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Abstract. We study the problem of answering spatial queries in databases where
objects exist with some uncertainty and they are associated with anexistential
probability. The goal of athresholdingprobabilistic spatial query is to retrieve the
objects that qualify the spatial predicates with probability that exceeds a thresh-
old. Accordingly, aranking probabilistic spatial query selects the objects with
the highest probabilities to qualify the spatial predicates. We propose adapta-
tions of spatial access methods and search algorithms for probabilistic versions
of range queries and nearest neighbors and conduct an extensive experimental
study, which evaluates the effectiveness of proposed solutions.

1 Introduction

Conventional spatial databases manage objects located on a thematic map with 100%
certainty. In real-life cases, however, there may be uncertainty about the existence of
spatial objects or events. As an example, consider a satellite image, where interesting
objects (e.g., vessels) have been extracted (e.g., by a human expert or an image segmen-
tation tool). Due to low image resolution and/or color definitions, the data extractor may
not be 100% certain about whether a pixel formation corresponds to an actual objectx;
a probabilityEx could be assigned tox, reflecting the confidence ofx’s existence. We
call such objectsexistentially uncertain, since uncertainty does not refer to their loca-
tions, but to their existence. As another example of existentially uncertain data, consider
emergency calls to a police calling center, which are dialed from various map locations.
Depending on various factors (e.g., crime-rate of the caller’s district, caller’s voice, op-
erator’s experience, etc.), for each call we can generate a spatial event associated with
a potential emergency and a probability that the emergency is actual. Existential prob-
abilities are also a natural way to modelfuzzy classification[1]. In this case, the class
label of a particular object is uncertain; each class label takes an existential probability
and the sum of all probabilities is 1.

We can naturally define probabilistic versions of spatial queries that apply on col-
lections of existentially uncertain objects. We identify two types of such probabilistic
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spatial queries. Given aconfidencethresholdt, a thresholdingquery returns the objects
(or object pairs, in case of a join), which qualify some spatial predicates with probabil-
ity at leastt. E.g., given a segmented satellite image with uncertain objects, consider a
port officer who wishes to find a set of vesselsS such that everyx ∈ S is the nearest
ship to the port with confidence at least30%. Another example is a police station ask-
ing for the emergencies in its vicinity, which have high confidence. Arankingspatial
query returns the objects, which qualify the spatial predicates of the query, in order of
their confidence. Ranking queries can also be thresholded (in analogy to nearest neigh-
bor queries) by a parameterm. For instance, the port officer may want to retrieve the
m = 10 ships with the highest probability to be the nearest neighbor of the port.

Previous work on managing spatial data with uncertainty [20, 15, 12, 21, 5] focus on
locationallyuncertain objects; i.e., objects which are known to exist, but their (uncer-
tain) location is described by a probability density function. The rationale is that the
managed objects are actual moving objects with unknown exact locations due to GPS
errors or transmission delays. On the other hand, there is no prior work on existentially
uncertain spatial data, to our knowledge. In this paper, we fill this gap by proposing
indexing and querying techniques for this important class of data. Our contributions are
summarized as follows:

– We identify the class of existentially uncertain spatial data and define two intuitive
probabilistic query types on them;thresholdingandrankingqueries.

– Assuming that the spatial attributes of the objects are indexed by 2-dimensional
indexes (i.e., R–trees), we propose search algorithms for probabilistic variants of
spatial range queries and nearest neighbor search.

– We show how extensions of R–trees that capture information about existential prob-
abilities in non-leaf node entries can be used to answer probabilistic queries at lower
I/O cost.

The rest of the paper is organized as follows. Section 2 provides background on
querying spatial objects with rigid or uncertain locations and extents. Section 3 defines
existentially uncertain data and query types on them. In Section 4 we study the eval-
uation of probabilistic spatial queries, when they are primarily indexed on their spa-
tial attributes, or when considering existential probability as an additional dimension.
Section 5 is a comprehensive experimental study for the performance of the proposed
methods. Section 6 discusses extensions of our methods for probabilistic versions of
complex query types and other (non-spatial) types of existentially uncertain data. Fi-
nally, Section 7 concludes the paper with a discussion about future work.

2 Background and Related Work

In this section, we review popular spatial query types and show how they can be pro-
cessed when the spatial objects are indexed by R–trees. In addition, we provide related
work on modeling and querying spatial objects of uncertain location and/or extent.

2.1 Spatial query processing

The most popular spatial access method is the R–tree [8], which indexes minimum
bounding rectangles (MBRs) of objects. R–trees can efficiently process main spatial



query types, including spatial range queries, nearest neighbor queries, and spatial joins.
Figure 1 shows a collectionR = {p1, . . . , p8} of spatial objects (e.g., points) and an
R–tree structure that indexes them. Given a spatial regionW , a spatial range query
retrieves fromR the objects that intersectW . For instance, consider a range query
that asks for all objects within distance3 from q, corresponding to the shaded area
in Figure 1. Starting from the root of the tree, the query is processed by recursively
following entries, having MBRs that intersect the query region. For instance,e1.MBR
does not intersect the query region, thus no object in the subtree pointed bye1 can
contain query results. On the other hand,e2 is followed by the search algorithm and the
points in the corresponding node are examined recursively to find the query resultp7.
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Fig. 1. Spatial queries on R–trees

A nearest neighbor (NN) query takes as input a query objectq and returns the clos-
est object inR to q. For instance, the nearest neighbor ofq in Figure 1 isp7. A popular
generalization is thek-NN query, which returns thek closest objects toq, given a pos-
itive integerk. NN (andk-NN) queries can be efficiently processed ifR is indexed by
an R–tree, using thebest-first(BF) algorithm of [10]. Abest-firstpriority queuePQ,
which organizes R–tree entries based on the (minimum) distance of their MBRs toq
is initialized with the root entries. The top entry of the queuee is then retrieved; ife
is a leaf node entry, the corresponding object is returned as the next nearest neighbor
(assuming objects with no extent). Otherwise, the node pointed bye is accessed and all
entries there are inserted toPQ. The process is repeated, untilk objects are found. The
BF algorithm is shown [10] to be no worse in terms of I/O than any NN algorithm that
applies on the same R–tree. In order to find the NN ofq in Figure 1, BF first inserts
to PQ entriese1, e2, e3, and their distances toq. Then the nearest entrye2 is retrieved
from PQ and objectsp1, p7, p8 are inserted toPQ. The next nearest entry inPQ is p7,
which is the nearest neighbor ofq. In Section 4, we will show how BF can be extended
to process probabilistic versions of nearest neighbor search on existentially uncertain
data.

2.2 Locationally uncertain spatial data

Recently, there is an increasing interest on the modeling, indexing, and querying of ob-
jects with uncertain location and/or extent. For instance, consider a collection of moving



objects, whose positions are tracked by GPS devices. Exact locations are unknown due
to GPS errors and transmission delays; e.g., if the object is in motion its location might
be outdated when reaching the listening server. As a result, locations are approximated
by probability density functions (PDFs), which integrate GPS error ranges and known
moving object velocities. For instance, the uncertainty of a location can be modeled by
a 2-dimensional Gaussian function, centered at the coordinates tracked from the GPS.

In [20], objects are assumed to move and send their positions to a centralized server.
Each objecto knows its last recorded locationlo; given a thresholdθ, if the object finds
itself θ units away fromlo, it sends an update with its new position. In this way, the
server knows that objects are no more thanθ away from their recorded locations. Based
on this framework, a spatial regionUo (or line segment if the object’s movement is
constrained on a line) coupled with a PDF models the set of possible locations for
each objecto. The probability foro to intersect a query rangeW can be computed by
applying the PDF to the spatial intersection ofUo andW . In this way, we can compute
the result of aprobabilisticspatial range query, which includes all pairs〈o, Po〉, where
Po is the probability that objecto intersectsW , andPo > 0.

Note that the probability of an object to intersect a given query range is independent
of that of other objects, a fact that makes range query processing straightforward. On the
other hand, the probability of objects to be the nearest neighbor of a reference object
q is not independent. Probabilistic nearest neighbor search for locationally uncertain
data has been studied in [5]. The algorithm proposed there first computes fast the set of
objects withPo > 0, using their (indexed) uncertainty regionsUo only. Then for each
objecto in this set it integrates its probability to be closer toq than any other object,
using the PDFs, over all possible locations ofo. This process can be very expensive
for arbitrary PDFs, however, [5] shows how to optimize it for basic uncertainty regions
and PDFs. [19] indexes the trajectory of an object as a cylindrical volume around the
tracked polyline (e.g., by a GPS), capturing uncertainty up to a certain distance from
the polyline. A similar approach is followed in [15], where recorded trajectories are
converted to sequences of locations connected by elliptical volumes.

[21] also models the uncertain locations of spatial objects by (circular) uncertainty
regions and discuss how to process simple and aggregate spatial range queries using the
fuzzy representations. In addition, they provide a methodology that sets the maximum
precision error given a desired guaranteed uncertainty of the query results. [12] studies
the evaluation of spatial joins between two sets of objects, for the case where the object
extents are ‘floating’ according to uncertainty distance bounds. An extension of the R–
tree that captures uncertainty in directory node entries is proposed. Both the filter and
refinement steps of RJ are then adapted to process the join efficiently.

Cheng et al. [4, 6] study a problem related to probabilistic spatial range queries.
The uncertain data are not spatial, but ordinal (e.g., temperature values recorded from
sensors). Due to measurement/sampling errors, an actual value is modeled by a range
of possible values and a PDF that captures their probability. [6] indexes such uncertain
data for efficient evaluation of probabilistic range queries (e.g., ‘find all temperatures
between 30◦F and 40◦F together with their probability to be in this range’). [4] classi-
fies queries on such data toentity-basedqueries asking for the set of objects satisfying
a query predicate andvalue-basedqueries asking for a PDF describing the distribution



of a query result when it is a single aggregate value (e.g., the sum of values, the max-
imum value, etc.). This work also proposes generic query evaluation techniques and
entropy-based measures for quantifying the quality of a probabilistic query result (e.g.,
how certain it is). Finally, [11] studies the evaluation of queries over uncertain or sum-
marized data, where the user specifies thresholds (precision, recall, laxity) regarding the
quality (i.e., accuracy) of the desired result. The query is initially applied on the uncer-
tain data and based on how accurate the retrieved result is, some of the actual objects
may be probed, in order to refine the accuracy of the result and bring its quality to the
desired levels.

3 Existentially Uncertain Spatial Data

An objectx is existentiallyuncertain if its existence is described by a probabilityEx,
0 < Ex ≤ 1. We refer toEx asexistential probabilityor confidenceof x. Note that
since we can haveEx = 1, we (trivially) regard a 100% known objectx as existentially
uncertain. This allows us to model object collections which are mixtures of uncertain
and certain data. On the other hand,Ex = 0 corresponds to an objectx that definitely
does not exist, so there is no need to store it in a database. Figure 2 shows a collection
R = {p1, p2, . . . , p8} of 8 existentially uncertain points. Next to each point labelpi,
is its existential probabilityEpi enclosed in parentheses (e.g.,Ep1 = 0.2). Given such
object collections, we are interested in answering spatial queries that take uncertainty
into account. We can easily define probabilistic versions of basic spatial query types:

Definition 1. Let R be a collection of existentially uncertain objects. Aprobabilistic
spatial range querytakes as input a spatial regionW and returns all(x, Px) pairs,
such thatx ∈ R andx intersectsW with probabilityPx > 0. A probabilistic nearest
neighbor querytakes as input an objectq and returns all(x, Px) pairs, such thatx ∈ R
andx is the nearest neighbor ofq, with probabilityPx > 0.

In the above definitions the output of a probabilistic query is a conventional query
result coupled with a positive probability that the item satisfies the query. The case
of probabilistic range queries is simple;Px = Ex for each object that qualifies the
spatial predicate. Consider, for instance, the shaded windowW , shown in Figure 2. Two

p
1

p
2 p

3

p
4

p
5

p
6

p
7

p
8

x

y

(0.1)

(0.3)

(0.5)
(0.2)

(0.2)

(0.5)

(0.1)

(0.5)

q

W

5 10 15

5

10

15

y

Fig. 2. NN search example



objectsp1 andp2 intersectW , with confidencesEp1 = 0.2 andEp2 = 0.5, respectively.
Similar to locationally uncertain data, the probability of an objectx to qualify a spatial
range query is independent of the locations and confidences of other objects.

On the other hand, the probability of an object to be the nearest neighbor depends
on the locations and probabilities of other objects. Consider again Figure 2 and assume
that we want to find the potential nearest neighbor ofq. The nearest point toq (i.e.,
p7) is the actual NN iffp7 exists. Thus,(p7, Ep7) is a query result. In order for the
second nearest pointp6 to be the NN ofq (i) p7 mustnot exist and (ii)p6 must exist.
Thus,(p6, (1 − Ep7) · Ep6) is another result. By continuing this way, we can explore
the whole set of points inR and assign a probability to each of them to be the NN ofq.

This nearest neighbor query example not only shows the search complexity in un-
certain data, but also unveils that the result of probabilistic queries may be arbitrarily
large. For instance, the result of any NN query is as large as|R|, if Ex < 1 for all
x ∈ R. We can define practical versions of probabilistic queries with controlled out-
put by eitherthresholdingthe results of low probability to occur orranking them and
selecting the most probable ones:

Definition 2. Let (τ, Pτ ) be an output item of a probabilistic spatial queryQ. The
thresholdingversion ofQ takes as additional input a thresholdt, 0 < t ≤ 1 and re-
turns the results for whichPτ ≥ t. Therankingversion ofQ takes as additional input a
positive integerm and returns them results with the highestPτ .

For example, a thresholding range (window) queryW with t = 0.6 on the objects
of Figure 2 returns∅, whereas a ranking range queryW with m = 1 returns(p2, 0.5).

4 Evaluation of Probabilistic Queries

Like spatial queries on exact data, probabilistic spatial queries can be efficiently pro-
cessed with the use of appropriate access methods. In this section, we explore alternative
indexing schemes and propose algorithms for probabilistic queries on them. We focus
on the most important spatial query types; namely, range queries and nearest neighbor
queries.

4.1 Algorithms for 2D R–trees

The most straightforward way to index a setR of existentially uncertain spatial data is to
create a 2-dimensional R–tree on their spatial attribute. The confidences of the spatial
objects are stored together with their geometric representation or approximation (for
complex objects) at the leaves of the tree. We now study the evaluation of probabilistic
queries on top of this indexing scheme.

Range queries Probabilistic range queries can be easily processed in two steps; a
standard depth-first search algorithm is applied on the R–tree to retrieve the objects that
qualify the spatial predicate of the query. For each retrieved objectx, Px = Ex. If the



queryQ is a thresholding query, the thresholdt is used to filter out objects withPx < t.1

If Q is a ranking query, a priority queue maintains them results with the highestPx,
during search, and outputs them at the end of query processing.

Nearest neighbor searchAs discussed, NN search is more complex compared to range
queries, because the probability of an object to qualify the query depends on the loca-
tions and confidences of other objects. Figure 3 shows an elegant and efficient algo-
rithm that computes the probabilityPx of x to be nearest neighbor ofq, for all x having
Px > 0.

Algorithm PNN2D (q, 2D R–tree onR)
1. P first := 1; /*Prob. of no object beforex*/
2. while P first > 0 and more objects inR do
3. x := next NN ofq in R (use BF [10]);
4. Px := P first · Ex;
5. output (x,Px);
6. P first := P first · (1− Ex);

Fig. 3. Probabilistic NN on a 2D R–tree

Algorithm PNN2D applies best-first NN-search [10] on the R–tree to incremen-
tally retrieve the nearest neighbors ofq, without considering confidences. It also in-
crementally maintains a variableP first which captures the probability that no object
retrieved before the current objectx is the actual NN.P first is equal to

∏
(1 − Ey),

for all objectsy seen beforex. Thus the probability ofx to be the nearest neighbor of
q is P first · Ex. In the example of Figure 2, PNN2D gradually computesPp7 = 0.1,
Pp6 = (1 − 0.1) · 0.1 = 0.09, Pp8 = (1 − 0.1)(1 − 0.1) · 0.2 = 0.162, Pp4 =
(1−0.1)(1−0.1)(1−0.2) ·0.5 = 0.324, etc. Note thatall objects ofR in this example
are retrieved and inserted to the response set. In other words, PNN2D does not termi-
nate, until an objectx with Ex = 1 is found; if no such object exists, all objects have a
positive probability to be the nearest neighbor.

Thresholding and rankingAs discussed in Section 3, the user may want to restrict the
response set by thresholding or ranking. Figure 4 shows PTNN2D; the thresholding
version of PNN2D, which returns only the objectsx with Px ≥ t. The only differences
with the non-thresholding version are the termination condition at line 2 and the filtering
of results havingPx < t (line 5). As soon asP first < t, we know that the next objects,
even with 100% confidence cannot be the NN ofq, so we can safely terminate. For
example, assume that we wish to retrieve the points in Figure 2 which are the NN of
q with probability at leastt = 0.23. First p7 with Pp7 = Ep7 = 0.1 is retrieved,
which is filtered out at line 5 andP first is set to0.9 ≥ t. Then we retrievep6 with

1 Especially for thresholding range queries of very large thresholdst, a viable alternative could
be to use a B+–tree that indexes objects based on their probability to efficiently access the
objectsx with Ex ≥ t and then filter them using the spatial query predicate.



Pp6 = P first · Ep6 = 0.09 (also disqualified) and setP first = 0.81 ≥ t. Next,p8 is
retrieved withPp8 = 0.162 (also disqualified) andP first = 0.648 ≥ t. The next object
p4 satisfiesPp4 = 0.324 ≥ t, thus(p4, 0.324) is output. ThenP first = 0.324 ≥ t and
we retrievep3 with Pp3 = 0.0972 (disqualified). Finally,P first = 0.2268 < t and the
algorithm terminates having produced only(p4, 0.324).

PRNN2D (Figure 5), the ranking version of PNN2D, maintains a heapH of m
objects with the largestPx found so far. LetPm be them-th largestPx in H; as soon as
P first < Pm, we know that the next objects, even with 100% confidence cannot be the
in the set ofm most probable NN ofq, so we can safely terminate. For example, assume
that we wish to retrieve the point with the highest probability of being the NN ofq in
Figure 2. PRNN2D progressively maintains the object with the highestPx. After each
of the first 4 object accesses,Pm becomes0.1, 0.1, 0.162, and0.324. The algorithm
terminates after the 4-th loop, whenP first = 0.324 andPm = Pp4 = 0.324; this
indicates that the next object can havePx at mostPp4 , thusp4 has the highest chances
among all objects to be the NN ofq.

Algorithm PTNN2D (q, 2D R–tree onR, t)
1. P first := 1; /*Prob. of no object beforex*/
2. while P first ≥ t and more objects inR do
3. x := next NN ofq in R (use BF [10]);
4. Px := P first · Ex;
5. if Px ≥ t then output (x,Px);
6. P first := P first · (1− Ex);

Fig. 4. Probabilistic NN on a 2D R–tree with thresholding

Algorithm PRNN2D (q, 2D R–tree onR, m)
1. P first := 1; /*Prob. of no object beforex*/
2. H :=∅; /*heap ofm objects with highestPx*/
3. P m := 0; /*Px of m-th object inH*/
4. while P first > P m and more objects inR do
5. x := next NN ofq in R (use BF [10]);
6. Px := P first · Ex;
7. if Px > P m updateH to includex;
8. P first := P first · (1− Ex);
9. P m := m-th probability inH;

Fig. 5. Probabilistic NN on a 2D R–tree with ranking

4.2 Using augmented R–trees to improve efficiency

We can enhance the efficiency of the probabilistic search algorithms, by augmenting
some statistical information to the R–tree directory node MBRs. A simple and intuitive



method is to store with each directory node entrye a valueemaxE ; the maximumEx for
all objectsx indexed undere. This value can be used to prune R–tree nodes, while pro-
cessing thresholding or ranking queries. Similar augmentation techniques are proposed
in [12, 6] for locationally uncertain data.

Table 1 summarizes the conditions for pruning R-tree entries (and the correspond-
ing sub-trees) which do not point to any results, during range or NN thresholding and
ranking queries. For range queries, we can directly prune an entrye when: (i)e.MBR
does not intersect the query range, or (ii) itsemaxE satisfies the condition in the table.
On the other hand, for NN search, a disqualified entry cannot be directly pruned, be-
cause the confidences of objects in the pointed subtree may be needed for computing
the probabilities of objects with greater distances toq, but high enough probabilities to
be included in the result.

Let us assume for the moment that for each non-leaf entrye we know the exact
number of objectsenum in its subtree. Figure 6 shows the thresholding NN algorithm
for the augmented 2D R-tree. BF is extended as follows. If a non-leaf entrye is de-
heaped for whichP first · emaxE < t, the node wheree points is not immediately
loaded (as in PTNN2D) bute is inserted into a setL of deletedentries. For objects
retrieved later from the Best-First heap, we use entries inL to computePmin

x and
Pmax

x ; lower and upper bounds forPx. If Pmin
x ≥ t, we know thatx is definitely a

result. If Pmax
x < t, we know thatx is definitely not a result. On the other hand, if

Pmin
x < t ≤ Pmax

x (Lines 6–16), we must refine the probability range forx. For this
purpose, we pick an entrye in L and load the corresponding nodene. If ne is a leaf
node, we access the objectse′ in ne. If q is nearer toe′ thanx, P first is updated with
the confidence ofe′. Otherwise, its confidence does not affectP first and we enqueue
e′ to the Best-First Queue. Ifne is a non-leaf node, for each entrye′ ∈ ne, we enqueue
e′ to the Best-First Queue ifd(q, e′) > d(q, x), or inserte′ into L otherwise. In either
case, the probability range ofx shrinks. The process is repeated while the range covers
t.

It remains to clarify howPmin
x andPmax

x for an objectx are computed. Note that
L only contains entries whose minimum distance toq are smaller thand(q, x). For
an entrye in the list L, the confidence of each object in its subtree is in the range
(0, emaxE ]. In addition, there exists at least one object ine whose confidence is exactly
emaxE . Thus,Pmin

x corresponds to the case where for all objects under all entries in
L are closer toq thanx is and they all have the maximum possible confidences.Pmax

x

corresponds to the case, where for alle ∈ L, with maximum distance fromq greater
thand(q, x), there is only one object withemaxE confidence (for all other objects under
e the confidence converges to0):

Table 1.Checking disqualified entries using augmented 2D R–trees

query type range search NN search

thresholdingemaxE < t P first · emaxE < t

ranking emaxE ≤ P m P first · emaxE ≤ P m



Algorithm PTNN2Daug(q, augmented 2D R–tree onR, t)
1. P first := 1; /*Prob. of no object beforex*/
2. L :=∅; /*List of disqualified non-leaf entries*/
3. while P first ≥ t and more objects inR do
4. x := next NN ofq in R (use BF [10]); /* during BF-search, each non-leaf entry

with P first · emaxE < t is removed from Best-First heap and inserted intoL*/
5. computeP min

x andP max
x by usingP first, L andEx;

6. while P min
x < t ≤ P max

x do
7. pick an entrye in L;
8. remove the entrye from L, read nodene pointed bye;
9. for eachentrye′ ∈ ne

10. if mindist(q, e′) > d(q, x) then
11. enheape′ in the Best-First heap;
12. else ifne is a non-leaf nodethen
13. inserte′ into L;
14. else/*e′ is an object*/
15. P first := P first · (1− Ee′);
16. computeP min

x andP max
x by usingP first, L andEx;

17. if P min
x ≥ t then output (x,P min

x ,P max
x );

18. P first := P first · (1− Ex);

Fig. 6. Probabilistic NN on a augmented 2D R–tree with thresholding

Pmin
x = P first · Ex ·

∏

e∈L∧mindist(q,e)≤d(q,x)

(1− emaxE)enum

(1)

Pmax
x = P first · Ex ·

∏

e∈L∧maxdist(q,e)≤d(q,x)

(1− emaxE) (2)

In order to refine the probability range at Line 7 we must pick an entrye in L. We
can use several heuristics for determining whiche to select: (i) the one with the largest
emaxE , (ii) the one with the largestemaxE ·enum, (iii) the one with the smallestd(q, e),
or (iv) by random. By experimentation, we found that heuristic (iii) achieves the best
results in most cases.

So far, we have assumed that for each non-leaf entrye the number of objectsenum

in its subtree is known (e.g., this information is augmented, or the tree is packed). We
can still apply the algorithm for the case where this information is not known, by using
an upper bound forenum: f level(e), wherelevel(e) is the level of the entrye (leaves are
at level0) andf is the maximum R–tree node fanout. This upper bound replacesenum

in Equation 1.
Let us now show the functionality of the PTNN2Daug algorithm by an example.

Consider the augmented R–tree of Figure 7 that indexes the pointset of Figure 2 and
assume that we want to find the points that are the NN ofq with probability at least
t = 0.23. First, the entries in the root are enheaped in the Best-First heap. Next, the
entry e2 is dequeued. Since it disqualifies the query (P first · emaxE

2 = 0.2 < t),
it is inserted into the listL. Then, the entrye3 is dequeued. Its objectsp4, p5, p6 are



enheaped in the Best-First Queue. The nearest objectp6 is dequeued. From Equations
1 and 2, we derive a probability range forPp6 by usingP first andL. p6 is disqualified
as Pmax

p6
= Ep6 = 0.1 < t. Then,P first = 0.9 ≥ t and we retrievep4. Since

Pmin
p4

= 0.9 · 0.5 · (1 − 0.2)3 = 0.2304 ≥ t, p4 is a result. Next,P first = 0.45 ≥ t
and the next entry retrieved from the priority queue of the BF algorithm ise1. We do
not access the node pointed bye1, since we know that for each objectx indexed under
e1, Px ≤ emaxE

1 ·P first = 0.225 < t. Thus,e1 is inserted intoL. Next,p5 is dequeued
and discarded asPmax

p5
= 0.45 · 0.5 · (1 − 0.2) · (1 − 0.5) < t. Now, the Best-First

heap becomes empty and the algorithm terminates. Note that the PTNN2D algorithm
accesses all nodes of the tree in this example, whereas PTNN2Daug saves two leaf node
accesses.
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Fig. 7. Example of augmented 2D R–tree

TherankingNN algorithm that operates on the augmented R–tree is shown in Figure
8. It has several differences from the thresholding NN algorithm. A heapH is employed
to organize objectso by theirPmin

o . Pm denotes them-th highestPmin
o in the heap.

Observe that more complicated techniques are used for updatingH, as the accesses to
L may affect the order of objects inH. Each objecto in H maintainsP first

o , which
is the value ofP first wheno is enheaped (line 21). At Lines 18–19,P first

o (for some
entries inH) is updated for each objecte′ found no further thano from q. The new
P first

o value is used to updatePmin
o and potentially the order of objects inH at lines

23–24. Note thatH may store more thanm entries, since there may be objectso in
it satisfyingPmax

o ≥ Pm ≥ Pmin
o . However, entrieso are removed fromH once

Pmax
o < Pm. The algorithm does not need to access any more objects from the Best-

First heap as soon asP first < Pm. In caseH has more thanm objects at that point,
we need to refine the probability ranges of the objects inH (by processing entries in
L) until we have the bestm objects. In this case, entriese are removed fromL once
mindist(q, e) > max{d(q, o) : o ∈ H} because such entries cannot be used to refine
the probability ranges of the objects inH.

We provide some insight for the space/time complexity of thresholding NN queries
for the augmented tree approach. The worst case is that, for all disqualified entries (if
any), their child nodes are accessed for refining the probability range of the objects
seen. Therefore, the value ofk estimated in Section 4.1 can be used as the upper bound
in this case. The listL stores disqualified non-leaf entries in the tree and the cost of



Algorithm PRNN2Daug(q, augmented 2D R–tree onR, m)
1. P first := 1; /*Prob. of no object beforex*/
2. L :=∅; /*List of disqualified non-leaf entries*/
3. H :=∅; /*heap of objects, organized byP min

o */
4. P m := 0; /*P min of m-th object inH*/
5. while P first > P m and more objects inR do
6. x := next NN ofq in R (use BF [10]); /* during BF-search, each non-leaf entry

with P first · emaxE < t is removed from Best-First heap and inserted intoL*/
7. computeP min

x andP max
x by usingP first, L andEx;

8. while P min
x < P m ≤ P max

x do
9. pick an entrye in L;
10. remove the entrye from L, read nodene pointed bye;
11. for eachentrye′ ∈ ne

12. if mindist(q, e′) > d(q, x) then
13. enheape′ on Best-First heap;
14. else ifne is a non-leaf nodethen
15. inserte′ into L;
16. else/*e′ is an object*/
17. P first := P first · (1− Ee′);
18. for eachentryo ∈ H such thatd(q, e′) ≤ d(q, o)

19. P first
o := P first

o · (1− Ee′);
20. computeP min

x andP max
x by usingP first, L andEx;

21. if P min
x > P m then enheap(H,(x,P first

x :=P first,P min
x ,P max

x ));
22. if H is changedthen
23. recompute, for eacho ∈ H, P min

o andP max
o by usingP first

o , L andEo;
24. P m := m-th P min in H;
25. remove entrieso from H with P max

o < P m;
26. P first := P first · (1− Ex);
27.while |H| > m and|L| > 0 do
28. repeat Lines 9–19;
29. repeat Lines 22–25;
30. removee from L with mindist(q, e) > max{d(q, o) : o ∈ H};

Fig. 8. Probabilistic NN on a augmented 2D R–tree with ranking

refining the probability range of an object is directly proportional to the size ofL. Thus,
the space/time complexity depends on the size ofL. As the minimum distance of all
entries inL from the query point is at most the distance of the last object seen (in BF-
search), the maximum size ofL can be estimated by using the value ofk. In practice,
the average size ofL is quite small (10–100) and the space/time required is much less
than that in the worst case.

4.3 Evaluation of Probabilistic Queries using 3D R–trees

An alternative method for indexing existentially uncertain data is to model the confi-
dencesEx of objectsx as an additional dimension and use a 3D R–tree to index the
objects. Now, each non-leaf entrye in the tree, apart from the spatial dimensions, has
a range[eminE , emaxE ] within which the existential probabilities of all objects in its



subtree fall. Since every entrye still stores anemaxE , the methods discussed in Section
4.2 for the augmented 2D R–tree can be directly applied for the 3D R–tree. Moreover,
we can utilizeeminE to derive tighter probability ranges:

P min
x = P first · Ex ·

Y

e∈L∧mindist(q,e)≤d(q,x)

(1− eminE)(1− emaxE)(e
num−1) (3)

P max
x = P first · Ex ·

Y

e∈L∧maxdist(q,e)≤d(q,x)

(1− eminE)(e
num−1)(1− emaxE) (4)

If the exact numberenum of object in the subtree pointed bye is not known, we can
use the fanoutf and the minimum node utilization (0.4 for R*–trees) and replaceenum

by f level(e) in Equation 3 and by(0.4 · f)level(e) in Equation 4.

5 Experimental Evaluation

In this section, we evaluate the efficiency of the proposed techniques. All algorithms
were implemented in C++. Experiments were run on a PC with a Pentium 4 CPU of
2.3GHz. In all experiments, the page size was set to 1Kb, unless otherwise stated. No
memory buffers are used for caching disk pages between different queries; the number
of node accesses directly reflects the I/O cost.

We compare the performances of five indexes and their corresponding algorithms
for thresholding and ranking range queries and nearest neighbor search. The five in-
dexes are (i) a simple 2D R–tree (denoted by2D), (ii) a 2D R–tree, where each non-leaf
entrye is augmented withemaxE (denoted by2D AUG), (iii) a 2D R–tree, where each
non-leaf entrye is augmented withemaxE andenum (i.e., the number of objects in the
subtree indexed by it), denoted by2D AUG COUNT, (iv) a 3D R–tree (denoted by3D),
and (v) a 3D R–tree, where each non-leaf entrye is augmented withenum (denoted
by 3D COUNT). When comparing the indexes note that (i) captures minimum informa-
tion in non-leaf entries and occupies the least space, whereas index (v) is at the other
end (entries capture maximum information and the index occupies the most space). For
each experiment, the measured I/O cost is the average cost of 20 queries with the same
parameter values (but with different locations randomly chosen from the dataset).

5.1 Description of Data

For our experiments, we used various real datasets of different sizes and object distri-
butions, described in Table 2. The datasets TG and SF are obtained from [2] while the
other datasets are obtained from the R–tree Portal (www.rtreeportal.org ).

Due to the lack of a real spatial dataset with objects having existential probabilities,
we generated probabilities for the objects, using the following methodology. First we
generatedK = 20 anchorpoints randomly on the map, following the data distribution.
These points model locations around which there is large certainty for the existence of
data (e.g., they could be antennas of receivers close to which information is accurate).
For each pointx of the dataset, we (i) find the closest anchora and (ii) assign an ex-
istential probability proportional to 1

(c·dist(x,a))θ . Thus, the distribution of probabilities



around the anchors is a Zipfian one. The probabilities are normalized (usingc) with
respect to the maximum probability (1) corresponding to the anchor point. By changing
θ (default value:1) we can control the skew.

5.2 Experimental Results

Table 2 shows the performances of the five indexes for thresholding and ranking NN
queries on different datasets. We fixt = 0.002 for thresholding NN queries andm = 10
for ranking NN queries.2 Observe that the augmented and 3D R–trees perform better
than the 2D R–tree, even though they are larger in size. The algorithms of Figures 6 and
8 manage to prune a large number of nodes that do not contain query results, which are
otherwise visited in the simple 2D R–tree index. The cost of 2D R–tree variants (i.e.,
methods{2D, 2D AUG, 2D AUG COUNT} does not change much with the database size.
By the analysis in Section 4.1, the number of points to be examined is independent of
the data size for 2D R–trees. The analysis in [18] shows that the cost increases slowly as
the data size increases. On the other hand, the I/O costs of 3D R–tree variants increase
slowly as the database size increases. This is due to the fact that 3D R–trees group
entries using both spatial and probability dimensions, but the query algorithms mainly
search for objects based on spatial dimensions.

Table 2. I/O cost of thresholding/ranking NN on different datasets,t = 0.002, m = 10

Dataset Size 2D 2D AUG 2D AUG COUNT 3D 3D COUNT

(TG) San Joaquin roads18623 122.7/116.745.2/41.0 37.3/34.2 36.5/32.9 35.4/31.6
(GR) Greece roads 23268 115.3/108.240.5/34.8 34.2/29.8 37.0/31.9 32.8/28.5
(LB) Long Beach roads 53145 107.5/100.137.3/32.7 32.4/28.2 44.7/41.1 42.0/38.0
(LA) LA streets 131461135.4/132.343.1/42.3 38.1/36.9 48.4/47.4 45.6/45.2
(SF) San Francisco roads174956131.5/129.342.1/42.4 37.0/37.1 46.0/45.6 41.4/41.7
(TS) Tiger streams 194971130.7/129.240.5/40.4 36.0/35.8 50.6/48.6 45.4/44.7

Figure 9 shows the I/O performance of the indexes for thresholding and ranking
queries on the SF dataset. Methods{2D AUG, 2D AUG COUNT, 3D, 3D COUNT} per-
form much better than the simple 2D R–tree for all tested values oft and m. For
t ≥ 0.02, less than 5 accesses are required to find the query result when using the
four advanced indexes and the algorithms of Figures 6 and 8. When comparing these
indexes, we observe that augmentingenum is not a good idea; using the fanoutf gives
accurate enough estimations ofPmin andPmax. Thus the extra space (translated to
extra accesses) required for augmentingenum does not pay off. In addition, the aug-
mented R–tree performs better than the 3D R–tree. First, the 3D R–tree occupies more
space (the capacity of each non-leaf node is smaller) and results in more accesses, since
the extra space is not compensated by tighterPmin andPmax (see Equations 3 and 4).
Second, since the 3D R–tree groups entries to nodes using the existential probabilities

2 A small value fort is necessary in order to observe difference between the indexes. Larger
values fort will be tested in a subsequent experiment.



as well as spatial dimensions, it does not achieve as good partitionings as the one using
the spatial dimensions only; however, search is performed primarily using the spatial
dimensions.
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Fig. 9. Queries on the SF dataset,θ = 1

In the next experiment, we compare the performances of the indexes by varying the
skewnessθ of existential probability distribution of the objects (using the SF dataset).
Figure 10 shows the experimental results for this case. We fixt = 0.002 andm = 10
for thresholding and ranking queries, respectively. The cost of the 2D R–tree increases
much faster than the other trees whenθ increases. For largeθ there are a few, high
probabilities around the anchors and the rest are very small. Thus, most points have
low existential probabilities and the distances of the results from the query increase,
causing an increase in the cost of2D; only spatial information is used in the algorithms
of Figures 4 and 5. On the other hand, the advanced NN algorithms on the augmented
and 3D structures manage to prune disqualified directory nodes early.
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We also study the effect of page size on the performances of the indexes. As Figure
11 shows, the I/O costs of all indexes are inversely proportional to the page size. This
is expected, due to the decrease of the number of nodes and heights of the trees.
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Fig. 11.Queries on the SF dataset, varying page size

Finally, we examine the performances of range queries on the indexes, using the SF
dataset. For range queries, we use an additional parameterlen, which is the extent of
the query window in each dimension. The default value oflen is set to 5% of values
range (domain) at each dimension. Figure 12a and 12b show the cost of thresholding
and ranking queries as a function oft andm respectively. Except for the simple 2D R–
tree, all indexes follow similar trends as in probabilistic nearest neighbor queries. The
cost of range queries on the 2D R–tree is independent oft andm as all points within the
spatial range are retrieved. Observe that for very smallt, the augmented and 3D indexes
may perform worse than the 2D R–tree because (i) they prune no or very few directory
entries that have loweremaxE thant and (ii) they are larger in size than the simple 2D
R–tree. Similarly,Pm decreases withm, affecting the costs of the advanced methods.
The 3D R–tree performs worse than the augmented 2D R–tree also for range queries.
Figure 12c shows the cost of thresholding queries as a function oflen, at t = 0.002.
As expected, the costs of all methods increase linearly withlen2. In summary, in most
cases of probabilistic NN and range queries, a 2D R–tree with augmentedemaxE non-
leaf entries achieves the best performance.
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6 Discussion

We have defined and studied in detail probabilistic range and nearest neighbor queries
on existentially uncertain spatial data. In this section, we briefly discuss probabilistic
versions of other spatial query types and queries on other (non-spatial) existentially
uncertain data.

Extended query typesGiven two spatial datasetsR andS, a probabilistic spatial join
returns all(〈r, s〉, Pr∧s) pairs, such thatr ∈ R, s ∈ S, andr intersectss with proba-
bility Pr∧s > 0. We can easily define thresholding and ranking versions of this query.
Extending the well-known R–tree join algorithm [3] for probabilistic joins is straight-
forward, becausePr∧s depends solely onEr andEs (i.e.,Pr∧s = Er∧s = Er ·Es) and
is independent of the probabilities of other pairs. Given two spatial datasetsR andS and
a positive integerk, a closest pairs (CP) query [9, 7] returns from the Cartesian product
R × S thek 〈r, s〉 object pairs with the smallest distance. The probabilistic version of
a CP query is challenging, due to the interdependence of the existential probabilities of
qualifying pairs. The problem can be solved by extending the techniques for probabilis-
tic NN queries and it is left for future work. Other interesting spatial query types for
which we can define probabilistic versions are aggregate nearest neighbor queries [13],
skyline queries [14], and reverse nearest neighbor search [17].

Spatio-temporal and ordinal dataOur methods can be easily extended for the case,
where the objects also carry temporal attributes, i.e., they are spatio-temporal. In this
case, the queries also include the time dimension e.g.,‘find the most probable nearest
neighbor at some moment in the whole past history’. R–trees that index object tra-
jectories (e.g., [16]) can be used by our algorithms for searching. The temporal range
may also be restricted to some timestamps or time interval (e.g.,‘find the most probable
nearest neighbor at some moment in the whole past history’). Finally, although our dis-
cussion so far has been on spatial (or spatio-temporal) data, the queries and solutions
can be directly refer to ordinal data of any dimensionality (e.g., uncertain transmissions
of combinations of measures, like temperature values).

7 Conclusions

In this paper, we presented the interesting problem of evaluating spatial queries for ex-
istentially uncertain data. Variants of common spatial queries, like range and nearest
neighbor search, have probabilistic versions for this data model. We proposed algo-
rithms for these probabilistic versions and several extensions of spatial access methods
(i.e., R–trees) where these algorithms are applied. In addition, we discuss how more
complex spatial queries can be processed in our framework. Finally, we conducted ex-
tensive experiments to evaluate the search algorithms and the corresponding spatial
indexes. In most of the tested cases, the data structure that performs best is a R–tree,
where non-leaf entries are augmented with maximum existential probabilities of the
sub-tree they point at. In the future, we plan to study in detail more advanced query
types and extend our methods to apply on data that are both existentially and location-
ally uncertain, as well as results of fuzzy classifiers [1].
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