Probabilistic Spatial Queries on Existentially Uncertain
Data*

Xiangyuan Dai, Man Lung Yiu', Nikos Mamoulig, Yufei Tac?, and Michail Vaiti$

! Department of Computer Science, University of Hong Kong,
{xydai,mlyiu2,nikos }@cs.hku.hk
2 Department of Computer Science, City University of Hong Kong,
taoyf@cs.cityu.edu.hk
3 Department of Geography, University of the Aegean,
vaitis@aegean.gr

Abstract. We study the problem of answering spatial queries in databases where
objects exist with some uncertainty and they are associated witxiatential
probability. The goal of ghresholdingprobabilistic spatial query is to retrieve the
objects that qualify the spatial predicates with probability that exceeds a thresh-
old. Accordingly, aranking probabilistic spatial query selects the objects with

the highest probabilities to qualify the spatial predicates. We propose adapta-
tions of spatial access methods and search algorithms for probabilistic versions
of range queries and nearest neighbors and conduct an extensive experimental
study, which evaluates the effectiveness of proposed solutions.

1 Introduction

Conventional spatial databases manage objects located on a thematic map with 100%
certainty. In real-life cases, however, there may be uncertainty about the existence of
spatial objects or events. As an example, consider a satellite image, where interesting
objects (e.g., vessels) have been extracted (e.g., by a human expert or an image segmen-
tation tool). Due to low image resolution and/or color definitions, the data extractor may
not be 100% certain about whether a pixel formation corresponds to an actualgbject
a probability £, could be assigned te, reflecting the confidence afs existence. We
call such object®xistentially uncertainsince uncertainty does not refer to their loca-
tions, but to their existence. As another example of existentially uncertain data, consider
emergency calls to a police calling center, which are dialed from various map locations.
Depending on various factors (e.g., crime-rate of the caller’s district, caller’s voice, op-
erator's experience, etc.), for each call we can generate a spatial event associated with
a potential emergency and a probability that the emergency is actual. Existential prob-
abilities are also a natural way to modetzy classificatiofil]. In this case, the class
label of a particular object is uncertain; each class label takes an existential probability
and the sum of all probabilities is 1.

We can naturally define probabilistic versions of spatial queries that apply on col-
lections of existentially uncertain objects. We identify two types of such probabilistic

* Supported by grant HKU 7149/03E from Hong Kong RGC.

spatial queries. Given@nfidencehreshold, athresholdingquery returns the objects

(or object pairs, in case of a join), which qualify some spatial predicates with probabil-

ity at leastt. E.g., given a segmented satellite image with uncertain objects, consider a

port officer who wishes to find a set of vessélsuch that every € S is the nearest

ship to the port with confidence at le&8t%. Another example is a police station ask-

ing for the emergencies in its vicinity, which have high confidencearking spatial

query returns the objects, which qualify the spatial predicates of the query, in order of

their confidence. Ranking queries can also be thresholded (in analogy to nearest neigh-

bor queries) by a parameter. For instance, the port officer may want to retrieve the

m = 10 ships with the highest probability to be the nearest neighbor of the port.
Previous work on managing spatial data with uncertainty [20, 15, 12, 21, 5] focus on

locationally uncertain objects; i.e., objects which are known to exist, but their (uncer-

tain) location is described by a probability density function. The rationale is that the

managed objects are actual moving objects with unknown exact locations due to GPS

errors or transmission delays. On the other hand, there is no prior work on existentially

uncertain spatial data, to our knowledge. In this paper, we fill this gap by proposing

indexing and querying techniques for this important class of data. Our contributions are

summarized as follows:

— We identify the class of existentially uncertain spatial data and define two intuitive
probabilistic query types on theriiresholdingandranking queries.

— Assuming that the spatial attributes of the objects are indexed by 2-dimensional
indexes (i.e., R—trees), we propose search algorithms for probabilistic variants of
spatial range queries and nearest neighbor search.

— We show how extensions of R—trees that capture information about existential prob-
abilities in non-leaf node entries can be used to answer probabilistic queries at lower
I/O cost.

The rest of the paper is organized as follows. Section 2 provides background on
querying spatial objects with rigid or uncertain locations and extents. Section 3 defines
existentially uncertain data and query types on them. In Section 4 we study the eval-
uation of probabilistic spatial queries, when they are primarily indexed on their spa-
tial attributes, or when considering existential probability as an additional dimension.
Section 5 is a comprehensive experimental study for the performance of the proposed
methods. Section 6 discusses extensions of our methods for probabilistic versions of
complex query types and other (non-spatial) types of existentially uncertain data. Fi-
nally, Section 7 concludes the paper with a discussion about future work.

2 Background and Related Work

In this section, we review popular spatial query types and show how they can be pro-
cessed when the spatial objects are indexed by R—trees. In addition, we provide related
work on modeling and querying spatial objects of uncertain location and/or extent.

2.1 Spatial query processing

The most popular spatial access method is the R—tree [8], which indexes minimum
bounding rectangles (MBRs) of objects. R—trees can efficiently process main spatial

query types, including spatial range queries, nearest neighbor queries, and spatial joins.
Figure 1 shows a collectioR = {ps,...,ps} of spatial objects (e.g., points) and an
R—tree structure that indexes them. Given a spatial refigra spatial range query
retrieves fromR the objects that intersedt’. For instance, consider a range query
that asks for all objects within distan@efrom ¢, corresponding to the shaded area

in Figure 1. Starting from the root of the tree, the query is processed by recursively
following entries, having MBRs that intersect the query region. For instanck, BR

does not intersect the query region, thus no object in the subtree pointeddan
contain query results. On the other haaglis followed by the search algorithm and the
points in the corresponding node are examined recursively to find the querypresult

y
.MBR
K e
Ps e fe,le
1of & o.MBR
1 " 2
g)| P4 palpsl | Ppslp;] Palpslpg)
5 of’s
o-MBR o 8
“““““““““ X

Fig. 1. Spatial queries on R—trees

A nearest neighbor (NN) query takes as input a query oljectd returns the clos-
est object inR to ¢. For instance, the nearest neighboraf Figure 1 isp7. A popular
generalization is thé-NN query, which returns thé closest objects tg, given a pos-
itive integerk. NN (andk-NN) queries can be efficiently processedifis indexed by
an R—tree, using theest-first(BF) algorithm of [10]. Abest-firstpriority queuePQ,
which organizes R—tree entries based on the (minimum) distance of their MBRs to
is initialized with the root entries. The top entry of the queus then retrieved; it
is a leaf node entry, the corresponding object is returned as the next nearest neighbor
(assuming objects with no extent). Otherwise, the node pointedsgccessed and all
entries there are inserted £&). The process is repeated, uritibbjects are found. The
BF algorithm is shown [10] to be no worse in terms of I/O than any NN algorithm that
applies on the same R-tree. In order to find the NN @f Figure 1, BF first inserts
to PQ entriesey, es, e3, and their distances i@ Then the nearest entey is retrieved
from PQ and object®, p7, ps are inserted td’Q). The next nearest entry iRQ is p7,
which is the nearest neighbor @fIn Section 4, we will show how BF can be extended
to process probabilistic versions of nearest neighbor search on existentially uncertain
data.

2.2 Locationally uncertain spatial data

Recently, there is an increasing interest on the modeling, indexing, and querying of ob-
jects with uncertain location and/or extent. For instance, consider a collection of moving

objects, whose positions are tracked by GPS devices. Exact locations are unknown due
to GPS errors and transmission delays; e.g., if the object is in motion its location might
be outdated when reaching the listening server. As a result, locations are approximated
by probability density functions (PDFs), which integrate GPS error ranges and known
moving object velocities. For instance, the uncertainty of a location can be modeled by
a 2-dimensional Gaussian function, centered at the coordinates tracked from the GPS.

In [20], objects are assumed to move and send their positions to a centralized server.
Each objecb knows its last recorded locatidg; given a threshold, if the object finds
itself 6 units away fromi,, it sends an update with its new position. In this way, the
server knows that objects are no more tHaway from their recorded locations. Based
on this framework, a spatial regidi, (or line segment if the object's movement is
constrained on a line) coupled with a PDF models the set of possible locations for
each objecb. The probability foro to intersect a query rang& can be computed by
applying the PDF to the spatial intersectionlgfandV. In this way, we can compute
the result of gprobabilistic spatial range query, which includes all pajes P,), where
P, is the probability that object intersectdV’, and P, > 0.

Note that the probability of an object to intersect a given query range is independent
of that of other objects, a fact that makes range query processing straightforward. On the
other hand, the probability of objects to be the nearest neighbor of a reference object
¢ is not independent. Probabilistic nearest neighbor search for locationally uncertain
data has been studied in [5]. The algorithm proposed there first computes fast the set of
objects withP, > 0, using their (indexed) uncertainty regiotis only. Then for each
objecto in this set it integrates its probability to be closergtthan any other object,
using the PDFs, over all possible locationsoofThis process can be very expensive
for arbitrary PDFs, however, [5] shows how to optimize it for basic uncertainty regions
and PDFs. [19] indexes the trajectory of an object as a cylindrical volume around the
tracked polyline (e.g., by a GPS), capturing uncertainty up to a certain distance from
the polyline. A similar approach is followed in [15], where recorded trajectories are
converted to sequences of locations connected by elliptical volumes.

[21] also models the uncertain locations of spatial objects by (circular) uncertainty
regions and discuss how to process simple and aggregate spatial range queries using the
fuzzy representations. In addition, they provide a methodology that sets the maximum
precision error given a desired guaranteed uncertainty of the query results. [12] studies
the evaluation of spatial joins between two sets of objects, for the case where the object
extents are ‘floating’ according to uncertainty distance bounds. An extension of the R—
tree that captures uncertainty in directory node entries is proposed. Both the filter and
refinement steps of RJ are then adapted to process the join efficiently.

Cheng et al. [4, 6] study a problem related to probabilistic spatial range queries.
The uncertain data are not spatial, but ordinal (e.g., temperature values recorded from
sensors). Due to measurement/sampling errors, an actual value is modeled by a range
of possible values and a PDF that captures their probability. [6] indexes such uncertain
data for efficient evaluation of probabilistic range queries (e.g., ‘find all temperatures
between 30F and 40F together with their probability to be in this range’). [4] classi-
fies queries on such dataéatity-basedjueries asking for the set of objects satisfying
a query predicate andhlue-basedjueries asking for a PDF describing the distribution

of a query result when it is a single aggregate value (e.g., the sum of values, the max-
imum value, etc.). This work also proposes generic query evaluation techniques and
entropy-based measures for quantifying the quality of a probabilistic query result (e.g.,
how certainit is). Finally, [11] studies the evaluation of queries over uncertain or sum-
marized data, where the user specifies thresholds (precision, recall, laxity) regarding the
quality (i.e., accuracy) of the desired result. The query is initially applied on the uncer-
tain data and based on how accurate the retrieved result is, some of the actual objects
may be probed, in order to refine the accuracy of the result and bring its quality to the
desired levels.

3 Existentially Uncertain Spatial Data

An objectz is existentiallyuncertain if its existence is described by a probabikity;

0 < E, < 1. We refer toE,, asexistential probabilityor confidenceof z. Note that

since we can havg, = 1, we (trivially) regard a 100% known objectas existentially
uncertain. This allows us to model object collections which are mixtures of uncertain
and certain data. On the other hatig}, = 0 corresponds to an objectthat definitely

does not exist, so there is no need to store it in a database. Figure 2 shows a collection
R = {p1,pe,...,ps} Of 8 existentially uncertain points. Next to each point labgl

is its existential probability”,,, enclosed in parentheses (e &,, = 0.2). Given such

object collections, we are interested in answering spatial queries that take uncertainty
into account. We can easily define probabilistic versions of basic spatial query types:

Definition 1. Let R be a collection of existentially uncertain objects pfobabilistic

spatial range querytakes as input a spatial regidfi and returns al(z, P,) pairs,
such thatr € R andzx intersectd/?” with probability P, > 0. A probabilistic nearest
neighbor querytakes as input an objegtand returns al(x, P,)) pairs, such that € R

andz is the nearest neighbor gf with probability P, > 0.

In the above definitions the output of a probabilistic query is a conventional query
result coupled with a positive probability that the item satisfies the query. The case
of probabilistic range queries is simpl€,, = E, for each object that qualifies the
spatial predicate. Consider, for instance, the shaded wintioghown in Figure 2. Two

Fig. 2. NN search example

objectsp;, andp, intersect?, with confidencedr,, = 0.2andE,, = 0.5, respectively.
Similar to locationally uncertain data, the probability of an objetd qualify a spatial
range query is independent of the locations and confidences of other objects.

On the other hand, the probability of an object to be the nearest neighbor depends
on the locations and probabilities of other objects. Consider again Figure 2 and assume
that we want to find the potential nearest neighbor.oThe nearest point tg (i.e.,
pr) is the actual NN iffp; exists. Thus(pr, E,.) is a query result. In order for the
second nearest poipt to be the NN ofg (i) p; mustnot exist and (ii)ps must exist.

Thus, (ps, (1 — Ep,) - Ep,) is another result. By continuing this way, we can explore
the whole set of points if® and assign a probability to each of them to be the NN. of

This nearest neighbor query example not only shows the search complexity in un-
certain data, but also unveils that the result of probabilistic queries may be arbitrarily
large. For instance, the result of any NN query is as larggrasif £, < 1 for all
x € R. We can define practical versions of probabilistic queries with controlled out-
put by eitherthresholdingthe results of low probability to occur sankingthem and
selecting the most probable ones:

Definition 2. Let (7, P;) be an output item of a probabilistic spatial quegy The
thresholdingversion of @ takes as additional input a thresheld) < ¢ < 1 and re-
turns the results for whicl. > t. Therankingversion ofQ takes as additional input a
positive integern and returns then results with the highes®, .

For example, a thresholding range (window) quBrywith ¢ = 0.6 on the objects
of Figure 2 returnsz, whereas a ranking range qué#y with m = 1 returns(ps, 0.5).

4 Evaluation of Probabilistic Queries

Like spatial queries on exact data, probabilistic spatial queries can be efficiently pro-
cessed with the use of appropriate access methods. In this section, we explore alternative
indexing schemes and propose algorithms for probabilistic queries on them. We focus
on the most important spatial query types; namely, range queries and nearest neighbor
queries.

4.1 Algorithms for 2D R—trees

The most straightforward way to index a $&bf existentially uncertain spatial data is to
create a 2-dimensional R—tree on their spatial attribute. The confidences of the spatial
objects are stored together with their geometric representation or approximation (for
complex objects) at the leaves of the tree. We now study the evaluation of probabilistic
queries on top of this indexing scheme.

Range queries Probabilistic range queries can be easily processed in two steps; a
standard depth-first search algorithm is applied on the R—tree to retrieve the objects that
qualify the spatial predicate of the query. For each retrieved objeBt = E,. If the

queryQ is a thresholding query, the thresholis used to filter out objects witR, < t.
If Q is a ranking query, a priority queue maintains theesults with the highespP,,
during search, and outputs them at the end of query processing.

Nearest neighbor searchAs discussed, NN search is more complex compared to range
queries, because the probability of an object to qualify the query depends on the loca-
tions and confidences of other objects. Figure 3 shows an elegant and efficient algo-
rithm that computes the probabilify, of x to be nearest neighbor gf for all = having

P, > 0.

Algorithm PNN2D (g, 2D R-tree onR)

1. Pf"st:=1; *Prob. of no object before*/
2. while P/t > 0 and more objects it do
3. 2 = next NN ofg in R (use BF [10]);
P, :=pfirst LB,

output (z,P.);

Pfir:st = Pfir.st 3 (1 _ EL)’

o gk

Fig. 3. Probabilistic NN on a 2D R-tree

Algorithm PNN2D applies best-first NN-search [10] on the R—tree to incremen-
tally retrieve the nearest neighbors gfwithout considering confidences. It also in-
crementally maintains a variab/*"** which captures the probability that no object
retrieved before the current objectis the actual NNP/"*t is equal to[[(1 — E,),
for all objectsy seen before:.. Thus the probability of: to be the nearest neighbor of
qis Pfst . E,. In the example of Figure 2, PNN2D gradually compuigs = 0.1,

Py, = (1 -0.1)-0.1 = 0.09, Py, = (1 —-0.1)(1 —0.1)-0.2 = 0.162, P,, =
(1-0.1)(1-0.1)(1—-0.2)-0.5 = 0.324, etc. Note thaall objects ofR in this example

are retrieved and inserted to the response set. In other words, PNN2D does not termi-
nate, until an object with £, = 1 is found; if no such object exists, all objects have a
positive probability to be the nearest neighbor.

Thresholding and rankingAs discussed in Section 3, the user may want to restrict the
response set by thresholding or ranking. Figure 4 shows PTNN2D; the thresholding
version of PNN2D, which returns only the objeatsvith P, > ¢. The only differences

with the non-thresholding version are the termination condition at line 2 and the filtering
of results having?, < t (line 5). As soon a®/"s* < ¢, we know that the next objects,
even with 100% confidence cannot be the NNgpBo we can safely terminate. For
example, assume that we wish to retrieve the points in Figure 2 which are the NN of
q with probability at least = 0.23. First p; with P,, = E, = 0.1 is retrieved,
which is filtered out at line 5 and/*"** is set t00.9 > t. Then we retrieveps with

1 Especially for thresholding range queries of very large thresholasiable alternative could
be to use a B-tree that indexes objects based on their probability to efficiently access the
objectsz with £, > ¢ and then filter them using the spatial query predicate.

Py, = P/st . B, = 0.09 (also disqualified) and sét/i"st = 0.81 > t. Next,ps is
retrieved withP,, = 0.162 (also disqualified) andP’irst = 0.648 > t. The next object
py satisfiesP,, = 0.324 > t, thus(ps,0.324) is output. ThenP/ist = (.324 > ¢ and
we retrieveps with P,, = 0.0972 (disqualified). Finally,P/#st = 0.2268 < t and the
algorithm terminates having produced ofiby, 0.324).

PRNN2D (Figure 5), the ranking version of PNN2D, maintains a hHapf m
objects with the larged®, found so far. LetP™ be them-th largestP,, in H; as soon as
Pfirst < pm we know that the next objects, even with 100% confidence cannot be the
in the set ofn most probable NN of, so we can safely terminate. For example, assume
that we wish to retrieve the point with the highest probability of being the NI iof
Figure 2. PRNN2D progressively maintains the object with the higRgsAfter each
of the first 4 object accesseB;” becomeg).1, 0.1, 0.162, and0.324. The algorithm
terminates after the 4-th loop, whe? ! = (0.324 and P™ = P,, = 0.324; this
indicates that the next object can ha@gat mostP,,, thusp, has the highest chances
among all objects to be the NN of

Algorithm PTNN2D (g, 2D R—tree onR, t)

1. Pfst:=1; [*Prob. of no object before*/
2. while P/t > t and more objects i do
3. 2 = next NN ofg in R (use BF [10]);
P, =Pt g

if P, > tthen output (z,P.);

plirst .= plirst (1 — B,);

o g s

Fig. 4. Probabilistic NN on a 2D R-tree with thresholding

Algorithm PRNN2D (¢, 2D R—tree onRk, m)
pfirst .= 1: I*Prob. of no object before*/
H = @, I*heap ofm objects with highesP,*/
P™ :=0; [*P, of m-th object inH*/
while P¥"st > P™ and more objects i do
2 = next NN ofg in R (use BF [10]);
Pz = Pf'iTst . E:z;,
if P, > P™ updateH to includer;
Pfirst = Pfirst 3 (1 _ E‘L)'l
P™ :=m-th probability in H;

©CNoOO®DNE

Fig. 5. Probabilistic NN on a 2D R—tree with ranking

4.2 Using augmented R—trees to improve efficiency

We can enhance the efficiency of the probabilistic search algorithms, by augmenting
some statistical information to the R—tree directory node MBRs. A simple and intuitive

method is to store with each directory node ertayvaluec™**¥; the maximumz,, for

all objectsx indexed undee. This value can be used to prune R—tree nodes, while pro-
cessing thresholding or ranking queries. Similar augmentation techniques are proposed
in [12, 6] for locationally uncertain data.

Table 1 summarizes the conditions for pruning R-tree entries (and the correspond-
ing sub-trees) which do not point to any results, during range or NN thresholding and
ranking queries. For range queries, we can directly prune an enthen: (i)e.MBR
does not intersect the query range, or (ii)dt&**¥ satisfies the condition in the table.

On the other hand, for NN search, a disqualified entry cannot be directly pruned, be-
cause the confidences of objects in the pointed subtree may be needed for computing
the probabilities of objects with greater distances,tbut high enough probabilities to

be included in the result.

Let us assume for the moment that for each non-leaf entie know the exact
number of objectg™"™ in its subtree. Figure 6 shows the thresholding NN algorithm
for the augmented 2D R-tree. BF is extended as follows. If a non-leaf engye-
heaped for whichP/st . ¢mazE < ¢t the node where points is not immediately
loaded (as in PTNN2D) but is inserted into a sef of deletedentries. For objects
retrieved later from the Best-First heap, we use entries i® computeP" and
P™az; Jower and upper bounds fd?,. If P > ¢, we know thatr is definitely a
result. If P;*** < ¢, we know thatr is definitely not a result. On the other hand, if
pmin < ¢ < Pmaz (Lines 6-16), we must refine the probability range foiFor this
purpose, we pick an entryin L and load the corresponding node. If n. is a leaf
node, we access the objeetsn n.. If ¢ is nearer tee’ thanz, P77t is updated with
the confidence of’. Otherwise, its confidence does not affédt™s* and we enqueue
¢’ to the Best-First Queue. . is a non-leaf node, for each enttye n., we enqueue
¢’ to the Best-First Queue if(g,¢’) > d(q,), or inserte’ into L otherwise. In either
case, the probability range ofshrinks. The process is repeated while the range covers
t.

It remains to clarify howP*" and P™* for an objectr are computed. Note that
L only contains entries whose minimum distancegtare smaller thari(q,). For
an entrye in the list L, the confidence of each object in its subtree is in the range
(0, ema*E]. 1n addition, there exists at least one object inhose confidence is exactly
emarE Thus, P corresponds to the case where for all objects under all entries in
L are closer tg; thanz is and they all have the maximum possible confiden£s:*
corresponds to the case, where foraak L, with maximum distance from greater
thand(q, =), there is only one object witti"**¥ confidence (for all other objects under
e the confidence convergesa

Table 1.Checking disqualified entries using augmented 2D R—trees

[query type [range search|NN search \

thresholdinge™**% <t [pFirst. ¢masE ¢
ranking emacE < pm|pfirst gmazE < pm

Algorithm PTNN2Daug(q, augmented 2D R-tree dR, t)

1. pfirst = 1; I*Prob. of no object before*/

2. L :=a; [*List of disqualified non-leaf entries*/

3. while P/t > t and more objects i do

4. z:=nextNN ofgin R (use BF [10]); /* during BF-search, each non-leaf entry
with pfirst . emaerE ¢ s removed from Best-First heap and inserted ibto

5. computeP”" and P by usingP/""*t, L and F,;

6. while P/ <t < P™* do

7 pick an entrye in L;

8. remove the entry from L, read node:. pointed bye;

9. for eachentrye’ € n.

10. if mindist(q,e’) > d(q,z) then

11. enheap’ in the Best-First heap;

12. else ifn. is a non-leaf nodéhen

13. inserte’ into L;

14. else/*¢’ is an object*/

15. Pfirst = Pfirst . (1 o Ee/);

16. computeP™" and P™* by usingP/""*, L and F,;

17. if P™ > t then output (z, P, PI*®);
18. plirst.=plivst. (1 - B,);

’

Fig. 6. Probabilistic NN on a augmented 2D R—tree with thresholding

P;nm _ Pfirst B, - H (1 _ emazE>e"um (1)
e€ LAmindist(q,e)<d(q,z)
P;nax _ Pfi'r‘st B, - H (1 _ emamE’) (2)

e€ LAmaxzdist(q,e)<d(q,z)

In order to refine the probability range at Line 7 we must pick an entryL. We
can use several heuristics for determining whidb select: (i) the one with the largest
emarE (i) the one with the largest™**¥ . envm (i) the one with the smallest(q, ¢),
or (iv) by random. By experimentation, we found that heuristic (iii) achieves the best
results in most cases.

So far, we have assumed that for each non-leaf enting number of objectg™*"™
in its subtree is known (e.g., this information is augmented, or the tree is packed). We
can still apply the algorithm for the case where this information is not known, by using
an upper bound fagmvm: flevel(e) 'wherelevel(e) is the level of the entry (leaves are
at level0) and f is the maximum R—tree node fanout. This upper bound repldtes
in Equation 1.

Let us now show the functionality of the PTNN2Daug algorithm by an example.
Consider the augmented R—tree of Figure 7 that indexes the pointset of Figure 2 and
assume that we want to find the points that are the NN with probability at least
t = 0.23. First, the entries in the root are enheaped in the Best-First heap. Next, the
entry e, is dequeued. Since it disqualifies the queB/ (! - e**F = 0.2 < t),
it is inserted into the list.. Then, the entry; is dequeued. Its objects,, ps, pe are

enheaped in the Best-First Queue. The nearest ohjdstdequeued. From Equations

1 and 2, we derive a probability range By, by usingPfst and L. pg is disqualified

as Pt = By, = 0.1 < t. Then, P/"st = 0.9 > t and we retrievep,. Since

Pmin = 0.9-0.5- (1 —0.2)% = 0.2304 > ¢, py is a result. NextP/"st = 0.45 > ¢

and the next entry retrieved from the priority queue of the BF algorithe.isVe do

not access the node pointed &y since we know that for each objecindexed under

ey, P, < eparl. pfirst — (0225 < t. Thus,e; is inserted intd.. Next,ps is dequeued

and discarded aB;?** = 0.45-0.5- (1 - 0.2) - (1 — 0.5) < t. Now, the Best-First
heap becomes empty and the algorithm terminates. Note that the PTNN2D algorithm
accesses all nodes of the tree in this example, whereas PTNN2Daug saves two leaf node
accesses.

e e,le

10 . MBR 05)(0.2)[0.5
U 1 (0.2) 17%0 1) =(D 5
A s B 2\ o T
.pg(ovz)o (05)03) (02)02(0.1) (0B)UBY0.T)
5
7 1)
o MBR Yo aps09

ey
5 10 15

Fig. 7. Example of augmented 2D R-tree

TherankingNN algorithm that operates on the augmented R—tree is shown in Figure
8. It has several differences from the thresholding NN algorithm. A Eé&pemployed
to organize objects by their P7*". P™ denotes then-th highestP™" in the heap.
Observe that more complicated techniques are used for upddtiag the accesses to
L may affect the order of objects if. Each objecb in H maintainsP; ¢, which
is the value ofP/""** wheno is enheaped (line 21). At Lines 18-1B]"s* (for some
entries inH) is updated for each objeet found no further tham from ¢. The new
PJist value is used to updatB”™ and potentially the order of objects fif at lines
23-24. Note thatd may store more tham entries, since there may be objeotin
it satisfying P/*e* > p™ > P™in_ However, entries are removed fromH once
pPrer < pP™, The algorithm does not need to access any more objects from the Best-
First heap as soon &/t < P™. In caseH has more tham: objects at that point,
we need to refine the probability ranges of the object&ifby processing entries in
L) until we have the best objects. In this case, entriesare removed fronl. once
mindist(q,e) > max{d(q,0) : o € H} because such entries cannot be used to refine
the probability ranges of the objects ih.

We provide some insight for the space/time complexity of thresholding NN queries
for the augmented tree approach. The worst case is that, for all disqualified entries (if
any), their child nodes are accessed for refining the probability range of the objects
seen. Therefore, the value bEstimated in Section 4.1 can be used as the upper bound
in this case. The lisL. stores disqualified non-leaf entries in the tree and the cost of

Algorithm PRNN2Daug(g, augmented 2D R—tree dr, m)
plirst .= 1: I*Prob. of no object before*/
L := @; [*List of disqualified non-leaf entries*/
H := &; I*heap of objects, organized g™/
P™ :=0; [*P™" of m-th object inH*/
while P/i"s* > P™ and more objects i do
x = next NN ofq in R (use BF [10]); /* during BF-search, each non-leaf entry
with pFirst . emaerE ~ ¢ s removed from Best-First heap and inserted ibtd
7. computeP™" and P7**® by usingP/*"*!, I and E,;
8. while PV < P™ < P™** do

oA wWNE

9. pick an entrye in L;

10. remove the entry from L, read node:. pointed bye;
11. for eachentrye’ € n.

12. if mindist(q,e’) > d(q,z) then

13. enheap’ on Best-First heap;

14. else ifn. is a non-leaf nodéhen

15. inserte” into L;

16. else/*e’ is an object*/

17. plirst .= pfirst (1 _ B,);

18. for eachentryo € H such thatl(g,e’) < d(q,0)
19. pfirst .= pfirst . (1 — E.);

20. computeP™" and P by usingP/""**, L and E,;;

21. if P™" > P™ thenenheapld (¢, Pf""st:=pfirst pmin pmazyy,
22. if H is changedhen

23. recompute, for eache H, P/ and P/"** by usingP! !, L and E;
24, P™ :=m-th P™" in H;
25. remove entries from H with P)*** < P™;

26. pfirst.= pfirst (1 - E,);

27.while |H| > m and|L| > 0 do

28. repeat Lines 9-19;

29. repeat Lines 22-25;

30. removee from L with mindist(q, e) > max{d(g,0) : 0 € H};

Fig. 8. Probabilistic NN on a augmented 2D R-tree with ranking

refining the probability range of an object is directly proportional to the siZe dhus,

the space/time complexity depends on the sizé& .of\s the minimum distance of all
entries inL from the query point is at most the distance of the last object seen (in BF-
search), the maximum size @fcan be estimated by using the valuekofin practice,

the average size df is quite small (10-100) and the space/time required is much less
than that in the worst case.

4.3 Evaluation of Probabilistic Queries using 3D R—trees

An alternative method for indexing existentially uncertain data is to model the confi-
dencesE, of objectsx as an additional dimension and use a 3D R—tree to index the
objects. Now, each non-leaf entgyin the tree, apart from the spatial dimensions, has

a rangele™"E emarE] within which the existential probabilities of all objects in its

subtree fall. Since every enteystill stores are™ ¥, the methods discussed in Section
4.2 for the augmented 2D R-tree can be directly applied for the 3D R—tree. Moreover,
we can utilizee™™ to derive tighter probability ranges:

P;’nn — szrst . E:c . (1 o em'm,E)(l . emazE)(e
ec LAmindist(q,e)<d(q,z)

P;naz — Pfi'r.st N (1 _ 6minE)(e
e€ LAmazxdist(q,e)<d(q,z)

num_q)

®)

num_ 1y

(1 _ emazE) (4)

If the exact numbe¢™*“™ of object in the subtree pointed layis not known, we can
use the fanouf and the minimum node utilizatio) ¢ for R*—trees) and replacg*“™
by flevel(e) in Equation 3 and by0.4 - f)'v!(€) in Equation 4.

5 Experimental Evaluation

In this section, we evaluate the efficiency of the proposed techniques. All algorithms
were implemented in C++. Experiments were run on a PC with a Pentium 4 CPU of
2.3GHz. In all experiments, the page size was set to 1Kb, unless otherwise stated. No
memory buffers are used for caching disk pages between different queries; the number
of node accesses directly reflects the 1/0 cost.

We compare the performances of five indexes and their corresponding algorithms
for thresholding and ranking range queries and nearest neighbor search. The five in-
dexes are (i) a simple 2D R-tree (denote®by, (ii) a 2D R—tree, where each non-leaf
entrye is augmented witk™**F (denoted by2D AUG), (i) a 2D R—tree, where each
non-leaf entrye is augmented witk™**¥ ande™*™ (i.e., the number of objects in the
subtree indexed by it), denoted B AUG COUNT, (iv) a 3D R—tree (denoted 8D),
and (v) a 3D R-tree, where each non-leaf ertig augmented witlke™*™ (denoted
by 3D COUNT). When comparing the indexes note that (i) captures minimum informa-
tion in non-leaf entries and occupies the least space, whereas index (v) is at the other
end (entries capture maximum information and the index occupies the most space). For
each experiment, the measured 1/O cost is the average cost of 20 queries with the same
parameter values (but with different locations randomly chosen from the dataset).

5.1 Description of Data

For our experiments, we used various real datasets of different sizes and object distri-
butions, described in Table 2. The datasets TG and SF are obtained from [2] while the
other datasets are obtained from the R—tree Portalr(.rtreeportal.org).

Due to the lack of a real spatial dataset with objects having existential probabilities,
we generated probabilities for the objects, using the following methodology. First we
generateds = 20 anchorpoints randomly on the map, following the data distribution.
These points model locations around which there is large certainty for the existence of
data (e.g., they could be antennas of receivers close to which information is accurate).
For each pointz of the dataset, we (i) find the closest anchand (ii) assign an ex-
istential probability proportional t?m. Thus, the distribution of probabilities

around the anchors is a Zipfian one. The probabilities are normalized (dsimith
respect to the maximum probability)(corresponding to the anchor point. By changing
0 (default valuel) we can control the skew.

5.2 Experimental Results

Table 2 shows the performances of the five indexes for thresholding and ranking NN
queries on different datasets. Wefix- 0.002 for thresholding NN queries and = 10

for ranking NN queried.Observe that the augmented and 3D R-trees perform better
than the 2D R—tree, even though they are larger in size. The algorithms of Figures 6 and
8 manage to prune a large number of nodes that do not contain query results, which are
otherwise visited in the simple 2D R—tree index. The cost of 2D R—tree variants (i.e.,
methods{2D, 2D AUG, 2D AUG COUNT} does not change much with the database size.

By the analysis in Section 4.1, the number of points to be examined is independent of
the data size for 2D R—trees. The analysis in [18] shows that the cost increases slowly as
the data size increases. On the other hand, the 1/O costs of 3D R—tree variants increase
slowly as the database size increases. This is due to the fact that 3D R-trees group
entries using both spatial and probability dimensions, but the query algorithms mainly
search for objects based on spatial dimensions.

Table 2.1/0 cost of thresholding/ranking NN on different datasets, 0.002, m = 10

[Dataset [Size | 2D [2D AUG[2D AUG COUNT| 3D [3D COUNT]

(TG) San Joaquin road§l8623 |122.7/116.Y45.2/41.(37.3/34.2 36.5/32.9 35.4/31.6
(GR) Greece roads 23268 [115.3/108.240.5/34.4 34.2/29.8 37.0/31.9 32.8/28.5
(LB) Long Beach roads|53145 |107.5/100.137.3/32.7 32.4/28.2 44.7/41.1 42.0/38.0
(LA) LA streets 131461135.4/132.%43.1/42.3 38.1/36.9 48.4/47.4 45.6/45.2
(SF) San Francisco road§4956131.5/129.342.1/42.4 37.0/37.1 46.0/45.6 41.4/41.7
(TS) Tiger streams 194971130.7/129.240.5/40.4 36.0/35.8 |50.6/48.6 45.4/44.7

Figure 9 shows the I/O performance of the indexes for thresholding and ranking
queries on the SF dataset. Methd@® AUG, 2D AUG COUNT, 3D, 3D COUNT} per-
form much better than the simple 2D R—tree for all tested values axfd m. For
t > 0.02, less than 5 accesses are required to find the query result when using the
four advanced indexes and the algorithms of Figures 6 and 8. When comparing these
indexes, we observe that augmentiftf™ is not a good idea; using the fangfigives
accurate enough estimations Bf*” and P™**, Thus the extra space (translated to
extra accesses) required for augmentfig™ does not pay off. In addition, the aug-
mented R—tree performs better than the 3D R—tree. First, the 3D R—tree occupies more
space (the capacity of each non-leaf node is smaller) and results in more accesses, since
the extra space is not compensated by tightgf” and P** (see Equations 3 and 4).
Second, since the 3D R-tree groups entries to hodes using the existential probabilities

2 A small value fort is necessary in order to observe difference between the indexes. Larger
values fort will be tested in a subsequent experiment.

as well as spatial dimensions, it does not achieve as good partitionings as the one using
the spatial dimensions only; however, search is performed primarily using the spatial
dimensions.

200

2D o

AUG COUNT AUG COUT o
AUG —5—

3D COUNT —¢— 2
3D o

AUG
3D COUNT —»—
3D ——

150

o
8

0
0 001 002 003 004 005 006 007 008 009 0.1 0

threshold

20 40 60 80 100 120 140 160 180 200
m

(a) thresholding queries (b) ranking queries

Fig. 9. Queries on the SF datasét= 1

In the next experiment, we compare the performances of the indexes by varying the
skewnes® of existential probability distribution of the objects (using the SF dataset).
Figure 10 shows the experimental results for this case. We#ix0.002 andm = 10
for thresholding and ranking queries, respectively. The cost of the 2D R—tree increases
much faster than the other trees wheincreases. For largé there are a few, high
probabilities around the anchors and the rest are very small. Thus, most points have
low existential probabilities and the distances of the results from the query increase,
causing an increase in the costaf; only spatial information is used in the algorithms
of Figures 4 and 5. On the other hand, the advanced NN algorithms on the augmented
and 3D structures manage to prune disqualified directory nodes early.

500 20 —o— 2B —o—
AUG COUNT —— AUG COUNT
AUG AUG —5—

500

—=
3D COUNT —3¢—
3D ——

3D COUNT —%—
400 30—~

300

o
110

200

100

0

0 0.2 04 06 08 1 1.2 14 16 0
theta

02 04 06 08 1 1.2 1.4 1.6
theta

(a) thresholding queries,= 0.002 (b) ranking queries; = 10

Fig. 10.Queries on the SF dataset, varyihg

We also study the effect of page size on the performances of the indexes. As Figure
11 shows, the 1/O costs of all indexes are inversely proportional to the page size. This
is expected, due to the decrease of the number of nodes and heights of the trees.

300
7o) 300
AUG GOUNT ——

20 —o—
o AUG COUNT ——

250 3D COUNT —— e
3

3D COUNT —¢—
3D ——

110
110

512 1024 2048 4096 8192 512 1024 2048 4096 8192

page size(bytes) page size(bytes)

(a) thresholding queries,= 0.002 (b) ranking queries;n = 10

Fig. 11.Queries on the SF dataset, varying page size

Finally, we examine the performances of range queries on the indexes, using the SF
dataset. For range queries, we use an additional parameterhich is the extent of
the query window in each dimension. The default valuéeafis set to 5% of values
range (domain) at each dimension. Figure 12a and 12b show the cost of thresholding
and ranking queries as a functiontadindm respectively. Except for the simple 2D R—
tree, all indexes follow similar trends as in probabilistic nearest neighbor queries. The
cost of range queries on the 2D R—tree is independerodm as all points within the
spatial range are retrieved. Observe that for very si#ike augmented and 3D indexes
may perform worse than the 2D R—tree because (i) they prune no or very few directory
entries that have lower™**¥ thant and (i) they are larger in size than the simple 2D
R-tree. Similarly,P™ decreases withn, affecting the costs of the advanced methods.
The 3D R-tree performs worse than the augmented 2D R-tree also for range queries.
Figure 12c shows the cost of thresholding queries as a functidenpfatt = 0.002.
As expected, the costs of all methods increase linearly Witf. In summary, in most
cases of probabilistic NN and range queries, a 2D R-tree with augmentéd non-
leaf entries achieves the best performance.

2D —o— 2D o
AUG COUNT —— AUG COUNT ——
AUG ——

2D ——

14 = " AUG COUNT ——
3D COUNT —%— 3D COUNT ——

12 0~ 3 o

=
3D COUNT —¢—
30—

1

1

0 0,005 001 0015 002

0O 20 40 60 8 100 120 140 160 180 200 o B o s 2 25
t m

lengtn(3%)

(a) thresholding queries ¥s (b) ranking queries v&: (c) thresholding queries Vgn

Fig. 12.Range queries on the SF dataset

6 Discussion

We have defined and studied in detail probabilistic range and nearest neighbor queries
on existentially uncertain spatial data. In this section, we briefly discuss probabilistic
versions of other spatial query types and queries on other (non-spatial) existentially
uncertain data.

Extended query type&iven two spatial datasef® and.S, aprobabilistic spatial join
returns all((r, s), Pr»s) pairs, such that € R, s € S, andr intersectss with proba-

bility P.,s > 0. We can easily define thresholding and ranking versions of this query.
Extending the well-known R—tree join algorithm [3] for probabilistic joins is straight-
forward, becaus@, »; depends solely o, andFE; (i.e., P.as = Exns = E.- Es) and

is independent of the probabilities of other pairs. Given two spatial datAsetdS and

a positive integek, a closest pairs (CP) query [9, 7] returns from the Cartesian product
R x S thek (r, s) object pairs with the smallest distance. The probabilistic version of

a CP query is challenging, due to the interdependence of the existential probabilities of
qualifying pairs. The problem can be solved by extending the techniques for probabilis-
tic NN queries and it is left for future work. Other interesting spatial query types for
which we can define probabilistic versions are aggregate nearest neighbor queries [13],
skyline queries [14], and reverse nearest neighbor search [17].

Spatio-temporal and ordinal dataDur methods can be easily extended for the case,
where the objects also carry temporal attributes, i.e., they are spatio-temporal. In this
case, the queries also include the time dimension e.g.,find the most probable nearest
neighbor at some moment in the whole past history’. R—trees that index object tra-
jectories (e.g., [16]) can be used by our algorithms for searching. The temporal range
may also be restricted to some timestamps or time interval (e.g.,'find the most probable
nearest neighbor at some moment in the whole past history’). Finally, although our dis-
cussion so far has been on spatial (or spatio-temporal) data, the queries and solutions
can be directly refer to ordinal data of any dimensionality (e.g., uncertain transmissions
of combinations of measures, like temperature values).

7 Conclusions

In this paper, we presented the interesting problem of evaluating spatial queries for ex-
istentially uncertain data. Variants of common spatial queries, like range and nearest
neighbor search, have probabilistic versions for this data model. We proposed algo-
rithms for these probabilistic versions and several extensions of spatial access methods
(i.e., R—trees) where these algorithms are applied. In addition, we discuss how more
complex spatial queries can be processed in our framework. Finally, we conducted ex-
tensive experiments to evaluate the search algorithms and the corresponding spatial
indexes. In most of the tested cases, the data structure that performs best is a R—tree,
where non-leaf entries are augmented with maximum existential probabilities of the
sub-tree they point at. In the future, we plan to study in detail more advanced query
types and extend our methods to apply on data that are both existentially and location-
ally uncertain, as well as results of fuzzy classifiers [1].

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. P. M. Atkinson and N. J. Tate, editor8dvances in Remote Sensing and GIS Analylsikn
Wiley & Sons, 1999.

. T. Brinkhoff. A framework for generating network-based moving obje@solnformatica
6(2):153-180, 2002.

. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-trees.
In Proc. of ACM SIGMOD1993.

. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over impre-
cise data. IrProc. of ACM SIGMOD2003.

. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise data in moving object
environments|EEE TKDE 16(9):1112-1127, 2004.

. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing methods for
probabilistic threshold queries over uncertain datePrioc. of VLDB 2004.

. A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest pair queries
in spatial databases. Froc. of ACM SIGMOD2000.

. A. Guttman. R-trees: A dynamic index structure for spatial searchingPrde. of ACM
SIGMOD pages 47-57, 1984.

. G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In

Proc. of ACM SIGMOD1998.

G. R. Hjaltason and H. Samet. Distance browsing in spatial databad€ TODS

24(2):265-318, 1999.

I. Lazaridis and S. Mehrotra. Approximate selection queries over imprecise dé&sdnof

ICDE, pages 140-152, 2004.

J. Ni, C. V. Ravishankar, and B. Bhanu. Probabilistic spatial database operatidRcin

of SSTD2003.

D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queri@scin

of ICDE, 2004.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline

queries. InProc. of ACM SIGMOD2003.

D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object representations. In

Proc. of SSD1999.

D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing for

moving object trajectories. IRroc. of VLDB 2000.

Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary dimensionalRyodn

of VLDB, 2004.

Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An efficient cost model for optimization of

nearest neighbor search in low and medium dimensional speE. TKDE, 16(10):1169—

1184, 2004.

G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain. The geometry of uncertainty in

moving objects databases. Pnoc. of EDBT Conf.2002.

O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying databases

that track mobile unitsDistributed and Parallel Database3(3):257-387, 1999.

X.Yuand S. Mehrotra. Capturing uncertainty in spatial queries over imprecise d&endn

of DEXA 2003.

