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a ande are the reverse nearest neighborg @fased on Eu-
clidean distance); these two points hayvas their nearest
neighbor (NN). The query result could be used to recom-

a reverse nearest neighbors (RNN) query returns the set ofmendq to customers who have watchedr e, since they

objects in the database that hayas their nearest neighbor.
In this paper, we study an interesting generalization of the

could be interested ig, as well. Note that the NN of
(i.e., ) is not necessarily the RNN af(sincec is closer to

RNN query, where not all dimensions are considered, butb), thus NN and RNN queries are essentially two different
only an ad-hoc subset thereof. The rationale is that (i) the problems. In addition, RNN queries can have an arbitrary
dimensionality might be too high for the result of a regular number of results, as opposed to NN queries which have
RNN query to be useful, (ii) missing values may implicitly exactly one result.

define a meaningful subspace for RNN retrieval, and (iii)
analysts may be interested in the query results only for a set
of (ad-hoc) problem dimensions (i.e., object attributes). We
consider a suitable storage scheme and develop appropriate
algorithms for projected RNN queries, without relying on
multidimensional indexes. Our methods are experimentally
evaluated with real and synthetic data.
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1 Introduction

Consider a seb of objects that are modeled as points in
a multidimensional space, defined by the domains of their
various features. Given a query objectareverse nearest
neighbor(RNN) query [14/ 18] 23, 20,15, 15, 18,122,124]
retrieves all objects irD that haveg closer to them than
any other object irD (according to a distance measure).
RNN queries are used in a wide range of applications suc
as decision support, resource allocation, and profile-base
marketing.

Assume, for example, thab is a set of films in a
database (owned by a video rental shop) and that each d
mension is the rating of the film based on its relevance to
a different category (e.g., action, comedy, detective, horror
political, historical, etc.). The rating of a film at a partic-
ular dimension is determined by averaging the opinions of
customers who have watched the film. Figlfe 1 shows a
few films as points in a multidimensional space, consider-
ing only two dimensions; action and comedy. In this space,

Figure 1. Films rating database

We have illustrated RNN queries based on only two di-
mensions, however, there may be a large number of dimen-
sions, in general. According t61[6], NN search (and RNN
search, by extension) could be meaningless in high dimen-
sional spaces, due to the well-known curse of dimensional-
hity. This fact motivated database researchers to study range
dqueries [17], clustering [3], and similarity searChl[12] in di-
mensional subspaces where they could be meaningful. The
searched subspace is ad-hoc and may vary between different
i_similarity (and RNN) queries. For instance, assume that a
new film is registered in the database and watched by some
customer. The customer rates the film only based on three
"dimensions (e.g., action, detective, political), while leaving
the rest of the ratings blank. In this case, there is no other
meaningful way to search for the RNN of the film, but us-
ing only these three dimensions. [10, 17] stress the need
for queries in attribute subspaces, due to the existence of
missing values. SucprojectedRNN queries could also be
applied if some attributes of the query tuple are not relevant
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for search[[10]. A data analyst could explicitly select an ad- 2.1 Euclidean RNN Search
hoc dimensional subspace to search, which he thinks inter-

esting. This scenario is very common in business analysis nce for each data poipt An index is built on the points

. ) !
tasks, which aggregate data based on ad-hoc dmensmnqﬁith their NN distances so that RNN results can be retrieved

;ubspaces in on-line analyticallprocessing (OLAP) app"(.:a'fast. This approach has expensive update cost for dynamic
tions. Thus, we argue that projected NN and RNN QUETIES atasets. In addition, since we want to support RNN search

in ad-hoc dlmﬁnsmnallg,ubshpa;:e”sdqre as.lmplortant as the'fn ad-hoc sets of dimensions, it is infeasible to materialize
counterparts that consider the full dimensional space, eSPe3 . RNN for all points, in all possible subspaces.

cially in \_/e_w h'g,h dmensmnal data C(_)"?Ct'ons' . Recent methods do not rely on pre-computation, follow-
Surprisingly, in spite of the huge bibliography in OLAP 4 5 filter-refinement framework. In théter step, a set
[1], to our knowledge, there is no prior work on NN and ¢ candidate RNN points (i.e., a superset of the actual re-

RNN search in ad-hoc dimensional subspaces. Regarding, 1) are retrieved. During thefinementverification) step,
NN queries, we can attribute this lack of research to the fact 5 range query is applied around each candigateverify

that they can be straightforwardly converted to (and solved, hather the query pointis closer top than any other point
as) topk queries|[9], as we will discuss later (Sectjon]3.2). i, the database. If sg,is reported as an RNN af The al-
However, RNN retrieval is more complex and there is N0 rithms of [T9[22] apply on R—trees and rely on geometric
straightforward adaptation of existing work [14. 19123, 22] prgperties of the Euclidean distancg. 1[19] divides the (2D)
for the projected version of this problem. data space arounglinto 6 regions, such that the RNN of

In this paper, we fill this gap by proposing appropriate iy each region is exactly the NN qf there. Thus, in the
projected RNN evaluation techniques. Our solution is basedsjiter step, 6constrainedNN queries are issued to find the
on thedecomposition storage mod@SM) [8]. Acommer-  candidates.[[22] proposes a more efficient geometric solu-
cial product[2] and a prototype DBMSI[7, 21] have been tion (TPL) for the filter step that extends the incremental
developed based on DSM. In DSM, a binary table is createdpn N (INN) algorithm of [13]. The original INN algorithm
for each attribute, storing for each original tuple, the ID of [13] first inserts all root entries of the R—tree into a priority
the tuple and the value of the attribute in that tuple. The queue based on their distance frgqmThe nearest entry to
binary table can be sorted on attribute value and/or couldq is retrieved from the queue; if it is a leaf entry, the corre-
be indexed by a B-tree to facilitate search. As a result, sponding object is reported as the next nearest neighbor. If
only relevant tables need to be accessed for a query that ret is 3 directory entry, the corresponding node is visited and
lates to an ad-hoc set of attributes/dimensions. Vertically jts entries are inserted into the queue. TPL when visiting
fragmented data can be both centralized and distributed. Iny node, before inserting its entries into the priority queue,
the distributed model, the binary tables are located at sepatrimstheirminimum bounding rectangl¢MBRs) using the
rate servers and remotely accessed by users operating clienfiready computed RNN candidates to smaller rectangles, by
machines. The queried data are transferred in a form of apryning the areas of them which may not contain RNN re-
stream that stops when the whole result is transmitted or thegyts, Figur§ P shows an example after two candidate points
server receives a termination message from user. A populay, andp are discovered. Assume that poairit retrieved first
example of querying decomposed distributed data is com-and |etAs be the MBR of a node not accessed yet. The per-
bining object rankings from different sources [9]. pendicular bisector (a, ¢) of pointsa andq partitions the

The main objective of our DSM-based RNN algorithms data space into two regions: halfplang(a, ¢) containing
is to minimize the number of accesses at the binary tables points closer ta; thana, and halfplanel,(a, ¢) contain-
since they reflect I/O cost in the centralized model and com-ing points closer ta: thangq. Note that 1 ,(a,q) cannot
munication cost in the distributed model. The minor objec- contain any RNN results, thus, we only need to consider
tives are to reduce computational time and memory usage.\ N 1 ,(a, ) in subsequent search.
The rest of the paper is organized as follows. Sedfion 2
discusses related work. Sectign 3 defines the problem and
outlines the RNN algorithmic framework. Sectidrjs 4 phd 5

Early RNN algorithms[[14, 23] pre-compute the NN dis-

present our methodology. Sectjon 6 discusses evaluation of a
RENN queries. Experimental results are presented in Sec- ©
tion[7. Finally, Sectiofi]8 concludes the paper. q®
ob
2 Related Work Figure 2. Example of TPL
Sectior{ 2. surveys RNN algorithms. We review fop- Since the exac/ N L,(a,q) may have complex rep-

queries in Sectiop 212. Sectipn .3 discusses related workresentation (the MBR could be trimmed by multiple bisec-
on dynamic computation of Voronoi cells. tors and could be of high dimensionality), [22] suggested to



approximate the trimmed region by its MBR. Consecutive mon points. Objects are retrieved from different sources
clipping of an MBR is applied if there are multiple candi- by sorted accesses. A threshdlds defined as the sum of
date RNNs intersecting it. For instancdé,is clipped firstto  the latest values seen by sorted accesses in all dimensions.
M’ and thenta\/”, after considering_(a, ¢) and_L (b, ¢) in Search terminates when theth best score is higher than
this order. Although this clipping technique has low compu- in the worst case. Whenever TA sees an object by a sorted
tational cost, it may not result in the smallest possible MBR. access, the values of the object in other dimensions are re-
Observe that the best MBR enclosing the unpruned regiontrieved by using random accesses and its overall score is
in M is M* instead ofM". computed. On the other hand, NRA applies sorted accesses
RNN search is a popular problem, many variants of only. Objects which have been seen in some ranking list
which have been proposed. [18] proposes an approximateire organized based on their overall score in the worst case
algorithm, which cannot guarantee the discovery of all re- (@ssuming minimal values for dimensions where the object
sults. [20] focus orbichromaticRNN queries. [[5] inves-  has not been seen). TA usually requires fewer accessed in
tigate RNN queries on spatiotemporal data.] [15] examine finding the topk result, however, at the expense of possi-
aggregate RNN queries, which return an aggregate of thebly expensive random accesses that are avoided by NRA. In
RNN set, on 1D data streams. Finally, [24] study RNN Sectior{ 3.2 we elaborate on the relationship betweerktop-
queries on graphs where the distance between two objects i§ueries and projected NN (and RNN) search.
determined by their shortest path. The main defect of exist-
ing RNN methods is that they rely either on materialization
of results or on multi-dimensional indexes (e.g., R-trees),  The Voronoi diagram[16] of a datasét partitions the
thus they are not effective in solving tipgojectedRNN space into a number of cells (polygons), one for each point
problem stated in the Introduction. The dataset may havein D, such that for every € D, every point inside the
a large number of dimensions and the user could select onlworonoi cell V (p) (of p) is closer top than any other point
an arbitrary, smallinterestingsubset of them, which is dif-  in D. We now briefly discuss how Voronoi cells can be used
ferent from query to query. Construction and maintenancefor RNN search. Ley be the query point an#* be the set
of numerous (i.e.2¢ — 1 for d dimensions) specialized in-  of points whose Voronoi cell shares common border with
dexes for all attribute subsets is too expensive (or infeasiblethat of V(g). It turns out that the RNN set afis a subset
for vertically fragmented distributed data). Besides, exist- of P*. The reason is that every poiptp’ # ¢, p’ ¢ P*is
ing techniques [19, 22] rely on geometric properties specific nearer to some point if?* than tog.
for the _Euclidean distance, and they cannqt be applied for Computation and maintenance of the Voronoi diagram
other distance measures (e.g. Manhattan distance). for every combination of dimensions, for any distance mea-
) ; sure, and for any (for reversek nearest neighbor retrieval)
2.2 Top-k Queries is infeasible. As a result, a useful operation for RNN search
Our problem is closely related to tdpgueries. Given is the computation 0¥ (¢) in an ad-hoc dimensional sub-
a set of objects and a number of rankings for these objectsspace and for any distance measure. In the literature, most
according to different criteria, a top-query retrieves thé Voronoi cell computation methods are appropriate for the
objects with the highest combined score. Assume for ex- Euclidean distance metric only. [20] propose a method for
ample that we wish to retrieve the restaurants in a city in computing an approximation (superset)16fq), by using
decreasing order of their aggregate scores with respect ta set of NNs around. [25] suggests a technique for com-
how cheap they are, their quality, and their closeness to ourputing the exact Voronoi cell af. Both methods are based
hotel. If three separate services can incrementally provideon intersections of bisectors, which is computationally ex-
ranked lists of the restaurants based on their scores in eacpensive. In addition, they are appropriate for 2D data; in
of the query components, the problem is to identify kthe  Sectiorf 4., we discuss why these methods are expensive in
restaurants with the best combined (e.g., average) score. arbitrary dimensionality.
There are two types of primitive operations used by top-  Exact Voronoi cell computation for arbitrary dimen-
k algorithms: random accesses and sorted accesses. A rarsional data is discussed in [16]. The proposed algorithm
dom access retrieves the value of a particular object (givenrequires examining all the data points and is very expensive.
its ID) for a particular dimension (i.e., attribute). The al- In this paper, we aim at the computation ofawproximate
ternative (sorted accesses) is to retrieve objects from each/oronoi cell V- (¢) of ¢, which is based on only a subset
ranking sequentially, in decreasing order of their scores.W C D of points that are currently known. It can be easily
The two main topk retrieval paradigms [9] are: the Thresh- shown thafly (¢) (spatially) covers the exadf(q) for any
old Algorithm (TA), which applies both sequential and ran- W C D. [20] discusses a heuristic solution for comput-
dom accesses and No Random Accesses (NRA), which aping an approximation oV (¢) in 2D space only and did not
plies only sorted accesses. They share the following com-provide any analysis about the approximation quality and

2.3 Computation of Voronoi Cells



the space complexity of their approximationl [4] proposes  For each dimensioi tuples greater (smaller) thanare

an off-line method for computing an approximationiofy) retrieved from tabled;" (A4;), sequentially. The valug;

with asymptotic bounds on approximation quality and space for a particular point is either in A;" or in A; . Points
complexity. Such a method requires examining many pointswhich have been seen in some (but not all) dimensions are
in the dataset and it cannot be adapted to solve our problenindexed in memory using a hash table. \ép) be the set
where the points are discovered on-line. In Sedtioh 4.2, weof dimensions where point has been seen. Considering

present techniques for approximating Voronoi cells. Euclidean distance, we can compute the minimum possible
3 A Framework for RNN Search distance op from ¢ as follows:

We set up the problem studied in this paper by propos- mindist(q,p)=[ Y Ip:i —q:|?+>_ (minfo(A]) —gsq: —0(A;7)}? (1)
ing a storage model based on DSM and a framework for €MD) TEA(P)

projected NN and RNN queries on this model. , since, in the best casg, is equal to the closest value 4o

3.1 Problem Setting seen in eitherd;” or A; in all dimension where; has not

We consider a séb of d-dimensional pointsD is stored ~ P€en seen yEi- _ _ .
in 2d binary tables, two for each dimension. The tables Points which have been seen in all dimensions are re-
AF and A; correspond to dimensionand have identical moved from the hash table and inserted into a min-heap.
contents; the IDs of all points i and their values in the L&t Prop be the top object in this heap. dlist(q, piop) is
i-th dimension. The only difference is that" is sorted in ~ Smaller thanmindist(q, p) for all other points (including
ascending order of the values of thh attribute, whereas ~ COMPpletely unseen pointg)# p;o, , thenpy,, is output as
in A tuples are sorted in the reverse order. We store theth® nextNN. In this way, all NNs are (incrementally) output,
same information in two tables in order to be able to accessOr the user may opt to terminate search after a satisfactory
attribute valuessequentiallyin both directions (ascending S€t of NN has been output.
and descending ord@Let p; be the value of the point 3.3 A Framework for RNN Search

'n_ d;me_nau_mi. G;Viﬂ;rv\?;lfgé fi(r)1r t?]léﬁﬁlgti?esni[ilzaylggn As discussed in Sectign 2.1, RNN algorithms operate in
Pi = 4 \Pi = 4i), . . . two steps; (i) thdilter stepretrieves a candidate set which
be retrieved in ascending (descending) order, by SearChmgcontains all the actual results, and (i) therification step

+ p— . . .
;4(; S’:ét?a];?r Sq;:rr::?] ?;?netfjl;]a%i};:tézrgalZd::s‘)f théaetsable eliminates false hits and reports the actual RNNs. This
buﬂt on to yof the binarv tables ysP ' framework allows us to consider filter algorithms and veri-
P y ' fication algorithms independently. In this section, we focus

we empha_5|ze th_at only the setqﬂerydme_nsmns (in- on the filter step, because it dominates the overall cost (as
stead of all dimensions) are considered during query pro-__ ... .. : e . :
verified in our experiments). Verification algorithms will be

cessing. In the rest of the paper, we us& denote the discussed in detail in Sectiéh 5
number of query dimensions (not the data dimensionality). Figure[3 shows a high-level .pseudocode describing the

Our goal is .to. ?O'Ve RNN queries based on the above dataframework of RNN algorithms that operate on decomposed
model. Definitior[ 1 states the result set of a RNN query. data. In simple words, the RNN algorithms expand the
Unless otherwise stated, we consider Euclidean distance ag ac‘e around; discovérin RNN candidates and at the
the dissimilarity functionlist(). We shall discuss other dis- P ! 9

. . . same time constraining the additional space that needs to be
tance functions in Sectidn4.2. searched by exploiting the locations of discovered points.

Definition 1 Given a query poing and a dataseD, a RNN S denotes the MBR of the space that potentially contains

query retrieves the sSENN(q) = {p € Dldist(p,q) < RNNs of the query point;, not found yet. Initially, it is

N Ndist(p, D)} whereN Ndist(p, D) denotes the NN dis- set to MBR of the univers#, since there is no information
tance ofy i’n D ’ about the location of RNNs before search.

Let v(AS) and v(A;) be last values seen on

3.2 Incremental Nearest Neighbor Search fileshAj ] and A; : respect;:/ely, by dsorted ;CCGSSES
. . at the binary tables. Theaccessed spaced =
In this section we show how to adapt the NRA topd- ([v(Al‘),v(AT);}, (A7), 0(AD)], - -- ,[v(Ag),pv(Aj)}),

gorithm [9] for incremental retrieval of p_rojected NN from is defined by the minimum bounding rectangle (MBR) of
our storage scheme. The proposed projected NN algorlthmthe values seen at all binary tables. First, we4db the

is extended to solve projected RNN queries in Sedfioh 3.3. \ g of ¢. Let C be the candidate set addbe the set of

IModern hard disks have huge capacity, so the double storage is not aP0INts (false hits) that have been seen in all dimensions, but
problem. In addition, for applications with vertically fragmented data over
distributed servers, we need not store the data twice. Each server is only  2If for some dimensioni, A} is exhausted then term(A}) — g; is
required to return two streams of values ﬁ)f andA; . removed. Similarly, ifA;” is exhausted, termy; — v(A;") is removed.




are not RNNs. Pruned points are maintained'im order shrinks the search spaSeby applying the clipping method

to assist early identification of whether some candidates areof [22] directly onS. Let p be the next NN of;. Formally,

false hits (see line 6 of the algorithm). Initially, bothand Reduce(S, p) returns the MBR enclosing N L, (p, ¢).

F are set to empty. We will illustrate the semantics(of The main disadvantage of the TPL filter is that MBR
andF’ shortly. clipping introduces more dead space than necessary (as dis-
cussed in Sectign 2.1). Thus, it does not prune the search

Algorithm Filter (Pointq, Sourcesd) space effectively, increasing the number of accesses. A mi-

S:=U, A:=q,

;: C=g: F=0: nor disadvantage is that it employs incremental NN search.
3. while (S € A) In Sectiori 4.p, we show that we can take advantage of points
g %:i@jggwtgﬁ)? seen in all dimensions, as soon as they are identified, no
6 if Gy € O F,dist(p.p/) < dist(p,q) matter whether they are the next NNgbr not.
g elng u{rk 4.2 The Greedy Filter
9. C:=CU{p} The Greedy filter algorithm is a carefully designed RNN
10.return C; algorithm on our data model, which does not share the
Figure 3. The Filter Algorithm drawbacks of the TPL filter algorithm. Thget N ext func-
tion of our algorithm is not based on incremental NN search.
The filter algorithm has two core operatiorGetNea:t Instead, we mod|fy the process of Sec 3.2 to immedi-

and Reduce. Here, we Only state their Specifications. Their ate|y return a point, as soon as it has been seen in all di-
concrete implementations will be studied in SeCE)n 4. The mensions. The rationale is tha]mp|etq:)0|nts seen earlier
function GetNext(A) probes the set of binary table$  than the next NN may shrink the search space fast, allowing
(e.g., in around-robin fashion) and then returredeplete earlier termination of the filter step.
pointp whose values in all dimensions have been seen. The The Greedy filter algorithm also applies an improved
function Reduce(S, p) usesp to reduce the search spae  method for reducing the search spateThe MBR of the

By Definition[]], if a pointp is nearer to some other point  exact Voronoi cellV(¢) of ¢ is the minimal search space
p' thang, thenp cannot be a RNN of. In this casepis g, as discussed in Sectipn P.3. Sirficép) is unknown be-
said to beprunedby p'. At Line 6 of the algorithm, we  fore search, our algorithm progressively computes a more
check whethep can be pruned by some other pointsiin  refined approximation of it while retrieving points. LBt
or F. If so, p is pruned and then added ta Otherwise,  pe a set of known (i.e., retrieved) points aroundBased
p is added to the candidate s€tbecause it is a potential on 1/, we can compute an approximatidiy (p) of V(p),
result. The filter step terminates, as soon as the space to bgy taking the intersection of all halfplan€s, .y Lq(p: ).
searcheds is completely covered by the accessed spdce Halfplane intersection (fof., norm) is both computation-
(i.e., no more candidates can be discovered). Note that |fa||y expensive and space Consuming_ According to [16]’
S is covered byA in some dimensions and directions, the each incremental computation requir@g|1V|/%/21) time
corresponding tables are pruned from search. Formally, forand O (4| |4/21) space (vertices of the resulting Voronoi

each dimension, let[S;, S;"] be the projection of ini.  cell). In addition, computation of halfplanes is far more
If v(A;7) < S, then streamd;” is pruned. Similarly, if  complex for distance metrics other thaa. Finally, half-
v(4]) > S, then streami} is pruned. plane intersection cannot be directly applied fokNR

: : search, which will be discussed in Sectjdn 6. We observe
4 Filter Algorithms that, setting the search spa6eto any superset oFyy (q)

In this section, we propose filter algorithms for RNN guarantees that no results outside the accessed dpaite
search. Sectidn 4.1 discusses an adaptation of the TPL algobe missed, thus exact computation1gf(¢) may not be
rithm [22] on our data model. Sectipn §#.2 proposes a care-necessary for RNN retrieval. Next, we discuss two methods
fully designed and efficient RNN algorithm. The algorithms  that compute conservative approximation$/gf(q) that do
follow the framework of Figurg]3, thus we confine our dis- not rely on halfplane intersection and can be computed for
cussion on the implementation éfetNext and Reduce arbitrary L,, distance norms.
operations.

4.1 The TPL Filter Our first method approximategy (¢), dynamically and
The TPL filter algorithm adapts the access pattern andefficiently, as new points are retrieved. In addition, the
pruning techniques of the TPL algorithm_[22], however, approximated cell requires only bounded space, which is
without relying on R—trees. Th@etNext function of TPL much smaller than the space required for representing the
returns the next NN of, by applying the incremental al- exactV (g) in the worst case. Initially, we show how this
gorithm described in Sectidn 3.2. THeeduce function method works with the Euclidean distance and then extend

4.2.1 Approximation using intercepts



it for any L, distance norm.
First, we partition the search space arounihto 2¢

based on the monotonicity property of Euclidean distance.
Anintercept coordinate = (g1, - .., qi—1, Cry Git1s -« - qd)

quadrants, as shown in Figure 4a. Consider the upper rightfor some axis-, of the halfplane betweepand a seen point
quadrant in this example. Figuré 4b illustrates how to de- =, can be easily computed from the equatitist(e, q) =
rive the (local) search space for this quadrant. Suppose welist(e,z). Thus, our technique can be applied for dhy

have discovered 5 points b, ¢, e, f there. For each point

p found @ € {a,b,c, e, f}), we compute the intercepts of

norm.
We stress that our Voronoi cell approximation technique

L(p,q) with the axes of the quadrant. It turns out that it is functionally different from the one in [20]. We use in-
suffices to compute and maintain the intercept closegt to tercepts (based on any, norm) to compute a rectangle

for each dimension. Let/ be the MBR containing and

that enclosed/(¢q), whereas[[20] compute a more com-

these intercepts. Lemma 2 (based on Lerpina 1) guaranteeplex 2D approximation of the cell. Thus, our method is
that M contains all potential RNNSs in the quadrant. After applicable for any dimensionality (with significantly lower
M has been computed for all quadrants, the (global) searctspace requirements) and distance metric. Our approxima-

spaces is taken as their MBR, as shown in Figlije 4a.
y |

(a) Global search space  (b) Local search space

Figure 4. Voronoi cell approximation

Lemma 1 Consider the quadranf) with coordinates no
smaller thang in all dimensions. Lep be a point inQ and
let e be the intercept of_(p, ¢) with some axis, i.e.,e =
(q1y---3Gi—1,CryQix1, - - - ,qa)- FOr any pointp’, for which
Vi € [1,d] : pi > e;, we havelist(p', q) > dist(p', p).

Proof. We first comparelist(e, g) anddist(e, p) with the
corresponding distancésst(p’, q) anddist(p’, p) for every
dimension individually. For any dimensianlet dif f, =
lp; — qil — lei — qi| (dif fq > 0, sincee; > ¢; andp) > e;).
Similarly, letdiff, = [p} — pil — le; — pil. If P} < pi,
thendif f, < 0. If p; > p;, thendif f, < diff,, since
g; < p; < pj. Thus, inany caselif f, < dif f,. Since, in
all dimensiong’ can only be closer tp thane is andp’ can
only be further tharm thane is, and due to the monotonicity

of the Euclidean distance (based on the atomic dimensional

distances), we hawéist(p’, q) > dist(p’,p). 1

Lemma 2 Consider a quadran®) defined by;. Let! be the
set of the intercepts that are closesytfor each dimension.
Let M be the MBR defined by and these interceptsiM
encloses all RNNs af in ) that are located outside the
accessed spacé.

tion method is expected to outperform the TPL filter dis-
cussed in Sectidn 4.1, since it optimally clips the quadrants
containing points using information about these points. On
the other hand, the TPL filter operates on the MBR of the
whole search spac®, which is harder to prune. The only
drawback of our technique is that each retrieved point is not
utilized in pruning other quadrants except the one it resides
in. In the next section, we propose another pruning tech-
nigue that utilizes the effect of discovered points in neigh-
boring quadrants.

4.2.2 Approximation using a hierarchical grid

In this section, we propose a method that approximates
the MBR that coversVyy (p) with the help of a multi-
dimensional grid. This approach has several advantages.
First, it provides a guarantee on the quality of the approxi-
mation. Second, no memory is needed for storing the cells.
Third, this technique can directly be used for other distance
metrics. Initially, we assume that the Euclidean distance is
used; later we discuss other distance metrics.

|
|
I I
| |
| |
| | | |
-4 -+r-F--F----
| | | |
| |
| |
a 1

| I
| |
| |
| | | |
- -r-f-r-f--1--
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(b) a hierarchical grid

(a) a simple grid
Figure 5. Reducing search space using a grid

Figure[%a shows an exemplasysx 8 grid that partitions
the search spacg&. Whenever a new point is retrieved by
Get Next, we check (by the use of bisectors) whether a cell
can be pruned by the points which have been seen in all
dimensions. If not, the cell (shown in red) is included in the

When multiple points exist in a quadrant, the nearest in- revised search spaéé for the next round (to be used for the
tercepts to; dominate in pruning. Thus, Lemra 2 can be next retrieved point). Instead of explicitly including all non-
trivially proved. We can prove versions of Lemnjgs 1 and pruned cells inS’, we consider the MBR of them (since the
for any L,, metric, since the basic proof (of Lemijnp 1) is decomposed tables are essentially accessed until the MBR



of V(q) anyway). Thus, we need not explicity maintain 5 Verification of Candidates

?n memory any grid ir}formation. When .the algorithm is In this section, we discuss whether the candidates ob-
invoked for the next point, the search spakie smaller than tained in the filter step are actual RNNs. In addition, we

before, thus the cells become smaller and the approximationdiscuss early (progressive) computations of RNNs before

quality improves incrementally. the verification step. Finally, we show a method that min-

Yet, ghehdrawback.of tTe above techrllliqqe ;]S t:]'&g_ Itre- imizesF, i.e., the set of points that are not candidates, but
quires high computational cost, especially in high dimen- o "o cedh 1o prung,

sional space, since a large number of cells must be checked. -
In order to reduce the CPU cost we introduce a hierarchical5.1 Concurrent Verification

grid, as shown in Figurie] 5b and employ branch-and-bound  The filter step terminates with a s8tof candidate points
techniques to speed up computation. We first attempt toand a set of false hits; points that have been seen in all
prune a high level cell. If pruning fails, then we partition dimensions, but they are found not to be RNNs. Normally,
it into smaller ones and apply the above procedure recur-each candidate € C is verified by issuing a range search
sively. In Figurg bb, the maximum recursion level is set to aroundp with radiusdist(q,p). If another point is found
3. This parameter is a tradeoff between the approximationyithin this range them is not an RNN ofg, otherwise it is
quality and the computational cost. returned. In order to reduce the number of range queries,
Figure[§ shows this hierarchical grid based traversal al- e perform verification in two steps. First, we check each
gorithm for search space reduction. First, the newly dis- ;, ¢ ¢ whether they are closer to some other seen point in
covered poinip is added to the set of pointd’, used for  cyF than tog. These candidates can be immediately elimi-
pruning (i.e..W = C'U F). Then, we dynamically impose  nated. The second step is to check the remaining candidates
a hierarchical grid to the current search spacend prune by range queries. Instead of issuing individual queries for
its cells hierarchically.S’” denotes the output search space each candidate, we perforncancurrent verificationwhich

(MBR of cells that are not pruned). In theraverse func- continues traversing the binary tables from the point where
tion, a celle is examined when (i) it is not covered i, the filter algorithm has stopped, until all candidates have
and (ii) it cannot be pruned by any pointslii. At recur-  peen verified. The overall verification algorithm is shown

sion level 0, pruning terminates aisd is enlarged to cover  in Figure[7. The main idea of the second step is to compute
e. Note that the outpu$” of this algorithm is guaranteed to 3 rectanglel for each candidate (based ontist(q, p)),

be no larger thage than the exact MBR o1y (¢), ineach  where its potential neighbors closer tharmay be con-
dimension, where is the length of a cell at the finest grid  tajned. While accessing the binary tables in search for these
resolution. As a result, the proposed technique provides apoint, each complete point is checked on whether it can

good approximation guarantee. prune any of the remaining candidatesir{not onlyp). If
Algorithm Grid-Reduce(MBR S,Pointp) p cannot be pruned, then it is reported as a result.
1. Global Set¥V; // reuse content in previous run ) o . )
2. W=W U {p}; Algorithm Concurrent-Ve/rlflcatlon (SourcesA,Candldate/Sef,FgIse Hit Setf")
3 §l=gr ' 1 C=C—{peC|3p’ € (FUC —{p}),dist(p,p") < dist(p,q)};

. e 2. foreachp € C
4. Traverse(S’,S,MAX LEVEL, q, W); 3. S=dist(p, q);
5. S:=5"; 4. M:=([p1 — &,p1 +9],[p2 — 8, p2 + 6], ,[pa — &, pa + ]);

5. while(pe CA M ;t_ A) Il p not removed and/ not completely accessed
Algorithm Traverse(MBR S’,Cell ¢,Int level,Pointq,SetW) ‘75- U’fGetNe'»ft(f‘gid. ) < dist(ol o1
1. if (e SZ S") Il e not covered bys’ - i;—ecc—) {p" € Cldist(p’, w) < dist(p’, q)};
2. if (Vp € W, e cannot be pruned by) 9 reportp as a result;
3. if (level = 0)
! . . s . .

g' elsglarge9 to covere; Figure 7. Concurrent Verification Algorithm
6. partitione into 2¢ sub-cells; . .
7. for eachcelle’ C e 5.2 Progressive RNN Computation
8. Traverse(S’, €', level — 1,q, W);

Our algorithmic framework allows early report of points
Figure 6. Hierarchical Grid Traversal that are definitely in the RNN set, before the verification
The grid-based Greedy filter algorithm can be applied for Phase. Progressive report of results is very useful in prac-
other distance metrics by using alternative pruning meth- tice, since the user can examine early results, while wait-
ods for cells (i.e., not based on perpendicular bisectors), deing for the complete response set. Given a candidate point

scribed by Lemmp]3 (straightforwardly proven). p, let M(p) be the MBR enclosing the region with as
_ center and the range aBst(p,q). Formally, we have
Lemma 3 Let M be a rectangle. For any distance met-  r7(p) = ([p,—8, p1+90], [p2—0, p2+90], - - - , [pa—0, pa+9]),

ric, it maxdist(p, M) < mindist(q, M) thenvp' € wheres = dist(p,q). During the filter step, if a candi-
M, dist(p,p’) < dist(q,p’). datep satisfies (i)M (p) C A, and (i)Vp' € (C U F —



{p}), dist(p,p") > dist(p,q), thenp can be immediately  a cellin this case is pruned if it falls outsidg, (¢, p) for at
reported as a result. In the example of Figure B&p) is leastk pointsp € CU F.
enclosed inA and does not contain any other point put For the verification step of NN search, for each candi-
y y date poinp, we keep a counter of the points@hJ F', which
A ‘,,,,,S,,,,,‘ are closer tg than toq, during the filter step. Every time
! 3 a new point is accessed, these counters are updated. Even-
q 3 . 3 tually, verification is required only for candidates for which
‘ the counter is smaller thak. We note that we have also
4 extended our framework successfully fichromaticRNN
X X queries[[20]. Details are omitted due to space constraints.

(a) progressive verification (b) reducing the refinement set 7 Experimental Evaluation

Figure 8. Optimizing the filter step In this section, we evaluate the proposed RNN algo-
rithms using synthetic and real datasets. All algorithms
5.3 Reducing the Set of False Hits (TPL, G-IA for Greedy with intercept approximation, and

During the filter step, we maintain a potentially large set .G'HG for Greedy with hierarchical grid) were implemented

i ; . ++.
F of points that are false hits, but may be used for candidate" C Al ex_perlments were performed ona Pentlum_ v
. ; LT : 2.3GHz PC with 512MB memory. The maximum recursion
pruning. We can reduce this set, by eliminating points that . . . .
d ) level of the search space reduction algorithm in G-HG is
may not be used to prune any candidate. A ppiat F' can

. X . o -
be discarded if (ip does not fall in the verification range of :z(:r?t;cl)ir?s(t;%c,:: g{éd ?JBezr 22:»[8 itscae\llljr)é Fe%r :va:rhlg)é)petzleries
any existing candidate, and (i),,(¢,p) NS C A. L,(¢,p) ' query g q

) - . with the same properties. We considered Euclidean distance

is the part of the data space containing points closer to . : ) L . .
BN : in all experiments, since TPL is inapplicable for other dis-

thang. Only the points in this region can be prunedpbyf :

. . ) . tance metrics.

its intersection with the search spagds already covered

by the accessed spagk then any complete points found 7.1 Experimental Settings

later cannot be pruned by the popnt Note that this con- We generated uniform synthetic datasets (Ul) by assign-
dition can be generalized folr arbitrary distance metr_lcs, by ing random numbers to attribute values of objects indepen-
replacing L, (¢, p) by the region closer tp than tog. Fig-  gently. The default number of objects in a synthetic dataset
uref8b illustrates an example, where a (non-candidate) pointg r — 100K, We also used a real dataset (JESTER [11]),
p can be pruned fron'. which contains a total of 4.1M ratings of 100 jokes from

6 RENN Search 73K users. A joke may not be rated by all users. We ex-

tracted the attributes (i.e., jokes) having value for at least

In this section, we discuss how our framework can be oK objects (i.e., users) and then constructed binary tables

adapted for the generalized problem ofNN search: find  for them (22 attributes). Query objects are users randomly
all pointsp such thatg belongs to the:-NN set ofp. The  chosen from the dataset. For a particular query object
TPL filter can be generalized forkiRIN search, if we se- e use only the attributes for whichhas ratings to issue

lect & k-subset{f1,0s,--- .0} of the points inC' U F. g projected RNN query. In this way, we are able to ex-
Letclip(S, g, 0;) be the MBR (inS) that may contain some  tract query workloads with a specified number of query di-
points closer to the query poigtthan the point;. Let S’ mensions. The query result can be used to recommgend

be the MBR that enclosesip(S, ¢, 0;)Vi € [1, k]. Observe 1t his/her RNNs as a potential “buddy”, singhas similar

that other RNN results cannot be outsiidecause all such  aste in jokes as them.

points are nearer to &, 0, - - - , 6 than tog. Therefore, Attribute values of both Ul and JESTER datasets are

S’ becomes the new search space after a new point has begRyrmalized to the rangf9, 1]. We tried different access

retrieved. Appropriaté:-subsets o' U I to be used for  patterns for sequential accesses to the binary tables during

pruning can be selected using the heuristic$ of [22]. RNN evaluation (i.e., round-robin, equi-depth, etc.). We
The Greedy filter can be adapted fokIRN search, by  found no practical difference between these schemes, thus

ConSidering the-th closest intercept for each axis adjacent we use a round-robin accessing scheme in all experiments
to each quadrant. Due to space constraints, the proof for thgeported here.

correctness of this approach is omitted. We stress that this .

technique is deterministic, as opposed to the probabilistic7'2 Experimental Results

nature of selecting-subsets in the TPL filter. In addition, We study the performance of RNN search with respect
it is applicable to anyl,, distance norms. The grid-based to various factors. Figuiie] 9a shows the filter and verifica-
Greedy filter can also be easily extended féNRI search; tion costs (in terms of accesses) of the algorithms on the Ul



and JESTER datasets for queries with= 3 dimensions. performance gap widens dsncreases. The pruning effec-
The filter costs of the algorithms are proportional to their tiveness of TPL and G-IA decreases with dimensionality.
search space. The MBR clipping technique in TPL prunes A bisector is less likely to prune all dimensions and reduce
the space too loosely. G-IA is more effective in space re- the global MBR, thus TPL is not very effective. Besides,
duction than TPL. Finally, G-HG has the lowest filter cost for a discovered point, the number of neighbor quadrants
as it utilizes the pruning power of discovered points in all increase withd and G-IA fails to utilizep in pruning them.
guadrants. The concurrent verification algorithm is very ef- The CPU cost has a slightly different trend. G-HG becomes
ficient; verification costs less than 10% of the total cost. very expensive atl = 5 (and higher values) because it
Since TPL and G-IA search more space than G-HG, theyneeds to examine a large number of hierarchical cells. We
eventually discover more points than G-HG, which can be recommend G-IA for high query dimensionality, because it
used to prune more candidates. This explains the higherachieves good balance between accesses and CPU cost.
verification cost of G-HG compared to the other methods.
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Figure 11. Cost vs dimensionality d, JESTER
Figure[12 shows the cost of the algorithms as a function

of the data sizéV, on 3D Ul datasets. All the algorithms are

scalable as their costs increase sub-linearlyvaacreases.

Figure 9. Cost on different datasets, d =3 Again, G-HG outperforms the other methods and the per-
formance gap widens &% increases.
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Figure 10. Data access types, d =3, JESTER

Figure 12. Cost vs data size N, d = 3, Ul

The next experiment justifies why we use only sorted ac-
cesses to the binary tables, whereas one could develop RNN We also compared the algorithms fokRN search. Fig-
algorithms that extend TA_[9]. We implemented versions ure[13 shows the performance of the algorithms with respect
of TPL, G-IA, and G-HG that perform random accesses; to k. Access costs of the algorithms increase sub-linearly as
whenever an object is seen from a binary table; 1 ran- k increases. The cost of TPL increases at the fastest rate be-
dom accesses to all other tables are applied to retrieve theause it applies a heuristic, which only considers subsets of
values of the object in all other dimensions. Thus, there discovered points in reducing the search space. On the other
are nopartially seen objects. Figufe]LO compares the origi- hand, G-IA and G-HG employ deterministic and systematic
nal filter algorithms with their versions that employ random approaches for reducing the search space effectively. Re-
accesses (for queries with= 3). Observe that the total ac- garding CPU cost, TPL is the most expensive as it needs
cess cost when using random accesses is much higher thato examine several subsets of points. Also, G-HG becomes
when not. In practice, their access cost difference is evenmore expensive than G-IA at high valueskdiecause some
higher, provided that random accesses are more expensivligh level (hierarchical) cells cannot be immediately pruned
than sorted ones in real applications. and more low level cells need to be visited.

Figure[I] shows the access and CPU cost of the algo- Figure[I4 shows the progressiveness of the algorithms
rithms as a function of query dimensionalify G-HG out- for a typical R4ANN query on a 3D Ul dataset. All the al-
performs the other algorithms in terms of accesses and theyorithms generate the first few results early because all of
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