ψ of Q is small, e.g., when many keywords are shared

among subqueries of Q.

Pruning Rule 1: Cardinality-Based Pruning.

Let e be an entry in a non-leaf node. If |(∪qi∈Q qi.ψ)∩e.ψ| <
minqi∈Q |qi.ψ| then no object in the subtree of e can become

a result. Note that the premise is equivalent to |Q.ψ ∩ e.ψ| <
Q.m.

Proof: Let p be any object in the subtree of non-leaf entry

e. For any subquery q′ of Q, we obtain: |(∪qi∈Q qi.ψ)∩e.ψ| ≥
|q′.ψ ∩ e.ψ|. By the property of the IBR-tree, we have:

p.ψ ⊆ e.ψ. Therefore, we derive: |q′.ψ ∩ e.ψ| ≥ |q′.ψ ∩ p.ψ|.
Also, we have: |q′.ψ| ≥ minqi∈Q |qi.ψ|. Combining the

above three inequalities together with the given condition

minqi∈Q |qi.ψ| > |(∪qi∈Q qi.ψ) ∩ e.ψ|, we obtain: |q′.ψ| >
|q′.ψ ∩ p.ψ|. Thus, p does not contain all keywords of q′.ψ
and cannot become a result of q′.

Next, Pruning Rule 2 prunes a non-leaf entry whose subtree

contains objects that are located too far away from subqueries

of Q. This rule is effective when the MBR Q.λ is small, i.e.,

when the subqueries of Q are located within a small region.
Pruning Rule 2: MBR-Based Pruning.

Let e be an entry in a non-leaf node, and let qi.τ be

an upper bound on the kNN distance of subquery qi. If

mindist((MBRqi∈Qqi.λ), e.λ) ≥ maxqi∈Q qi.τ then no ob-

ject in the subtree of e can be a result. Note that the premise

is equivalent to mindist(Q.λ, e.λ) ≥ Q.τ .
Proof: Let p be any object in the subtree of non-

leaf entry e. For any subquery q′ of Q, we obtain:

mindist((MBRqi∈Qqi.λ), e.λ) ≤ mindist(q′.λ, e.λ). By the

property of the IBR-tree, we derive: mindist(q′.λ, e.λ) ≤
dist(q′.λ, p.λ). Also, we have: q′.τ ≤ maxqi∈Q qi.τ . Com-

bining the above three inequalities together with the given

condition maxqi∈Q qi.τ ≤ mindist((MBRqi∈Qqi.λ), e.λ), we

obtain: q′.τ ≤ dist(q′.λ, p.λ). Thus, p cannot become a closer

result of q′.
The CPU time required to check Pruning Rules 1 and 2

is independent of the number of subqueries in Q, as they

only need aggregate information about Q. However, the two

rules are also loose, as they do not exploit all the specific

information in the subqueries in Q.
We adopt the filter-and-refine approach when applying the

pruning rules. When neither of the two rules can prune a non-

leaf entry e, we apply Pruning Rule 3, which must examine

each individual subquery of Q. It first constructs the set Q∗

as the subset of subqueries that have the possibility to obtain

closer and relevant results from the subtree rooted at e. This

subtree only needs to be visited when the set Q∗ is non-

empty. This rule achieves high pruning power, but at higher

computational cost.
Pruning Rule 3: Individual Pruning.

Let e be an entry in a non-leaf node. Let qi.τ be an upper

bound on the kNN distance of subquery qi. Let Q∗ = {qi ∈
Q | mindist(qi.λ, e.λ) ≤ qi.τ ∧ qi.ψ ⊆ e.ψ}; if Q∗ = ∅, no

object in the subtree of e can become a result.
Proof: Let p be any object in the subtree of non-

leaf entry e. Let Q∗ = {qi ∈ Q | mindist(qi.λ, e.λ) ≤
qi.τ ∧ qi.ψ ⊆ e.ψ}. If Q∗ is the empty set then we obtain:

5

mindist(qi.λ, e.λ) > qi.τ ∨ qi.ψ � e.ψ, for each qi ∈ Q.

By the property of the IBR-tree, we derive: p.ψ ⊆ e.ψ,

and also mindist(qi.λ, e.λ) ≤ dist(qi.λ, p.λ). Combining

the above inequalities together, we obtain: dist(qi.λ, p.λ) >
qi.τ ∨ qi.ψ � p.ψ, for each qi ∈ Q. Thus, p cannot become a

closer result of qi.

Algorithm.
The GROUP algorithm (Algorithm 2) applies the three pruning

rules. The arguments are a joint query Q, the root root of an

index, and the number k of results for each subquery.

The priority queue U is first initialized with the root node

(lines 1–2). For each subquery qi ∈ Q, it employs a priority

queue Vi to maintain the top-k objects of qi. The value qi.τ
denotes the maximum distance in Vi; it is initialized to infinity.

The algorithm then executes the while loop in lines 7–30

whenever U is non-empty. The top-k results of each subquery

are eventually reported (line 31).

In each iteration, the top entry e (i.e., with the smallest key)

is dequeued from U . Specifically, the key of e is defined as its

minimum distance to its relevant subqueries of Q. The loop

has two phases: (I) checking whether the dequeued entry e
can contribute a closer and relevant result for some subquery

(lines 8–17), and (II) processing the child node of e (lines 18–

30).

Algorithm 2 GROUP (Joint query Q, Tree root root , Integer

k)
1: U ← new min-priority queue;
2: U .Enqueue(root , 0);
3: for each subquery qi ∈ Q do
4: Vi ← new max-priority queue; � maintain the top k objects
5: initialize Vi with k null objects with distance ∞;
6: let qi.τ be the maximum distance in Vi;
7: while U is not empty do
8: e ← U.Dequeue(); � phase I: checking dequeued entry
9: if e.key ≥ Q.τ or |Q.ψ ∩ e.ψ| < Q.m then � Rules 1, 2

10: continue the while-loop;
11: Q∗ ← {qi ∈ Q | mindist(qi.λ, e.λ) ≤ qi.τ ∧ qi.ψ ⊆ e.ψ};
12: if Q∗ is empty then � Rule 3
13: continue the while-loop;
14: e.key ← minqi∈Q∗ mindist(qi.λ, e.λ);
15: if e.key has increased (in line 14) then � update key
16: U .Enqueue(e, e.key);
17: continue the while-loop;
18: read the child node CN of e; � phase II: processing child node
19: read the posting lists of CN for keywords in Q∗.ψ;
20: if CN is a non-leaf node then
21: for each entry e′ in the node CN do
22: if |Q∗.ψ ∩ e′.ψ| ≥ Q∗.m and mindist(Q∗.λ, e′.λ) <

Q∗.τ then � Rules 1,2
23: Q′ ← {qi ∈ Q∗ | mindist(qi.λ, e′.λ) ≤ qi.τ ∧

qi.ψ ⊆ e′.ψ };
24: if Q′ is not empty then � Rule 3
25: U .Enqueue(e′, minqi∈Q′ mindist(qi.λ, e′.λ));
26: else � CN is a leaf node
27: for each object p in the leaf node CN do
28: if |Q∗.ψ ∩ p.ψ| ≥ Q∗.m and mindist(Q∗.λ, p.λ) <

Q∗.τ then � Rules 1, 2
29: for each subquery qi ∈ Q∗ such that

dist(qi.λ, p.λ) < qi.τ and qi.ψ ⊆ p.ψ
do

30: update Vi by (p, dist(qi.λ, p.λ));
31: return {Vi}; � top-k results of each subquery

In phase I, Rules 1 and 2 are used to check the dequeued

entry e. If e cannot be pruned, set Q∗ is computed, which

contains the subqueries that have the possibility of obtaining

closer and relevant results from the subtree of e. Then Rule 3

is applied to check again whether e can be pruned.
Next, we recompute the key e.key of e as its minimum

distance to the relevant subqueries in the set Q∗ (line 14). It

is worth noticing that during the running of the algorithm, the

value of qi.τ can decrease, leading to a reduction of the set

Q∗ and thus an increase of e.key . In case e.key has increased,

we need to insert it into the priority queue U in order to meet

the ascending key ordering requirement of U .
If entry e survives, we enter phase II and read the child node

CN of e. In order to retrieve (relevant) keywords for entries

in CN , the posting lists of CN are read only for keywords in

the set Q∗.ψ (line 19). If CN is a non-leaf node, we apply

Rules 1, 2, and 3 to each entry e′ in CN . Only unpruned

entries are enqueued into U . If CN is a leaf node, we apply

Rules 1 and 2 to discard non-qualifying objects in CN . The

remaining objects are used to update the results for relevant

subqueries of Q∗.
We proceed to explain algorithm GROUP with an example.
Example 2: Consider the joint query Q = {〈λ, {a, b}〉,

〈λ, {b, c}〉, 〈λ, {a, c}〉} from Example 1 in Figure 2. Here,

Q.ψ = {a, b, c} and Q.m = 2. All subqueries have the same

location λ. We want to find the top-1 object.
The algorithm maintains a queue Vi of size 1 for each

subquery to keep track of the current result of each subquery.

First, GROUP visits the root of the tree and loads the posting

lists of words a, b, and c in InvFile-root . Since |R5.ψ| = 3
(� m; R5 contains a, b, and c) and |R6.ψ| = 2 (� m;

R6 contains a and b), these two entries are inserted into the

priority queue according to their keys (i.e., minimum distances

to the subquery locations).
Since the key of R5 is smaller than that of R6 (0.5 < 1),

R5 is dequeued first. The posting lists of words a, b, and c in

InvFile-R5 are loaded. Since |R1.ψ| = 3 (� m; R1 contains

a, b, and c) and |R2.ψ| = 1 (< m; R2 only contains a), R1

is inserted into the queue, while R2 is pruned (Rule 1). Now,

there are two entries in the queue: R6 and R1.
R6 is dequeued because of its smaller distance (1 < 2).

After loading the posting lists of words a, b, and c in InvFile-

R6, since |R3.ψ| = 2 (� m; R3 contains a and b) and

|R4.ψ| = 0 (< m; R4 contains none of a, b, and c), R3

is inserted into the queue, while R4 is pruned (Rule 1). Now,

R1 and R3 are in the queue.
Next, R1 is dequeued. The top-1 object for subquery

〈λ, {a, b}〉 is found, i.e., p1, and the top-1 object for subquery

〈λ, {a, c}〉 is found, i.e., p2. Then R3 is dequeued. Since

R3 contains a and b and the distance from R4 to its closest

relevant subquery is 4, which is greater than the result (p1) of

subquery 〈λ, {a, b}〉, it is pruned (Rule 2). The queue is empty,

and the algorithm terminates and reports the top-k result for

each subquery of Q. �
Optimization of the Computational Cost (Bitmap-Opt).
It is expensive to perform lines 11 and 14 in Algorithm 2.

A straightforward implementation examines each subquery

qi ∈ Q once, leading to high computational overhead when

Q is large. We attach a bitmap to each en-queued entry. The

bitmap length equals the number of subqueries. If an entry is

relevant to a subquery, i.e., the entry contains the keywords

of the subquery, the corresponding bit of its bitmap is set to

6

1. During query processing, we then need only examine the

relevant subqueries of a dequeued entry, and thus save cost.

4 PROPOSED INDEXES AND ADAPTATIONS

We present the W-IR-tree (and several variants) that organizes

data objects according to both location and keywords in

Sections 4.1 and 4.2. We discuss the processing of the joint

top-k query using existing indexes in Section 4.3.

4.1 The W-IR-Tree

Word Partitioning.
As a first step in presenting the index structure, we consider

the partitioning of a dataset according to keywords. We

hypothesize that a keyword query will often contain a frequent

word (say w). This inspires us to partition dataset D into the

subset D+ whose objects contain w and the subset D− whose

objects do not contain w and that we need not examine when

processing a query containing w.

We aim at partitioning D into multiple groups of objects,

such that the groups share as few keywords as possible.

However, this problem is equivalent to, e.g., the clustering

problem and is NP-hard. Hence, we propose a heuristic to

partition the objects.

Let the list W of keywords of objects sorted in descending

order of their frequencies be: w1, w2, . . . , wm, where m is the

number of words in D. Frequent words are handled before

infrequent words. We start by partitioning the objects into two

groups using word w1: the group whose objects contain w1,

and the group whose objects do not. We then partition each

of these two groups by word w2. This way, the dataset can be

partitioned into at most 2, 4, . . . , 2m groups. By construction,

the word overlap among groups is small, which will tend

to reduce the number of groups accessed when processing a

query.

Algorithm 3 recursively applies the above partitioning to

construct a list of tree nodes L. To avoid underflow and

overflow, each node in L must contain between B/2 and B
objects, where B is the node capacity. In the algorithm, D is

the dataset being examined, and W is the corresponding word

list sorted in the descending order of frequency.

When the number of objects in D (i.e., |D|) is between B/2
and B, D is added as a node to the result list L (lines 1–2).

If |D| < B/2 then D is returned to the parent algorithm call

(lines 3–4) for further processing. If |D| > B (line 5) then we

partition D (lines 6–19).

In case W is empty (line 6), all the objects in D must

have the same set of words and cannot be partitioned further

by words. We hence use a main-memory R-tree with fanout

(node capacity) B to partition D according to location and add

the leaf nodes of the R-tree to the result list L (lines 7–8).

When W is non-empty, we take the most frequent (first)

word in W (lines 9–10). The objects in D are partitioned into

groups D+ and D− based on whether or not they contain

w (lines 11–12). Next, we recursively partition D+ and D−

(lines 13–14). The remaining objects from these recursive calls

(i.e., the sets T+ and T−) are then merged into the set T ′

(line 15). If T ′ has enough objects, it is added as a node to

L (lines 16–17). Otherwise, set T ′ is returned to the parent

algorithm call (lines 18–19).

If the initial call of the algorithm returns a group with less

than B/2 objects, it is added as a node to the result list L,

since no more objects are left to be merged.

Algorithm 3 WordPartition (Dataset D, Sorted list of words

W , Integer B, List of tree nodes L)

1: if B/2 ≤ |D| ≤ B then
2: add D as a node to L;
3: else if |D| < B/2 then
4: return D;
5: else � partitioning phase
6: if W is empty then � partitioning by location
7: insert D into a main-memory R-tree with fanout B;
8: add the leaf nodes of the main-memory R-tree to L;
9: else � partitioning by words

10: w ← first word in W ; W ← W \ {w};
11: D+ ← {p ∈ D | w ∈ p.ψ};
12: D− ← {p ∈ D | w /∈ p.ψ};
13: T+ ← WordPartition(D+, W, B, L);
14: T− ← WordPartition(D−, W, B, L);
15: T ′ ← T+ ∪ T−;
16: if B/2 ≤ |T ′| ≤ B then
17: add T ′ as a node to L;
18: else if |T ′| < B/2 then
19: return T ′;

Example 3: Consider the 8 objects in Figure 2b and

let the node capacity B be 3. Words are sorted by

their frequencies in the dataset, and ties are broken ac-

cording to alphabetic order. Thus, we obtain the list:

W = 〈(a, 5), (d, 4), (f, 3), (b, 2), (e, 2), (c, 1)〉. Using word

a, the objects are partitioned into the groups D+ =
{p1, p2, p3, p5, p9} and D− = {p4, p6, p7, p8}. Both contain

more than 3 objects and are partitioned according to word

d, resulting in D++ = {p1, p2, p5}, D+− = {p3, p9},

D−+ = {p6, p8}, and D−− = {p4, p7}. All groups but D+−

are added to result list L, as they contain between 1.5 and 3

objects. Group D+− is passed to the first call of the algorithm

and is finally added to L. �
Tree Construction Using Word Partitioning.
The W-IR-tree uses the same data structures as the IR-tree,

but is constructed differently by using word partitioning (thus

the prefix ‘W’). Instead of performing insertions iteratively,

we build the W-IR-tree bottom-up.

We first use the word partitioning (Algorithm 3) to obtain

the groups that will form the leaf nodes of the W-IR-tree.

For each leaf node N , we compute N.ψ as the union of the

words of the objects in node N , and N.λ as the MBR of

the objects in N . Next, we regard the leaf nodes as objects

and apply Algorithm 3 to partition the leaf nodes into groups

that form the nodes at the next level in the W-IR-tree. We

repeat this process until a single W-IR-tree root node is

obtained. Figure 4a illustrates the W-IR-tree for the 8 objects

in Figure 4b. Following Example 3, leaf nodes R1 ← {p3, p9},

R2 ← {p1, p2, p5}, R3 ← {p6, p8}, and R4 ← {p4, p7} are

first formed. Figure 4b shows the MBRs of those leaf nodes

and R1.ψ = {a, d}, R2.ψ = {a, b, c}, R3.ψ = {d, e, f},

R4.ψ = {e, f}. Next, Algorithm 3 is used to partition R1,

R2, R3, and R4, since they are 4 (the node capacity is 3)

nodes and cannot be put into one node at the next level. Using

7

word a, two partitions are obtained, i.e., R5 ← {R1, R2} and

R6 ← {R3, R4}. Since R5 and R6 contain between 1.5 and 3

nodes, there is no need to further partition them. Finally, R5

and R6 can be put into one node at the next level, resulting

the root node of the W-IR-tree.

R1 R2 R3 R4

R5 R6
InvB- root

p3 p9 p1 p2 p5 p6 p8 p4 p7

InvB- R1 InvB- R2 InvB- R3 InvB- R4

InvB- R5
InvB- R6

p5

p1

p2

R2

R5

p9

p7

p6

p4

p3

p8

R1

R3 R4 R6

(a) tree structure (b) object locations

Fig. 4. Example W-IR-Tree

The IR-tree and the W-IR-tree organize the data objects

differently. The IR-tree organizes the objects purely based on

their spatial locations. In contrast, the W-IR-tree first partitions

the data objects based on their keywords (Lines 10–19) and

then further partitions them based on their spatial locations

(Lines 6–8). Thus, the W-IR-tree matches better the semantics

of the top-k spatial keyword query and has the potential to

perform better than the IR-tree.

Updates.
A deletion in the W-IR-tree is done as in the R-tree, by finding

the leaf node containing the object and then removing the

object. An insertion selects a branch such that the insertion of

the object leads to the smallest “enlargement” of the keyword

set, meaning that the number of distinct words included in the

branch increases the least if the object is inserted there.

4.2 The W-IBR-Tree and Variants

Inverted Bitmap Optimization.
Each node in the W-IR-tree contains a pointer to its corre-

sponding inverted file. By replacing each such inverted file by

an inverted bitmap, we can reduce the storage space of the

W-IR-tree and also save I/O during query processing. We call

the resulting tree the W-IBR-tree.

Table 2 illustrates the inverted bitmaps that correspond to

the nodes of the W-IBR-tree in Figure 4. A bitmap position

corresponds to the relative position of an entry in its W-IBR-

tree node. The length of a bitmap is equal to the fanout of a

node. For example, the node R3 stores the points p6 and p8.

The inverted list for item f of R3 is p8 (which is the second

entry in R3). Thus, the inverted bitmap for item f of R3 is

‘01’.

TABLE 2
Content of Inverted Bitmaps of the W-IBR-Tree

InvB-root R5 R6 R1 R2 R3 R4

a: 10 a: 11 c: 01 a: 11 a: 111 d: 11 c: 11
b: 10 b: 01 d: 10 d: 11 b: 101 e: 10 f: 11
c: 11 c: 01 e: 10 c: 010 f: 01
d: 11 d: 10 f: 11
e: 01
f: 01

IBR-Tree and CD-IBR-Tree.
The inverted bitmap optimization technique is applicable to

the original IR-tree [2], yielding the IBR-tree. The bitmap

optimization technique is also applicable to the CDIR-tree [2],

yielding the CD-IBR-tree.

4.3 Query Processing Using Other Indexes
The ITERATE and GROUP algorithms are generic and are

readily applicable to the proposed indexes, including the W-

IR-tree and the W-IBR-tree; the existing indexes, e.g., the IR-

tree and the CDIR-tree; and the existing indexes using the

optimizations proposed in this paper, including the IBR-tree

and CD-IBR-tree. More detailed information is covered in

Appendix A and B.

5 I/O COST MODELS FOR THE IR-TREE AND
THE W-IR-TREE

A cost model for an index is affected by how the objects are

organized in the index. The Inverted-R-trees, the IR2-tree, the

IR-tree, and the IBR-tree adopt spatial proximity, as does the

R-tree, to group objects into nodes. The W-IR-tree and the

W-IBR-tree use word partitioning to organize objects. This

section develops an I/O cost model for each of the IR-tree

and the W-IR-tree that then serve as representatives of the

above two index families. The cost model of the CD-IBR-tree

is in-between those of the two families, since it considers both

spatial proximity and text relevancy.

Specifically, the models aims to capture the number of

leaf node accesses, assuming that the memory buffer is large

enough for the caching of non-leaf nodes.2 We also ignore the

I/O cost of accessing posting lists as this cost is proportional

to the I/O cost of accessing the tree. The resulting models

provide insight into the performance of the indexes.

Like previous work on R-tree cost modeling [24], we make

certain assumptions to render the cost models tractable. We

assume that the locations of objects and queries are uniformly

distributed in the unit square [0, 1]2. Let n be the number of

objects in the dataset D, and let B be the average capacity of

a tree node. Thus, the number of leaf nodes is NL = n/B.

We assume that the frequency of keywords in the dataset

follows a Zipfian distribution [16], [31], which is commonly

observed from the words contained in documents. Let the

word wi be the i-th most frequent word in the dataset. The

occurrence probability of wi is then defined as

F (wi) =
1
is∑Nw

j=1
1

ws
j

, (1)

where Nw is the total number of words and s is the value of

the exponent characterizing the distribution (skew).

Let a query be q = 〈λ, ψ〉. Suppose that each object and the

query contain z keywords. We assume that the words of each

object are drawn without replacement based on the occurrence

probabilities of the words. Let dknn denote the kNN distance

of q, i.e., the distance to the kth nearest neighbor in D. Let e

2. With a typical node capacity in the hundreds and a fill-factor of
approximately 0.7, the leaf level makes up well beyond 99% of the index.

8

be any non-leaf entry that points to a leaf node. We need to

access e’s leaf node when:

1) the keyword set of e contains q.ψ, and

2) the minimum distance from q to e is within dknn.

Let the probability of the above two events be the keyword
containment probability Pr(e.ψ ⊇ q.ψ) and the spatial inter-
section probability Pr(mindist(q, e.λ) ≤ dknn), respectively.

Thus, the access probability of the child node of e is:

Pr(access e) = Pr(e.ψ ⊇ q.ψ) · Pr(mindist(q, e.λ) ≤ dknn).

We then estimate the total number of accessed leaf nodes as:

COST = NL · Pr(access e) (2)

We proceed to derive the probability of an object matching

the query keywords and the kNN distance dknn. We then study

the probabilities Pr(e.ψ ⊇ q.ψ) and Pr(mindist(q, e.λ) ≤
dknn) for the IR-tree and the W-IR-tree, respectively. Finally,

we compare the two trees using the cost models.

5.1 Estimation of Keyword Probability and kNN Dis-
tance

Probability of an Object Matching the Query Keywords.
Let F (q.λ) be the probability of having q.λ as the keyword

set of an object of D. Let z be the number of words in

each object (and also in the query). Let an arbitrary list (i.e.,

sequence) of q.λ be wq1 , wq2 , · · · , wqz . Due to the “without

replacement” rule, when we draw the j-th word of an object,

any previously drawn word (wq1 , wq2 , · · · , wqj−1) cannot be

drawn again. Thus, the probability of the j-th drawn word

being wqj is:

F (wqj
)

Pr(wqj | wqj /∈ ∪j−1
h=1{wqh

})
=

F (wqj
)

1 − ∑j−1
h=1 F (wqh

)
.

Then the probability of drawing the exact list wq1 , wq2 , · · · ,

wqz
is:

z∏
j=1

F (wqj)

1 − ∑j−1
h=1 F (wqh

)
.

We then sum up the probability for every list enumeration of
q.λ. As there are z! such lists, the probability of having q.λ
as the keyword set of an object p ∈ D is:

F (q.λ) =
∑

any list of q.λ

z∏
j=1

F (wqj)

Pr(wqj | wqj /∈ ∪j−1
h=1{wqh})

=
∑

any list of q.λ

z∏
j=1

F (wqj)

1 − ∑j−1
h=1 F (wqh)

≈ z! ·
∏z

j=1 F (wqj)(
1 −

∑z
h=1 F (wqh

)

2z

)z−1

kNN Distance.
Observe that the kNN distance dknn of q depends only on the

dataset D, but is independent of the tree structure.

The number of objects having the keyword q.ψ is: n ·
F (q.ψ). By substituting this quantity into the estimation model

of Tao et al. [23], we estimate the kNN distance of q as

dknn =
2√
π
·

⎛
⎜⎝1 −

√√√√1 −
√

k

n · F (q.ψ)

⎞
⎟⎠ .

We then approximate the kNN circular region �(q, dknn)
by a square having the same area, i.e., with the side-length
l =

√
π ·dknn. According to Theodoridis et al. [24], the spatial

intersection probability is:

Pr(mindist(q, e.λ) ≤ dknn) ≈ (σ + l)2 = (σ +
√

π · dknn)2, (3)

where σ is the side-length of non-leaf entry e. We shortly

provide detailed estimates of σ for both trees.

5.2 I/O Cost Models

IR-Tree.
The construction of the IR-tree proceeds as for the R-tree [33].

Objects are partitioned into leaf nodes based on their spatial

proximity. We consider the standard scenario where the leaf

nodes are squares and form a disjoint partitioning of the unit

square. Therefore, we have NL · σ2
ir = 1, and we then obtain

σir =
√

1/NL. The spatial intersection probability is derived

by substituting σir into Equation 3.

Given the query keyword q.ψ, the keyword set of e contains

q.ψ if some object (in the child node) of e has the keyword

q.ψ. Note that in the IR-tree, the keywords of the objects

in the leaf node pointed to by e are distributed randomly

and independently. Since the leaf node has capacity B, the

keyword containment probability is Prir(e.ψ ⊇ w) = 1 −
(1 − F (q.ψ))B .

W-IR-Tree.
During the construction of the W-IR-tree, the objects are first

partitioned based on their keywords. Thus, the number of

leaf nodes that contain the query word q.ψ is: max{NL ·
F (q.ψ), 1}. Then the objects in these nodes are further parti-

tioned into nodes based on their locations. By replacing NL

with max{NL · F (q.ψ), 1} in Equation 3, we obtain

σwir =
√

1/ max{NL · F (q.ψ), 1}. (4)

We obtain the spatial intersection probability by substituting

σwir into Equation 3.

Observe that out of NL leaf nodes, max{NL · F (q.ψ), 1}
nodes contain the query keyword q.ψ. Thus, the keyword

containment probability is

Prwir(e.ψ ⊇ q.ψ) = max
{

F (q.ψ),
1

NL

}
. (5)

5.3 Theoretical and Empirical Comparisons

Comparisons and Simulation Results.
Comparing the above equations, it holds that σwir is usually

larger than σir. In contrast, Prwir(e.ψ ⊇ q.ψ) is much smaller

than Prir(e.ψ ⊇ q.ψ). Note that the value Prir(e.ψ ⊇ q.ψ) is

close to 1 at a typical node capacity B (i.e., in the hundreds).

To illustrate the cost models, we consider an example with

n = 100, 000, k = 10, and z = 1. For the trees, the default

9

10
-4

10
-3

10
-2

1 20 40

le
af

 n
o

d
e

ac
ce

ss
 p

ro
b

ab
il

it
y

i-th word

estimatedIR
estimatedWIR

actualIR
actualWIR

10
-4

10
-3

10
-2

1 20 40

le
af

 n
o

d
e

ac
ce

ss
 p

ro
b

ab
il

it
y

i-th word

estimatedIR
estimatedWIR

actualIR
actualWIR

10
-4

10
-3

10
-2

1 20 40

le
af

 n
o

d
e

ac
ce

ss
 p

ro
b

ab
il

it
y

i-th word

estimatedIR
estimatedWIR

actualIR
actualWIR

(a) s = 0 (b) s = 0.75 (c) s = 1.5

Fig. 5. Leaf Node Access Probabilities in the Cost Models, n = 100, 000, k = 10, z = 1

maximum capacity is 100 and the fill factor is 0.7, so the

average capacity is B = 100 ·0.7 = 70. Figure 5 plots the leaf

node access probability as a function of the query keyword

wi for three different values of s. The larger the value of

s, the more skewed the word distribution becomes (s = 0
means the words are uniformly distributed). The estimatedIR

and estimatedWIR curve are derived from Equation 2. The

actualIR and actualWIR curve are obtained experimentally

from synthetic data. The estimated probabilities are close to

the actual probabilities. Recall that wi denotes the i-th most

frequent word in the dataset. Since the IR-tree groups objects

solely based on location and the W-IR-tree groups objects

based on keywords, the W-IR-tree outperforms the IR-tree

for all types of query words in terms of leaf node access

probability.

Theoretical Comparison for the Uniform Keyword Case
(s = 0).
We next give a detailed theoretical comparison between the

leaf node access probabilities of the IR-tree and the W-IR-

tree. For the sake of simplicity, we consider s = 0, z = 1,

and k = 1. We derive l =
√

π · dknn ≈
√

Nw/n. Equation 1

is simplified to 1/Nw. When n is arbitrarily large (as is NL),

Equation 4 and 5 are simplified to
√

Nw/NL and 1/Nw. The

leaf node access probability of the W-IR-tree is:

Prwir =
(
√

Nw +
√

B · Nw)2

n · Nw
. (6)

The leaf node access probability of the IR-tree is:

Pr ir = (
1

NL
+ l2 +

2 · l√
NL

) · NB
w − (Nw − 1)B

NB
w

. (7)

Since (Nw − 1)B is dominated by NB
w −B ·NB−1

w , we have:

Pr ir ≈ B · (
√

Nw +
√

B)2

n · Nw
. (8)

We proceed to identify the conditions when the W-IR-tree

or the IR-tree achieves the better performance. By solving

Prwir ≤ Pr ir , we obtain the condition Nw ≤ B2. Similarly,

by solving Prwir > Pr ir , we get the condition Nw > B2.
Next, we study the performance gap between the W-IR-tree

and the IR-tree in these two cases. Let Nw = t · B2.
When t > 1, indicating the W-IR-tree is worse than the IR-

tree (Prwir ≥ Pr ir), we compute the limit of the difference:

lim
t→∞

Prwir − Pr ir =
(1 − 1

t
) + 2 ·

√
B · (1 − 1√

t
)

n

=
1 + 2 ·

√
B

n
≤ 2

n
+

1

NL
.

Since n is arbitrarily large and 1/NL refers to the probabil-

ity of accessing one leaf node, when Nw > B2, the W-IR-tree

is only slightly worse than the IR-tree.

When t < 1, since Nw ≥ 1, the smallest possible value

of t is 1/B2, and we compute the limit of the difference as

follows:

lim
t→ 1

B2

Pr ir − Prwir =

1
t

+ 2 ·
√

B ·
√

1
t
− (2 ·

√
B + 1)

n

=
(
√

B + 1)2 · (B − 1)

n
≈ B2

n
=

B

NL
.

So the IR-tree can access B times more leaf nodes than

does the W-IR-tree.

In summary, the analysis suggests that the W-IR-tree is

significantly better than the IR-tree when t < 1 and only

slightly worse than the IR-tree when t > 1 for uniformly

distributed words.

6 EXPERIMENTAL STUDY

6.1 Experimental Setup

We use two real datasets for studying the robustness and per-

formance of the different approaches. Dataset “EURO” con-

tains points of interest (e.g., pubs, banks, cinemas) in Europe

(www.pocketgpsworld.com). Dataset “GN” is obtained from

the U.S. Board on Geographic Names (geonames.usgs.gov).

Here, each object has a geographic location and a short

description. Figure 6(a) offers details on EURO and GN. The

spatial domain of each dataset is normalized to the unit square

[0, 1]2. Figure 6(b) plots the word frequency distributions in

the two datasets. They follow the Zipfian distribution. Few

words are generic and frequent, while most words are specific

and infrequent [16], [31].

Dataset EURO GN

of 162,033 1,868,821
objects

of
distinct 35,315 222,407
words

Average #
of words 18 4
per object

100

101

102

103

104

105

106

100 101 102 103 104 105

fr
eq
ue
nc
y

word

EURO
GN

(a) Dataset Details (b) Word Frequencies

Fig. 6. A Dataset of Spatial Keyword Objects

Regarding the keyword set of a query, we randomly choose

an object and then randomly choose words from the object.

10

Unless stated otherwise, the number w of keywords per

query is 3, the number k of results per query is 10, and the

number L of subqueries in a joint query is 100.

All index structures are disk resident, and the page size is

fixed at 4 KBytes. For all the indexes, the fanout B is 100.

All algorithms were implemented in Java and executed on a

server with two processors (Intel(R) Xeon(R) Quad-Core CPU

E5320 @ 1.86GHz) and 2GB memory.

6.2 Tuning Experiments
To favor our competitors, we tune the parameters in the IR2-

tree [3] and the CD-IBR-tree to achieve their best performance

on the two datasets.

6.2.1 Tuning the IR2-Tree
Each entry stores a signature as a fixed-length bitmap that sum-

marizes the text descriptions of objects enclosed in its subtree.

The length of the signature ls affects the performance of the

IR2-tree. Long signatures provides more accurate information

than do short signatures, and thus more subtrees can be pruned,

incurring less I/O on tree nodes. However, long signatures

occupy more space than do short signatures, and thus incur

more I/O on signature files. There is a relation between the

length of the signatures and performance. We vary the length

of the signature ls to find the best value experimentally. The

IR2-tree with its best ls is used as one competitor of the

proposed solution.

Figure 7 shows the elapsed time and the I/O cost on the

EURO dataset when varying ls from 300 to 10,000. The IR2-

tree performs the best on EURO when ls = 7, 000. We have

also conducted tuning experiments for the GN dataset, varying

ls from 200 to 200,000. The IR2-tree performs the best on GN

when ls = 10, 000.

104

105

300
500

700
900

1000
3000

5000
7000

9000
10000

m
ill
is
ec
on
ds

ls

IR2-tree

(a) Elapsed Time

10
4

10
5

10
6

300
500

700
900

1000
3000

5000
7000

9000
10000

p
ag

e
ac

ce
ss

es

ls

IR2-tree

(b) I/O

Fig. 7. Varying Signature Length ls on EURO

6.2.2 Tuning the CD-IBR-Tree
The construction of the CD-IBR-tree consists of two steps,

involving two parameters. Step 1 is the building of a DIR-

tree with the weight β (0 ≤ β ≤ 1) assigned to spatial

distance when inserting an object (and thus 1 − β is the

weight assigned to document similarity). When β = 1, the

DIR-tree is actually an IR-tree. When β = 0, objects are

organized solely according to document similarity. Step 2

is the integration of cluster information of objects into the

DIR-tree. In our experiments, we apply the inverted bitmap

optimization technique, resulting in the CD-IBR-tree. The

number of clusters c is the second parameter. A larger c

provides a tighter bound on the word information in a subtree,

but needs more space. A smaller c gives a looser bound,

but takes up less storage. There is thus a relation between

β and the performance, and between c and the performance.

Experimentally, we first determine the best β for the DIR-tree

and then use the DIR-tree with the best β to determine the

best c. The resulting CD-IBR-tree is taken as a competitor of

the proposed solution.

Figure 8 shows the elapsed time and the I/O cost on the

EURO dataset when varying β from 0 to 1. The DIR-tree

performs best on EURO when β = 0.9. Figure 9 shows the

elapsed time and the I/O cost on the EURO dataset when

varying c from 4 to 64. As shown, the CD-IBR-tree performs

best on EURO when c = 16.

We have also conducted tuning experiments for the GN

dataset, i.e., varying β from 0 to 1 and varying c from 4 to

64. The DIR-tree performs best on GN when β = 0.9 and the

CD-IBR-tree performs best on GN when c = 64.

6.3 Index Statistics
Table 3 shows the sizes of the indexes on the two datasets. The

Inverted-R-trees is the largest, since it contains an R-tree for

each word and since many objects are indexed multiple times.

In the IR2-tree, the signature length is set to 7,000 and 10,000,

and the number of clusters in the CD-IBR-tree is 16 and 64 on

EURO and GN dataset, respectively. The W-IBR-tree requires

less space than the W-IR-tree for both datasets. Since the CD-

IBR-tree incorporates cluster information, it takes more space

than does the W-IBR-tree.

TABLE 3
Index Sizes of the EURO and GN Datasets (MB)

Dataset Inverted-R-trees IR2 CD-IBR W-IR W-IBR

EURO 495 160 71 108 50
GN 2970 2424 1558 883 422

Table 4 shows the average MBR area and the average word

size (i.e., number of distinct words) of leaf nodes for these

indexes. The W-IBR-tree has the lowest average word size

while the IR2-tree has the smallest average MBR area.

TABLE 4
Leaf-Node Statistics Vs. Index Construction Methods

Average MBR area Average word size
Index EURO GN EURO GN

W-IBR-tree 0.26 0.16 89 50
CD-IBR-tree 0.0056 0.0052 97 71

IR2-tree 0.00017 0.000013 116 82

6.4 Performance Evaluation
We proceed to consider the performance of the solutions on the

EURO and GN datasets. To evaluate the proposed ITERATE

and GROUP algorithms, we apply them to the proposed W-

IBR-tree and the existing IR2-tree [3]. The CD-IBR-tree that

improves on the existing CDIR-tree [2] by using the techniques

proposed in this paper is taken as another competitor. For

instance, the solution G-W-IBRtree applies the GROUP algo-

rithm to the W-IBR-tree. We also compare with the specialized

algorithm for the Inverted-R-trees.

11

10
4

10
5

0.0 0.1 0.3 0.5 0.7 0.9 1.0

m
il

li
se

co
n
d
s

beta

DIR-tree

(a) Elapsed Time

10
3

10
4

0.0 0.1 0.3 0.5 0.7 0.9 1.0

p
ag

e
ac

ce
ss

es

beta

DIR-tree

(b) I/O

Fig. 8. Varying β in the DIR-Tree on EURO

10
3

10
4

4 8 16 32 64

m
il

li
se

co
n
d
s

c

CD-IBR-tree

(a) Elapsed Time

10
3

10
4

4 8 16 32 64

p
ag

e
ac

ce
ss

es

c

CD-IBR-tree

(b) I/O

Fig. 9. Varying c in the CD-IBR-Tree on EURO

Inverted-Rtrees × I-IR2tree � G-IR2tree © I-CD-IBRtree � G-CD-IBRtree � I-W-IBRtree ♦ G-W-IBRtree �

103

104

105

1 2 5 10 20 50

m
ill
is
ec
on
ds

k

(a) Elapsed Time

10
2

10
3

10
4

10
5

10
6

1 2 5 10 20 50

p
ag

e
ac

ce
ss

es

k

(b) I/O

Fig. 10. Effect of k on Euro

10
4

10
5

10
6

10
7

1 2 5 10 20 50

m
il

li
se

co
n
d
s

k

(a) Elapsed Time

10
3

10
4

10
5

10
6

10
7

1 2 5 10 20 50

p
ag

e
ac

ce
ss

es

k

(b) I/O

Fig. 11. Effect of k on GN

103

104

105

106

100 200 500 1k 2k 5k 10k

m
ill
is
ec
on
ds

L

(a) Elapsed Time

10
3

10
4

10
5

10
6

10
7

10
8

100 200 500 1k 2k 5k 10k

p
ag

e
ac

ce
ss

es

L

(b) I/O

Fig. 12. Effect of L on Euro

104

105

106

107

108

100 200 500 1k 2k 5k 10k

m
ill
is
ec
on
ds

L

(a) Elapsed Time

10
3

10
4

10
5

10
6

10
7

10
8

10
9

100 200 500 1k 2k 5k 10k

p
ag

e
ac

ce
ss

es

L

(b) I/O

Fig. 13. Effect of L on GN

102

103

104

105

1 2 3 4 5

m
ill
is
ec
on
ds

w

(a) Elapsed Time

10
2

10
3

10
4

10
5

10
6

1 2 3 4 5

p
ag

e
ac

ce
ss

es

w

(b) I/O

Fig. 14. Effect of w on Euro

103

104

105

106

107

1 2 3 4 5

m
ill
is
ec
on
ds

w

(a) Elapsed Time

10
2

10
3

10
4

10
5

10
6

10
7

1 2 3 4 5

p
ag

e
ac

ce
ss

es

w

(b) I/O

Fig. 15. Effect of w on GN

Effect of k (Number of Results per Subquery).
Figures 10 and 11 show the total I/O cost and elapsed time

of the solutions as a function of k. As k increases, more

tree nodes are accessed, and thus more I/O and elapsed time

are incurred. The Inverted-R-trees is not efficient because it

accesses many objects that contain part of the query keywords,

but not necessarily all the query keywords. In the worst case,

it may access all objects in the inverted R-trees to obtain

the results. Since the GROUP algorithm processes queries

jointly, it exploits opportunities to share disk accesses among

subqueries. Such shared disk pages are only visited once.

Therefore, the cost of GROUP is lower than that of ITERATE.

W-IBR-tree-based solutions significantly outperform non-W-

IBR-tree-based solutions, since the nodes of the W-IBR-tree

have fewer common words so that the search by a query

only involves few branches in the W-IBR-tree, due to the

pruning power of the query keywords, using both ITERATE

and GROUP. The best solution is GROUP on the W-IBR-tree.

Effect of L (Number of Subqueries in a Joint Query).
Figures 12 and 13 show the total I/O cost and elapsed time of

the solutions when varying L. As the number of subqueries

increases, the costs of Inverted-R-trees and ITERATE increase

proportionally because they process subqueries one by one.

The cost of GROUP is low since it visits any tree node at most

once. The W-IBR-tree outperforms the CD-IBR-tree and the

IR2-tree consistently with both the ITERATE and the GROUP

algorithms.

12

Effect of w (Number of Keywords per Subquery).
Figures 14 and 15 show the total I/O cost and elapsed time

of the solutions when varying w. An increasing number of

query keywords has two effects: (i) it becomes less likely for

a node to contain all query keywords, and (ii) the query results

become more distant from the query objects. The former effect

may reduce the I/O cost, while the latter may increase the cost.

According to Table 4, the CD-IBR-tree and the IR2-tree

contain leaf nodes with large word sizes and thus cannot

benefit much from the first effect. On the other hand, the

W-IBR-tree contains leaf nodes with small word sizes, so it

is capable of utilizing the first effect. Thus, the W-IBR-tree

outperforms the CD-IBR-tree and the IR2-tree. For the reasons

mentioned earlier, GROUP beats ITERATE.

As the number of query keywords increases from 1 to 2,

the cost of the Inverted-R-trees increases rapidly because it

visits more R-trees. The cost of the Inverted-R-trees increases

slowly when the number of query keywords increases from 2

to 5.

Summary.
For each dataset and index, the GROUP algorithm significantly

outperforms the ITERATE algorithm in terms of I/O and

elapsed time. This is because the GROUP algorithm processes

all subqueries jointly and shares the computation among them.

In contrast, the ITERATE algorithm processes queries one-at-

a-time and may visit some tree node multiple times. Since the

signatures in the IR2-tree only capture keyword information

approximately, false positives can occur. Substantial I/O cost

and elapsed time may result from visiting irrelevant branches.

Unlike the other indexes, the Inverted-R-trees cannot utilize

both the spatial and keyword information together to prune

the search space. In terms of the construction methods of

the trees, the W-IBR-tree achieves better query performance

than the CD-IBR-tree and the IR2-tree. Since the W-IBR-

tree has the lowest average word size (i.e., number of distinct

words) in leaf nodes (see Table 4), it is effective at pruning

early irrelevant nodes that do not contain query keywords. We

conclude that the GROUP algorithm with the W-IBR-tree is the

best proposal. In the following experiments, we only report I/O

costs as these dominate the overall processing costs.

6.5 Buffering and Optimizations

Effect of Buffering.
This experiment uses an LRU main memory buffer for the

ITERATE algorithm, denoted by B-ITERATE, and compares it

with the GROUP algorithm on the W-IBR-tree. We vary the

buffer size b% from 1% to 50% of the index pages (including

both tree nodes and the inverted index) and report the I/O

costs on EURO and GN in Figure 16. GROUP outperforms

B-ITERATE even when half of the index pages are buffered.

Computational Optimization (Bitmap-Opt) for GROUP.
This experiment evaluates the effectiveness of Bitmap-Opt as

proposed for GROUP in Section 3.3. We use ∗GROUP to denote

a variant of GROUP without Bitmap-Opt, and we compare the

ITERATE, GROUP, and ∗GROUP algorithms when used with

the W-IBR-tree.

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

0% 1% 2% 5% 10% 20% 50%

p
ag

e
ac

ce
ss

es

b%

B-I-W-IBRtree
G-W-IBRtree

(a) I/O on EURO

 3000

 3500

 4000

 4500

 5000

 5500

 6000

0% 1% 2% 5% 10% 20% 50%

p
ag

e
ac

ce
ss

es

b%

B-I-W-IBRtree
G-W-IBRtree

(b) I/O on GN

Fig. 16. Effect of Buffering

Figures 17 and 18 plot the total elapsed time and the

number of comparisons between subqueries and index entries,

on the two datasets, as a function of the number of sub-

queries L. We see that Bitmap-Opt saves considerable numbers

of comparisons between subqueries and index entries, thus

yielding lower elapsed times when compared to ITERATE and
∗GROUP. Without the Bitmap-Opt optimization, ∗GROUP may

incur more comparisons than ITERATE. Unlike in ITERATE,

the same tree nodes are not visited redundantly in ∗GROUP.

This explains why the elapsed time of ∗GROUP is less than

that of ITERATE. Since Bitmap-Opt enables subqueries to be

compared only with relevant index entries, the elapsed time

of GROUP grows more slowly than does that of ITERATE.

Effect of Inverted Bitmap Optimization.
In this experiment, we apply the GROUP and ITERATE algo-

rithms on the W-IBR-tree and the W-IR-tree to evaluate the

effectiveness of the inverted bitmap optimization. Figure 19

shows the I/O costs of the methods when varying k (the num-

ber of results per subquery). The W-IBR-tree accesses compact

inverted bitmaps to retrieve keywords of entries/objects, so it

incurs lower cost than does the W-IR-tree (using inverted files).

6.6 Extent of Workload Sharing

Effect of Different Types of Keywords.
This experiment studies the performance of the solutions for

different types of query keywords:

• Random keywords (R-key), picking a random data object

and then random words of the object as the query

keyword set, as mentioned earlier.

• Partitioning keywords (P-key): picking words that are

used for the partitioning of objects in the W-IBR-tree.

• Non-partitioning keywords (NP-key): picking words that

are not used for the partitioning of objects in the W-IBR-

tree.

Figure 20 shows the total I/O costs of the methods for these

three types of keywords. The W-IBR-tree outperforms the CD-

IBR-tree using R-key and P-key, while they have comparable

performance for NP-key. The W-IBR-tree beats the Inverted-

R-trees and the IR2-tree for all three types of keywords. R-

key uses randomly generated keys and does not favor any

particular index. In this setting, the W-IBR-tree achieves better

performance than the other indexes.

Effect of Overlap Among Query Keywords.
This experiment evaluates the effect of overlap among key-

words in subqueries. A higher overlap means that the sub-

queries share more common keywords, while a low over-

lap means subqueries tend to have different keywords.

13

10
3

10
4

10
5

10
6

100 200 500 1k 2k 5k 10k

m
il

li
se

co
n

d
s

L

I-W-IBRtree
G-W-IBRtree

*G-W-IBRtree

(a) Elapsed Time

10
4

10
5

10
6

10
7

10
8

10
9

10
10

100 200 500 1k 2k 5k 10k

#
 o

f
co

m
p

ar
is

o
n

s

L

I-W-IBRtree
G-W-IBRtree

*G-W-IBRtree

(b) # of Comparisons

Fig. 17. Computational Optimization on EURO

10
4

10
5

10
6

10
7

100 200 500 1k 2k 5k 10k

m
il

li
se

co
n

d
s

L

I-W-IBRtree
G-W-IBRtree

*G-W-IBRtree

(a) Elapsed Time

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

100 200 500 1k 2k 5k 10k

#
 o

f
co

m
p

ar
is

o
n

s

L

I-W-IBRtree
G-W-IBRtree

*G-W-IBRtree

(b) # of Comparisons

Fig. 18. Computational Optimization on GN

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

1 2 5 10 20 50

p
ag

e
ac

ce
ss

es

k

I-W-IRtree
G-W-IRtree

I-W-IBR-tree
G-W-IBRtree

(a) I/O on EURO

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 5 10 20 50

p
ag

e
ac

ce
ss

es

k

I-W-IRtree
G-W-IRtree

I-W-IBR-tree
G-W-IBRtree

(b) I/O on GN

Fig. 19. Inverted Bitmap Optimization

10
2

10
3

10
4

10
5

10
6

R-key P-key NP-key

p
ag

e
ac

ce
ss

es

Inverted-Rtrees
I-IR2tree

G-IR2tree
I-CD-IBRtree

G-CD-IBRtree
I-W-IBRtree

G-W-IBRtree

(a) I/O on EURO

10
2

10
3

10
4

10
5

10
6

R-key P-key NP-key

p
ag

e
ac

ce
ss

es

Inverted-Rtrees
I-IR2tree

G-IR2tree
I-CD-IBRtree

G-CD-IBRtree
I-W-IBRtree

G-W-IBRtree

(b) I/O on GN

Fig. 20. Different Types of Query Keywords

Inverted-Rtrees × I-IR2tree � G-IR2tree © I-CD-IBRtree � G-CD-IBRtree � I-W-IBRtree ♦ G-W-IBRtree �

10
1

10
2

10
3

10
4

10
5

10
6

10
7

5 10 20 50 100 200 500

p
ag

e
ac

ce
ss

es

X

(a) I/O on EURO

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

5 10 20 50 100 200 500

p
ag

e
ac

ce
ss

es

X

(b) I/O on GN

Fig. 21. Overlap Among Query Keywords

10
2

10
3

10
4

10
5

0% 1% 2% 5% 10% 20% 50%100%

p
ag

e
ac

ce
ss

es

s%

(a) I/O on EURO

10
2

10
3

10
4

10
5

0% 1% 2% 5% 10% 20% 50%100%

p
ag

e
ac

ce
ss

es

s%

(b) I/O on GN

Fig. 22. Side-Length of the Joint Query’s MBR

We randomly generate subquery keywords within the top-

X most frequent words from the dataset, where X =
5, 10, 20, 50, 100, 200, 500. A small X indicates a high over-

lap, while a large X indicates a low overlap. In order to remove

the effect of different locations of subqueries, all queries are

assigned the same location.

Figure 21 shows the total I/O cost of the different solutions

as a function of X . The I/O cost of the W-IBR-tree increases

as X increases. This is because the W-IBR-tree groups objects

in terms of words.

When X is small, i.e., the keywords of queries are similar,

the I/O cost is low, and vice versa. Observe that the I/O cost of

GROUP on the IR2-tree and the CD-IBR-tree are insensitive to

the value of X . This is because the benefit of keyword sharing

among subqueries is counteracted by the better punning power

of infrequent words at a large X , which means that queries

tend to have fewer frequent words. This also explains why the

I/O cost of ITERATE-based solutions and the Inverted-R-trees

decreases as X increases and the GROUP algorithm drops at

X = 500. Again, GROUP-W-IBR-tree is the best.

Effect of Side Length of the Joint Query’s MBR.
This experiment evaluates the effect of the side length of the

joint query’s MBR. A small side length implies that subqueries

are close to each other, while a large side length indicates that

the subqueries are far from each other. We draw rectangles

taking the whole spatial center location as their center and

s% of the side length of the spatial domain as their side

length, where s% = 0%, 1%, 2%, 5%, 10%, 20%, 50%, 100%.

Each rectangle corresponds to the MBR of a joint query, and

the locations of subqueries are generated randomly within the

MBR. In order to remove the effect of different keywords of

subqueries, all queries are assigned the same one keyword.

Figure 22 shows the I/O costs of the different solutions as a

function of s%. We find that the performance of the Inverted-

R-trees and the ITERATE-based solutions are insensitive to

the size of the joint query’s MBR. This is because they

process subqueries one by one so that the performance is not

affected by the locations of the subqueries. The I/O costs of

the GROUP-based methods increases as s% increases. This is

because the GROUP algorithm shares the computation among

subqueries so that a smaller size of the joint query’s MBR

(subqueries are close to each other) favors it.

7 RELATED WORK

We classify existing related indexes into two categories: aug-

mented R-trees and loosely combined R-trees.

14

Augmented R-Trees.
In the augmented R-tree approach [2], [3], [26], [27], each

entry e in a tree node stores a keyword summary field that

concisely summarizes the keywords in the subtree rooted at

e. This enables irrelevant entries to be pruned during query

processing. Two augmented indexes were covered earlier [2],

[3]. The IR-tree [2] differs from the other augmented trees

in two ways. First, the fanout of the tree is independent

of the number of words of objects in the dataset. Second,

during query processing, only (a few) posting lists relevant

to the query keywords need to be fetched. The bR*-tree [26]

augments each node with a bitmap and MBRs for keywords.

An improvement of this structure, the virtual bR*-tree [27],

has also been proposed. Both structures target the mCK query

that retrieves m objects of minimum diameter that match given

keywords. This query is very different from the top-k spatial

keyword query. Furthermore, when the domain of keywords

is large, the bitmaps are large and do not fit in the tree nodes

of these two trees.

Loosely Combined R-Trees.
Earlier works use loose combinations of an inverted file and

an R*-tree [1], [6], [14], [25], [30]. This approach has the

disadvantage that it cannot simultaneously prune the search

space using both keyword similarity and spatial distance. The

Inverted R-tree by Zhou et al. [30] was covered earlier. It is

expensive to process a query with multiple keywords, as mul-

tiple R*-trees must be traversed. Also, it requires considerable

storage space to maintain a separate R*-tree for each keyword.

Hariharan et al. [6] present the so-called KR*-tree in which

each node is virtually augmented with the set of keywords that

appear in the subtree rooted at the node. The KR*-tree-based

query processing algorithm first finds the set of nodes that

contain the query keywords. The resulting set then serves as

the candidate pool for subsequent search. This yields a large

(and unnecessary) overhead when the initial pool is large.

8 CONCLUSIONS AND FUTURE WORK

This paper introduces the joint top-k spatial keyword query

and presents efficient means of computing the query. Our

solution consists of: (i) the W-IBR-tree that exploits keyword

partitioning and inverted bitmaps for indexing spatial keyword

data, and (ii) the GROUP algorithm that processes multiple

queries jointly. In addition, we describe how to adapt the

solution to existing index structures for spatial keyword data.

Empirical studies with combinations of two algorithms and a

range of indexes demonstrate that the GROUP algorithm on the

W-IBR-tree is the most efficient combination for processing

joint top-k spatial keyword queries.

It is straightforward to extend our solution to process top-k
spatial keyword queries in spatial networks. We take advan-

tage of Euclidean distance being a lower bound on network

distance. While reporting the top-k objects incrementally, if

the current object is farther away from the query in terms of

Euclidean distance than is the kth candidate object in terms

of network distance, the algorithm stops and the top-k result

objects in the spatial network are found. The network distance

from each object to a query can be easily computed using an

existing, efficient approach [20].

An interesting research direction is to study the processing

of joint moving queries, which is useful in environments with

continuously moving users.

ACKNOWLEDGMENTS

C. S. Jensen is an Adjunct Professor at University of Agder,

Norway. Man Lung Yiu was supported by ICRG grants A-PJ79

and G-U807 from the Hong Kong Polytechnic University.

REFERENCES

[1] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query process-
ing in geographic web search engines. In SIGMOD, pp. 277–
288, 2006.

[2] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. In VLDB, pp. 337–348,
2009.

[3] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In ICDE, pp. 656–665, 2008.

[4] M. Duckham and L. Kulik. A formal model of obfuscation and
negotiation for location privacy. In PERVASIVE, pp. 152–170,
2005.

[5] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD, pp. 47–57, 1984.

[6] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing
spatial-keyword (SK) queries in geographic information retrieval
(GIR) systems. In SSDBM, p. 16, 2007.

[7] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM TODS, 24(2):265–318, 1999.

[8] M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A. J. Demers.
Rule-based multi-query optimization. In EDBT, pp. 120–131,
2009.

[9] H. Hu, J. Xu, W. S. Wong, B. Zheng, D. L. Lee, and W. C Lee.
Proactive caching for spatial queries in mobile environments. In
ICDE, pp. 403–414, 2005.

[10] P. Kalnis and D. Papadias. Multi-query optimization for online
analytical processing. Inf. Syst., 28(5):457–473, 2003.

[11] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an
introduction to cluster analysis. New York: Wiley, 1990.

[12] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous commu-
nication technique using dummies for location-based services.
In IEEE Conf. on Pervasive Services, pp. 88–97, 2005.

[13] H. Lu, C. S. Jensen, and M. L. Yiu. PAD: privacy-area aware,
dummy-based location privacy in mobile Services. In MobiDE,
pp. 16–23, 2008.

[14] B. Martins, M. J. Silva, and L. Andrade. Indexing and ranking
in geo-IR systems. In GIR, pp. 31–34, 2005.

[15] M. Murugesan and C. Clifton. Providing privacy through
plausibly deniable search. In SDM, pp. 768–779, 2009.

[16] S. Naranan and V. K. Balasubrahmanyan. Models for power
law relations in linguistics and information science. Journal of
Quantitative Linguistics, 5(1-2):35–61, 1998.

[17] A. Papadopoulos and Y. Manolopoulos. Multiple range query
optimization in spatial databases. In ADBIS, pp. 71–82, 1998.

[18] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In SIGMOD,
pp. 249–260, 2000.

[19] F. Saint-Jean, A. Johnson, D. Boneh, and J. Feigenbaum. Private
web search. In WPES, pp. 84–90, 2007.

[20] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable
network distance browsing in spatial databases. In SIGMOD,
pp. 43–54, 2008.

[21] M. Sanderson and J. Kohler. Analyzing geographic queries. In
GIR, 2 pages, 2004.

15

[22] T. K. Sellis. Multiple-query optimization. ACM TODS,
13(1):23–52, 1988.

[23] Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An efficient
cost model for optimization of nearest neighbor search in low
and medium dimensional spaces. IEEE TKDE, 16(10):1169–
1184, 2004.

[24] Y. Theodoridis and T. K. Sellis. A model for the prediction of
R-tree performance. In PODS, pp. 161–171, 1996.

[25] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual
indexing for geographical search on the web. In SSTD, pp. 218–
235, 2005.

[26] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: towards
searching by document. In ICDE, pp. 688–699, 2009.

[27] D. Zhang, B. C. Ooi, and A. Tung. Locating mapped resources
in web 2.0. In ICDE, pp. 521–532, 2010.

[28] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao. All-nearest-
neighbors queries in spatial databases. In SSDBM, pp. 297–306,
2004.

[29] B. Zheng and D. L. Lee. Semantic Caching in Location-
Dependent Query Processing. In SSTD, pp. 97–116, 2001.

[30] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid
index structures for location-based web search. In CIKM,
pp. 155–162, 2005.

[31] G. K. Zipf. The Psycho-Biology of Language. Houghton Mifflin,
Boston, 1935.

[32] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Comput. Surv., 38(2):6, 2006.

[33] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR:
A simple and efficient algorithm for R-tree packing. In ICDE,
pp. 497–506, 1997.

APPENDIX A
ADAPTATION OF ITERATE AND GROUP

We proceed to show that ITERATE and GROUP, with slight

adjustments, are also applicable to the existing IR2-tree that

augments the R-tree with signatures [3]. Each leaf entry p
stores a signature p.α as a fixed-length bitmap that summarizes

the set of keywords in p. Each non-leaf entry e stores a

signature e.α that is the bitwise-OR of the signatures of the

entries in the child node of e. The IR2-tree faces the challenge

of whether the signatures possess enough pruning power to

offset the extra cost incurred by the taller trees that result

from the inclusion of the signatures.

Let qi.α be the signature for the keyword set qi.ψ of

subquery qi. In the IR2-tree, each entry stores a signature,

which is a bitmap that summarizes the keywords of the objects

in its subtree. To determine whether a non-leaf entry e may

contain all relevant keywords of qi, we check their signatures:

qi.α ⊆ e.α (false positives may exist). To determine whether a

leaf entry p may contain all relevant keywords of qi, we first

check their signatures: qi.α ⊆ p.α. If the check is positive,

we need to retrieve the keyword set of qi for actual keyword

containment checking. Pruning Rules 1 and 3 have to be

modified accordingly.

APPENDIX B
LOOSELY COMBINED R-TREES AND INVERTED
LISTS

Indexes exist that combine loosely an inverted file and an R*-

tree. Zhou et al. [30] evaluate two such combinations and find

that the best approach is to build, for each distinct keyword,

a separate R*-tree on the objects containing the keyword. We

call this index Inverted-R-trees.

Since no algorithm for top-k spatial keyword queries exists

for this index, we propose to an algorithm that applies incre-

mental best-first search [7] on multiple trees concurrently. This

algorithm employs a priority queue U and a hash table HT .

Priority queue U is used to examine entries in ascending

order of their distances to q. Each queue entry is of the form

〈tree id , e,mindist(q, e)〉, where tree id is the identifier of

a tree and e is an entry in that tree. We initially enqueue the

root node of each tree Ti whose associated keyword belongs

to the keyword set of q.

Hash table HT is used to keep track of candidate objects.

Each entry is of the form 〈p, count〉, where p is an object

and count is the number of matched keywords in the query.

When an object p is dequeued, the corresponding entry in HT
is updated. When count equals the number of keywords in the

query, the object is reported as a result. The algorithm stops

when k objects are found. The correctness follows because

objects are dequeued in ascending distance from q.

16

Dingming Wu received the bachelor’s degree
in computer science and the master’s degree in
computer science from Huazhong University of
Science and Technology and Peking University
in 2005 and 2008, respectively. She is currently
a PhD student at the Department of Computer
Science, Aalborg University, Denmark, under the
supervision of Prof. Christian S. Jensen. Her
research focuses on spatial keyword query pro-
cessing.

Man Lung Yiu received the bachelor’s degree
in computer engineering and the PhD degree in
computer science from the University of Hong
Kong in 2002 and 2006, respectively. Prior to his
current post, he worked at Aalborg University for
three years starting in the Fall of 2006. He is
now an assistant professor in the Department
of Computing, Hong Kong Polytechnic Univer-
sity. His research focuses on the management
of complex data, in particular query processing
topics on spatiotemporal data and multidimen-

sional data.

Gao Cong is an Assistant Professor at Nanyang
Technological University, Singapore. He was an
Assistant professor at Aalborg University, Den-
mark from 2008 to 2010. Before that, he worked
as a researcher at Microsoft Research Asia, and
as a postdoc research fellow at University of
Edinburgh. He received his Ph.D. from National
University of Singapore. His current research in-
terests include search and mining social media,
and spatial keyword query processing.

Christian S. Jensen Ph.D., Dr.Techn., is a
Professor of Computer Science at Aarhus Uni-
versity, Denmark, where he leads the Data-
Intensive Systems research group. Prior to join-
ing Aarhus, he held faculty positions at Aalborg
University for two decades. From September
2008 to August 2009, he was on sabbatical at
Google Inc., Mountain View.

His research concerns data management and
spans semantics, modeling, indexing, and query
and update processing. During the past decade,

his focus has been on spatio-temporal data management.
He is a member of the Royal Danish Academy of Sciences and

Letters, the Danish Academy of Technical Sciences, and the EDBT
Endowment; and he is a trustee emeritus of the VLDB Endowment. He
received Ib Henriksen’s Research Award for contributions to temporal
data management, Telenor’s Nordic Research Award for contributions
to mobile services and data management, and the Villum Kann Ras-
mussen Award for contributions to spatio-temporal databases and data-
intensive systems.

He is vice president of ACM SIGMOD, an editor-in-chief of the VLDB
Journal and has served on the editorial boards of ACM TODS, IEEE
TKDE, and the IEEE Data Engineering Bulletin. He was PC chair or co-
chair for STDM 1999, SSTD 2001, EDBT 2002, VLDB 2005, MobiDE
2006, MDM 2007, TIME 2008, DMSN 2008, ISA 2010, and ACM GIS
2011. He will PC co-chair for IEEE ICDE 2013.

