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Abstract

Spatial objects in reality are often associated with geographic locations (e.g.,
longitude and latitude) as well as multiple quality attributes. Quality at-
tributes make it possible to compare spatial objects according to the domi-
nance concept. Specifically, an object pi is said to dominate another object
pj if pi is no worse than pj on all quality attributes and better than pj on
at least one quality attribute. In many contexts, an object’s dominators in
its neighborhood indicate the negative effect to the object. In this paper,
we study the problem of querying spatial objects by their dominators in
the neighborhood. We propose three meaningful score functions to quantify
the negative effects of dominators in a spatial object’s neighborhood. The
most endangered object (MEO) query thus defined has multiple practical
applications such as business planning, online war games, and wild animal
protection. For processing MEO queries, we design several algorithms that
require different indexes on spatial data sets. Each algorithm is generic and
flexible such that each can support all three score functions (and even more)
without significant changes. We conduct extensive experiments to evaluate
the algorithms. The experimental results disclose the performance differences
of the algorithms under various settings.
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1. Introduction

Spatial objects in reality (e.g., hotels) are often associated with geograph-
ic locations (e.g., longitude and latitude) as well as multiple quality attributes
(e.g., price and star). Conventionally, spatial objects are retrieved by spa-
tial queries that select objects solely based on their locations and relevant
distances. Typical spatial queries include range queries, nearest neighbor
queries, spatial joins, closest pair queries, and so on. However, such queries
fail to utilize the rich information captured by quality attributes.

As a matter of fact, quality attributes make it possible to compare spatial
objects according to the dominance concept [2]. Specifically, an object p1

dominates another object p2 if p1 is no worse than p2 on all quality attributes
and better than p2 on at least one quality attribute. The dominance concept
has been used to return the skyline [2] of a set of objects, which consists of
all those objects that are not dominated by others.

In many contexts, a spatial object’s dominators in its neighborhood in-
dicate the threats that endanger the object or better choices that render the
object disadvantaged and thus less attractive. For example, in online war
games like World of Warcraft a troop is really in danger if it is positioned
in a neighborhood where enemy troops are dominating in terms of multiple
attributes like equipment and number of soldiers. As another example, a
hotel is naturally less attractive to tourists if it is surrounded by dominating
hotels (e.g., with lower prices and higher stars).

In this paper, we integrate the spatial aspect and the quality attributes
of spatial objects and study a problem of finding objects with respect to the
dominators in their neighborhood. We intend to find those spatial objects
that are most affected (endangered or disfavored) with respect to their neigh-
borhood dominators. Such objects should be given particular attention and
treatment in order to survive or improve.

Generally speaking, our problem involves a set S of candidate objects and
a set P of competitor objects. We intend to return from S those objects that
are most affected by their nearby dominators from P .

We proceed to give a concrete motivation example. Suppose that a hotel
chain is having financial crisis and needs to shut down one of its hotels in set
S. Intuitively, a hotel is unlikely to make profit if its neighborhood contains
a large number of dominating hotels. Therefore, such a hotel may be shut
down. Note that dominators outside of the neighborhood do not have clear
effect on a hotel’s business. The locations of all hotels are shown in Figure 1,
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where si represents a hotel of the chain and hi represents a competitor hotel
in set P . In addition, each si’s neighborhood is illustrated by a dashed circle
centered at si with the radius of δ.

h4

h3

h1

h2

x

y

s1

s3

s2

s5
s4

h5

h7

h9

h6

h8

h10

δ

δ

δ

δ

δ

Figure 1: Spatial locations
of hotels

hotel price star

s1 $200 4
s2 $100 2
s3 $250 5
s4 $160 3
s5 $160 3

Figure 2: Quality attributes
of candidate set S

hotel price star

h1 $180 4
h2 $200 3
h3 $200 5
h4 $250 3
h5 $200 5
h6 $220 4
h7 $100 2
h8 $150 3
h9 $200 5
h10 $160 4

Figure 3: Quality attributes
of competitor set P

Figures 2 and 3 list the quality attributes (price and star) for hotels
in candidate set S and hotels in competitor set P , respectively. Here, lower
prices and higher stars are preferred. These preferences are used to determine
dominators for each candidate hotel si in S. For example, candidate s1 is
dominated by competitors h1, h3, h5 and h9; s3 is dominated by h3, h5 and
h9.

In order to compare candidate objects and select the most affected ones,
we need to quantify the effect of the neighborhood dominators on each can-
didate object. The quantification is realized by score functions designed for
candidate objects. A straightforward score function is to count the domina-
tors and use the counts as scores for candidates. The intuition behind is that,
the more dominators are there in the neighborhood, the more endangered is
the object. Refer to Figure 1 again. Within the δ-neighborhood, candidate
hotel s1 is only dominated by h1; s3 is dominated by the nearby h5 only;
s5 is dominated by both h8 and h10. In contrast, s2 has no neighborhood
dominators and s4 has no neighbors. As a result, hotel s5 will be returned
according to the counting based score function.

Furthermore, we define two other score functions for candidate objects.
The distance sensitive score gives more weights to dominators closer to an
object when quantifying the effect for the object. The disadvantage aware
score quantifies the quality difference between an object and its neighborhood
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dominators.
We also propose algorithms to find those most affected candidate objects

from S. The algorithms are generic and flexible such that each of them
can accommodate all the three aforementioned score functions. They can
actually deal with more score functions as long as a function is with necessary
properties.

In addition to the business planning example, querying spatial objects
with respect to neighborhood dominators also offers useful results for other
fields. For online war games (e.g., World of Warcraft), P is the set of enemy
troops and S is the set of ally troops. Each troop can be described by multiple
quality attributes like solider number, equipment level, etc. Accordingly, we
can identify the most endangered troop of S that needs additional combat
support. In wild animal protection, S denotes the set of endangered species
and P represents their enemies. Quality attributes refer to abilities such as
strength, agility and stamina. Accordingly, we can identify the animals in
the greatest need of protection.

We make the following contributions in this paper.

• We define three meaningful score functions for spatial objects to quan-
tify the effects of their neighborhood dominators.

• We formalize the generic problem of querying spatial objects according
to the score functions with respect to neighborhood dominators.

• We derive effective search bounds for the score functions such that
the functions can be supported by generic algorithm frameworks for
querying spatial objects.

• We discuss how to support the generic distance and other score func-
tions in our frameworks for querying of spatial objects.

• We conduct extensive experiments to evaluate our proposals. The ex-
perimental results disclose the most scalable and efficient algorithm
framework for all score functions.

This paper extends our previous work [18] with substantial new contri-
butions. First, this paper improves previous algorithms with more efficient
pruning (Section 3.5). Second, this paper defines a distance sensitive score
function to measure the neighborhood threats and presents search bound-
s that can be used by generic algorithm frameworks (Section 4). Third,

4



this paper also defines a score function and corresponding search bounds
that consider an object’s disadvantage compared to its neighborhood threats
(Section 5). Fourth, this paper discusses how to support the generic distance
and what properties score functions should have in the proposed frameworks
(Section 6). Last, extensive experiments are conducted to evaluated the new
proposals (Section 7).

The remainder of this paper are organized as follows. Section 2 gives
preliminaries including the problem formulation and an overview of the al-
gorithm frameworks. Section 3 details the counting based score function for
neighborhood threats and the search bounds. Section 4 details the distance
sensitive score function and the search bounds. Section 5 details the disad-
vantage aware score function and the search bounds. Section 6 discusses the
generic distance and score function properties. Section 7 reports on exten-
sive experiments of our proposals on both synthetic and real data. Section 8
reviews the related work. Finally, Section 9 concludes the paper.

2. Preliminaries

This section formulates the problems (Section 2.1) and gives an overview
on the score functions and query algorithms (Section 2.2).

2.1. Problem Formulation

We assume that all quality attributes are numeric and each attribute do-
main is totally ordered. Let c be the number of quality attributes. A quality
vector is a point ψ in the c-dimensional space Rc, where each dimension refers
to a quality attribute and ψ[i] denotes the i-th quality attribute value of ψ.

Without the loss of generality, we assume that smaller values are preferred
to larger ones in quality attributes throughout this paper. According to [2],
a quality vector ψ dominates another one ψ′ (denoted as ψ ≺ ψ′) iff:

(∃ 1 ≤ i ≤ c, ψ[i] < ψ′[i]) ∧ (∀ 1 ≤ i ≤ c, ψ[i] ≤ ψ′[i]) (1)

A location is a pair (x, y) in the Euclidean space R2, where x and y are
coordinate values. A spatial object o = 〈loc, ψ〉 consists of both a location
o.loc and a quality vector o.ψ. The notation dist(o, o′) denotes the Euclidean
distance between the locations of the spatial objects o and o′. Given two
spatial objects o and o′, o is said to dominate o′ when o.ψ ≺ o′.ψ. We use O
to denote the set of all spatial objects in a space of interest.
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Definition 1. (Neighborhood Dominators) Given a spatial object set P ,
a spatial object s, and a distance threshold δ, the neighborhood dominators
are those P objects that dominate s and lie in its δ-neighborhood:

∆P,δ(s) = {o ∈ P | dist(s, o) ≤ δ, o.ψ ≺ s.ψ}
Definition 2. (Generic Neighborhood Threat Score) Given a spatial
object set P , a spatial object s, and a distance threshold δ, the generic neigh-
borhood threat score of s with respect to P and δ is defined as:

ΦP,δ(s) = f(∆P,δ(s), s)

Here, f is a generic score function on a spatial object and all its neigh-
boring dominators, defined as follows:

f : 2O ×O→ R (2)

When the context is clear, we and use Φ(s) to denote object s’s neigh-
borhood threat score. The concrete values of Φ(s) are determined by the
concrete function that is used for f .

In this paper, we present three concrete instances for the generic score
function f . The first score function equally counts all the dominators in
an object s’s neighborhood (Section 3). It applies to the scenarios where
only the number of dominators is of importance. The second score function
takes into account the distance decay effect when counting the dominators in
object s’s neighborhood (Section 4). It applies to the scenarios where nearby
dominators mean more threats and faraway ones less. Instead of counting
dominators, the third score function measures object s’s quality disadvantage
with respect to the dominators in its neighborhood (Section 5). It applies to
the scenarios where the quality difference matters between object s and its
dominators.

Next, we define the most endangered object query (MEO) by using the
generic score function.

Definition 3. (Most Endangered Object Query) Given two spatial ob-
ject sets P and S for competitors and candidates, respectively, and a neigh-
borhood distance δ, the most endangered object query (MEO) returns
from S an object s such that ΦP,δ(s) is maximized, i.e., ∀ s′ ∈ S, ΦP,δ(s) ≥
ΦP,δ(s

′).

The MEO query finds the spatial object with the highest neighborhood
threat score. In this paper, we design efficient algorithms for the MEO query.
We proceed to give an overview of the proposed algorithms.
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2.2. Overview of Score Functions and Algorithmic Solutions

Table 1 lists the notations used throughout the paper.

Notation Meaning

P the set of competitor objects
S the set of candidate objects

ψ ≺ ψ′ a quality vector ψ dominates another one ψ′

dist(o, o′) Euclidean distance between objects o and o′

mindist(e, e′) minimum distance between R-tree entries e and e′

∆P,δ(s) s’s δ-neighborhood dominators
ΦP,δ(s) δ-neighborhood dominating score of an object s
�(s, δ) a circular region with center s and radius δ
Ξ(e, δ) δ-Minkowski region of an R-tree entry e

Table 1: Notations

Our first algorithm is an iterative search algorithm (IS for short). Specif-
ically, it loops on the candidate set S. For each candidate object si en-
countered, it searches the competitor set P to get all the dominators in si’s
neighborhood and to calculate the score. When the loop on S is finished,
the candidate object with the highest score is returned. The IS algorithm
requires an R-tree index on P but no index on S.

The second is a best-first search algorithm (BFS for short). It requires
two R-trees: RS on S and RP on P . It searches the R-tree RS on S in a best-
first fashion with a priority queue controlling the node access and expansion.
The key used in the queue is the score for a tree entry eS, which is an upper
bound score for all candidate objects in eS. The BFS algorithm stops when
a leaf entry is popped up from the priority queue since it means the object
with the highest score is found.

The third is a spatial join based algorithm (SJB for short). Requiring
R-trees on both object sets, it processes the object query in a spatial join
manner. In particular, an entry eS from RS is paired with all RP entries
that may have neighborhood dominators for an object in eS. Entry eS is
associated with a score that is the upper bound for all objects in it. The join
is pushed downwards along the two trees, with priority given to RS entries
with higher scores. The SJB algorithm stops when a leaf entry from RS is
encountered, and the corresponding object is returned.
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Score Function IS Approach BFS Approach SJB Approach

Dominator Counting Alg. 2 + Alg. 1 Alg. 4 + Alg. 3/Alg. 6 + Alg. 1 Alg. 5 + Alg. 1
(Def. 4) R-tree for P only, aggregate R-tree for P, aggregate R-tree for P,

S not indexed R-tree for S R-tree for S
Distance Sensitive Alg. 2 + Alg. 7 Alg. 4 + Alg. 8 + Alg. 7 Alg. 5 + Alg. 7
(Def. 5) R-tree for P only, aggregate R-tree for P, aggregate R-tree for P,

S not indexed R-tree for S R-tree for S
Disadvantage Aware Alg. 2 + Alg. 9 Alg. 4 + Alg. 10 + Alg. 9 Alg. 5 + Alg. 9
(Def. 10) R-tree for P only, min-aggregate R-tree for P, min-aggregate R-tree for P,

S not indexed max-aggregate R-tree for S max-aggregate R-tree for S

Table 2: Score functions and algorithms

Each of these three algorithms is able to accommodate the different s-
core functions defined in this paper. When one score function is changed to
another, only slight adjustment is needed for each algorithm. Nevertheless,
BFS and SJB use different methods to estimate upper bound scores for all
objects in an R-tree entry. The following sections detail the definition and
the algorithms for each score function. A summary of all score functions and
algorithms are given in Table 2.

3. Querying by Neighborhood Dominator Count

In this section, we only consider the count of dominators in a neighbor-
hood as the threat to an object. Section 3.1 defines the dominator count score
function. Section 3.2 details the iterative algorithm, Section 3.3 presents the
best-first algorithm, Section 3.4 elaborates on the spatial join algorithm, and
Section 3.5 discusses improvements to the best-first algorithm.

3.1. Dominator Count Score Definition

In many application scenarios, it makes sense to count the dominators
within an object s’s neighborhood and use that count as the indication of
how s is threatened. For example, in wild animal protection, the more domi-
nators (animals with multiple better abilities like speed, weight, age, etc.) in
an animal’s neighborhood, the more endangered it is. It is therefore impor-
tant to identify those animals that have the highest number of neighborhood
dominators and save them accordingly. Motivated as such, we give the fol-
lowing definition.

Definition 4. (Neighborhood Dominator Count Score) Given a spa-
tial object set P , a spatial object s, and a distance threshold δ, the neighbor-
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hood dominator count score of s with respect to P and δ is defined as:

ΦDC
P,δ (s) = |∆P,δ(s)| (3)

Whenever the context becomes clear, we drop the superscripts/subscripts
and use Φ(s) to denote the neighborhood dominator count score for s.

3.2. Iterative Search Algorithm

In this section, we assume that the data set P is indexed by an R-tree
RP and the data set S is not indexed. We first present a basic algorithm for
computing the score Φ(s) of an object s ∈ S, and then apply it iteratively
on each object in order to obtain the final result.

ObjectScoreDC (see Algorithm 1) is a recursive algorithm for comput-
ing the Φ(s) value of the object s with respect to the objects in the subtree
of the entry eP (of the R-tree RP ). The input parameter δ represents the
distance threshold. At line 1, the counter v is used to maintain the value
of Φ(s). In case eP is a leaf entry (line 2), the algorithm checks whether its
distance to s is within δ and its quality vector dominates that of s. If so,
then the counter v is incremented. When eP is a non-leaf entry (line 5), the
algorithm reads the child node corresponding to eP , and recursively processes
each of its entry e′P if the minimum distance mindist(e′P , s) from e′P to s is
within δ.

Algorithm 1 ObjectScoreDC(Object s, Entry eP of the R-tree RP , Dis-
tance δ)
1: v := 0
2: if eP is a leaf entry then
3: if dist(s, eP ) ≤ δ and eP .ψ ≺ s.ψ then
4: v := 1
5: else . eP is a non-leaf entry
6: read the child node CN pointed to by eP ;
7: for each entry e′P in CN do
8: if mindist(s, e′P ) ≤ δ then
9: v := v+ObjectScoreDC(s, e′P , δ)

10: return v

We then propose the iterative search (IS) for processing the MEO query.
Its pseudo code is shown in Algorithm 2. It takes as input (i) an R-tree on
the competitor set P , (ii) the candidate object set S, and (iii) the distance
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Algorithm 2 IS(R-tree RP on P , Object set S, Distance δ)
1: meo :=null; γ := 0
2: for each object s ∈ S do
3: Φ(s) :=ObjectScoreDC(s,RP .root, δ)
4: if Φ(s) > γ then
5: γ := Φ(s)
6: meo := s
7: return meo

δ. The object meo is used to keep track of the result object found so far,
and the value γ corresponds to the score of meo. At line 1, meo is initialized
to null and γ to 0. For each location s of the set S, the algorithm applies
the ObjectScore function on the root of R-tree RP (lines 2–3) to obtain
the score Φ(s) of s. If Φ(s) is higher than γ, the result and its score will
be updated (lines 4–6). Finally, the algorithm returns the object meo as the
result.

The IS algorithm is able to exploit the main-memory buffer better if
it processes all the locations of S via a locality-preserving order. Thus,
we develop the algorithm IS-Hil, which first applies external sorting on the
locations in S based on the Hilbert ordering [4, 20], and then processes them
by IS.

3.3. Best-First Search Algorithm

Observe that IS algorithm processes every object once in the set S. We
now propose to index the set S by an R-tree RS and develop an efficient
method to prune unqualified subtrees of RS that cannot contribute to the
result.

In order to support efficient counting operations, we index the data set
P by an aggregate COUNT R-tree RP [21]. Specifically, each non-leaf entry eP
in RP stores an additional count value, denoted as eP .count, which is equal
to the number of objects in the subtree of eP .

Derivation of Upper Bound Score. Suppose that eS is a non-leaf entry
of the tree RS. Figure 4 shows the spatial extent of eS as a rectangular
region. We intend to derive an upper bound score Φ+(eS) of eS such that
Φ(s) ≤ Φ+(eS) for any object s in the subtree of eS.

First, we introduce the concept of δ-Minkowski region [1] of eS, denoted
by Ξ(eS, δ), which is the set of possible locations whose minimum distance
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from eS is within the distance δ.

Ξ(eS, δ) = {t ∈ R2 | mindist(t, eS) ≤ δ} (4)

The region Ξ(eS, δ) is illustrated in Figure 4 as the region extended from the
rectangle eS by the distance δ. Given the data set P and the distance δ, we
define the upper bound neighborhood dominating score Φ+

P,δ(eS) of eS as the
number of objects in P that fall into the region Ξ(eS, δ).

Φ+
P,δ(eS) = |{o ∈ P | o ⊆ Ξ(eS, δ)}| (5)

The nice property of the upper bound score Φ+
P,δ(eS) (of a non-leaf entry

eS) is that it is guaranteed to be greater than or equal to the score ΦP,δ(s)
of any object s in the subtree of eS. This is shown in the following lemma.

Lemma 1. Let δ be a distance threshold and P be a data set of objects.
Given a rectangle eS, it holds that ΦP,δ(s) ≤ Φ+

P,δ(eS) for any object s that
falls into eS.

Proof 1. Let s be an object that falls into eS. According to Definitions 1
and 4, each object o ∈ P that contributes to ΦP,δ(s) must satisfy the inequality
dist(o, s) ≤ δ (and also the condition o.ψ ≺ s.ψ). Each such object o also
satisfies mindist(o, eS) ≤ δ because s falls into eS. That means such an object
o falls into the region Ξ(eS, δ) and thus contributes to Φ+

P,δ(eS). Therefore,

we have ΦP,δ(s) ≤ Φ+
P,δ(eS).

We proceed to present EntryScoreDC in Algorithm 3. It takes as input
(i) an entry eS of the R-tree RS on S, (ii) an entry eP in the aggregate R-
tree RP on P , and (iii) the distance threshold δ. This algorithm serves two
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purposes, depending on whether eS is a leaf entry or not. If eS is a leaf entry,
the algorithm calls the ObjectScore function to compute the exact score
Φ(eS) of eS (lines 2–3). Otherwise, eS is a non-leaf entry, and lines 4–11 are
used to compute the upper bound score Φ+(eS) of eS. The algorithm checks
whether the region Ξ(eS, δ) contains eP . If so, each object in the subtree of
eP is guaranteed to fall in Ξ(eS, δ). Thus, the counter v is incremented by
the count eP .count, without visiting the subtree of eP . If not, the algorithm
needs to read the child node of eP . An entry e′P in the child node is recursively
processed if it intersects Ξ(eS, δ), i.e., having the potential of contributing to
Φ+(eS).

Algorithm 3 EntryScoreDC(Entry eS of the R-tree RS on S, Entry eP in
the aggregate R-tree RP on P , Distance δ)
1: v := 0
2: if eS is a leaf entry then
3: v :=ObjectScoreDC(eS , eP , δ)
4: else . eS is a non-leaf entry
5: if Ξ(eS , δ) contains eP then
6: v := eP .count
7: else
8: if eP is a non-leaf entry then
9: read the child node CN pointed to by eP

10: for each child e′P in CN do
11: if Ξ(eS , δ) intersects e′P then
12: v := v+EntryScoreDC(eS , e

′
P , δ)

13: return v

Figure 5 illustrates an example of computing the upper bound score
Φ+(eS) of a non-leaf entry eS (of the tree RS), by using the EntryScoreDC
algorithm. Here, the aggregate R-tree RP (of the data set P ) only has the
non-leaf entries eP1, eP2, eP3, whose associated count values are 5, 8 and 6,
respectively. Since eP1 is contained by Ξ(eS, δ), its count (5) is added to the
upper bound score of eS, without visiting the subtree. As the entries eP2 and
eP3 intersect Ξ(eS, δ), their child nodes need to be accessed. Then, the child
nodes of eP2 and eP3 are found to have 4 and 3 objects, respectively, that
fall into the region Ξ(eS, δ). Therefore, the values 4 and 3 are added to the
upper bound score of eS. In summary, we obtain: Φ+(eS) = 5 + 4 + 3 = 12.

Search Algorithm. Recall that we have studied the notion of Φ+(eS) (for
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a non-leaf entry eS), and the EntryScoreDC algorithm for computing it. We
continue to present a pruning rule for reducing the search space, and then
develop two algorithms for solving MEO query based on the pruning rule.

According to Lemma 1, we devise the following pruning rule to identify an
unpromising entry eS (of the R-tree RS on S) whose subtree cannot contain
the most endangered object.

Pruning Rule 1. Let s ∈ S be an object from S, and eS be a non-leaf entry
from R-tree RS on S. If Φ(s) > Φ+(eS), then the entry eS can be safely
pruned.

We continue with the example of Figure 5 to illustrate this pruning rule.
Suppose that we have already examined object s and computed its exact
value Φ(s) = 20 (by the EntryScoreDC algorithm). Next, we want to check
whether it is necessary to visit the subtree of the non-leaf entry eS. Its upper
bound score Φ+(eS) = 5+4+3 = 12 can be computed by the EntryScoreDC
algorithm, as discussed before. Since Φ+(eS) < Φ(s), the entry eS cannot
contribute to the result and therefore it can be safely pruned.

It is desirable to find early an object s with high Φ(s) value such that
unqualified subtrees of RS can be effectively pruned. The search on RS can
be conducted in best-first search (BFS). The pseudo code of BFS is shown
in Algorithm 4. It employs a max-heap H to visit the tree entries of RS in
descending order of their upper bound scores. Initially, the algorithm inserts
into H the root entry of RS together with its upper bound score |P |. Each
time a non-leaf entry is deheaped, all its child entries are enheaped with their
own priorities obtained by calling the EntryScoreDC algorithm (lines 5–8).
If the entry being deheaped is a leaf entry, it will be returned as the most
endangered object (line 9–10). The correctness of the BFS algorithm is
guaranteed by (i) the property of the max-heap, and (ii) the upper bound
computed by EntryScoreDC(RP .root, eS, δ) (stated in Lemma 1).

3.4. Spatial Join Based Algorithm

As in Section 3.3, here we assume that the set of candidates objects S is
indexed by an R-tree RS and the set of competitor objects P is indexed by
an aggregate R-tree RP . Recall that the BFS algorithm needs to compute
the upper bound score of a non-leaf entry eS (of the tree RS) explicitly by
accessing the tree RP , incurring considerable cost. This section presents a
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Algorithm 4 BFS(Aggregate R-tree RP on P , R-tree RS of S, Distance δ)
1: initialize a max-heap H
2: enheap(H, 〈RS .root, |P |〉)
3: while H is not empty do
4: eS :=deheap(H)
5: if eS is a non-leaf entry then
6: read the child node CN pointed to by eS ;
7: for each child e′S of eS do
8: enheap(H, 〈e′S ,EntryScoreDC(e′S , RP .root, δ)〉)
9: else

10: return eS

more efficient solution by deriving an upper bound score of eS with low cost
and tightening the score bound gradually whenever necessary.

Formulation of a Join List. Before proposing the solution, we first
introduce several relevant concepts. Let eS be an entry of the R-tree RS. At
query time, we associate each encountered entry eS with its join list eS.JL,
for storing the entries of the R-tree RP that may combine with the subtree
of eS to generate potential results.

Specifically, a join list eS.JL is required to satisfy both of these conditions:

• (i) each entry eP in eS.JL satisfies eP ∩ Ξ(eS, δ) 6= ∅,

• (ii) for each p ∈ P satisfying p ∩ Ξ(eS, δ) 6= ∅, there is exactly one
ancestor entry eP (of p) in eS.JL.

The first condition ensures that the entries stored in eS.JL are relevant to
eS because they intersect the Minkowski region Ξ(eS, δ) of eS. The second
condition ensures that there is no missing entry or redundant entry in eS.JL.

The next question is how to check whether a particular join list satisfies
both conditions (i) and (ii) stated above. First of all, we start with the root
join list eS.JL = {RP .root}, which trivially satisfies the condition (ii). The
condition (i) can be easily checked on eS.JL. In each subsequent step, we can
apply the following expansion operation on eS.JL; this operation guarantees
that its output join list must satisfy both conditions (i) and (ii). Each time,
we pick an non-leaf entry eP from eS.JL, read the child node CN pointed to
by eP , and then insert each entry e′P ∈ CN satisfying e′P ∩ Ξ(eS, δ) 6= ∅ into
the list eS.JL.
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Having described the concept of a join list eS.JL, we then define the
upper bound score of eS with respect to eS.JL as:

Φ∗P,δ(eS) =
∑

e′∈eS .JL

e′.count (6)

The above upper bound score Φ∗P,δ(eS) is guaranteed to be greater than
or equal to the score ΦP,δ(s) of any object s in the subtree of eS. This is
formally stated in the following lemma.

Lemma 2. Φ∗P,δ(eS) ≥ ΦP,δ(s) for any object s that falls into eS.

Proof 2. Let s be an object that falls into eS. According to Lemma 1, we
obtain Φ+

P,δ(es) ≥ ΦP,δ(s). From the property (ii) of the join list, we de-

rive Φ∗P,δ(eS) ≥ Φ+
P,δ(eS). By combining both inequalities above, we have

Φ∗P,δ(eS) ≥ ΦP,δ(s).

Based on this lemma we have the following pruning rule.

Pruning Rule 2. Let s ∈ S be an object from S, and eS be a non-leaf entry
from R-tree RS on S. If ΦP,δ(s) > Φ∗P,δ(eS), then the entry eS can be safely
pruned.

We give an example on exploiting the pruning rule. Figure 6 shows a non-
leaf entry eS. Suppose that we have encountered an object with ΦP,δ(s) = 20.
Next, we check whether it is necessary to access the child node of eS. Suppose
that eS.JL = {ep1, ep2, ep3}, and Φ∗P,δ(eS) = 5 + 8 + 6 = 19 < 20, i.e., lower
than the score of object s. Therefore, the entry eS (together with its join
list) can be safely pruned as no object in eS can have higher score than s.

Search Algorithm. Algorithm 5 is the pseudo code of the spatial join
based algorithm. It employs a max-heap H to keep all RS entries to be
processed. Each RS entry eS is enheaped together with its join list eS.JL
and a count value obtained from Equation 6.

If the RS entry eS being deheaped is a leaf node and its join list is null, it is
returned as the most endangered object according to the max-heap property
(lines 5–8). If the leaf entry eS’s join list is not null, its exact neighborhood
dominator count is calculated by calling the ObjectScore algorithm for each
entry in its join list (lines 10–12). After that, eS is enheaped again with a
null join list and the calculated count value (line 13).
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Algorithm 5 SJB(Aggregate R-tree RP of P , R-tree RS of S, Distance δ)
1: initialize a max-heap H
2: eroot := RS .root; eroot.JL := {RP .root}
3: enheap(H, 〈eroot, eroot.JL, 0〉)
4: while H is not empty do
5: 〈eS , eS .JL〉 := deheap(H)
6: if eS is a leaf entry then
7: if eS .JL is null then
8: return eS
9: else

10: v := 0
11: for each ej in eS .JL do
12: v := v+ObjectScoreDC(eS , ej , δ)

13: enheap(H, 〈eS , null, v〉)
14: else
15: read the child node CNS pointed to by eS
16: for each entry ei in CNS do
17: v := 0; ei.JL := ∅
18: for each ej in eS .JL do
19: if Ξ(ei, δ) contains ej then
20: add ej to ei.JL;
21: v := v + ej .count
22: else
23: read the child node CNP pointed to by ej
24: for each child e′ in CNP do
25: if Ξ(ei, δ) intersects e′ then
26: add e′ to ei.JL;
27: v := v + e′.count

28: enheap(H, 〈ei, ei.JL, v〉)

Otherwise, the join is executed by expanding the non-leaf RS entry eS
being deheaped, and enheaping each subentry in eS with its corresponding
join list and count value (15–26). In particular, when eS is expanded its each
subentry ei gets part of entries in eS.JL as ei.JL. In this way, as the join
continues, the RS entries are enheaped with join lists of smaller coverage,
thus giving tighter upper bounds of neighborhood dominator counts which
favors pruning.
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3.5. Optimizations for BFS: Efficient Upper Bound Computation

In Section 3.3, we propose algorithms that search the R-tree RS of objects
set S. Specifically, BFS algorithm calls EntryScoreDC(.) (Algorithm 3) to
estimate the upper bound score for a tree entry eS in RS. Given an entry
eS, EntryScoreDC(.) counts the exact number of objects in P that lie in eS’s
δ-Minkowski region Ξ(e, δ). For an R-tree entry eP from RP that intersects
Ξ(e, δ), EntryScoreDC(.) recurs to access eP ’s child (descent) entries until
the RP entry being visited is inside Ξ(e, δ).

As a matter of fact, this exact counting is not always necessary. Specifi-
cally, if we do not go deeper to its children from an entry eP that intersects
Ξ(e, δ), we will overestimate the upper bound score but save R-tree traversal
cost. This overestimation will not cause any false negatives, i.e., it will not
miss any candidates, although it may weaken the pruning power of Pruning
Rule 1. The reasoning behind the correctness is similar to that behind the
use of the join list in the join based algorithm in Section 3.4.

Motivated by the aforementioned observations, we improve the BFS al-
gorithm by modifying the upper bound cost estimation in EntryScoreDC(.).
The improved version, formulated in Algorithm 6, simplifies the visit to a
non-leaf node pointed to by eP by adding to the score the object count in
eP ’s each child node (line 12). In this way, it avoids recursively processing
each child node under eP . In other words, the algorithm stops at each RP

entry e′P that intersects RS entry eS, which results in the similar effect as
if the join list is maintained for eS. Therefore, the upper bound score is
overestimated as Φ∗P,δ(eS) (Equation 6).

Pruning Rule 2 guarantees the correctness of the BFS algorithm that
calls Algorithm 6 to get the overestimated score. The improvement present-
ed in this section renders the BFS algorithm to behave more like the SJB
algorithm. In particular, less computation will be spent in counting the dom-
inators precisely for an R-tree entry eS in the former two algorithms. We
experimentally evaluate the effectiveness of the improvement in Section 7.

4. Querying by Distance Sensitive Score

In this section, we take into account the distance decay effect between
candidate objects and the threats nearby. We define the distance sensitive
neighborhood threat score in Section 4.1. From Section 4.2 to Section 4.4,
we discuss how the query processing techniques presented in Section 3 can
be adapted to support the MEO query using the distance sensitive score.
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Algorithm 6 EntryScoreDC2(Entry eS of the R-tree RS on S, Entry eP
in the aggregate R-tree RP on P , Distance δ)
1: v := 0
2: if eS is a leaf entry then
3: v :=ObjectScoreDC(eS , eP , δ)
4: else . eS is a non-leaf entry
5: if Ξ(eS , δ) contains eP then
6: v := eP .count
7: else
8: if eP is a non-leaf entry then
9: read the child node CN pointed to by eP

10: for each child e′P in CN do
11: if Ξ(eS , δ) intersects e′P then
12: v := v + e′P .count

13: return v

4.1. Distance Sensitive Score Definition

Given a location q, the aforementioned neighborhood threat score (Def-
inition 4 in Section 3) simply counts the dominators (i.e., threats) in q’s
neighborhood but does not consider their distances from q. In many scenar-
ios the distance between a threat and an object matters or even is critical.
An example is shown in Figure 7, where s1 and s2 are two soldiers while dom-
inating enemies are captured as dots. We cannot differentiate s1 and s2 using
the counting based score since both of them have five neighborhood threats.
However, it is apparent that s1 is more endangered because s1’s enemies are
much closer compared to those to s2. In such cases, given a particular object
s, the nearby threats are more dangerous than faraway threats.

Motivated as such, it makes sense to differentiate the threats that are at
different distances from an object s in consideration. We define the distance
sensitive neighborhood threat score as follows.1

Definition 5. (Distance Sensitive Neighborhood Threat Score) Giv-
en a spatial object set P , a spatial object s, and a distance threshold δ, the
distance sensitive neighborhood threat score of s with respect to P and δ is

1Our distance sensitive score partially resembles the influence score defined in [36]. In
particular, ours uses a distance threshold to restrict the search to an object’s neighborhood,
whereas the influence score based search [36] expands to the entire space.
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Figure 7: Example of Distance Sensitive Score

defined as:

ΦDS
P,δ (s) =

∑
o∈∆P,δ(s)

2−dist(s,o) (7)

In the following sections, we extend the MEO query processing techniques
proposed in Section 3 to process MEO query that uses the distance sensitive
score. Again, we drop the superscripts/subscripts and use Φ(s) to denote
the score for s when the context is clear.

4.2. Query Processing by Iterative Search

The iterative search (IS in Algorithm 2) still works for the MEO query
that adopts the distance sensitive score definition. The only change we need
to do is to the ObjectScoreDC function (Algorithm 1). In particular, we
use Definition 5 instead of Definition 4 on line 4. We name the modified
algorithm ObjectScoreDS (Algorithm 7).

4.3. Query Processing by Best-First Search

In order to use the best-first search to process the MEO query with dis-
tance sensitive scores, we still use an aggregate COUNT R-tree RP to index
data set P and an R-tree RS to index data set S. We also need to derive an
appropriate upper bound score for the best-first search to work with object
groups organized as R-tree nodes. Therefore, we introduce the concept of
Minkowski entry set as follows.
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Algorithm 7 ObjectScoreDS(Object s, Entry eP of the R-tree RP , Dis-
tance δ)
1: v := 0
2: if eP is a leaf entry then
3: if dist(eP , s) ≤ δ and eP .ψ ≺ s.ψ then
4: v := 2−dist(eP ,s)

5: else . eP is a non-leaf entry
6: read the child node CN pointed to by eP ;
7: for each entry e′P in CN do
8: if mindist(e′P , s) ≤ δ then
9: v := v+ObjectScoreDS(s, e′P , δ)

10: return v

Definition 6. (Minkowski Entry Set) Given a distance threshold δ, an
aggregate R-tree RP for data set P , and an entry eS from R-tree RS for data
set S, eS’s Minkowski entry set ΩP,δ(eS) consists of RP entries that satisfy
all the following conditions:

1. ∀eP ∈ ΩP,δ(eS), eP ⊆ Ξ(eS, δ), i.e., eP is covered by eS’s δ-Minkowski
region;

2. ∀eP , e′P ∈ ΩP,δ(eS), if eP 6= e′P then they are not on the same path in
RP ;

3. ∀e′P ∈ RP , if e′P ⊆ Ξ(eS, δ), then either e′P ∈ ΩP,δ(eS) or e′P 6∈ ΩP,δ(eS)
but ∃eP ∈ ΩP,δ(eS) such that eP is e′P ’s ancestor in RP .

Specifically, the first condition above requires that any entry in eS’s
Minkowski entry set must spatially be in eS’s δ-Minkowski region. This
ensures that all threats in the δ-neighborhood of any object in eS will be
included when eS is processed. The second condition above specifies that d-
ifferent entries in eS’s Minkowski entry set cannot come from the same path
in R-tree RP . The second and third conditions together imply that only the
highest ancestor on a path in RP can enter eS’s Minkowski entry set. As a
result, the Minkowski entry set contains all the highest level RP entries that
are covered by eS’s δ-Minkowski region.

With the concept of Minkowski entry set, we define the upper bound
distance sensitive score for an RS entry eS for the candidate set S as follows.
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Definition 7. (Upper Bound Distance Sensitive Score)

Φ+
P,δ(eS) =

∑
eP∈ΩP,δ(eS)

eP .count · 2−mindist(eS ,eP )

The correctness of this upper bound cost is guaranteed by the following
lemma.

Lemma 3. Φ+
P,δ(eS) ≥ ΦDS

P,δ (s) holds for any object s that falls into eS.

Proof 3. ∀o ∈ ∆P,δ(s), it holds that o ∈ Ξ(eS, δ). According to Definition 6,
o’s all neighborhood dominators in ∆P,δ(s) correspond to m R-tree entries
eP1, eP1, . . . , ePm (1 ≤ m ≤ |∆P,δ(s)|) in ΩP,δ(eS). We use Ω′P,δ(eS) to denote
{eP1, eP1, . . . , ePm}.

According to Definition 7, we have Φ+
P,δ(eS) =

∑
eP∈ΩP,δ(eS)\Ω′

P,δ(eS) eP .count·
2−mindist(eS ,eP )+

∑
eP∈Ω′

P,δ(eS) eP .count·2−mindist(eS ,eP ) ≥
∑

eP∈Ω′
P,δ(eS) eP .count·

2−mindist(eS ,eP ) =
∑m

i=1 ePi.count · 2−mindist(eS ,ePi).
As mindist(s, eP ) ≥ mindist(eS, eP ) for any object s in eS, it holds

Φ+
P,δ(eS) ≥

∑m
i=1 ePi.count · 2−mindist(s,ePi).

Further, ∀ePi ∈ Ω′P,δ(eS), suppose ePi contains n (1 ≤ n ≤ |∆P,δ(s)|)
dominators o1, o2, . . . , on from ∆P,δ(s). As ePi.count ≥ n and mindist(s, ePi)
≤ mindist(s, oj) for 1 ≤ j ≤ n, we have ePi.count · 2−mindist(s,ePi) ≥

∑n
j=1

·2−mindist(s,oj).
To put everything together, it holds Φ+

P,δ(eS) ≥
∑|∆P,δ(s)|

j=1 ·2−mindist(s,oj) =
ΦP,δ(s). The lemma is proved.

With the new upper bound cost, we can still use the best-first search
(Algorithm 4) for the MEO query with the new score definition. However,
the best-first search algorithm should call the EntryScoreDS2 function (Al-
gorithm 8) instead of the EntryScoreDC or EntryScoreDC2 functions on its
line 8. The EntryScoreDS2 function makes use of the new upper bound cost
derived in this section.

4.4. Query Processing by Spatial Join

The MEO query with the distance sensitive score can also be processed
by the spatial join based method. The key point here is to accordingly derive
a new upper bound score to be used by spatial join. Given R-tree RS for the
set of candidate objects S and aggregate R-tree RP for the set of competitor
objects P , we define the join list for an entry eS from RS in the same way
as described in Section 3.4. The upper bound score is defined as follows.
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Algorithm 8 EntryScoreDS2(Entry eS of the R-tree RS on S, Entry eP
in the aggregate R-tree RP on P , Distance δ)
1: v := 0
2: if eS is a leaf entry then
3: v :=ObjectScoreDS(eS , eP , δ)
4: else . eS is a non-leaf entry
5: if Ξ(eS , δ) contains eP then
6: v := eP .count · 2−mindist(eS ,eP )

7: else
8: if eP is a non-leaf entry then
9: read the child node CN pointed to by eP

10: for each child e′P in CN do
11: if Ξ(eS , δ) intersects e′P then
12: v := v + e′P .count · 2−mindist(eS ,e

′
P )

13: return v

Definition 8. (Upper Bound Distance Sensitive Score for Spatial
Join)

Φ∗P,δ(eS) =
∑

eP∈eS .JL

eP .count · 2−mindist(eS ,eP ) (8)

The correctness of this upper bound cost is guaranteed by the following
lemma.

Lemma 4. Φ∗P,δ(eS) ≥ ΦP,δ(s) holds for any object s that falls into eS.

Proof 4. Note that eS’s join list eS.JL contains all dominators that are
in the neighborhood of s, i.e., ∆P,δ(s) are covered by all entries in eS.JL.
Therefore, this lemma can be proved by the same reasoning as the proof for
Lemma 3.

This upper bound cost allows us to adapt the spatial join (Algorithm 5)
to process the MEO query with distance sensitive scores. In particular,
we use the count aggregate R-tree to index P instead, replace the function
ObjectScore(.) in line 12 with ObjectScoreDS(.) (Algorithm 7), v := v +
ej.count in line 21 with v := v+ej.count ·2−mindist(ei,ej), and v := v+e′.count
in line 27 with v := v + e′.count · 2−mindist(ei,e′).
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5. Querying by Disadvantage Aware Score

In this section, we consider an object’s disadvantage with respect to its
neighborhood threats. We quantify the disadvantage and define the disad-
vantage aware score for objects in Section 5.1. From Sections 5.2 to 5.4,
we propose query processing techniques for the MEO query based on the
disadvantage aware score.

5.1. Disadvantage Aware Score Definition

An object is dominated by others due to its disadvantage on the quality
atrributes. In many cases, it is interesting to know how disadvantaged an
object s is compared to its dominators (threats). For example, in the context
of digital war systems, it is critical to find the most disadvantaged battle unit
with respect to its nearby enemies. Such disadvantages lie in the number of
soldiers, the amount of firepower, the level of equipment, etc. In such cases,
we need to quantify the disadvantages in order to identify the most disad-
vantaged objects and to take necessary actions. A meaningful and simple
way to do it is formalized as follows.

Definition 9. (Disadvantage) Given two c-dimensional quality vectors ψ
and ψ′, if ψ ≺ ψ′, we say ψ′’s disadvantage with respect to ψ is τ(ψ′, ψ) =∑

1≤i≤c(ψ
′[i]− ψ[i]);2 otherwise, we stipulate τ(ψ′, ψ) = 0.

The definition above measures the Manhattan distance between two qual-
ity vectors ψ and ψ′.3 The definition allows us to define the disadvantage
aware neighborhood threat score as follows.

Definition 10. (Disadvantage Aware Neighborhood Threat Score)
Given a spatial object set P , a spatial object s, and a distance threshold δ,
the disadvantage aware neighborhood threat score of s with respect to P and
δ is defined as:

ΦDA
P,δ (s) = maxp∈∆P,δ(s)

∑
1≤i≤c

(s.ψ[i]− p.ψ[i]). (9)

2We assume that the domain on each of the c quality dimensions is normalized to the
unit range [0, 1] such that the summation makes sense.

3This way follows a previous work [17]. Nevertheless, the techniques proposed in this
paper can be adapted to other monotonic disadvantage measurements.
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Accordingly, we can issue the MEO query using the disadvantage aware
score. In the following sections, we give query processing algorithms for such
MEO queries. Again, we drop the superscripts/subscripts and use Φ(s) to
denote the score for s when the context is clear.

5.2. Query Processing by Iterative Search

We first consider the iterative search for the MEO query using the disad-
vantage aware score. To this end, the IS algorithm (Algorithm 2 in Section 3)
still can be used. However, we need to change the algorithm ObjectScore for
computing object scores. To compute the disadvantage aware object score,
ObjectScore (line 3 in Algorithm 2) should be replaced by ObjectScoreDA
(Algorithm 9).

Algorithm 9 ObjectScoreDA(Object s, Entry eP of P ’s R-tree RP , Dis-
tance δ)
1: v := 0
2: if eP is a leaf entry then
3: if dist(s, eP ) ≤ δ and eP .ψ ≺ s.ψ then
4: v :=

∑
1≤i≤c s.ψ[i]− ep.ψ[i]

5: else . eP is a non-leaf entry
6: read the child node CN pointed to by eP ;
7: for each entry e′P in CN do
8: if mindist(s, e′P ) ≤ δ then
9: v := max(v,ObjectScoreDA(s, e′P , δ))

10: return v

5.3. Query Processing by Best-First Search

In this section, we consider the best-first search for the MEO query using
the disadvantage aware score. To this end, we need to augment the R-tree for
candidate set S and that for competitor set P . Specifically, P ’s R-tree RP is
a min-aggregate R-tree that still groups the nodes according to their spatial
extent but augments each node entry e with an additional c-dimensional
vector e.min whose i-th value is recursively defined as:

e.min[i] = min{e′.min[i] | e′ ∈ e’s child nodes} (10)

The value e.min[i] indicates the minimum i-th quality attribute value of all
objects in e’s subtree.
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Compared to P ’s R-tree RP , S’s R-tree RS is almost the same except
that each of its entry e is augmented with a maximum vector e.max whose
i-th value is recursively defined as:

e.max[i] = max{e′.min[i] | e′ ∈ e’s child nodes} (11)

The best-first search framework (Algorithm 4) can be reused but the
entry score should be computed in a way with respect to Definition 10. It is
formalized as EntryScoreDA in Algorithm 10. On line 12 of Algorithm 10, an
upper bound disadvantage aware score is used for fast pruning an unqualified
tree entry e′P in the min-aggregate R-tree RP . That upper bound score is
defined in Definition 11.

Algorithm 10 EntryScoreDA(Entry eS of the max-aggregate R-tree RS

on S, Entry eP in the min-aggregate R-tree RP on P , Distance δ)
1: v := 0
2: if eS is a leaf entry then
3: v :=ObjectScoreDA(eS , eP , δ)
4: else . eS is a non-leaf entry
5: if Ξ(eS , δ) contains eP then
6: v := UBScore(eS , eP )
7: else
8: if eP is a non-leaf entry then
9: read the child node CN pointed to by eP

10: for each child e′P in CN do
11: if Ξ(eS , δ) intersects e′P then
12: if UBScore(eS , e

′
P ) > v then

13: v := max(v,EntryScoreDA(eS , e
′
P , δ))

14: return v

Definition 11. (Upper Bound Disadvantage Aware Score) Given an
entry eS of the max-aggregate R-tree RS on spatial objects S and an entry
eP of the min-aggregate R-tree RP on competitors P , the upper bound dis-
advantage aware score for any object s ∈ eS and any dominator p ∈ eP
is

UBScore(eS, eP ) =
∑

1≤i≤c

φ(eS.max[i], eP .min[i]),
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where

φ(v, w) =

{
v − w, if v > w;
0, otherwise.

(12)

The correctness of this upper bound score is guaranteed by the following
lemma.

Lemma 5. UBScore(eS, eP ) ≥ τ(s.ψ, p.ψ), ∀s ∈ eS and ∀p ∈ eP .

It is straightforward to prove the lemma. An example is given in Fig-
ure 8, where smaller values are preferred in both quality dimensions QD1

and QD2. Consider an arbitrary point s in eS and an arbitrary point p in
eP . The Manhattan distance between s and p is always upper bounded by
that between the two corners eS.max and eP .min.

eS.max

eP.min

eS

eP

QD2

QD1

s

p

Figure 8: Entry eS ’s Upper Bound Disadvantage with respect to Entry eP

5.4. Query Processing by Spatial Join

In this section, we consider the spatial join for the MEO query using
the disadvantage aware score. As the object score definition is substantially
different from the previous counterparts, the spatial join framework needs
to take that into account and to incorporate necessary modifications. To
this end, we keep the overall procedure of Algorithm 5 but modify a few
particular places of it. First, we use the max-aggregate R-tree and min-
aggregate R-tree for S and P , respectively, in the input. Second, line 12 is
changed to v := max(v,ObjectScoreDA(eS, ej, δ)) in order to compute the
object score when an object (represented by entry eS) is encountered. Third,
line 21 is changed to v := max(v,UBScore(eS, ej)) to overestimate the score
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for all objects in eS by considering the largest possible disadvantage of eS
with respect to an entry eP from P ’s R-tree RP . Likewise, line 27 is changed
to v := max(v,UBScore(eS, e

′)).

6. Discussions

In this section, we discuss how to extend our proposals to other distance
metrics (Section 6.1) and what properties render a scoring function accept-
able to our proposed frameworks (Section 6.2).

6.1. Extension to Other Distances

Our discussions in previous sections are presented in the context of Eu-
clidean space: an object’s neighborhood is defined using Euclidean distance,
and the algorithms use R-tree and its variants with aggregates. As a matter
of fact, our proposals can be extended to work with other types of spatial
distances, e.g., spatial network distance and Manhattan distance.

There are several key points in extending our proposals to support the
generic distance. First, we need to define the object neighborhood in Defi-
nition 1 using the generic distance distg(s, o) between spatial objects s and
o. Second, we should use the generic distance based neighborhood and the
generic distance in defining the score functions (Definitions 2, 4, 5, and 10).
Third, we need to use the M-tree [6] and its proper variants to index spatial
objects in order to ensure the proposed algorithms still work for the gener-
ic distance. According to the definition of M-tree, all objects in an entry
e’s subtree are within the covering radius e.cr from the routing object e.ro.
Figure 9 shows two such entries in an M-tree.

e’.ro 

e’.cr 

mindistg(e, e’ ) 

e.ro 

e.cr 

s mindistg(s, e) 

 

Figure 9: M-tree for Generic Distance
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For the different algorithms, the M-tree is used or augmented as follows.
In the IS approach for all three score functions (c.f. Table 2), the M-tree
is used to index competitor set P . Given an object s and an M-tree sub-
tree entry e, the lower bound distance between them, i.e., mindistg(s, e),
is distg(s, e.ro) − e.cr, as illustrated in Figure 9. In the BFS and SJB ap-
proaches for the dominator counting and distance sensitive score functions,
an aggregate COUNT M-tree indexes competitor set P and an M-tree indexes
candidate object set S. An aggregate M-tree stores an additional count value
in each of its non-leaf entry to maintain the number of objects in the corre-
sponding subtree. For two M-tree subtree entries e and e′, the generalized
mindistg between them is mindistg(e, e

′) = distg(e.ro, e
′.ro)−e.cr−e′.cr, as

illustrated in Figure 9. In the BFS and SJB approaches for the disadvantage
aware score function, sets P and S are indexed by a min-aggregate M-tree
and a max-aggregate M-tree, respectively. A min- or max-aggregate M-tree
augments each node entry with an additional c-dimensional quality vector in
the same way as described in Section 5.3.

6.2. Properties of Score Functions

In this section, we discuss what instances of the generic score function
(Definition 2 and Equation 2) can be processed by the query frameworks
proposed in this paper.

First, the IS approach is able to process an arbitrary score function that
is based on the generic definition because IS processes each spatial object
in a given set S in a full iterative manner. In each iteration, IS calculates
the current object o’s score according to the concrete definition of the score
function. Also due to this reason, IS may be inefficient if the score function
is time-consuming to calculate.

Second, the BFS approach requires that an upper bound must be deriv-
able from the score function used in the query. Specifically, such an upper
bound should be for a subset eS of the given object set S, where eS actually
corresponds to an entry in the tree that indexes S. Without such an upper
bound score, BFS would not be able to prune objects in S by discarding all
candidate objects in an unpromising subtree rooted at eS. In other words,
a score function is inapplicable to BFS if it does not support subtree based
upper bound estimation. Moreover, a tight upper bound tends to improve
the object pruning effect and thus the efficiency of BFS. If a subtree’s upper
bound score is smaller, it gets a lower priority in subsequent query processing,
i.e., a higher chance to be pruned.
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Third, the SJB approach also requires that an upper bound must be
derivable from the score function used in the query. Again, such an upper
bound should be derived for a subtree rooted at entry eS in the tree index
for the given object set S. Likewise, a tight upper bound can help improve
the object pruning and the query processing efficiency of SJB.

Also, an upper bound UB as described above should be monotonic such
that it can be used by BFS or SJB. Specifically, UB(e′S) ≤ UB(eS) must
hold if e′S ⊆ eS. In either approach, eS corresponds to a subtree in the index
for object set S and e′S corresponds to a descendant subtree under eS. Note
that all the upper bounds derived in Sections 3, 4 and 5 are monotonic.

7. Experimental Studies

In this section, we report on experimental studies on our proposed algo-
rithms for querying spatial data with respect to neighborhood dominators.

All algorithms were implemented in Java (JDK-8u151 for Windows x64)
and were run on a PC enabled by an Intel 4-Core i5-3570 with 8 GB RAM
and Windows 10 64-bit OS. We used real and synthetic data sets for both the
competitor set P and the candidate set S. In each data set, all spatial coor-
dinates were normalized to Euclidean space [0,10000]2, whereas each quality
attribute was normalized to the unit interval [0,1]. The implementation and
experiments were disk-based. The disk page size was set to 4K bytes for
the data and index files, and an LRU memory buffer with 512K bytes was
used for all trees. We issued 20 queries for each test case, and the spatial
distance constraint δ in each query was a random value in (0,500] unless s-
tated otherwise. We measure the average number of node accesses per query.
In all query algorithms, node accesses dominate the total query processing
cost; other costs like loading data are relatively very small compared to node
accesses and thus are omitted.

7.1. Results on Real Data Sets

In this part of experiments, we used a real data set of the real proper-
ties (RPT) in a large city4. The data was cleaned as follows. First of all,
we removed all those records without longitude and latitude. From the re-
maining records, we removed those spatial outliers scattered in the border of

4As required by the data provider, we are not allowed to disclose the city name.
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the spatial domain, far from the majority in the center. Subsequently, from
the multiple quality attributes we selected three numeric ones with few null
values, namely number of bedrooms, distance to the nearest supermarket, and
price. A record with a null value on one of these attributes was then removed
as well. As a result, we obtained 548,548 records of the schema (longitude,
latitude, bedroom, distance, price). Value conversion was done on a quality
attribute if necessary, e.g., a higher bedroom value was converted to a lower
value in the normalized range [0, 1]. This way, lower values are preferable
to higher ones. Furthermore, we used a sampling to pick one third (182,852
records) as the S data set and the others (365,698 records) formed the P
data set. In particular, the normalized spatial domain was divided by a 100
by 100 grid, and one third of the records inside each grid cell were randomly
picked into the sample to form the S set.

After the aforementioned steps, we used different quality attribute com-
binations and obtained four variants of P data set: bedroom and distance
(denoted as bd), bedroom and price (denoted as bp), distance and price (de-
noted as dp), and all three attributes (denoted as bdp). The corresponding
S data set variants were obtained in the same way.

First, we used a random δ in each query for all three score functions
(DCS, DSS, and DAS). The results are shown in Figure 10. For all the
three functions, SJB approach is significantly more efficient than all others,
BFS is the second and IS is the worst. SJB’s superiority is attributed to
its join nature—it processes node entries that index objects in S only with
relevant node entries that index P . In contrast, IS approach processes each
object in S, issuing a recursive range search via the R-tree that indexes
P . BFS approach’s performance is between SJB and IS. BFS outperforms
IS because BFS does not process objects in S sequentially. Instead, BFS
processes groups of objects in S via an R-tree; however, its pruning of tree
nodes is considerably less aggressive than SJB. According to Figure 10(a),
Algorithm 6 does not always improve Algorithm 3 in BFS approach using
DCS. The price attribute in our real data has the largest domain and the
most diverse values in the domain, which makes it more difficult to achieve
a better overestimate of the counting based upper bounds used by BFS.

Next, we used the bdp data set and varied distance δ from 100 to 500.
In our setting, these δ values mean a neighborhood radius of 1% to 5%
the width of the spatial domain, and they form big search regions in the
large city in our setting. The results are shown in Figure 11. Again, SJB
approach outperforms all others in all test cases, and IS is still the worst.
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More importantly, for all score functions, SJB approach is very steady as
δ increases. Although a larger δ leads to a larger neighborhood and thus
more objects from P to process, it does not worsen SJB that works in a
join fashion. On the one hand, more objects from P may not considerably
increase the number of P ’s tree nodes for SJB to process. On the other hand,
the upper bounds and the pruning techniques used by SJB work effectively
in ruling out unpromising tree nodes and thus objects.
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Figure 11: Effect of δ on Real Data Sets

7.2. Results on Synthetic Data Sets

We also tested the scalability of our approaches using synthetic data sets.
In particular, we investigated the effects of |P |, |S|, c (the number of quality
attributes), and the distance δ. The settings of parameters are given in Ta-
ble 3 where bold fonts indicate the default settings. For all spatial objects,
the quality attributes follow independent (IN) and anti-correlated (AC) dis-
tributions in their normalized unit domain [0,1]c. The quality attributes of a
particular distribution were generated according to a previous work [2]. The
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experimental results for the IN distributions are similar to their counterparts
for the AC distributions, and therefore we only show the results for the latter.

Parameter Setting

|P | 100K, 200K, . . ., 1000K

|S| 10%·|P |, 20%·|P |, . . ., 60%·|P |
c 2, 3, 4, 5

Table 3: Parameters of synthetic data sets

First, we varied |P | from 100K to 1000K and used the default settings for
the other parameters. The results are shown in Figure 12(a), (b) and (c) for
DCS, DSS and DAS, respectively. Overall, SJB approach performs the best
in all settings, BFS approach the second, and IS approach the worst. With
score functions DCS and DSS, BFS and SJB’s node access cost after |P | =
700K is lower than that when P is smaller. For the four largest P sets, it is
found that some objects in the corresponding S sets get many more neigh-
borhood dominators, partly due to the higher density in the space domain.
Consequently, after their concrete DCS and DSS scores are computed, such
objects are exploited by BFS and SJB to prune more unpromising tree nodes
in query processing. In contrast, IS is not affected in such cases since it has
to process all objects iteratively without pruning. On the other hand, for
BFS and SJB with DAS function, we do not observe the same performance
improvement as with DCS and DSS functions. We attribute the difference
to the fact that DAS function is not based on counting the number of neigh-
borhood dominators for objects in S.

Next, we fixed |P | to 1000K and varied |S| from 10% to 50% of |P |.
The results are shown in Figure 13(a), (b) and(c) for DCS, DSS and DAS,
respectively. SJB approach still outperforms the alternatives for all three
score functions. Overall, SJB is also the most scalable as a larger S does not
incur much more node accesses for SJB.

Moreover, we varied the number of quality attributes (c) from 2 to 5 and
used the default values for the others. The results are shown in Figure 14(a),
(b) and (c) for DCS, DSS and DAS, respectively. SJB approach still incurs
the least node accesses; it is the most scalable for all three score functions.
As c increases, IS approach incurs less node accesses. This is because more
quality attributes tend to result in less neighborhood dominators for an object
in S, which results in an overall effect that makes the sequential scanning
based query processing slightly faster with all three score functions.
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Figure 13: Effect of |S| on Synthetic Data Sets

Finally, we varied δ from 100 to 500 and used the default settings for the
others. The results are shown in Figure 15(a), (b) and (c) for DCS, DSS and
DAS, respectively. As a neighborhood becomes larger, more dominators are
likely to be included. This explains the overall increase in the node accesses,
especially for IS and BFS. Nevertheless, SJB is still the most efficient and
almost insensitive to the neighborhood size.
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8. Related Work

In this section, we review related work on location selection queries (Sec-
tion 8.1), skyline queries involving spatial data (Section 8.2), spatial keyword
queries (Section 8.3), and spatial join (Section 8.4).

8.1. Location Selection Queries

Optimal location selection query is a well studied topic. Du et al. [8]
proposed the optimal-location query. Given a site set S, a weighted object
set O, and a spatial region Q, the optimal-location query returns a location in
Q with the maximum influence. The influence of a location l is defined as the
total weights of objects in O, each of which has l as its nearest neighbor in the
set S ∪ {l}. Using the same influence definition, Xia et al. [32] formulated
a different top-k most influential spatial sites query, which returns k sites
(from S and within Q) having the highest influences. Given an additional
location set Q, Zhang et al. [37] proposed the min-dist optimal-location query
that selects from Q a location l that results in the minimal average distance
from every object in O to its nearest site in S ∪ {l}. Xiao et al. [33] studied
location selection queries in road networks where network distances are used
to define optimal locations. Unlike the MEO query studied in this paper,
these location selection queries do not consider quality attributes associated
with spatial objects.

Given two spatial object sets O and P , a bichromatic reverse k nearest
neighbor (BRkNN) query [13] requires a query object p ∈ P and returns
all the objects from O that have p as one of its k nearest neighbors in P .
A maximizing BRkNN (MaxBRkNN) query [30, 29, 40] returns the optimal
region such that if an object p is placed in the region the cardinality of p’s
BRkNN query result in O is maximized, i.e., the number of objects from
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O having p as a nearest neighbor is the highest. Unlike our MEO query,
BRkNN and MaxBRkNN queries only consider spatial locations and ignore
non-spatial quality attributes associated with spatial objects.

Yiu et al. [35, 36] formalized the top-k spatial preference query that re-
quires a location set D and several feature object set F1, . . . ,Fm. Each Fi set
covers a particular type, e.g., restaurants. Each feature object in an Fi set
is associated with a location and a single quality value. The query returns
the k locations from D with the highest aggregate scores derived from the
m best quality values, each from a corresponding feature object set, in the
location’s spatial proximity. The basic setting of our MEO query is appar-
ently different in that an MEO query requires two spatial objects sets: one
for candidates and one for potential threats (i.e., possible dominators). Also,
the score functions of MEO queries involve a candidate object’s location and
quality attributes as well, whereas the score functions used in top-k spatial
preference queries [35, 36] do not support the multi-dimensional dominance
relationship used in MEO queries. Furthermore, the score functions in [35] do
not integrate the difference in distance; the extended score functions in [36]
integrate a distance decay effect without the use of neighborhood as in our
MEO query.

Rocha-Junior et al. [24] proposed a materialization technique that stores
pairs of distance and feature quality value to speed up the processing of top-k
spatial preference queries [35, 36]. However, the proposed technique is in-
applicable to MEO queries mainly for two reasons. First, the two problem
formulations are very different as described above. Second, in the setting
of MEO queries there is no counterpart for the originally available feature
quality values used by the materialization technique. In contrast, each score
in MEO queries must be computed on the fly through multiple steps includ-
ing distance restriction, dominance check, and calculation according to the
concrete score function. As a result, it is not guaranteed that the material-
ized objects are sufficient for finding the top-k objects according to the score
functions used in MEO queries.

Focusing on spatial objects with both locations and quality attributes, Li
et al. [15] defined three location selection problems by combining dominance
relationship and spatial distance. First, given a spatial object q from set
O, a nearest dominator query returns q’s nearest neighbor in O that domi-
nates q in terms of quality attributes. Second, given a hyperplane P in the
non-spatial attribute space of O, a least dominated, profitable points query
returns object(s) o from O such that o is dominated by some object(s) on P
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and the spatial distance from o to its dominator is maximized. Third, given
a hyperplane P as above, a minimal loss and least dominated points query
returns object(s) o from O such that its spatial distance to its dominator is
not less than a threshold δ and its distance to P on all non-spatial attributes
is minimized. All these three problems only consider one data set and their
objectives to minimize or maximize are different from the score functions in
our MEO query. Therefore, the solutions from [15] cannot be applied to solve
our MEO query.

Wen et al. [28] defined continuous relational top-k query (CRTQ) to con-
tinuously return the k dynamic objects having the highest scores with respect
to a group of related objects. A group function FG decides whether two giv-
en objects are related or not, whereas a score function FS determines an
object’s score with respect to a given group of objects. There are important
differences between CRTQ and MEO queries. First, CRTQ accepts a single
relation of objects, whereas the MEO query works for two spatial object set-
s. Second, CRTQ and MEO queries assume different data models. CRTQ
works for dynamic data where objects change their attribute values continu-
ously, while MEO query works for static spatial objects with fixed locations
and quality attributes. Objects in CRTQ are not necessarily spatial objects.
When spatial objects are considered in CRTQ, their coordinates are treated
equally as non-spatial attributes. In contrast, MEO query differentiates spa-
tial attributes and quality attributes in defining object scores. Third, CRTQ
and MEO queries use different score functions. A concrete MEO query only
needs one score function, while CRTQ employs two. Although the group
function FG is abstract enough to capture if an object is in another’s neigh-
borhood, it is unclear how the score function FS can support the dominance
based scores considered in MEO query.

Our early work [19] finds from a set of locations the one yielding the
longest distance from the dominator in a set of objects when a fixed qual-
ity vector is to be assigned to candidate locations. In contrast, this paper
handles the MEO query on two sets of spatial objects, i.e., finding the top-k
objects in one set that have the highest scores with respect to neighborhood
dominators from the other set. Although both works employ the three al-
gorithmic frameworks (IS, BFS, SJB), this paper’s algorithms contain local
designs specialized for the MEO query. Furthermore, this paper conducts
thorough analysis on the three score functions proposed, and devises effec-
tive search bounds that enable us to adapt the BFS and SJB algorithmic
frameworks to solve the MEO query with new score functions.

36



8.2. Skyline Queries Involving Spatial Data
Skyline queries has been extended to involve spatial data in different

scenarios. Huang and Jensen [11] proposed an in-route skyline query for
location-based services. When moving in a pre-defined road route towards a
destination, a user may visit points of interest in the network. Points to visit
are selected in terms of multiple distance-related preferences like detour and
total traveling distance. The authors optimize such selections using skyline
queries involving specific interesting dimensions.

Sharifzadeh and Shahabi [25] studied the spatial skyline query, a special-
ized version of the dynamic skyline query [22]. Given a set of query points
Q = {q1, . . . , qn} and two points p and p′, p is said to spatially dominate p′

iff dist(p, qi) ≤ dist(p′, qi) for any qi ∈ Q and dist(p, qi) < dist(p′, qi) for at
least one qi ∈ Q. The spatial skyline of a set of points P is the subset of
all points not spatially dominated by any other point of P . Observe that
such queries consider only spatial attributes but not any non-spatial quality
attributes.

Huang et al. [12] defined continuous skyline query in a spatiotemporal
context. A spatial object p dominates another object p′ with respect to a
query location q, if p is closer to q than p′ and p dominates p′ on all non-spatial
attributes. A continuous skyline query then maintains all spatial objects not
dominated by any others, while the query q is continuously moving along a
specified trajectory in the Euclidean space. Using a similar setting, Zheng
et al. [39] addressed how to compute the valid scope for such a query result
without knowing the movement pattern of the object.

Given a set of spatial objects and a set of locations, Shi et al. [26] formu-
lated a 2-dimensional skyline query that returns optimal locations with high
influence and low cost. A location’s influence is defined as the number of
neighboring spatial objects in its proximity, whereas its cost is derived from
its quality attributes.

These works above are similar in that they all study skyline problems
that involve multiple dimensions, i.e., spatial distances and/or those derived
from multiple quality attributes. The main difference of the MEO query is
that the MEO query itself is not a skyline problem. Recalling the motivation
example in Section 1, a non-skyline object (e.g., hotel h1) in the competitor
set can still dominate a candidate object (e.g., hotel s1) within its spatial
neighborhood.

Xie et al. [34] proposed to rank spatial objects according to their domi-
nating capability, which is opposite to this paper’s quantifying the effect of
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dominators in neighborhood. Moreover, work [34] handles a single data set
whereas MEO query requires two sets as input.

Unlike the constrained skyline query [22] where objects are filtered by
a constraint region in the domain of quality attributes, the spatial distance
constraint δ employed in the MEO query is only used in the spatial domain
but not on quality attributes.

8.3. Spatial Keyword Queries

Spatial keyword queries combine geo-spatial queries and keyword search,
enabling search for interesting locations that are associated with relevant
keywords. Multiple geo-textual indexes have been proposed for processing s-
patial keyword queries. Spatial-first Index (ST) and text-first Index (TS) [27]
are two grid based geo-textual indexing schemes for searching geo-tagged web
documents. The integrated inverted index (I3) [38] associates keywords to
quadrants in the quadtree structure for the spatial domain. The KR*-Tree
(Keyword R*-tree) [10] augments each R*-tree node with the set of keywords
that appear in its subtree. The IR2-tree [9] augments each R-tree node with
a signature file, a bitmap that is the union of all signatures of its subtrees, to
describe the keywords in that node. The IR-tree and its variants [7, 16, 31]
are essentially an R-tree in which each node is augmented with an inverted
index describing the textual information in the subtree. The Spatial Invert-
ed Index (S2I) [23] maps each frequent keyword to an aggregated R-tree and
each less frequent keyword to a block in a file. Chen et al. [5] conducted
intensive experiments on typical geo-textual hybrid indexes to evaluate their
performance for different types of queries. In contrast to these geo-textual
indexes, the augmented R-trees used in our algorithms involve object counts
and quality attributes rather than keywords or other textual information.

8.4. Spatial Join

Given a distance δ, and two spatial data sets S and P , the δ-distance join
returns each pair 〈s, p〉 (s ∈ S and p ∈ P ) such that their Euclidean distance
dist(s, p) is less than δ. The R-tree join (RJ) [3] can be applied to evaluate
the δ-distance join if S and P are indexed by R-trees RS and RP respectively.
RJ first examines the entries in the root nodes of RS and RP . If an entry eS
(of the tree RS) and an entry eP (of the tree RP ) satisfy mindist(eS, eP ) ≤ δ,
then the subtrees of eS and eP may contain some objects within δ. In that
case, RJ is recursively applied on the subtrees of eS and eP . Eventually,
RJ reaches the leaf level and reports the pairs of objects that are within
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δ. Efficient δ-distance join algorithms on high-dimensional data have been
studied in [14]. Zhu et al. [41] proposed the top-k spatial join for computing k
objects of S that intersect the largest number of objects in P . These studies
consider only spatial locations and spatial relationships between them; they
do not consider quality attributes as MEO query does.

9. Conclusion

In this paper, we formalize the most endangered object (MEO) query
for spatial data. Given a competitor object set P , a candidate object set
S, and a distance δ, the MEO query returns from S an object s with the
maximum effect indicated by the dominators from its δ-neighborhood in P .
For this generic query, we define three score functions, namely the dominator
counting score, the distance sensitive score, and the disadvantage aware score
to quantify the neighborhood dominators’ effect.

We propose three approaches for processing the MEO query. The IS
approach is an iterative search that only requires P to be indexed by an
R-tree. The best-first search (BFS) approach additionally requires an aggre-
gate R-tree for S, and prunes by using the aggregate counts in tree nodes.
The spatial-join based approach (SJB) joins two R-trees and prunes tree n-
odes more aggressively. We derive appropriate upper bounds for each score
function, such that each approach is able to accommodate all three score
functions. We also discuss how to support the generic distance in the MEO
query and what score function properties are needed by the three query pro-
cessing approaches. We conduct extensive experimental studies on both real
and synthetic data sets. The experimental results disclose that the SJB ap-
proach outperforms others in all settings and it is very scalable and stable
under different settings.
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