
Thresholded Range Aggregation in Sensor Networks

Zhifeng Lin† Man Lung Yiu‡ Nikos Mamoulis†

†Department of Computer Science, University of Hong Kong
{zflin, nikos}@cs.hku.hk

‡Department of Computer Science, Aalborg University
mly@cs.aau.dk

Abstract— The recent advances in wireless sensor technologies
(e.g., Mica, Telos motes) enable the economic deployment of
lightweight sensors for capturing data from their surrounding
environment, serving various monitoring tasks, like forest wildfire
alarming and volcano activity. We propose a novel query called
thresholded range aggregate query (TRA), which retrieves the
IDs of the sensors for which the average measurement in their
neighborhood exceeds a user-given threshold. This query provides
results that they are robust against individual sensor abnormality,
and yet precisely summarize the sensors’ status in each local
region. In order to process the (snapshot) TRA query, we develop
energy-efficient protocols based on appropriate operators and
filters in sensor nodes. The design of these operators and filters
is non-trivial, due to the fact that each sensor measurement
influences the actual results of other nodes in its neighborhood
region. Furthermore, we extend our protocols for continuous
evaluation of the TRA query. Experimental results show that
our proposed solutions indeed offer substantial energy savings
for both real and synthetic sensor networks.

I. INTRODUCTION

The recent sensor network technology (e.g., Mica, Telos

motes) allows economic deployment of large number of sen-

sors, for measuring values from their residing environment.

Sensor networks are essential for monitoring applications,

e.g., agricultural industry maintenance [1] and environmental

monitoring [2]. Figure 1a illustrates a sensor network for

measuring temperatures, in which each white spot represents

a sensor (node) and the dotted edges indicate the pairs of

nodes within their limited communication range (e.g., 100m).

Each sensor mainly spends its energy on communication

with neighborhood sensors. Due to the limited energy stored

in the sensors, energy-efficient protocols [3]–[8] have been

developed to reduce the power consumption of sensors, while

processing aggregation queries in the network.

41 � 45 � 47 � 51 � 46 �

45 � 43 � 42 � 45 � 44 �

44.9 � 44.9 � 44.9 � 44.9 � 44.9 �

44.9 � 44.9 � 44.9 � 44.9 � 44.9 �

S

(a) Measured temperatures (b) Global average (λ = ∞)

41 � 45 � 47 � 51 � 46 �

45 � 43 � 42 � 45 � 44 �

S

43.7 � 44 � 46.3 � 47.3 � 47 �

43 � 43.8 � 44.3 � 45.5 � 45 �

S

(c) Individual value (λ = 0) (d) Local average (λ = 1)

Fig. 1. Aggregation query in a network (δ = 45◦C)

We introduce a novel query type that finds regions in the

sensor network space, where the aggregate measurements in

the region qualify some predicate (e.g., average temperature

above 45 degrees). Given a threshold value δ and a radius

λ, the Thresholded Range Aggregate (TRA) query retrieves

each sensor (ID) s such that the average measured value (of

sensors) within its neighborhood range (of radius λ) is above

the threshold δ. In a volcano monitoring application, a TRA

query can be applied to study local activities of the volcano in

an effective manner; each local circular area (of λ = 100m)

with average temperature above δ = 90◦C indicates high

volcano activity. In a forest wildfire monitoring application,

a local circular area (of λ = 100m) with average temperature

above δ = 45◦C reflects a potential wildfire in that particular

area. An appropriate range λ allows us to extract reliable yet

localized results from the environment.

Our TRA query provides more meaningful results than

alternative approaches. Suppose that the sensor network of

Figure 1a has been deployed to monitor a potential area of

forest wildfire (e.g., temperature above threshold δ = 45◦C).

A typical aggregate query [9] returns the global average tem-

perature of all sensors, e.g., 44.9◦C in Figure 1b. This result is

robust against individual abnormal sensor readings, e.g., some

sensors are located at wet shadows or exposed on the rock.

However, it cannot show the temperatures at local regions in

the network. For this purpose, one may consider retrieving

each individual sensor reading above the temperature threshold

(45◦C), i.e., black spots in Figure 1c. Unfortunately, this

allows abnormally high readings to be returned. Unlike the two

extreme approaches discussed above, our TRA query computes

the average temperature in each local area. In Figure 1d, each

value next to a sensor s indicates the average temperature

within its neighborhood region (i.e., within λ =1 hop). Only

the nodes in black report their result. In summary, the result

set of TRA (i) is robust against fluctuation of individual sensor

reading, and (ii) accurately reflect the overall measurement in

each local region.

Despite being an important query, the TRA has not been

studied in the literature before. We present energy-efficient

protocols for processing the query, based on in-network eval-

uation strategies [10]–[12], by pushing appropriate query pred-

icates from the base station into sensor nodes. The challenge

is that existing in-network techniques for joins [5], [13] are

either infeasible or inefficient for TRA. For instance, Abadi

et al. [5] considered a relational join between the sensors

values and a static table of predicates. In contrast, the sensors

in the TRA result are dynamically influenced by the other

sensors in their neighborhood region, at run time. Yiu et al.

[13] proposed a generic spatial pattern query that returns each

combination of sensor nodes that satisfy a predefined condition

of sensor values and neighborhood relationship. Such a query

is inherently different from TRA because each TRA result is

a sensor node (as opposed to a combination of sensors nodes).

Hence, there is a need for developing in-network techniques

tailored to TRA.

In this paper, we not only examine snapshot TRA queries

(i.e., querying once) but also study the evaluation of con-

tinuous TRA queries. For example, the continuous query

“report the TRA result every 10 seconds” is being periodically

evaluated at each epoch (10 seconds). In a typical environ-

ment with slowly changing measurements (e.g., temperatures),

there are few differences between the results of consecutive

epochs. To reduce power consumption, a local tolerance bound

[s.lb, s.ub] can be installed at each node s, such that any future

measurement s.m of s falling into the interval can be safely

without affecting the query result. The challenges here are:

(i) the correctness of the query result must be guaranteed by

these bounds, and (ii) the actual bounds depend on the previous

readings at the sensor nodes. We propose a novel technique

for deriving these local tolerance bounds in the network, and

discuss their maintenance.

In summary, our main contributions in this paper are:

• the proposal of the a novel query type (TRA), which

identifies interesting spatial regions in a sensor network

based on the aggregate sensor readings in them

• the development of various protocols for evaluating the

snapshot TRA query

• solutions for processing the continuous TRA query

The remainder of the paper is organized as follows. Section

II reviews the work related to our problem. Section III formally

defines the problem and the relevant notations. In Section IV,

we present several protocols for evaluating the snapshot TRA.

Section V discusses the processing of the continuous version

of TRA. Section VI experimentally demonstrates the efficiency

of our solutions. Finally, Section VII concludes the paper.

II. RELATED WORK

A sensor (node) takes a measurement (from its environ-

ment) and communicates with other sensors (i.e., neighbors)

within its bounded communication range. Each sensor has

limited energy and it mainly consumes energy on these three

operations [2]: (i) sending/broadcasting a packet to neighbor

sensors, (ii) receiving a packet from a neighbor sensor, and

(iii) passively listening for messages from any neighbor sensor.

By conceptually linking the sensors within the communication

range, we obtain a sensor network. Query evaluation tech-

niques for a sensor network aim at minimizing the energy

consumption. DBMS prototypes for sensor networks (e.g.,

TinyDB [9], Cougar [14]) provide the user a convenient query

interface for processing the measured values from sensors in

the network.

Section II-A reviews the construction of the routing tree,

which is essential for efficient aggregate operations in the

network. Section II-B discusses the techniques for imple-

menting operators and filters in network nodes for reducing

communication cost.

A. Aggregation and Routing Tree

A typical aggregate query in a sensor network looks like:

“compute the sum (or average) of all sensor values in the

network”. Usually, the query is registered at base station,

which is connected to a root (sensor) node. To evaluate the

query, we first need to build a routing tree [9], and then

propagate the measured values from sensor nodes to the base

station via the routing tree. We proceed to elaborate these two

steps in detail.

In the first step, the base station sends the query to the root

node, which then applies a breadth-first protocol to disseminate

the query and define the routing tree dynamically in the sensor

network. In the second step, sensors deliver their readings (and

aggregate them) via the routing tree. The child nodes take

measurements first and then send values to the level above,

whereas the parent nodes wake up, listen/receive messages,

and aggregate the received values with its own measurement.

Observe that this aggregate operation can be done in sensor

nodes, for distributive functions (e.g., sum) and algebraic

functions (e.g., average). By synchronizing the above process

in the routing tree level-by-level, the root eventually obtains

the final aggregate value and then sends it to the base station.

The query described above is a snapshot query, which is

executed only once in the network. In contrast, a continuous

query periodically returns the result to the base station. An

example query is: “report the average of all sensor values

in the network, every 5 minutes”, and the epoch value here

is 5 minutes. The same routing tree can be reused by the

continuous query in consecutive epochs. Then, the sensors

values are aggregated and sent to the base station via the tree,

at every epoch. Various monitoring techniques [15]–[17] have

been developed for continuous queries with specific predicates.

B. In-network Operators and Filters

To reduce the query evaluation cost in a sensor network,

an operator in a query plan can be “pushed down” from the

base station to sensor nodes. This is done in the in-network

aggregation described in the previous section. Here, we briefly

review previous work which focuses on in-network operator

placement. Bonfils et al. [19] study a query that correlates the

sensors’ measurements obtained from two pre-defined spatial

regions, say R1 and R2. Coman et al. [20] developed a

cost model to determine the most promising sensor location

for performing the join with low communication cost. In a

similar problem setting, Yu et al. [12] propose an in-network

synopsis join strategy to prune unqualified tuples that cannot

contribute to join results in the initial phase of join processing.

In contrast, our problem searches for any sensor node with

high average neighborhood measurement, and these nodes can

appear anywhere in the network.

Filters can be placed at sensor nodes to eliminate measure-

ments that are not useful to the query result, thus reducing

communication cost. Abadi et al. [5] focus on joining the sen-

sors’ measurements with a static predicate table of predefined

filter conditions. A tuple in the predicate table specifies the

condition of reporting a sensor measurement. Sensor nodes

have limited memory so their solution is to decompose the

large predicate table into tiny tables and distribute them into

different nodes. Each sensor node acts a partial filter that

prevents a portion of non-qualifying readings to be sent to

the base station. This strategy is inapplicable to our problem,

since our result set depends solely on sensors’ measurements

at runtime (as opposed to static conditions).

In a sensor network, the distance join query [13], [21]

retrieves each pair 〈s, s′〉 such that (i) the distance between

the nodes s and s′ is within given range λ, and (ii) the

measurements of s and s′ satisfy the query predicates P1

and P2 respectively. To detect such pairs efficiently, Kotidis

et al. [21] suggest to utilize the nodes for maintaining a

distributed routing index dynamically, which helps guiding

the propagation of the messages in the network to potential

nodes for producing join results. In the solution of [13], a

pruner pr(s) is formulated as a node such that its subtree

contains all nodes within distance λ generated at a node s.

This enables the node pr(s) to discard safely a P1-tuple from

s, if it does not receive (from its subtree) any matching tuple

(i.e., P2-tuple) produced at any node within distance λ of s.

As discussed in the Introduction, our proposed TRA query

requires deriving the average measurement value from each

node’s neighborhood region, so it is more complicated than

the above distance join query. Instead of only utilizing pruner

nodes (as in [13]), we essentially develop various types of

in-network operators and filters in the subsequent sections.

III. PROBLEM DEFINITION

Let SN be a set of sensors. Each sensor s ∈ SN is associ-

ated with a spatial location s.loc, and produces a measurement

s.m (e.g., temperature). Given two sensors s and s′, we use

dist(s, s′) to denote their distance in terms of the number

of hops, as in [13]. Given a threshold δ and a distance λ,

the thresholded range aggregate query (TRA) retrieves each

sensor ID s ∈ SN , such that the average measurement of

sensors s′ (within distance λ from s) is above the threshold δ.

In the TRQ query, the user-given parameters λ and δ are

used to control the aggregation scope and the alarm threshold

respectively. Depending on the specific application, a proper

λ value helps retrieving robust and yet localized results. For

instance, in a forest wildfire monitoring application, we can

set λ = 1 hop and δ = 45◦C if such a scale of wildfire is

regarded as easy to manage (or extinguish).

There are two types of query evaluation in sensor networks.

A snapshot query is evaluated once. It can be expressed in

the following SQL statement. In the rest of the discussion, we

use s.avg to represent the average value AV G(s′.m) in the

λ-neighborhood of sensor s.

SELECT s.id FROM SN as s, SN as s′

WHERE dist(s, s′) ≤ λ
GROUP BY s.id HAVING AV G(s′.m) ≥ δ

On the other hand, a continuous query is evaluated

periodically at every epoch (e.g., 1 second), for a lifetime (e.g.,

60 seconds). Both epoch and lifetime are parameters specified

by the user. A continuous TRA query can be specified by

adding the following clause to the above SQL statement.

SAMPLE PERIOD 1s FOR 60s

For the ease of exposition, we denote TRA by a tuple

Q = 〈δ, λ, dir, mode〉 where dir, mode ∈ {0, 1}. To report

each sensor s with average measurement s.avg above δ (or

below δ), we set dir to 1 (or 0). mode indicates whether the

query type is snapshot (1) or continuous (0). For instance,

the above snapshot query and continuous query in SQL

syntax are denoted by the tuples 〈δ, λ, 1, 1〉 and 〈δ, λ, 1, 0〉
respectively.

Our research objective is to develop efficient protocols for

processing TRA with low communication cost.

IV. SNAPSHOT QUERY PROCESSING

In this section, we develop efficient protocols for processing

the snapshot TRA query Q = 〈δ, λ, 1, 1〉. We first formulate

the concepts of parent-child relationship, ancestor-descendant

relationship, common ancestor, and nearest common ancestor.

Definition 1: A node s is defined as the parent of a node

s′, if the routing tree has a direct link between them, and s is

at an upper level than s′.

Definition 2: A node s is said to be an ancestor of a node

s′, if there exists the nodes s1, s2, · · · , sk+1, such that s = s1,

s′ = sk+1, and si is the parent of si+1, for all i ∈ [1, k]. We

express this relationship as: s � s′.

Definition 3: Given a subset V ⊆ SN of nodes, a node s

is said to be a common ancestor of V , if s � s′ holds for

each node s′ ∈ V . The nearest common ancestor Ψ(V) is

the common ancestor of V whose tree level is the closest to

the top tree level of the nodes in V .

Figure 2a depicts an example of a sensor network that will

be used throughout the paper. Nodes within communication

range are connected by edges, and the solid edges denote

the parent-child links in the routing communication tree. The

distance between sensors can be expressed in terms of hops.

In this example, we have B � S and B � B. Note that, the

nodes A, F , J have their nearest common ancestor as B.

In the following, Section IV-A presents two brute-force

protocols for evaluating TRA queries. Section IV-B develops

effective in-network filters for pruning unqualified measure-

ments early in the network. These filters are then applied in

the advanced protocols proposed in Sections IV-C and IV-D.

A. Brute-force Protocols

Acquisitional Brute-force Protocol. We first discuss an

Acquisitional Brute-force Protocol (ABrute), for evaluating the

TRA query. This protocol requests each sensor node to send

its measurement to the base station via the routing tree.

root node

K
L

M

A HE

IF

B

JM

N
P

2
S

A H

G

E
D C

B

Q

O

4

O

root node

K:15

L

M

A:14 H:9E

I:12
F:12

B:6

J:6
K:15M

N
P:7

S:11

A:14 H:9

G:8

E
D C

B:6

Q

OO

(a) Neighborhood (λ = 1 hop) (b) Measurements

Fig. 2. Sensor network example

The collection of measurements from sensor nodes is syn-

chronized level-by-level. First, the nodes at the lowest level

wake up. Each such node s takes its measurement s.m and

generates a message 〈s.id, s.m〉 with its id, then it sends

the message to its parent node. After that, each node at the

next level wakes up, receives messages from its children, then

appends those messages to its own message as a combined

message, and sends the combined message to its parent. This

procedure continues with the upper levels until reaching the

root node, which then forwards all the messages to the base

station.

We assume that the base station has recorded the static

location s.loc of each node s in advance so it is able to

compute s.avg for each s, and check whether s.avg is above

the threshold δ (i.e., whether s is a result). In summary,

the ABrute protocol is similar to the aggregation protocol

discussed in Section II-A. However, in the ABrute protocol,

the nodes cannot compute average values for their descendant

nodes because their locations are not kept in other nodes. As

a result, each node only merges its received messages with its

own message to form a combined message.

Distributional Brute-force Protocol. This section presents a

Distributional Brute-fore Protocol (DBrute), which consists of

two steps: (i) computing the average values s.avg of sensors

locally in the network, and (ii) sending only the qualified node

IDs to the base station.

First, DBrute employs a multi-hop broadcasting protocol,

during which each sensor receives the measurements of all

nodes within distance λ. To implement this, each node s

generates a message 〈s.id, s.m, cnt〉 with cnt = λ, and

then broadcasts its message. Whenever s receives a message

〈s′.id, s′.m, cnt′〉 with a positive cnt′ value, it broadcasts the

message 〈s′.id, s′.m, cnt′−1〉. This process takes λ processing

cycles of sensor nodes in total.

Each node s eventually receives the measurements from all

its λ-neighbors from, so s is able to compute its average value

s.avg and check whether it is a result. In the second step of

DBrute, only result nodes send their IDs to the base station

via the tree, using a protocol similar to ABrute (except that

individual measurements are not sent).

B. Building In-network Filters

The high broadcasting cost of distributed protocols like

DBrute is unavoidable, we pursue effective optimizations for

ABrute. By placing suitable filters at appropriate sensor nodes,

unqualified values can be eliminated early and the communica-

tion cost can be significantly reduced. In this section, we focus

on developing such filters, so that they become applicable in

some advanced protocols presented in later sections.

Formulation of decider and filter nodes. We need to answer

the two questions below, for a node s in the routing tree.

(I). Which node can compute the average s.avg for s?

(II). Which node can know the average s′.avg for all s′ that

can be influenced by s.m?

The first question identifies the node (say, s∗) for computing

s.avg (and checking whether this qualifies as a result). The

second question determines the node (say, s∗∗) for pruning

the measurement s.m, since it has already been applied to

calculate s′.avg of all s′ affected by s.m. Before answering

these questions, we introduce the notations below.

Definition 4: Given the threshold λ, the neighborhood

sensor set L(s) and the super neighborhood sensor set

SL(s) of a node s ∈ SN are defined as:

L(s) = {s′ ∈ SN | dist(s, s′) ≤ λ}
SL(s) = {s′ ∈ SN | dist(s, s′) ≤ 2λ}

Figure 2a illustrates the neighborhood sets of the sensor S.

In this example (λ = 1 hop), the neighborhood set L(S) of the

sensor S is L(S) = {S, A,H,G}, which contains all sensors

in the circle centered at S with radius λ. Similarly, the super

neighborhood set is SL(S) = {S, A,G, B, P, F, I, H}.

The following lemma reveals an interesting property be-

tween neighborhood sets and super neighborhood sets.

Lemma 1: Given a node s, it holds that, L(s′) ⊆ SL(s),
for any s′ ∈ L(s).

Proof: Let s′ be a node in L(s) and s′′ be a node in

L(s′). From their definitions, we have: dist(s, s′) ≤ λ and

dist(s′, s′′) ≤ λ. Thus, we get dist(s, s′) + dist(s′, s′′) ≤
2λ. By the triangular inequality, we obtain: dist(s, s′′) ≤
dist(s, s′) + dist(s′, s′′). As a result, we have dist(s, s′′) ≤
2λ. This implies s′′ ∈ SL(s), and thus L(s′) ⊆ SL(s).

Definition 5: Given a node s in a routing tree, its decider

node is defined as s.decider = Ψ(L(s)), and its filter node

is defined as s.filter = Ψ(SL(s)). Conversely, we call s as

the decidee of s.decider, and the filtee of s.filter.

The decider node s.decider of s is the nearest common

ancestor of L(s). This node eventually receives all measure-

ments from L(s) so it is able to compute s.avg correctly.

This answers our first question. Instead of using an arbitrary

common ancestor (e.g., the root node), we pick the most

efficient choice (i.e., Ψ(L(s))) to compute whether s is a query

result.

Yet, the decider node s.decider cannot immediately discard

the measurement s.m of s. Suppose that s′ is a node in L(s),
other than s. Conversely, we know that s ∈ L(s′), i.e., the

measurement s.m is necessary for deriving the average value

s′.avg of s′. Obviously, the filter node s.filter of s is the

nearest common ancestor of Ψ(SL(s)). Lemma 1 shows that

SL(s) contains L(s′) for any s′ ∈ L(s). This implies that, the

average value of any s′ ∈ L(s) has been computed, when the

measurement s.m reaches the filter node s.filter of s. Thus,

the filter node always safely discards the measurement s.m.

This answers our second question.

As an example in Figure 2a, the decider node of S is the

node B, as it is the nearest common ancestor of L(S). The

filter node of S is also node B, since its subtree contains

SL(S). In this case, the node B has a decidee node B, and a

filtee node B. Observe that each node has exactly one decider

node and one filter node. On the other hand, a node can have

zero, one, or multiple decidee nodes and filtee nodes.

Deriving decider and filter nodes in the network. After the

routing tree has been built, we are able to derive the decider

and filter nodes in the network. We first develop a procedure

for determining the decider node for each sensor node s. This

procedure is applied only once before evaluating the query. It

consists of three steps: (i) notifying neighborhood nodes, (ii)

sending the neighborhood count to the neighborhood, and (iii)

finding the nearest common ancestor node.

A multi-hop broadcasting method was introduced as the

initial step of the DBrute protocol, in Section IV-A. This

method can be used to implement the first two steps of the

procedure above. In the first step, each node s broadcasts a

message 〈s.id, cnt〉, with cnt = λ. Each time the message is

propagated by another node, the value of cnt in the message

is decremented, until cnt reaches zero. This essentially allows

each node s to derive its neighborhood size |L(s)|. In the sec-

ond step, each node s broadcasts a message 〈s.id, |L(s)|, cnt〉,
with cnt = λ. This enables each node s′ ∈ L(s) to know

the size |L(s)| of s. In the third step, each sensor s sends

up the routing tree a table consisting of 〈s′.id, |L(s′)|, {s}〉
tuples for all s′.id ∈ L(s) plus a 〈s.id, |L(s)|, {s}〉 for

itself. The last field in the tuple indicates the list of visited

neighborhood nodes. When an intermediate tree node receives

multiple tuples with the same s′.id, e.g., 〈s′.id, |L(s′)|,L1〉
and 〈s′.id, |L(s′)|,L2〉, they are merged together into a single

tuple 〈s′.id, |L(s′)|,L1 ∪ L2〉. In case a node obtains a tuple

of the form 〈s′.id, |L(s′)|,L(s′)〉, it becomes the decider node

of s′ and then it stops forwarding that tuple to its parent.

In the above procedure, it is necessary for the decider node

of s′ to know the entire L(s′), so that it can be later applied

to compute the average value of s′. On the other hand, a filter

node of s′ only needs to know which measurement s′.m to be

discarded, but not the actual SL(s′). The above procedure can

be adapted to derive the filter nodes. The only difference is

that, in the third step, the last field of each tuple is replaced by

a counter. Each tuple is initialized as 〈s′.id, |L(s′)|, 1〉. When

an intermediate node receives multiple tuples with the same

s′.id, they are aggregated together by summing their counters.

The above procedure is applied only once and used for

all snapshot queries with parameter λ (i.e., the filter/decider

nodes are independent of δ). Given that the used values for

λ in practical queries are limited (i.e., up to a small integer

of hops), determining the deciders/filters for a sensor network

with stationary nodes is a one-time process for all queries

having the same λ value.

In this paper, we do not consider further reorganization of

the routing tree. Decider nodes and filter nodes of each node

could change, if the routing tree of Figure 2a is replaced by

another tree. Theoretically, there exists an optimal routing tree

that maximizes pruning effectiveness. However, the effort of

finding the optimal routing tree is high and it undermines the

benefit it provides.

C. Acquisitional In-network Processing Protocol

In this section, we propose the Acquisitional In-network

Processing Protocol (AIP), which utilizes the concepts of

decider nodes and filter nodes for in-network execution.

First of all, the procedure discussed in Section IV-B is

applied to derive the decider nodes and filter nodes in the

network. After that, each sensor node explicitly stores: (i) its

list of filtees, (ii) its list of decidees, and (iii) the neighborhood

set L(s) of each decidee. The application of (i) is to discard

unnecessary measurement values; whereas both (ii) and (iii)

are used to compute the average values for its decidees.

Next, we run our AIP protocol in a synchronized level-wise

manner, from the nodes at the lowest level to the root node.

Let s∗ be the current sensor node, and δ be the threshold value

for checking qualified results. Two forms of tuples are used

in the subsequent discussion: (i) a measurement tuple of node

s, i.e., 〈s.id, s.m,−〉, or (ii) a result tuple with the average

value s.avg of s, i.e., 〈s.id,−, s.avg〉.
Let Min denotes the set of tuples to be processed, and

Mout denotes the set of tuples to be forwarded to the parent

of s∗. The current node takes its measurement s∗.m and inserts

it as a tuple into Min. Then, the node receives the tuples sent

from child nodes, and inserts those tuples into Min. Next, we

examine each node s in the decidee list of the current node s∗.

Next, we look up the neighborhood set of s from the memory

of s∗, search for their corresponding measurement tuples from

messages containing Min, and then compute the average value

s.avg of s. In case the value s.avg is above the threshold δ,

a result tuple 〈s.id,−, s.avg〉 needs to be inserted into Mout.

Then, we remove any measurement tuple produced by a node s

in the filtee list of the current node s∗. The remaining tuples of

Min are useful because they are either result tuples computed

by lower-level decider nodes, or measurement tuples that are

used for computing other average values at high-level decider

nodes. Thus, all tuples of Min are then inserted into Mout.

Eventually, the current node s∗ forwards the tuples of Mout

to its parent node, and then sleeps again.

We illustrate the running steps of the AIP protocol with the

sensor network in Figure 2b, which is the same as in Figure

2a, but the nodes are now marked with their temperature

measurement (in ◦C). In this example, the user issues the

snapshot query Q = 〈10, 1, 1, 1〉, meaning that λ = 1
hop, δ = 10◦C, and he wants to find each sensor s whose

average neighborhood value is above δ. We only provide

detailed information of the part of sensors that are used in

this example. Table I lists the information of these sensors,

e.g., decider node, filter node, neighborhood set L(), and super

neighborhood set SL(). Table II shows the ids, measurements

(e.g., temperatures), average values of these sensors. The last

TABLE I

RELATIONSHIPS IN THE RUNNING EXAMPLE, AT λ = 1

id decider filter L(·) SL(·)
S B B A, H, G, S S, A, G, H, I, F, P, B

A B D S, B, P, A A, S, B, P, G, H,
M, F, K, C, Q

H B B F, I, S, H H, I, F, S, J, P, A, G

G S B S, G G, S, A, H

I P B H, J, F, I I, J, F, H, K, P, S

F P D P, H, F, I F, I, H, P, J,
S, M, K, B, A

J K D K, I, J J, I, K, F, H, L, M, P

TABLE II

NETWORK DATA IN THE RUNNING EXAMPLE, AT δ = 10

id S A H G I F P B J K

m 11 14 9 8 12 12 7 6 6 15

avg 10.5 9.5 11 9.5 9.75 10 � � 11 �

ans X × X × × X � � X �

row ans indicates whether the sensor is a result (i.e., average

value above 10◦C).

Starting from the leaf nodes (O, G, H , I , L), all nodes send

their measurements (m) up to their parents level by level. For

example, after G.m is sent to S, S knows that G is its decidee.

Thus, S calculates G.avg from S.m and G.m (to be forwarded

to S’s parent). S does not filter any information, since it has

no filtee. The node A has no decidee and no filtee, so it

just forwards its received tuples to its parents. For the node

B, B.decidee = {S, A,H} and B.filtee = {S, H,G, I},

therefore after B receives messages from its children P and

A, B calculates the avg for the nodes in B.decidee and finds

that S and H are qualified (above 10). Meanwhile B stops

forwarding the measurements for all nodes in B.filtee. To

explain the actions in B explicitly, we clarify the calculation

of S.avg and filtration of H in detail. B affords to calculate

S.avg because L(S) = {A,H, G, S}. A.m is filtered at its

filter node (D). The measurements H.m, G.m, S.m are all

filtered at B. H.m is only used to calculate avg of sensors in

L(H) = {F, I, S,H}. F.avg is calculated at F.decider (P)

and I.avg, S.avg, H.avg are calculated at P , B, B already

respectively. Thus, the value of H can be filtered at B. Finally,

the root node obtains the results by combining its result and

the results received from its descendants.

D. Two-phase Protocols

This section illustrates an optimization of the proposed

acquisitional protocols ABrute and AIP, which is suited for

snapshot queries with very selective δ (i.e., very few results),

which are spatially clustered. The optimization is based on the

fact that for any qualified sensor node s (with s.avg above δ),

there must be at least one node s′ in the neighborhood set

L(s) of s, such that the measurement s′.m (of s′) is above δ.

This is formulated in the lemma below.

Lemma 2: If a node s satisfies s.avg ≥ δ, then there must

be a node s′ ∈ L(s) such that s′.m ≥ δ.

Proof: For the sake of contradiction, assume that each

node s′ ∈ L(s) has its measurement s′.m smaller than δ. Thus,

the average measurement s.avg (of s) becomes smaller than

δ, leading to contradiction, thus proving the lemma.

In other words, if a node s∗ has its measurement above δ, then

each node s′ ∈ L(s∗) has potential to become a result. Yet,

the computation of s′.avg requires the measurements of each

node s′′ ∈ L(s′). Thus, we should inform all nodes in SL(s∗)
to prepare their measurements. To illustrate this concept in

Figure 2a, suppose that all the nodes have their measurements

below δ, except the sensor S. Since H belongs to L(S), it has

potential to be a result. However, the computation of H.avg

requires the measurements of all nodes (e.g., I) in L(H). Thus,

in this example, S needs to notify all nodes in SL(S).
Based on this observation, we extend ABrute (or AIP) into

a two-phase protocol as follows. In the first phase, each sensor

s takes its measurement s.m. If s.m ≥ δ, then s broadcasts

the tuple 〈s.id〉 to the nodes in SL(s). A multi-hop broadcast

protocol needs to be applied (see the initial step of DBrute in

Section IV-A). Next, a node s is marked as passive if (i) its

measurement s.m is less than δ, and (ii) it has not received any

message in the first phase. In the second phase, all the nodes

operate according to the ABrute (or AIP) protocol, except that

each passive node s does not forward its own measurement

s.m up the tree.

V. CONTINUOUS MONITORING

This section discusses the processing of continuous TRA

query Q = 〈δ, λ, 1, 0〉. The straightforward solution is to

evaluate the corresponding snapshot query Q′ = 〈δ, λ, 1, 1〉
periodically at every epoch. Yet, the processing cost of the

query can be reduced dramatically, by exploiting the fact that,

real-life environmental data (e.g., temperature) usually change

slowly with time, and the new measurement of a sensor is

likely to stay close to its previous measurement. The general

idea is to provide each sensor node s with a local tolerance,

which is essentially an interval bound [s.lb, s.ub]. A node s

only reports its measurement s.m when it falls outside the

interval; otherwise, it does not report s.m.

Our goal is to derive a safe local tolerance [s.lb, s.ub]
for a sensor node s, such that as long as the measurement

s.m stays within the filter interval, it is guaranteed that s

cannot lead to change of query result. This is fundamentally

different from the above naive approach because we ensure the

correctness guarantee of exact query result without requiring

pre-defined error tolerance. Section V-A elaborates how to set

up safe local tolerances at sensor nodes, in the initial epoch

of evaluation. Section V-B develops solutions for updating the

local tolerances and query results, in subsequent epochs.

A. Setup of Local Tolerance at Sensor Nodes

We first study how to setup a safe local tolerance [s.lb, s.ub]
for a sensor node s, such that it guarantees the correctness of

query result.

Formulation of local tolerance. Let s′ be a node in L(s).
Depending on the value of s′.avg, there are two cases to

consider. In the first case, the current s′.avg of s′ is at least δ,

the future average value of s′ will not become less than δ if the

measurement of each node s′′ ∈ L(s′) (including s) decreases

by less than s′.avg − δ. Therefore, the local tolerance of s

should be within the interval [s.m− (s′.avg− δ),+∞]. In the

second case, the current s′.avg of s′ is below δ, the future

average value of s′ will not be above δ if the measurement

of each node s′′ ∈ L(s′) increases by less than s′.avg − δ.

Therefore, the local tolerance of s should be within the interval

[−∞, s.m + (δ − s′.avg)]. As a result, the local tolerance

[s.lb, s.ub] of s is taken as the intersection of the interval

bounds discussed earlier considering all nodes s′ in L(s). This

is expressed by the following equation.

Φ(s) = [s.lb, s.ub]= (1)
⋂

s′∈L(s)

{

[s.m − (s′.avg − δ),+∞] if (s′.avg ≥ δ)
[−∞, s.m + (δ − s′.avg)] if (s′.avg < δ)

For the example in Figure 2b, we elaborate how to derive

the local tolerance of node S, at δ = 10, based on the data

in Tables I and II. Observe that L(S) = {A,H, G, S}. The

node A has its average value (9.5) lower than δ (10), so we

compute the value 11 + (10 − 9.5) = 11.5, and obtain the

interval [−∞, 11.5] for S. Regarding the nodes H , G, S, we

derive the intervals [10,+∞], [−∞, 11.5], [10.5,+∞] for S

respectively. By taking the intersection of these intervals, we

obtain the local tolerance [S.lb, S.ub] of S as [10.5, 11.5]. This

means that if S.m is within the [S.lb, S.ub], S will not change

in the TRA query result, even though the actual average values

of L(S) may change.

Necessary data for computing local tolerances of all nodes.

In order to compute local tolerances of all nodes in a correct

manner, we need to address the following questions for each

sensor node s.

(I). Which node can compute Φ(s)?
(II). Which node can know Φ(s′) for all s′ that can be

influenced by s.avg?

The answer to the first question is straightforward. By

Equation 1, the derivation of the local tolerance Φ(s) requires

the average value s′.avg of each node s′ ∈ L(s). Note that the

computation of s′.avg requires measurements of all nodes in

the set L(s′). According to Lemma 1, the set SL(s) contains

all such sets L(s′). Thus, the filter node s.filter of s, i.e.,

the nearest common ancestor of SL(s), can compute the local

tolerance Φ(s) of s.

The answer to the second question determines until which

node s.avg must travel up the routing tree. It turns out that

the average value s.avg of s cannot be immediately discarded

at the filter node s.filter, since the average value is still

required for deriving the local tolerance Φ(s′) of each node

s′ ∈ L(s). We illustrate this observation by using the network

in Figure 2b, with the parameter λ = 1. Since S ∈ L(A),
the computation of the local tolerance Φ(A) of A requires

obtaining the average value S.avg of S. Observe that the nodes

A and S have their filter nodes as D and B respectively. If

the node B discards the average value S.avg of S, then the

value S.avg cannot reach the node D and the local tolerance

Φ(A) of A cannot be computed.

To answer the second question, we need to determine which

node can be used to discard the average value s.avg safely,

without preventing the computation of any local tolerance.

According to Equation 1, the average value s.avg of a node

s only affects the local tolerance of any s′ ∈ L(s). Since

the local tolerance of s′ can be computed at its filter node

Ψ(SL(s′)), it suffices to find out a common ancestor node

of Ψ(SL(s′)), for all s′ ∈ L(s). We first introduce the extra

neighborhood sensor set XL(s) of a node s in Definition 6,

and then prove Lemma 3 that the set XL(s) contains SL(s′)
for each s′ ∈ L(s). In other words, the xfilter node Ψ(XL(s))
of s (see Definition 6) is allowed to discard the average value

s.avg safely without preventing local tolerance computation

of other nodes.

In the example of Figure 2a, the node S has

its extra neighborhood sensor set as XL(S) =
{A,S,G, H,B, P, F, I,Q,C,M,K, J} The xfilter node

of S is the nearest common ancestor of XL(S), i.e.,

S.xfilter = Ψ(XL(S)) = D. Thus, the node D can be used

to discard the average value S.avg of S.

Definition 6: Given a node s ∈ SN , its extra neighbor-

hood sensor set XL(s) is defined as:

XL(s) = {s′ ∈ SN | dist(s, s′) ≤ 3λ}

In a routing tree, the xfilter node of s is defined as s.xfilter =
Ψ(XL(s)). We call s as the xfiltee of s.xfilter.

Lemma 3: Given a node s, it holds that, SL(s′) ⊆ XL(s),
for any s′ ∈ L(s).

Proof: Let s′ be a node in L(s) and s′′ be a node in

SL(s′). From their definitions, we have: dist(s, s′) ≤ λ and

dist(s′, s′′) ≤ 2λ. Thus, we get dist(s, s′) + dist(s′, s′′) ≤
3λ. By the triangular inequality, we obtain: dist(s, s′′) ≤
dist(s, s′) + dist(s′, s′′). As a result, we have dist(s, s′′) ≤
2λ. This implies s′′ ∈ XL(s), and thus SL(s′) ⊆ XL(s).

Computation of local tolerance in the network. We

modify the AIP protocol follows in order to incorporate the

above technique for computing the local tolerances of nodes

correctly. The tuple 〈s.id,−, s.avg〉 needs to be inserted into

the set Mout (and sent upwards the routing tree), regardless

of whether the average value s.avg is above the threshold δ or

not. We examine each node s in the xfiltee list of the current

node s∗ and then remove a tuple of the form 〈s.id,−, s.avg〉
when s.avg is below δ.

Figure 3 summarizes the tasks performed by the nodes, for

evaluating the continuous query respectively. Regarding con-

tinuous query evaluation (see Figure 3a), the node s.decider

forwards the average value s.avg up the tree, regardless of

whether s.avg is above δ or not. Next, the node s.filter

computes the local tolerance bound Φ(s) for the node s, by

gathering the value s.m and the average value s′.avg of each

node s′ ∈ L(s). The node s.filter then discards s.m. After

that, the node s.xfilter discards the average value s.avg if it

is below δ.

It remains to discuss how each filter node s.filter notifies

the node s of its local tolerance bound Φ(s), at the end

of the first epoch round. We apply a level-wise protocol

for disseminating such local tolerances from the top tree

s s.decider s.filter s.xfilter

〈s.id, s.m〉 〈s.id, s.m, s.avg〉 〈s.id, s.avg〉

compute s.avg compute Φ(s) discard s.avg

discard s.m

s s.filter

〈s.id, s.m〉

t.decider,

t�L(s)

〈t.id, t.avg〉

(a) continuous query (b) update

Fig. 3. Tasks for a sensor node

level to the bottom tree level, assuming that the routing

tree is static. Each filter node s.filter stores its routing

path path(s.filter, s) to the node s. First, the node s.filter

generates a tuple 〈s.id,Φ(s), path(s.filter, s)〉. After a node

generated the above tuple (or received it from its parent), it

forwards the tuple to its child node whose id appears in the

path recorded in the tuple. Eventually, the node s will receive

its local tolerance Φ(s).

B. Update of Localfilter and Query Result

In every subsequent epoch round, each sensor node s

takes its new measurement s.m and compares with its local

tolerance bound Φ(s). The measurement is discarded if it falls

inside the bound Φ(s). Otherwise, s needs to send a tuple

〈s.id, s.m〉 upwards the tree to update the query result and

the local tolerance of relevant nodes. We discuss how this can

be implemented in this section.

For a node s, if its new measurement s.m falls outside

Φ(s), then this influences the average value s′.avg of each

node s′ ∈ L(s), and potentially alters some query results. For

instance, if s.m rises to a high value, then a past-unqualified

s′.avg may become qualified; if s.m drops to a low value,

then a past-qualified s′.avg may become unqualified.

Since all the deciders of L(s) must be in the subtree of

s.filter, the node s can send a tuple 〈s.id, s.m〉 upwards to

tree, until reaching the node s.filter. This way, the (new)

average values of all nodes in L(s) can be updated at s.filter.

In addition, the local tolerances of certain nodes need to be

updated because of their updated average values. Specifically,

for each node t ∈ L(s) the average value t.avg has been

updated at the node t.decider. Thus, the node t.decider needs

to send the value t.avg upwards to the node t.xfilter, in order

to update the local tolerances of nodes in L(t). Basically, the

local tolerances of all nodes in SL(s) must be updated.

Figure 3b depicts this update procedure. When a node s

has its new measurement s.m outside local tolerance Φ(s), the

node s sends its measurement upwards the routing tree. During

the path from s to s.filter, the decider of each node t ∈ L(s),
t.decider must send the average value t.avg upwards the tree

until reaching the node t.xfilter.

VI. EXPERIMENTAL STUDY

This section studies the energy cost of our proposed pro-

tocols for TRA query processing, on a simulation platform

for MICA sensor nodes. Each protocol packs multiple mes-

sages/events into one data packet, whereas the size of a packet

is set to 30 bytes, as in [7]. For snapshot query processing,

we compare the performance of the following protocols:

(i) DBrute, (ii) ABrute, (iii) AIP, (iv) ABrute2 (Two-phase

ABrute), and (v) AIP2 (Two-phase AIP). Each of them can fit

7 messages into a packet. For continuous query monitoring,

we consider the direct application of the above protocols, and

(vi) CAIP (Continuous Monitoring AIP) — see Section V,

which can fit only 4 messages into a packet.

We measure the efficiency of a protocol as the energy cost

consumed by sensor nodes in the network. According to [2],

the major operations of a MICA sensor are: (i) transmitting of

a packet, (ii) receiving a packet, (iii) idle listening (for 1 ms),

and (iv) thermistor measurement. Their energy cost are 20, 8,

1.25, and 0.35 nAh, respectively. We evaluate the protocols

experimentally by using these parameters: the threshold δ, the

range λ, the number of nodes N (only for synthetic network).

In each experiment, we vary one parameter value while fixing

the values of other parameters.

Section VI-A describes the synthetic and real sensor net-

works used in the experiments. Section VI-B and Section VI-

C investigate the performance of our protocols for snapshot

queries and continuous queries respectively.

A. Experimental Setting

We proceed to discuss the distribution of sensor nodes and

their measurements for both synthetic data and real data.

Synthetic sensor network and data. We generate a synthetic

network with N sensor nodes by distributing them randomly

in a square with
√

N ×
√

N unit area. This ensures that the

number of neighbors of each node is independent of N . The

communication range (for each sensor) is set to 1.6 such that

the communication links among the nodes form a connected

graph. The routing tree is formed by setting the node in the

center of the space as the root node. The routing tree of the

default synthetic sensor network with N = 1024 nodes. This

tree has a height of 21, and average node depth 11.2.

The domain of measurement s.m is the interval [0,1]. We

consider the distribution COR for the measurement values

of nodes, for evaluating the snapshot TRA queries. For the

location-correlated distribution COR, we randomly pick an

anchor point z in the space and then generate each measure-

ment value using the inverse Gaussian function of the distance

dist(z, s). In other words, nodes close to z have high mea-

surements whereas nodes far from z have low measurements.

In order to generate measurements for continuous TRQ

queries, we apply the COR distribution to generate the mea-

surement s.m of each sensor epoch-by-epoch, except that the

anchor z moves along a trajectory at constant speed across

the epochs. This continuous location-correlated distribution

(ContCOR) models the case where extreme measurement

values are caused by a moving object or phenomenon (e.g.,

animal, low-pressure system).

Real sensor network and data. The IntelLab dataset [22]

consists of the topology of 54 sensor nodes deployed in a

lab and a collection of 2.3 million measurements from those

nodes. The communication range for each node is set to 6

such that the communication links among the nodes form a

connected graph. The root node of the routing tree is located

at a corner of the lab; the tree height 14 and the average depth

of a node is 7.42. The measurements are temperature values

in the domain interval [16◦C, 27◦C]. The original collection

of measurements contains some invalid values and missing

values. Thus, we pre-processed those data by (i) discarding

invalid values and (ii) utilizing known measurements of a node

s to interpolate linearly its missing values at other epochs.

B. Performance on Snapshot Queries

In this section, we evaluate the performance of our protocols

on snapshot TRA queries, by using the COR dataset discussed

in Section VI-A. Note that ABrute serves as the baseline

protocol for comparison.

Effect of threshold δ. We first study the effect of the threshold

δ on the performance of our protocols, at λ = 1. Recall that

the domain of the sensors’ measurements is the interval [0,1].

Figures 4a plots the energy cost of our protocols respectively

on COR data. When δ increases, fewer nodes s have mea-

surements s.m above δ and thus fewer nodes qualify as query

result (i.e., s.avg ≥ δ). Regarding the energy cost, the cost

of ABrute is independent of δ because all measurements s.m

are sent to the base station regardless of their values. DBrute

has the overhead of broadcasting the sensors’ measurements

to their neighborhood nodes so it is more expensive than

ABrute. AIP outperforms ABrute and DBrute because AIP

employs filter nodes to discard sensors’ measurements that all

their influenced average values have already been computed.

ABrute2 and AIP2 benefit from the correlation of data and

they incur much lower cost than ABrute and AIP for large δ.

The above experiments show that DBrute is more expensive

than ABrute, so we drop DBrute from subsequent experiments.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

E
n

e
rg

y
 C

o
s
t(

n
A

h
)

Threshold delta

DBrute
ABrute

AIP
ABrute2

AIP2

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4

E
n

e
rg

y
 C

o
s
t(

n
A

h
)

Distance lambda

ABrute
AIP

ABrute2
AIP2

(a) varying the threshold δ (b) varying the range λ

(fixing λ = 1) (fixing δ = 0.7)

Fig. 4. Energy cost of protocols, COR data, at N = 1024

Effect of query distance λ. Figure 4b illustrates the energy

cost of protocols on COR data, for various values of λ. Again,

the cost of ABrute remains constant and the cost of AIP

increases with λ. In contrast to IDP data, observe that the

two-phase protocols (ABrute2, AIP2) have much lower cost

than the other protocols. Due to the correlation of data, the

broadcasting of measurements occurs only in particular region

of sensor network; multiple messages can be packed in the

same packet, reducing the cost of broadcasting measurements.

Effect of the number of nodes N . We proceed to investigate

the scalability of the protocols, by varying the number N of

nodes in the sensor network. For this purpose, we record two

types of performance measures for each tested case: (i) energy

cost per node, and (ii) fraction of messages (generated from all

sensor nodes) received at the root node. During the process of

forwarding messages to the base station, the root node usually

receives much more packets than other nodes. Therefore, a

desirable protocol should result in a low value of (ii).

Figures 5a,b plot the energy cost per node, and the fraction

of messages received at the root node, for the COR data,

with respect to N . Regarding the energy cost per node, AIP

achieves appreciable cost savings over ABrute, yet its cost

increases slowly as the network size increases. The two-phase

protocols (ABrute2, AIP2) are relatively insensitive to the

the network size and they become significantly cheaper than

Abrute at large networks. Regarding the fraction of messages

received at the root node, both AIP and AIP2 apply filter

nodes to discard sensors’ measurements so the root node only

receives a small fraction of messages produced from all nodes.

Two-phase protocols (ABrute2, AIP2) achieve substantial cost

saving for the COR data.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
n

e
rg

y
 C

o
s
t

P
e

r
S

e
n

s
o

r(
n

A
h

)

Sensor Network Size

ABrute
AIP

ABrute2
AIP2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 64 128 256 512 1024 2048 4096

F
ra

c
ti
o

n
 o

f
M

e
s
s
a

g
e

s
 a

t
R

o
o

t
N

o
d

e
(%

)

Sensor Network Size

ABrute
AIP

ABrute2
AIP2

(a) energy cost per node (b) fraction of messages

Fig. 5. Effect of the network size N , COR data, at δ = 0.8 and λ = 2

Results on real sensor network data. We proceed to use the

IntelLab real data (mentioned in Section VI-A) for evaluating

the performance of our protocols for snapshot queries. The

sensor network of IntelLab is small (with only 54 nodes) so

we set the query range to λ = 1 in subsequent experiments.

Recall that the domain of measurement is the interval [16◦C,

27◦C]. Figures 6a,b show the result size and energy cost of

the protocols as a function of δ. AIP2 outperforms the other

protocols for high δ values. AIP performs better than ABrute

and it has stable performance for a wide range of δ values.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

18 19 20 21 22 23 24 25 26

N
u

m
b

e
r

o
f

S
e

n
s
o

rs

Threshold delta

Number of Qualified Sensor
Number of Sensors above delta

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 18 19 20 21 22 23 24 25 26

E
n

e
rg

y
 C

o
s
t(

n
A

h
)

Threshold delta

DBrute
ABrute

AIP
ABrute2

AIP2

(a) result size (b) energy cost

Fig. 6. Effect of the threshold δ, InterLab data, at λ = 1

C. Performance on Continuous Queries

In this section, we evaluate the performance of our proto-

cols on continuous TRA queries, using the ContCOR dataset

discussed in Section VI-A. We compare the performance of:

(i) the continuous monitoring protocol (CAIP), and (ii) the

execution of snapshot protocols (ABrute, AIP, AIP2) for each

epoch. Again, ABrute serves as the baseline for comparison.

In the following experiment, we set δ = 0.2 and λ = 2.

Figures 7a,b show the result size and energy cost of our

protocols, for the first 10 epochs. AIP performs better than

the baseline (ABrute) steadily. AIP2 incurs much lower cost

than AIP, and the cost of AIP2 follows the trend of the number

of sensors above δ in Figure 7a. CAIP has high cost in the first

epoch, where the local tolerance for all nodes is computed and

disseminated. Nevertheless, CAIP has extremely low energy

consumption in subsequent epochs. Therefore the total cost of

CAIP for a long-running query is orders of magnitude lower

than the cost of applying a snapshot protocol repetitively.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

S
e

n
s
o

rs

Epoch

Number of Qualified Sensor
Number of Sensors above delta

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1 2 3 4 5 6 7 8 9

E
n

e
rg

y
 C

o
s
t(

n
A

h
)

Epoch

ABrute
AIP

AIP2
CAIP

(a) result size (b) energy cost

Fig. 7. Cost of continuous evaluation, ContCOR data, at δ = 0.2 and λ = 2

Results on real sensor network data. Figures 8a,b plot

the result size and the energy cost of different protocols for

500 consecutive epochs, at δ = 22 and λ = 1. The number of

sensors above δ increases as the epoch advances, implying that

the temperature was rising during that time period. Observe

that the cost of AIP2 rises as the number of results. CAIP

consistently outperforms all snapshot protocols (ABrute, AIP,

AIP2) for all epochs.

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

N
u

m
b

e
r

o
f

S
e

n
s
o

rs

Epoch

Number of Qualified Sensors

Number of Sensors above delta

Number of Qualified Sensors
Number of Sensors above delta

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500

E
n

e
rg

y
 C

o
s
t(

n
A

h
)

Epoch

AIP2

ABrute

AIP

CAIP

ABrute
AIP

AIP2
CAIP

(a) result size (b) energy cost

Fig. 8. Cost of continuous evaluation, InterLab data, at δ = 22 and λ = 1

VII. CONCLUSIONS

In the paper, we introduced a novel query called the

thresholded range aggregate query (TRA), which provides

convenient means of summarizing the sensors’ measurements

in each local region, without being influenced by individual

sensor abnormality. We present several protocols for snapshot

and continuous evaluation of TRA queries, by developing

corresponding in-network aggregation and filtering techniques.

Our experimental results suggest that our protocols achieve

substantial amount of energy savings on both real and synthetic

data. For snapshot queries, we recommend using the AIP and

AIP2 protocols. AIP2 is scalable for a large sensor network,

and performs well for queries with high threshold θ and low

distance λ. AIP is more suitable for queries with low θ or high

λ. For continuous queries, CAIP outperforms the repetitive

application of snapshot protocols by a wide margin.

Our proposed methods assume that all sensor nodes and

communication links function properly; in case of lossy com-

munication, the routing tree could produce inaccurate result.

In the future, we plan to extend our solutions by using multi-

path routing structures [3], [8], [18], in order to mitigate the

impact of lost messages via multiple paths.

ACKNOWLEDGEMENT

This work was supported by grant HKU 7155/06E from

Hong Kong RGC.
REFERENCES

[1] M. LaPedus, “Intel Harnesses Wireless Sensors For Chip-Equipment
Care,” http://www.techweb.com/wire/26802594, techWeb.

[2] A. M. Mainwaring, D. E. Culler, J. Polastre, R. Szewczyk, and J. An-
derson, “Wireless Sensor Networks for Habitat Monitoring,” in WSNA,
2002.

[3] J. Considine, F. Li, G. Kollios, and J. W. Byers, “Approximate aggre-
gation techniques for sensor databases,” in ICDE, 2004.

[4] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis, “Balancing
Energy Efficiency and Quality of Aggregate Data in Sensor Networks,”
VLDB J., vol. 13, no. 4, pp. 384–403, 2004.

[5] D. J. Abadi, S. Madden, and W. Lindner, “REED: Robust, Efficient
Filtering and Event Detection in Sensor Networks,” in VLDB, 2005.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,” ACM

Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.
[7] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG:

A Tiny AGgregation Service for Ad-Hoc Sensor Networks,” in OSDI,
2002.

[8] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and Deltas: Efficient
and Robust Aggregation in Sensor Network Streams,” in SIGMOD

Conference, 2005.
[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:

An acquisitional query processing system for sensor networks,” ACM

Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.
[10] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query

Processing in Sensor Networks,” SIGMOD Record, vol. 31, no. 3, pp.
9–18, 2002.

[11] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Hierarchical In-
Network Data Aggregation with Quality Guarantees,” in EDBT, 2004.

[12] H. Yu, E.-P. Lim, and J. Zhang, “On In-network Synopsis Join Process-
ing for Sensor Networks,” in MDM, 2006.

[13] M. L. Yiu, N. Mamoulis, and S. Bakiras, “Retrieval of Spatial Join
Pattern Instances from Sensor Networks,” in SSDBM, 2007.

[14] W. F. Fung, D. Sun, and J. Gehrke, “COUGAR: The Network is the
Database,” in SIGMOD Conference, 2002.

[15] A. Silberstein, K. Munagala, and J. Yang, “Energy-efficient Monitoring
of Extreme Values in Sensor Networks,” in SIGMOD, 2006.

[16] X. Yang, H.-B. Lim, M. T. Özsu, and K.-L. Tan, “In-network Execution
of Monitoring Queries in Sensor Networks,” in SIGMOD, 2007.

[17] Y. Cho, J. Son, and Y. D. Chung, “POT: An Efficient Top-k Monitoring
Method for Spatially Correlated Sensor Readings,” in DMSN, 2008.

[18] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis
Diffusion for Robust Aggregation in Sensor Networks,” TOSN, vol. 4,
no. 2, 2008.

[19] B. J. Bonfils and P. Bonnet, “Adaptive and Decentralized Operator
Placement for In-Network Query Processing,” in IPSN, 2003.

[20] A. Coman, M. A. Nascimento, and J. Sander, “On Join Location in
Sensor Networks,” in MDM, 2007.

[21] Y. Kotidis, “Processing Proximity Queries in Sensor Networks,” in
International Workshop on Data Management for Sensor Networks,
2006.

[22] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux,
“Intel Lab Data,” http://db.csail.mit.edu/labdata/labdata.html.

