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Abstract—A reverse nearest neighbor (RNN) query returns the data objects that have a query point as their nearest neighbor (NN).

Although such queries have been studied quite extensively in Euclidean spaces, there is no previous work in the context of large

graphs. In this paper, we provide a fundamental lemma, which can be used to prune the search space while traversing the graph in

search for RNN. Based on it, we develop two RNN methods; an eager algorithm that attempts to prune network nodes as soon as they

are visited and a lazy technique that prunes the search space when a data point is discovered. We study retrieval of an arbitrary

number k of reverse nearest neighbors, investigate the benefits of materialization, cover several query types, and deal with cases

where the queries and the data objects reside on nodes or edges of the graph. The proposed techniques are evaluated in various

practical scenarios involving spatial maps, computer networks, and the DBLP coauthorship graph.

Index Terms— Query processing, spatial databases, graphs and networks.
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1 INTRODUCTION

GIVEN a multidimensional data set P and a point q, a
(monochromatic) reverse nearest neighbor (RNN) query

retrieves all the points p 2 P that have q as their
nearest neighbor, i.e., RNNðqÞ ¼ fp 2 P j:9p0 2 P such
that dðp; p0Þ < dðp; qÞg, where d is a distance metric.
Given two data sets P and Q and a point q, a bichromatic
(b RNN) query retrieves all points p 2 P that are closer
to q than to any point of Q, i.e., bRNNðqÞ ¼ fp 2 P j:9q0 2
Q such that dðp; q0Þ < dðp; qÞg. The problem has received
considerable attention in the last few years [9], [17], [1],
[10], [14], [18] due to its relevance in several applications
involving decision support, resource allocation, profile-
based marketing, etc. However, all the existing work
focuses exclusively on Euclidean spaces, whereas in
several domains, the data are modeled as large disk-
based graphs.

Let G ¼ ðV ;E;WÞ be an undirected weighted graph (we

use the terms graph and network interchangeably), where V
is the set of nodes and E is the set of edges. W associates

each edge ninj with a positive real number wðninjÞ (i.e., the
weight). The interpretation of the weights is determined by

the application domain, e.g., in road networks wðninjÞ may
denote the travel time or the driving distance of the road

segment connecting ni and nj, whereas in peer-to-peer
(P2P) systems, it may denote the network latency of the

corresponding link, or simply be set to 1 (if the cost of a
path is based on the number of hops).

The network distance dðni; njÞ between two nodes ni, nj 2
V is defined as the minimum sum of weights of any path

between them. We assume that the cost of traversing an
edge is the same for both directions, i.e., wðninjÞ ¼ wðnjniÞ.
Therefore, the network distance is symmetric and
satisfies the inequality dðni; njÞ � dðni; nkÞ þ dðnk; njÞ (be-
cause dðni; njÞ is the shortest distance between ni and nj),
i.e., it is a metric. The network distance definition
necessitates dedicated techniques for RNN processing, since
the existing (i.e., Euclidean) methods are inapplicable.

Depending on the domain, the characteristics of the RNN
problem differ. In the P2P context, each point (i.e., peer)
p 2 P lies on a node n 2 V , but some nodes may not contain
relevant peers to a specific query. We call such networks
restricted. For instance, in Fig. 1a, assume that a new user q
interested in music enters the system. A (monochromatic)
RNN query retrieves among the existing users also
interested in music (p1 to p3), the ones for which q will
become their new NN. On the other hand, nodes such as n1

and n2 are irrelevant to the user (e.g., they may represent
peers with other types of content) and they are considered
empty. Given the edge costs of Fig. 1a, RNNðqÞ ¼ fp3g, e.g.,
q is beneficial to p3 since it is its closest NN in terms of
network cost and shares the same interests. In a collabora-
tive environment, q would inform p3 about its arrival, so
that p3 could address future requests directly to q,
minimizing the network latency. Furthermore, the set
RNNðqÞ reflects the potential workload of q; thus, by
knowing this set, each peer could manage/control its
available resources. Note that the NN of q (point p1) is not
an RNN (the NN of p1 is p2).

In unrestricted networks [12], [21], the query and the data
points can reside anywhere on the edges of the graph.
Fig. 1b shows an example of a bichromatic query in a road
network, where points p1 to p5 stand for residential blocks
and q1, q2 indicate restaurants. Nodes n1 and n2 are empty
road junctions (i.e., they do not contain residential blocks or
restaurants). Given several choices for the location of a new
restaurant, the query bRNNðqÞ may be used to evaluate the
benefit of q in terms of the customers that it may attract
from rival restaurants based on proximity. Specifically, the
set bRNNðqÞ ¼ fp1; p2; p3g represents the blocks that are
closer to q than to any other competitor. Similarly,
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bRNNðq1Þ ¼ fp4; p5g and bRNNðq2Þ ¼ ;. Note that unrest-

ricted networks can be transformed to restricted ones by

adding a node for each data point that lies on a graph edge.

We do not adopt this transformation since, as discussed in

[12], the separation of the network component from the data

points provides flexibility and facilitates updates. In

particular, although the network can be considered static,

the data points may change with high frequencies.

Furthermore, new data sets (e.g., hotels) can be incorpo-

rated in the system as more information or services become

available, without affecting the network storage scheme.
The above examples refer to single RNN retrieval. On

the other hand, a (monochromatic) reverse k nearest

neighbor (RkNN) query retrieves all the points p 2 P
that have q as one of their k nearest neighbors, i.e.,

RkNNðqÞ ¼ fp 2 P jdðp; qÞ � dðp; pkðpÞÞ, where pkðpÞ 2 P is

the kth NN of pg. For instance, assuming that in the

P2P scenario each node propagates a query to four other

peers (e.g., this value is used in Gnutella), the arrival of

a new peer could trigger a R4NN query. In case of

bichromatic queries:

bRkNNðqÞ ¼ fp 2 P jdðp; qÞ � dðp; qkðpÞÞ;

where qkðpÞ 2 Q is the kth NN of p (only considering objects

of Q)g, e .g. , in Fig. 1b, bR2NNðqÞ ¼ fp1; p2; p3; p4g,
bR2NNðq1Þ ¼ fp3; p4; p5g, and bR2NNðq2Þ ¼ fp1; p2; p5g.

In the sequel, we propose algorithms for processing both

monochromatic and bichromatic RNN queries involving

arbitrary values of k in restricted or unrestricted graphs. For

our discussion, the term distance refers to the network

distance defined using the edge weights. The rest of the

paper is organized as follows: Section 2 overviews related

work on RNN and graph algorithms. Section 3 introduces

the architecture for graph storage and presents our basic

methods. Section 4 focuses on optimizations and Section 5

discusses variations of RNN queries. Section 6 evaluates the

proposed techniques in several practical scenarios invol-

ving spatial maps, computer networks, and the DBLP

coauthorship graph. Section 7 concludes the paper.

2 RELATED WORK

Section 2.1 surveys methods for RNN search in the

Euclidean space. Section 2.2 presents related query proces-

sing techniques for large graphs.

2.1 RNN Search in the Euclidean Space

We start with methods for monochromatic RNN queries.
The first algorithm [9] precomputes for each data point p its
nearest neighbor NNðpÞ. Then, it represents p as a vicinity
circle ðp; distðp;NNðpÞÞÞ centered at p with radius equal to
the Euclidean distance between p and its NN. The MBRs of
all circles are indexed by an R-tree, called the RNN-tree.
Using the RNN-tree, the reverse nearest neighbors of q can
be efficiently retrieved by a point location query, which
returns all circles that contain q. Fig. 2a illustrates the
concept using four data points, each associated with a
vicinity circle. Since q falls in the circles of p3 and p4, the
result of the query is RNNðqÞ ¼ fp3; p4g.

Because the RNN-tree is optimized for RNN, but not NN
search, Korn and Muthukrishnan [9] use an additional
(conventional) R-tree on the data points for computing
nearest neighbors and the NN radii of the RNN-tree. In
order to avoid the maintenance of two separate structures,
Yang and Lin [20] combine the two indexes in the RdNN-
tree. Similar to the RNN-tree, a leaf node of the RdNN-tree
contains vicinity circles of data points. On the other hand,
an intermediate node contains the MBR of the underlying
points (not their vicinity circles), together with the max-
imum distance from every point in the subtree to its nearest
neighbor.

Techniques (e.g., [9], [20]) that rely on preprocessing
cannot deal efficiently with updates. Stanoi et al. [13]
eliminate the need for precomputing all NNs by utilizing
some interesting properties of RNN retrieval. Consider
Fig. 2b, which divides the space around a query q into six
equal regions S1 to S6. Let p be the NN of q in some region
Si; it can be proven that: 1) either p 2 RNNðqÞ or 2) there is
no RNN of q in Si. For instance, in Fig. 2b, the NN of q in S1

is point p2. However, the NN of p2 is p1. Consequently, there
is no RNN of q in S1 and we do not need to search further in
this region. The same is true for S2 (no data points), S3, S4

(p4, p5 are NNs of each other), and S6 (the NN of p3 is p1).
The actual result is RNNðqÞ ¼ fp6g. Based on the above
property [13] adopts a two-step processing method. First,
six constrained NN queries retrieve the nearest neighbors of
q in regions S1 to S6. These points constitute the candidate
result. Then, at a second step, a NN query is applied to find
the NN p0 of each candidate p. If distðp; qÞ < distðp; p0Þ, p
belongs to the actual result; otherwise, it is a false hit.

Assuming that the data points are indexed by an R-tree,
Tao et al. [18] also adopt a two-step framework that
retrieves a set of candidate RkNNs and then removes the
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Fig. 1. Examples of RNN queries in graphs. (a) RNN in P2P system.

(b) bRNN in road network.

Fig. 2. Euclidean RNN algorithms. (a) Example of [9]. (b) Example

of [13].



false hits. The two steps are combined into a single traversal
of the tree. In particular, the algorithm first retrieves a set of
potential candidates in ascending order of their distance to
the query point q. Nodes that cannot contain candidates are
pruned by a half-plane strategy and are inserted (without
being visited) in a refinement set Srfn. At the second step,
the entries of Srfn are used to eliminate false hits. Singh et
al. [14] propose another multistep method for monochro-
matic RkNN retrieval in high dimensionality. The algorithm
may incur false misses, i.e., it may fail to discover some
RNN that is far from the query point. Benetis et al. [1] study
continuous RNN, where P contains linearly moving objects
with fixed velocities, and the goal is to retrieve all RNNs of
q for a future interval.

Regarding bichromatic queries, the methods of [9], [20]
can be applied directly by setting the vicinity circle of each
point pi 2 P using its distance from its NN qi 2 Q.
However, they still have the problem of expensive updates.
Stanoi et al. [17] propose an improved technique, which first
computes the Voronoi cell of the query point (based on the
objects of Q) and then retrieves the data points that fall in
the cell (using a range query on the R-tree of data points).
Assuming that the data arrive in the form of streams,
Korn et al. [10] report aggregate results over the RNNs of a
set of query points.

All the above techniques are inapplicable to graphs for
several reasons. First, most techniques rely on indexes (e.g.,
R-trees) which can only handle Cartesian spaces. Further-
more, properties such as the one exploited by [13] do not
hold in networks, i.e., the maximum number of RNNs is not
constrained by the dimensionality (i.e., six in two dimen-
sions). Similarly, the half-plane pruning technique of [18] or
the Voronoi cells of [17] are specific to Euclidean distance.
Finally, the above approaches target special instances of the
problem (e.g., monochromatic versus bichromatic queries)
and are usually limited to retrieval of the single RNN.

Since the network distance is a metric, an alternative
solution could rely on indexes for general metric spaces (e.g.,
[19], [3]). However, such indexes do not capture the
connectivity of nodes, which can be utilized to speed-up
search compared to simply using the triangular inequality.
In this paper, we use the network connectivity to solve
RNN queries on large graphs.

2.2 Graph Algorithms

Our problem is related to shortest path computation in
graphs. Given a source ni and a destination node nj,
Dijkstra’s algorithm [4] expands the network from ni until
nj is reached. A priority queue H organizes the neighbors of
the nodes found so far, so that intermediate nodes are
visited in increasing order of their distances from ni.
A* search (e.g., see [15]) speeds up shortest path computa-
tion by using the Euclidean distance bounds to guide the
search. Materialization techniques that precompute and
store distances between nodes can be applied to retrieve the
shortest path distance in constant time. However, the high
storage cost renders full materialization (of distances for all
node pairs) infeasible for most practical networks. For
instance, given a graph of V ¼ 100K nodes, we need to store
jV jðjV j � 1Þ=2 ffi 5� 109 distances. HiTi [7] and HEPV [6]
avoid the extreme space requirements by partial materi-
alization of a subset of the distances.

Recently, there is an increasing interest for query
processing in spatial networks. Papadias et al. [12] propose
a storage scheme for large graphs and algorithms for nearest
neighbors, range search, and distance joins. Their methods
combine connectivity and location information about data
objects (indexed by R-trees) to guide search. Kolahdouzan
and Shahabi [8] use the concept of network Voronoi cells and
materialization to speed-up query processing. Jensen et al.
[5] discuss nearest-neighbor queries for points moving in a
network. Shekhar and Yoo [16] find all the nearest neighbors
along a given route. Yiu and Mamoulis [21] study clustering
problems in spatial networks.

Most related to our techniques is the concept of network
expansion as performed by Dijkstra’s algorithm and some
of the methods for spatial networks (e.g., [12], [8], [21]).
However, there is also an important difference. Whereas in
spatial networks, the Euclidean distance constitutes a
bound of the network distance, used to prune the search
space (e.g., in the A* algorithm or the Euclidean restriction
framework of [12]), in our case the Euclidean distance may
be undefined (e.g., in P2P applications), or (if it is defined) it
may not provide a bound for the network distance (e.g., in
road networks where edge costs correspond to travel time).
For generality, we do not exploit the Euclidean distance in
the proposed algorithms.

3 PRELIMINARIES AND BASIC ALGORITHMS

Section 3.1 briefly describes the storage scheme for the
network and a lemma for early search termination.
Sections 3.2 and 3.3 present two algorithms for RkNN
search, based on eager and lazy evaluation, respectively.
For simplicity, we focus on monochromatic queries in
restricted networks. The extensions to all other cases are
elaborated in Section 5.

3.1 Architecture and Pruning Method

We use a file of adjacency lists to represent the graph. The
adjacency list of node n keeps the neighboring nodes of n
together with the weights of the corresponding edges. In
order to minimize the I/O cost in the presence of a buffer, a
disk page stores lists of neighboring nodes, grouped
together using the method of [2]. Furthermore, we build
an index on node id; for each node id in the index, there is a
pointer to the corresponding list and the data point that it
contains (if any). Fig. 3b shows the storage scheme for the
network of Fig. 3a assuming that the adjacency lists of
fn1; n4; n7g, fn2; n5g, and fn3; n6g are stored in the same
disk pages.

Given a source node n and an integer k, a nearest-
neighbor query retrieves the k nearest data points of n in
terms of network distance. NN search can be efficiently
processed by the above storage scheme and an algorithm
similar to Dijkstra that utilizes a heap H to expand the
network around n. In particular, the entry of n is retrieved
using the index on node id. If n contains a point p and k ¼ 1,
p is added to the result and the search terminates.
Otherwise, the nodes in the adjacency list of n are inserted
to H. Subsequently, nodes are deheaped, their potential
points are added to the result, and their lists are fetched.
The process is repeated until k neighbors are found.

A simple method for retrieving the RNN set is to traverse
the network from q, and for each point p 2 P encountered
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issue a nearest-neighbor query; p 2 RNNðqÞ, if dðp; qÞ is no
greater than the distance between p and its NN. The
problem is that the set RNNðqÞ does not have a fixed size
and may contain points which are far from q. Thus, the
above approach would have to visit all data points. The
proposed algorithms minimize the extent of network
traversal by utilizing the following lemma.

Lemma 1. Let q be a query point, n a graph node, and p a data
point satisfying dðq; nÞ > dðp; nÞ. For any point p0 6¼ p whose
shortest path to q passes through n, dðq; p0Þ > dðp; p0Þ, i.e.,
p0=2RNNðqÞ.

Proof.

dðq; p0Þ ¼ dðq; nÞ þ dðn; p0Þ > dðp; nÞ þ dðn; p0Þ � dðp; p0Þ:tu

For instance, in Fig. 3a, dðq; n3Þ ¼ 4 > dðp1; n3Þ ¼ 3. Thus,
any data point (other than p1) whose shortest path to q
passes from n3 cannot be a RNN of q because it is closer to
p1 (than q). On the other hand, p1 2 RNNðqÞ if there is not
other data points within distance dðp1; qÞ from p1 (which is
true in this example).

Our algorithms exploit two alternatives of NN search,
which we call range-NN and verification queries. Specifi-
cally, a range-NNðn; k; eÞ retrieves the k nearest data
points with (network) distance smaller than e from n, if
such k points exist. Otherwise, it returns a smaller
number (possibly 0) of NNs. For instance, in Fig. 3a the
range-NN query with parameters n ¼ n4, k ¼ 1, and e ¼ 7
has no results because the NN p1 of n4 has distance
dðp1; n4Þ ¼ 7 � e.

Given two points p and q, a verification query
verifyðp; k; qÞ checks whether q is among the kNNs of a
data point p by applying a range-NN query around the
node that contains p. verifyðp; k; qÞ is in fact equivalent to
range-NNðp; k; dðp; qÞÞ, i.e., search terminates as soon as q is
encountered (the maximum range e in this case is implied
by the distance dðp; qÞÞ.

3.2 Eager Algorithm

Eager traverses the network around q (in a way similar to
Dijkstra’s algorithm), using Lemma 1 to eliminate nodes
that may not lead to RNN results. For simplicity, we first

assume k ¼ 1 and then deal with arbitrary values of k. The
algorithm initializes a heap H by inserting the (source) node
containing the query point q. When a node n is deheaped,
eager applies Lemma 1 in order to determine whether the
expansion should proceed. In particular, it first retrieves the
NN of n by performing a range-NN query ðn; 1; dðn; qÞÞ. If
no data point is discovered within distance dðn; qÞ from n,
the algorithm en-heaps the adjacent nodes of n. If there is a
point p, such that dðn; qÞ > dðn; pÞ, the expansion does not
proceed further because (according to Lemma 1) n cannot
lead to a RNN of q. In this case, however, we need to verify
if p 2 RNNðqÞ because Lemma 1 is only true for points
p0 6¼ p. Thus, eager issues a verifyðp; 1; qÞ query. If q ¼ NNðpÞ,
p is added to the result. Furthermore, p is marked as verified
in order not to be expanded, if it is found again in the future
through another node.

As an example consider the RNN query of Fig. 3
initiated at node n4, which is inserted into H ¼< n4; 0 > .
Then, n4 is deheaped and its adjacent nodes are added
to H ¼< n3; 4 > , < n1; 5 > . The subsequent removal
(from H) of n3 triggers a range-NN(n3; 1; 4) around n3

for finding potential data points closer than the query. In
this case, dðn3; p1Þ ¼ 3 < dðn3; qÞ, meaning (by Lemma 1)
that we do not search farther, i.e., the adjacent nodes of
n3 are not inserted to H. Nevertheless, we have to check
if p1 2 RNNðqÞ by verify(p1; 1; q). Since q ¼ NNðp1Þ, p1 is
an actual result. Next, n1 is deheaped, its NN p2 is
discovered (by range-NN(n1; 1; 5)) and search terminates
because dðn1; qÞ ¼ 5 > dðn1; p2Þ ¼ 3. The final step simply
verifies p2 as an actual result because q ¼ NNðp2Þ.

Fig. 4 illustrates a pseudocode of eager for an arbitrary
order-k of RNNs. The main difference with respect to single
RNN retrieval is that we can stop the expansion of the
deheaped node n, only if k data points are found within
distance dðq; nÞ from n. Eager verifies all data points
encountered by the range-NN query. Specifically, a point
p 2 RkNNðqÞ, iff q is discovered by verifyðp; k; qÞ; otherwise,
p =2 RkNNðqÞ. Note that for each point p, we only know
dðp; nÞ þ dðn; qÞ, which is an upper bound for dðp; qÞ (i.e., if
the shortest path from p to q does not pass through n, then
dðp; qÞ < dðp; nÞ þ dðn; qÞ). This does not affect the correct-
ness of the verification phase since the search will anyway
terminate as soon as q is discovered.
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3.3 Lazy Algorithm

Although eager minimizes the number of nodes inserted
into the heap, it may perform numerous local network
expansions for 1) retrieving the nearest point p of a de-
heaped node and 2) for verifying whether p 2 RNNðqÞ. The
lazy algorithm delays pruning until a point is visited.

In particular, assuming single RNN retrieval, when the
deheaped node n does not contain a point, lazy simply
inserts its adjacent nodes into H. If n contains a point p, the
expansion stops since every subsequent node is closer to p
than to q. Lazy issues a verification query to check whether
p is a result. Verification queries are exploited to prune the
search space. Specifically, let n0 be a node visited by the
verification phase of a data point p. If n0 has not been visited
by the expansion around the query, we know that dðn0; pÞ <
dðn0; qÞ since nodes are visited in ascending order of their
distances and the verification query has maximum range
dðp; qÞ (i.e., dðn0; pÞ < dðp; qÞ � dðn0; qÞ). Therefore, (by Lem-
ma 1) n0 cannot lead to any RNNs of q. On the other hand, if
n0 has already been visited by the expansion around
q, we compare the distances dðn0; pÞ and dðn0; qÞ. If
dðn0; pÞ < dðn0; qÞ, nodes inserted into H by the expansion
of n0 are eliminated.

An in-memory hash table is maintained in order to
facilitate pruning for visited nodes. When a node n is
deheaped its id is stored in the table, together with its
distance from q and pointers to all the heap entries that
were inserted during its processing. Thus, if n is invalidated
in the future by a verification query, its adjacent nodes are
removed from the heap by following the pointers. Further-
more, a table entry is deleted if it does not have any pointers
to heap entries. Thus, the total number of pointers in the
hash table equals the heap cardinality.

Fig. 5 illustrates an example where the first data point
(p1) is discovered when node n4 is deheaped (nodes are
numbered according to their distance from q). Lazy checks
whether p1 2 RNNðqÞ by a query verifyðp1; 1; qÞ that visits
nodes n5, n2, and n3 before determining that q ¼ NNðp1Þ.
The verification of p1 will encounter n5; thus, when n5 is
deheaped later it will be immediately discarded. Fig. 6
illustrates the contents of the heap and the hash table for the
example of Fig. 5. n7 (inserted during the processing of n2)

cannot lead to a RNN since dðn2; p1Þ < dðn2; qÞ. Similarly, n6

(inserted during the processing of n3) does not need to be
expanded because dðn3; p1Þ < dðn3; qÞ and lazy terminates
with RNNðqÞ ¼ fp1g.

The retrieval of RkNNs is more complex because lazy
may have to expand nodes that contain data points. In this
case, we keep a count of the number of times that a node n is
encountered during the verification phase. As shown in
Fig. 7, if countðnÞ � k, n is not visited by the RNN query
(line 4) because it is closer to at least k data points than q.
Furthermore, if during a verification query the count of a
visited node ni becomes k (line 11) and dðni; pÞ < dðni; qÞ,
the entries that were inserted into H during the processing
of ni are removed (using the hash table). This process is not
repeated if countðniÞ subsequently exceeds k since it would
be redundant. Unvisited nodes, whose counter reaches k,
are not removed from the heap since they will be captured
when visited.

4 OPTIMIZATIONS

In this section, we discuss some optimizations to speed up
performance. Section 4.1 proposes a materialization-based
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method for eager, and Section 4.2 an extended pruning
technique for lazy.

4.1 Materialization for eager

Eager can take advantage of materialized information to
avoid local expansions incurred by range-NN and verifica-
tion queries. As discussed in Section 2.2, full materialization
of the graph requires the storage of jV j ðjV j � 1Þ=2
distances. In order to avoid the quadratic space overhead,
we follow an alternative approach that materializes1 the
KNNs of each node n, where K is the maximum number of
RNNs to be requested by any query. Practical values of K
are fairly small (e.g., 20 for 2D space in [18] and 50 for high-
dimensional spaces in [14]).

A naı̈ve solution for computing the K closest data points
of all nodes, would simply apply a KNN query for each
node. Instead, we use the algorithm of Fig. 8 that expands
the network only once. All-NN initializes a single heap H

that stores the nodes containing the data points together
with their distance (initially 0) from the corresponding
point. When a node n is deheaped, if all its KNNs have been
found or n has been visited by the same point, we ignore it.
Otherwise, we update the K NN set of n and en-heap the
entries for its unvisited neighbor nodes (by the same point).
Each completed KNN list is flushed to the disk. The process
terminates when H becomes empty. The worst-case com-
plexity is OðK � jEj � logðK � jEjÞÞ, where jEj is the number
of edges in the graph, because an edge may be inserted in
the heap at most K times and each heap operation has
logarithmic cost. The space overhead for materialization is
OðK � jV jÞ.

Fig. 9 illustrates an example for materializing the
single NN (K ¼ 1) of each network node in Fig. 3,
where P ¼ fp1; p2; p3g. All-NN(1) initializes the heap to
H ¼< n6; p1; 0 >;< n5; p2; 0 > , < n7; p3; 0 > . Next, it de-
heaps < n6; p1; 0 > , writes NNðn6Þ ¼ p1, and en-heaps
the entries < n3; p1; dðn6; p1Þ þ wðn6n3Þ > and

< n2; p1; dðn6; p1Þ þ wðn6n2Þ > :

Similarly, after the deheaping of < n5; p2; 0 > and
< n7; p3; 0 > , the nearest-neighbor lists are updated to
NNðn5Þ ¼ p2, NNðn7Þ ¼ p3, and

H ¼ < n3; p1; dðn6; p1Þ þ wðn6n3Þ >;
< n1; p2; dðn5; p2Þ þ wðn5n1Þ >;
< n2; p2; dðn5; p2Þ þ wðn5n2Þ >;
< n2; p1; dðn6; p1Þ þ wðn6n2Þ >;
< n3; p2; dðn5; p2Þ þ wðn5n3Þ > :

The subsequent processing: 1) of < n3, p1, dðn6; p1Þ þ
wðn6n3Þ > will lead to NNðn3Þ ¼ p1, 2) of< n1; p2; dðn5; p2Þ þ
wðn5n1Þ > to NNðn1Þ ¼ p2 and 3) of < n2; p2; dðn5; p2Þ þ
wðn5n2Þ > to NNðn2Þ ¼ p2. The algorithm terminates after
processing n4 since all the NN lists are completed.

Eager-M (M stands for materialization) utilizes the stored
information to avoid network expansions as follows:
When a node n is deheaped, instead of applying range-
NN(n; k; dðn; qÞ), it retrieves its kNNs directly. Furthermore,
the verification of a data point p 2 kNNðnÞ must compare
dðp; qÞwith dðp; pkðn0ÞÞ, where pkðn0Þ is the kth NN of the node
n0 that contains p. However, when p is discovered, we only
have dðq; nÞ þ dðn; pÞ, which is an upper bound for dðp; qÞ.
Thus, if dðq; nÞ þ dðn; pÞ � dðp; pkðn0ÞÞ, then p 2 RkNNðqÞ.
Otherwise, eager-M performs a query verifyðp; k; qÞ.

Now, it remains to clarify the maintenance of materi-
alized information in the presence of object updates. An
insertion of a new data point p is handled by a variation of
all-NN that initializes H to < n; p; 0 > , where n is the node
containing p. Suppose that we insert the point p4 at node n4

in Fig. 9. First, we en-heap the entry < n4; p4; 0 > . The
materialized NN of n4 is updated to NNðn4Þ ¼ p4 and the
entries < n3; p4; 4 > , < n1; p4; 5 > are inserted into H. Then,
< n3; p4; 4 > is deheaped; since dðn3; p4Þ � 3 (i.e., the
distance between n3 and its existing NN p1), the materi-
alized NN of n3 is not updated and the neighbor nodes are
not en-heaped. A similar situation happens when <
n1; p4; 5 > is deheaped (because dðn1; p4Þ � dðn1; p2ÞÞ and
the algorithm terminates.

On the other hand, deletion is more complex because we
have to modify all influenced nodes, i.e., the nodes for
which the deleted point is a KNN. This is essentially a
RKNN query; the difference with respect to the algorithms
of Section 3, is that 1) now we are looking for the RNN
nodes, as opposed to the RNN data points (i.e., we also
consider nodes that do not contain data points), and 2) we
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1. Each entry in the materialized list KNNðnÞ for node n is a pair
< pi; dðpi; nÞ > , where pi, 1 � i � K, is the ith-NN of n.

Fig. 7. Lazy algorithm.

Fig. 8. All-NN algorithm.



need to update the affected nodes by retrieving their new
NNs. The deletion algorithm (shown in Fig. 10) applies two
steps. The first step expands the network around p,
removing p from the materialized lists of all nodes n for
which p 2 KNNðnÞ. The expansion stops at some border
nodes, whose KNNs do not change. Let n be a border node;
then, n has at least one affected neighbor n0, such that
jKNNðn0Þj < K (since p was removed from KNNðn0ÞÞ. For
each n0, the algorithm will insert K entries of the form <

n0; pi; dðn; piÞ þ wðn0nÞ > to a second heap H 0, where pi,
1 � i � K, is the ith NN of n. Then, the second step will
complete the KNN list of all affected nodes by using the
contents of H 0 to perform another expansion. The intuition
is that the new NN (to replace p) of n0 is one of the NNs of
the adjacent border nodes.

Fig. 11 illustrates the deletion of p1 in the example of
Fig. 3, assuming that K ¼ 1. Point p1 is the NN of n6,
n3, and n4. The border nodes are n2, n5, and n1 since
they are neighbors of the affected nodes (and their NNs
do not change). During the first step of deletion,
the third node deheaped from H is n2ðNNðn2Þ ¼ p2Þ,
which causes the insertion of entry < n6; p2; dðn2; p2Þ þ
wðn2n6Þ > to H 0. Similarly, the processing of border
nodes n5 and n1 will add entries < n3; p2; dðn5; p2Þ þ
wðn5n3Þ > and < n4; p2; dðn1; p2Þ þ wðn1n4Þ > , respec-
tively, and the first step terminates. Note that the
expansion does not proceed after a border node is
visited; e.g., in this case, the processing of n5 will not
cause the insertion of < n1; 3 > in H (observe that there
is only one entry < n1; 12 > in H). The second step
computes the NN sets of the affected nodes in the order
that they are deheaped from H 0, i.e., the processing of
n3 will lead to NNðn3Þ ¼ p2 and the insertion of

< n1; p2; dðn3; p2Þ þ wðn3n1Þ >;
< n4; p2; dðn3; p2Þ þ wðn3n4Þ >

to H 0. The final result will update: NNðn4Þ ¼ p2 and
NNðn6Þ ¼ p2.

Each insertion and deletion is expected to affect a small

percentage of the nodes. Thus, the memory requirements of

the update algorithms are relatively small. On the other

hand, for some large problems, the heap size for all-NN

may exceed the available main memory. In this case, we can

divide P into partitions and apply an incremental batch

insertion (a variation of all-NN) for each partition. Finally,

note that materialization is not beneficial for lazy because

1) it does not apply range-NN queries (therefore, it cannot

benefit as much as eager) and 2) the expansion during the

verification queries constitutes an essential pruning com-

ponent of the algorithm. In the next section, we discuss an

alternative optimization technique for lazy.
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Fig. 9. All-NN example.

Fig. 10. Object deletion for materialized KNN.



4.2 Extended Pruning for lazy

Although lazy takes advantage of verification to reduce the
search space, it may still traverse a large part of the
network. Consider, for instance, the R1NN query of Fig. 12,
where n2 (containing point p1) is processed after the source
node n1. The verification of p1 will not prune any node.
Thus, after the deheaping of n3, lazy will continue with n4

possibly reaching numerous nodes before termination.
However, the expansion is useless because n4 is closer to
p1 than q and, therefore, according to Lemma 1, it cannot
lead to any results.

The lazy-EP algorithm (EP stands for extended pruning)
avoids such cases by expanding the network in parallel
using two heaps H and H 0. The heap H 0 applies the pruning
effect of the discovered points. In the above example, when
the entry < n2; 1 > is processed in the conventional heap
H, a new entry < n2; p1; 0 > is inserted in H 0. Then,
expansion proceeds with the heap H 0 whenever its top
distance is less than the last deheaped distance of H.
Continuing the example, < n2; p1; 0 > is deheaped and
< n1; p1; 1 > , < n4; p1; 2 > are inserted into H 0. Since the
last deheaped distance from H is 1, we now switch back to
H. The entry < n3; 3 > is deheaped and < n4; 4 > is
inserted into H. The expansion proceeds with H 0 and the
entries < n1; p1; 1 > and < n4; p1; 2 > are deheaped. The
processing of < n4; p1; 2 > marks node n4 using the
distance dðp1; n4Þ. After that, < n4; 4 > is deheaped from
H; because n4 is closer to p1 than q, the adjacent unvisited
nodes of n4 are not inserted to H and the algorithm
terminates.

Fig. 13 illustrates lazy-EP for arbitrary values of k.
Whereas lazy uses verification to update counters and

prune the search space, lazy-EP eliminates nodes during the
expansion of H 0. In addition, lazy-EP maintains the kNN of
each node found so far in order to avoid visiting the same
point again during the expansion of H 0. The expansion in H
is pruned (by Lemma 1) if dðn; qÞ > dðn; pkðnÞÞ, where pkðnÞ
is the kth-neighbor of n (if jkNNðnÞj < k, we consider that
dðn; pkðnÞÞ ¼ 1).

5 VARIANTS OF RNN QUERIES

Section 5.1 studies bichromatic and continuous RNN
retrieval. Section 5.2 extends our techniques to unrestricted
networks with data points lying on the edges.

5.1 Bichromatic and Continuous RNN Queries

Given two data sets P and Q and a point q, the output of a
bichromatic RkNN query is

bRkNNðqÞ ¼ fp 2 P jdðp; qÞ � dðp; qkðpÞÞ;
where qkðpÞ 2 Q is the kth NN of p only considering objects
of Qg. The processing of a bichromatic query can be
reduced to the monochromatic case, where the data set is Q
(instead of P ) and the result contains all nodes n (instead of
data points) for which q 2 kNNðnÞ. A final step simply
retrieves the points p 2 P contained in these nodes.
Specifically, Lemma 1 now requires that for a node n to
be pruned it should be closer to k points of Q than q. In both
eager and lazy expansion stops at nodes pruned by
Lemma 1: 1) for eager, it is not important if the node n
under consideration contains a point and 2) for lazy, n is
examined if it contains a point qi 2 Q. Furthermore, the
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Fig. 11. Deletion of p1—first step.

Fig. 12. Lazy-EP example.



optimizations of Section 4 can also be applied. For eager-M,
we simply materialize the set KNNðnÞ � Q for each node n,
whereas lazy-EP remains the same but only considers Q
during the parallel expansions.

The concept of continuous RNN queries, as defined
for objects moving in the Euclidean space [1], is not
applicable to graphs, because objects do not follow
linear movement. Instead, in our case, a continuous
query retrieves the RkNNs for each node ni 2 V on a
predefined route r ¼< n1; n2; . . . ; nr > , where niniþ1 2 E,
i.e., cRkNNðrÞ ¼ [ni2rRkNNðniÞ. The distance between r
and a network node n is defined as:

dðr; nÞ ¼ minfdðni; nÞjni 2 rg:

Eager and lazy (as well as their optimizations) can be

applied directly using the new distance definition dðr; nÞ.

For example, eagerðr; kÞ initially inserts < n1; 0 >; . . . ; <
nr; 0 > into H. When a node n is deheaped for the first
time, its distance corresponds to dðr; nÞ and n is marked as
visited. The range-NN(n; k; dðr; nÞ) retrieves the NNs of n
within the range dðr; nÞ. If the query returns k data points, n
is pruned. Moreover, the maximum verification range of a
point p is dðr; pÞ, i.e., p 2 cRkNNðrÞ, if the first node of the
route is met before k other points are found. The same
modification applies to lazy.

5.2 RNN Queries in Unrestricted Networks

In an unrestricted network, the position of a point p lying
on the edge ninj can be expressed by the triplet
< ni; nj; pos > , where pos 2 ½0; wðninjÞ	 is the distance of
p from node ni and wðninjÞ is the weight (cost) of the edge.
In order to avoid ambiguity, we assume a lexicographic
ordering of nodes so that p is assigned to the edge ninj,
i < j. The direct distance between a point p at < ni; nj; pos >
and node ni is dLðp; niÞ ¼ pos. The direct distance between
p and nj is dLðp; njÞ ¼ wðninjÞ-pos. Let p and p0 be two
points at < ni; nj; pos > and < n0i; n

0
j; pos

0 > , respectively.
If ni ¼ n0i and nj ¼ n0j (i.e., p and p0 lie on the same edge),
the direct distance dLðp; p0Þ between p and p0 is defined as
jpos-pos0j; otherwise, it is 1. The network distance dðp; p0Þ is
minx2fi;jg;y2fi0;j0gðdLðp; nxÞ þ dðnx; nyÞ þ dLðny; p0ÞÞ, if p and
p0 lie on different edges; otherwise, dðp; p0Þ is the minimum
of the previous quantity and dLðp; p0Þ. The distance dðp; p0Þ
is symmetric and satisfies the triangular inequality.

For the following example, we use the network of
Fig. 14a. Since the data points do not necessarily lie on
nodes, the storage scheme of Fig. 3b does not apply.
Instead, we store the data points in a separate file,
pointed by the edges on which they reside (see Fig. 14b),
so that when an edge (e.g., n2n6) is processed we can
efficiently retrieve all the points (e.g., p1) on the edge.
Although only dLðp1; n2Þ ¼ 4 is stored, dLðp1; n6Þ (= 1) can
be computed as wðn2n6Þ-dLðp1; n2Þ.

Lemma 1 does not presume that the query or data points
lie on nodes; therefore, it is still applicable. The general
framework of eager also remains the same as presented in
Section 3. The difference is in the basic algorithms for
retrieval and verification of the NNs of a node. We focus on
range-NN, since verification is similar. In case that the
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Fig. 13. lazy-EP algorithm.

Fig. 14. Example with points lying on edges. (a) Network. (b) Storage scheme.



query or the data points lie on the edges, the range-NN
algorithm discussed in Section 3.1 is inapplicable because
1) data points are not necessarily visited according to their
distance from the source node, and 2) the same data point
may be found twice (with two different distances). Con-
sider, for instance, the query q in Fig. 14a and point p3 on
the edge n3n5. When n3 is processed, we can compute an
upper bound for the distance between q and p3 as:
dðq; n3Þ þ dLðn3; p3Þ ¼ 10. The subsequent processing of n5

will provide another upper bound dðq; n5Þ þ dLðn5; p3Þ ¼ 8.
The actual distance dðq; p3Þ ¼ 8 is the minimum of the two
bounds.

The unrestricted-range-NN algorithm takes the above
observations into account for finding the kNNs of node n
within a range e (if k such points exist). When a node ni is
deheaped, each point p on its adjacent edges is inserted back
to H, provided that dðq; niÞ þ dLðni; pÞ < e. Thus, points are
deheaped (and inserted to kNNðnÞÞ in ascending order of
their distance from n. Multiple insertions of the same point
visited via different paths are avoided. The search terminates
when the number of discovered points equals k, the range e is
exceeded, or the heap becomes empty.

Verification queries follow the same approach. By
substituting the original with the unrestricted functions,
we can obtain a version of eager for unrestricted networks.
Similarly, Eager-M requires minor modifications of the all-
NN and the update algorithms. Note that although the
kNNs of a point p (lying on the edge ninj) are not stored,
they can be computed efficiently using kNNðniÞ, kNNðnjÞ,
dLðni; pÞ, and dLðnj; pÞ.

On the other hand, recall that lazy initiates the pruning
process during the deheaping of nodes that contain data
points. For unrestricted networks, the pruning occurs
during the processing of edges. Assuming, for example,
R1NN retrieval, when a node n is deheaped, we check the
adjacent edges. If the edge nn0 (where is n0 is an unvisited
node) contains a data point p, then n0 is not en-heaped
because it is closer p to than q. The algorithms can also be
applied for bichromatic and continuous queries in unrest-
ricted networks with straightforward modifications. In the
next sections, we evaluate the proposed techniques under
various settings.

6 EXPERIMENTAL EVALUATION

Let jV j be the node cardinality and jP j be the data
cardinality; the ratio jP j=jV j corresponds to the data density
D. In general, high density leads to low processing cost

since it limits the extent of expansions. For instance,
assuming a restricted network, in the extreme case that D ¼
1 (every node contains a point), the output of a R1NN query
contains only the point that resides on the query node. In
order to provide meaningful results, we set the maximum
value of density to 0.1 in all cases. The diagrams display the
average cost of workloads containing 50 queries. Each
query is randomly chosen from the set of data points, so
that the queries follow the data distribution. For all
experiments, we use a Pentium 4 CPU (2.3GHz) with page
size set to 4Kb and an LRU buffer of 1Mb (256 pages).
Section 6.1 focuses on restricted networks and Section 6.2 on
unrestricted ones.

6.1 Experiments with Restricted Networks

The first set of experiments uses the coauthorship graph of
DBLP (database.cs.ualberta.ca/coauthorship/) [11]. Each
node corresponds to an author that has published in
SIGMOD, VLDB, ICDE, or ACM PODS. Two authors are
linked by an edge if their names appear together in some
paper. All the edge weights are set to 1 such that the length
of the shortest path between two authors models their degree
of separation. The graph is ”cleaned” to form a connected
network with 4,260 nodes and 13,199 edges.

Given an author q, an ad hoc query retrieves the RNN
nodes of q, where 1) the distance corresponds to the degree
of separation and 2) the result contains only authors
satisfying an input condition (e.g., they should have exactly
two SIGMOD papers). Table 1 shows the cost of eager and
lazy for three query conditions (the CPU-cost is measured in
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TABLE 1
Cost of Ad Hoc Queries (DBLP; k ¼ 1)

TABLE 2
Cost versus Density DðDBLP; k ¼ 1Þ

Fig. 15. Cost versus jV j (BRITE;D ¼ 0:01; k ¼ 1).



seconds). We do not include eager-M because materializa-
tion is not possible for ad hoc queries (i.e., the set of NNs of
a node depends on the condition) and lazy-EP because its
cost is similar to lazy.

The number of SIGMOD papers determines the selectiv-
ity of the condition. In particular, most authors have
0 papers and the selectivity increases with the number of
papers leading to larger expansion around the query point,
which explains the rising cost of the algorithms. Eager is
slightly better than lazy in terms of I/O cost but worse in
CPU time (especially for the most selective condition)
because of the range-NN queries, which may visit the same
node multiple times. Although, due to locality, these
queries are likely to access pages already in the buffer, the
overhead is reflected in the CPU-time.

Next, we randomly select “interesting” nodes (i.e., that
correspond to data points) and test the performance of the
algorithms on the resulting network. Table 2 shows the cost
of eager and lazy as a function of the data density. As
expected, the cost decreases as D increases. Although the
algorithms incur very similar I/O cost, eager is much more
CPU-intensive and the difference exceeds an order of
magnitude for the low density values. This agrees with
Table 1 because low density corresponds to high selectivity.

The second set of experiments simulates a P2P scenario.
We use BRITE (www.cs.bu.edu/brite/) to generate graph
topologies with average degree (number of edges adjacent to
each node) equal to 4. Data points (i.e., peers) are located at
random network nodes. Graphs generated by BRITE
contain arbitrary connections between nodes and, conse-
quently, the number of nodes visited during expansions

increases exponentially and converges fast to the node
cardinality jV j since eventually all the nodes are reached
with a relatively small number of hops. We call this
phenomenon exponential expansion.

Fig. 15 illustrates the overall cost of eager, eager-M, lazy
and lazy-EP as a function of jV j ranging from 90K to
360K nodes (D ¼ 0:01; k ¼ 1). Abbreviations of the algo-
rithms (E for eager, L for lazy, EM for eager-M, and LP for
lazy-EP) are shown on the top of each column. The cost is
measured in seconds, after charging 10ms for each random
I/O (a common value used in the literature [12]). The
variations of eager perform well because they prune the
search space early, thus reducing the effect of exponential
expansion. On the other hand, the pruning strategy of lazy
fails completely because, as explained in the example of
Fig. 12, lazy may expand some nodes that can be pruned
and, subsequently, access most of the network. The
extended pruning strategy of lazy-EP pays-off only in terms
of CPU time because it leads to fewer verification queries
(when compared to lazy).

Fig. 16 evaluates the algorithms as a function of the
density in a network with jV j ¼ 160K nodes. Similar to
Fig. 15, lazy and lazy-EP visit most of the network
(independently of the density value) because of the
exponential expansion effect. The performance of eager
and eager-M improves significantly for large values of D,
since each node is surrounded by more data points (and,
therefore, it can be pruned by the range-NN queries). The
irregularity of the network leads to high standard devia-
tions of the I/O costs, which range from 25 percent to
67 percent of the mean values shown in the figure.
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Fig. 16 Cost versus D (BRITE; jV j ¼ 160K; k ¼ 1).

Fig. 17. Cost versus DðSF; k ¼ 1Þ.

Fig. 18. Cost versus kðSF;D ¼ 0:01Þ.

Fig. 19. Cost of continuous queries versus route size (SF ,

D ¼ 0:01; k ¼ 1).



6.2 Experiments with Unrestricted Networks

For unrestricted networks we use spatial graphs. In such
(planar) graphs, adjacent nodes are likely to be near in space
(therefore, they do not incur exponential expansion). The
first network is generated from the San Francisco (SF) map
(www.maproom.psu.edu/dcw) after extracting its largest
connected component. The number of nodes and edges of
the cleaned network are 174,956 and 223,001, respectively.
The coordinates of the nodes are normalized in the range
½0; 10000	2 and edge weights are set to the Euclidean
distance of the connected nodes. Fig. 17 evaluates perfor-
mance versus the data density. The density is again defined
as D ¼ jP j=jV j, but the data points are distributed randomly
on the edges. Similar to the DBLP graph, eager is better than
lazy in terms of I/O, but worse in CPU-time. The extended
pruning technique improves the performance of lazy at
D � 0:01, because the parallel expansion of lazy-EP elim-
inates many nodes which cannot be pruned lazy at low
density values. Nevertheless, the performance of lazy
improves significantly for high density (as opposed to the
case of exponential expansion—see Fig. 16). Materialization
is beneficial for eager, and eager-M has the lowest I/O and
CPU cost. The standard deviation of the I/O costs ranges
from 42 percent to 79 percent of the mean values (shown).

Fig. 18 illustrates the cost of the algorithms as a function
of the number of retrieved RNNs. As expected, the
performance deteriorates with k. This is most obvious for
lazy because of the diminishing pruning effect of the

verification queries. On the other hand, lazy-EP scales better
since all discovered points are utilized for pruning. Eager
and Eager-M are again the best choices. The I/O cost of
Eager-M for accessing the materialized NNs increases with
k, and exceeds that of eager for k ¼ 8.

Fig. 19 evaluates the algorithms on continuous2 RNN
queries as a function of the route size (i.e., the number of
nodes in the route). Each route is a random walk without
repeated nodes. The cost of eager and eager-M grows linearly
with the route size. Interestingly, the cost of lazy variants
first decreases because a longer route leads to earlier
discovery of points (close to the path), limiting the scope of
verification ranges. After the length of the path exceeds
20 nodes, the cost increases because a longer route leads to
more RNNs and, thus, more network expansions.

The next set of experiments applies synthetic grid
networks [7], [5] to test the behavior of the algorithms for
different node cardinalities and average degrees. The
standard grid map has an average degree of 4. To generate
maps with higher degree, new edges are randomly added
between nearby nodes. As shown in Fig. 20a, jV j does not
have a serious effect on the cost because the expansion of all
algorithms terminates around the query point (i.e., it does
not depend on the size of the network). Fig. 20b investigates
the effect of the average degree. In general, the performance
deteriorates with the degree since the processing of each
node must consider a larger number of adjacent nodes. Lazy
EP scales worse than the other algorithms, because of the
additional expansions incurred by the second heap H 0.

As discussed in the beginning of the section, all previous
experiments were performed with an LRU buffer of 1Mb
(256 pages). Fig. 21 evaluates the effect of the buffer size on
the performance. Due to the log scale, the CPU cost is not
visible because it is dominated by the I/O cost. At buffer
size = 0, every network node access incurs a page fault. The
cost of eager in this case is much higher than that of lazy due
to the range-NN queries. However, since these queries may
visit the same node multiple times, even a small buffer
improves the performance of eager considerably. After the
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Fig. 20. Grid maps (D ¼ 0:01; k ¼ 1). (a) Cost versus jV j (degree = 4). (b) Cost versus degree (jV j ¼ 160K).

Fig. 21. Cost versus buffer size (SF;D ¼ 0:01; k ¼ 1).

2. We do not evaluate bichromatic search since, as discussed in
Section 5.1, the cost of bichromayic query is similar to that of a
monochromatic one (on the same network) assuming that the set of data
points is Q.



buffer size reaches 64, the cost of eager stabilizes, indicating

that 64 pages are sufficient for keeping all the visited nodes

in memory. On the other hand, the performance of lazy

stabilizes after the buffer reaches 256 pages, implying a

more extensive search in the network. This experiment

verifies that eager visits a (much) smaller set of nodes than

lazy, but possibly many times, which explains its higher

CPU overhead in the majority of experiments not involving

networks with exponential expansion. Nevertheless, since

the I/O cost is the dominant factor, eager is, in general,

preferable.
In summary, the problem characteristics have a signifi-

cant effect on the behavior of the algorithms. Lazy has lower

CPU overhead than eager (up to two orders of magnitude

for selective queries in the DBLP coauthorship graph), but it

has higher I/O cost and it is unacceptable for networks that

incur exponential expansion. Lazy-EP provides improve-

ments over the basic algorithm, but in some cases, its

parallel expansion may increase the I/O cost. Eager has a

more balanced behavior and in most settings it is preferable

to both lazy and lazy-EP. The best choice for all scenarios in

which it is applicable (i.e., excluding ad hoc queries) is

eager-M. However, it requires the materialization and

maintenance of the NN points of all nodes.
The last set of experiments uses the San Francisco

network to evaluate the cost of maintaining this information

in the presence of object insertions and deletions. The

inserted points follow the distribution of the nodes,

whereas the deleted points are chosen randomly from the

existing data points. Fig. 22a shows the cost of insertions

and deletions as a function of the density. Deletions incur

higher cost than insertions since, as discussed in Section 4.1,

their expansion incurs two steps: identification of the

affected nodes and then retrieval of the new NNs. Fig. 22b

illustrates the cost as a function of the number K of stored

NNs. As expected, the I/O overhead increases with K.

Nevertheless, even for K ¼ 8 each operation takes less that

0.8 seconds, and given that updates are not frequent in

several practical applications, materialization is a feasible

option.

7 CONCLUSION

This paper constitutes the first work that deals with
RNN queries in large networks. We propose several
techniques that can be used for a variety of queries in
different types of graphs. Our evaluation covers applica-
tions including spatial maps, computer networks, and
coauthorship graphs. The best and most robust algorithm
(eager-M) relies on materialized information. In cases where
the set of interesting data points is not known in advance
(and, therefore, materialization is not possible), the choice of
the processing method depends on the problem character-
istics; the eager algorithm minimizes the I/O cost and is, in
general, the method of choice, but it can be more CPU-
intensive than lazy for certain networks (e.g., DBLP

coauthorship graph).
The proposed techniques assume undirected graphs. An

interesting direction for future work concerns their exten-
sions to directed networks (e.g., spatial maps with one-way
streets). In this case, the neighborhood relation is asym-
metric, complicating query processing. We also intend to
develop models for estimating 1) the cost of algorithms and
2) the selectivity of RNN queries in large graphs. Such
models are useful both for selecting the best processing
method given the problem characteristics, and optimizing
complex spatial queries involving several operators. This is
a particularly challenging problem, given that it has not
been solved even for the apparently simpler (and more
established) Euclidean version of RNN search.
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