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Abstract

Given an objectq, modeled by a multidimensional point,
a reverse nearest neighbors (RNN) query returns the set of
objects in the database that haveq as their nearest neighbor.
In this paper, we study an interesting generalization of the
RNN query, where not all dimensions are considered, but
only an ad-hoc subset thereof. The rationale is that (i) the
dimensionality might be too high for the result of a regular
RNN query to be useful, (ii) missing values may implicitly
define a meaningful subspace for RNN retrieval, and (iii)
analysts may be interested in the query results only for a set
of (ad-hoc) problem dimensions (i.e., object attributes). We
consider a suitable storage scheme and develop appropriate
algorithms for projected RNN queries, without relying on
multidimensional indexes. Our methods are experimentally
evaluated with real and synthetic data.

1 Introduction
Consider a setD of objects that are modeled as points in

a multidimensional space, defined by the domains of their
various features. Given a query objectq, a reverse nearest
neighbor(RNN) query [14, 19, 23, 20, 5, 15, 18, 22, 24]
retrieves all objects inD that haveq closer to them than
any other object inD (according to a distance measure).
RNN queries are used in a wide range of applications such
as decision support, resource allocation, and profile-based
marketing.

Assume, for example, thatD is a set of films in a
database (owned by a video rental shop) and that each di-
mension is the rating of the film based on its relevance to
a different category (e.g., action, comedy, detective, horror,
political, historical, etc.). The rating of a film at a partic-
ular dimension is determined by averaging the opinions of
customers who have watched the film. Figure 1 shows a
few films as points in a multidimensional space, consider-
ing only two dimensions; action and comedy. In this space,
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a ande are the reverse nearest neighbors ofq (based on Eu-
clidean distance); these two points haveq as their nearest
neighbor (NN). The query result could be used to recom-
mendq to customers who have watcheda or e, since they
could be interested inq, as well. Note that the NN ofq
(i.e., b) is not necessarily the RNN ofq (sincec is closer to
b), thus NN and RNN queries are essentially two different
problems. In addition, RNN queries can have an arbitrary
number of results, as opposed to NN queries which have
exactly one result.
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Figure 1. Films rating database

We have illustrated RNN queries based on only two di-
mensions, however, there may be a large number of dimen-
sions, in general. According to [6], NN search (and RNN
search, by extension) could be meaningless in high dimen-
sional spaces, due to the well-known curse of dimensional-
ity. This fact motivated database researchers to study range
queries [17], clustering [3], and similarity search [12] in di-
mensional subspaces where they could be meaningful. The
searched subspace is ad-hoc and may vary between different
similarity (and RNN) queries. For instance, assume that a
new film is registered in the database and watched by some
customer. The customer rates the film only based on three
dimensions (e.g., action, detective, political), while leaving
the rest of the ratings blank. In this case, there is no other
meaningful way to search for the RNN of the film, but us-
ing only these three dimensions. [10, 17] stress the need
for queries in attribute subspaces, due to the existence of
missing values. SuchprojectedRNN queries could also be
applied if some attributes of the query tuple are not relevant



for search [10]. A data analyst could explicitly select an ad-
hoc dimensional subspace to search, which he thinks inter-
esting. This scenario is very common in business analysis
tasks, which aggregate data based on ad-hoc dimensional
subspaces in on-line analytical processing (OLAP) applica-
tions. Thus, we argue that projected NN and RNN queries
in ad-hoc dimensional subspaces are as important as their
counterparts that consider the full dimensional space, espe-
cially in very high dimensional data collections.

Surprisingly, in spite of the huge bibliography in OLAP
[1], to our knowledge, there is no prior work on NN and
RNN search in ad-hoc dimensional subspaces. Regarding
NN queries, we can attribute this lack of research to the fact
that they can be straightforwardly converted to (and solved
as) top-k queries [9], as we will discuss later (Section 3.2).
However, RNN retrieval is more complex and there is no
straightforward adaptation of existing work [14, 19, 23, 22]
for the projected version of this problem.

In this paper, we fill this gap by proposing appropriate
projected RNN evaluation techniques. Our solution is based
on thedecomposition storage model(DSM) [8]. A commer-
cial product [2] and a prototype DBMS [7, 21] have been
developed based on DSM. In DSM, a binary table is created
for each attribute, storing for each original tuple, the ID of
the tuple and the value of the attribute in that tuple. The
binary table can be sorted on attribute value and/or could
be indexed by a B+–tree to facilitate search. As a result,
only relevant tables need to be accessed for a query that re-
lates to an ad-hoc set of attributes/dimensions. Vertically
fragmented data can be both centralized and distributed. In
the distributed model, the binary tables are located at sepa-
rate servers and remotely accessed by users operating client
machines. The queried data are transferred in a form of a
stream that stops when the whole result is transmitted or the
server receives a termination message from user. A popular
example of querying decomposed distributed data is com-
bining object rankings from different sources [9].

The main objective of our DSM-based RNN algorithms
is to minimize the number of accesses at the binary tables,
since they reflect I/O cost in the centralized model and com-
munication cost in the distributed model. The minor objec-
tives are to reduce computational time and memory usage.
The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 defines the problem and
outlines the RNN algorithmic framework. Sections 4 and 5
present our methodology. Section 6 discusses evaluation of
RkNN queries. Experimental results are presented in Sec-
tion 7. Finally, Section 8 concludes the paper.

2 Related Work

Section 2.1 surveys RNN algorithms. We review top-k
queries in Section 2.2. Section 2.3 discusses related work
on dynamic computation of Voronoi cells.

2.1 Euclidean RNN Search

Early RNN algorithms [14, 23] pre-compute the NN dis-
tance for each data pointp. An index is built on the points
with their NN distances so that RNN results can be retrieved
fast. This approach has expensive update cost for dynamic
datasets. In addition, since we want to support RNN search
in ad-hoc sets of dimensions, it is infeasible to materialize
the RNN for all points, in all possible subspaces.

Recent methods do not rely on pre-computation, follow-
ing a filter-refinement framework. In thefilter step, a set
of candidate RNN points (i.e., a superset of the actual re-
sult) are retrieved. During therefinement(verification) step,
a range query is applied around each candidatep to verify
whether the query pointq is closer top than any other point
in the database. If so,p is reported as an RNN ofq. The al-
gorithms of [19, 22] apply on R–trees and rely on geometric
properties of the Euclidean distance. [19] divides the (2D)
data space aroundq into 6 regions, such that the RNN ofq
in each region is exactly the NN ofq, there. Thus, in the
filter step, 6constrainedNN queries are issued to find the
candidates. [22] proposes a more efficient geometric solu-
tion (TPL) for the filter step that extends the incremental
NN (INN) algorithm of [13]. The original INN algorithm
[13] first inserts all root entries of the R–tree into a priority
queue based on their distance fromq. The nearest entry to
q is retrieved from the queue; if it is a leaf entry, the corre-
sponding object is reported as the next nearest neighbor. If
it is a directory entry, the corresponding node is visited and
its entries are inserted into the queue. TPL when visiting
a node, before inserting its entries into the priority queue,
trims theirminimum bounding rectangles(MBRs) using the
already computed RNN candidates to smaller rectangles, by
pruning the areas of them which may not contain RNN re-
sults. Figure 2 shows an example after two candidate points
a andb are discovered. Assume that pointa is retrieved first
and letM be the MBR of a node not accessed yet. The per-
pendicular bisector⊥(a, q) of pointsa andq partitions the
data space into two regions: halfplane⊥q(a, q) containing
points closer toq thana, and halfplane⊥a(a, q) contain-
ing points closer toa than q. Note that⊥a(a, q) cannot
contain any RNN results, thus, we only need to consider
M ∩ ⊥q(a, q) in subsequent search. 
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Figure 2. Example of TPL

Since the exactM ∩ ⊥q(a, q) may have complex rep-
resentation (the MBR could be trimmed by multiple bisec-
tors and could be of high dimensionality), [22] suggested to



approximate the trimmed region by its MBR. Consecutive
clipping of an MBR is applied if there are multiple candi-
date RNNs intersecting it. For instance,M is clipped first to
M ′ and then toM ′′, after considering⊥(a, q) and⊥(b, q) in
this order. Although this clipping technique has low compu-
tational cost, it may not result in the smallest possible MBR.
Observe that the best MBR enclosing the unpruned region
in M is M∗ instead ofM ′′.

RNN search is a popular problem, many variants of
which have been proposed. [18] proposes an approximate
algorithm, which cannot guarantee the discovery of all re-
sults. [20] focus onbichromaticRNN queries. [5] inves-
tigate RNN queries on spatiotemporal data. [15] examine
aggregate RNN queries, which return an aggregate of the
RNN set, on 1D data streams. Finally, [24] study RNN
queries on graphs where the distance between two objects is
determined by their shortest path. The main defect of exist-
ing RNN methods is that they rely either on materialization
of results or on multi-dimensional indexes (e.g., R–trees),
thus they are not effective in solving theprojectedRNN
problem stated in the Introduction. The dataset may have
a large number of dimensions and the user could select only
an arbitrary, small,interestingsubset of them, which is dif-
ferent from query to query. Construction and maintenance
of numerous (i.e.,2d − 1 for d dimensions) specialized in-
dexes for all attribute subsets is too expensive (or infeasible
for vertically fragmented distributed data). Besides, exist-
ing techniques [19, 22] rely on geometric properties specific
for the Euclidean distance, and they cannot be applied for
other distance measures (e.g. Manhattan distance).

2.2 Top-k Queries

Our problem is closely related to top-k queries. Given
a set of objects and a number of rankings for these objects
according to different criteria, a top-k query retrieves thek
objects with the highest combined score. Assume for ex-
ample that we wish to retrieve the restaurants in a city in
decreasing order of their aggregate scores with respect to
how cheap they are, their quality, and their closeness to our
hotel. If three separate services can incrementally provide
ranked lists of the restaurants based on their scores in each
of the query components, the problem is to identify thek
restaurants with the best combined (e.g., average) score.

There are two types of primitive operations used by top-
k algorithms: random accesses and sorted accesses. A ran-
dom access retrieves the value of a particular object (given
its ID) for a particular dimension (i.e., attribute). The al-
ternative (sorted accesses) is to retrieve objects from each
ranking sequentially, in decreasing order of their scores.
The two main top-k retrieval paradigms [9] are: the Thresh-
old Algorithm (TA), which applies both sequential and ran-
dom accesses and No Random Accesses (NRA), which ap-
plies only sorted accesses. They share the following com-

mon points. Objects are retrieved from different sources
by sorted accesses. A thresholdT is defined as the sum of
the latest values seen by sorted accesses in all dimensions.
Search terminates when thek-th best score is higher thanT ,
in the worst case. Whenever TA sees an object by a sorted
access, the values of the object in other dimensions are re-
trieved by using random accesses and its overall score is
computed. On the other hand, NRA applies sorted accesses
only. Objects which have been seen in some ranking list
are organized based on their overall score in the worst case
(assuming minimal values for dimensions where the object
has not been seen). TA usually requires fewer accessed in
finding the top-k result, however, at the expense of possi-
bly expensive random accesses that are avoided by NRA. In
Section 3.2 we elaborate on the relationship between top-k
queries and projected NN (and RNN) search.

2.3 Computation of Voronoi Cells

The Voronoi diagram [16] of a datasetD partitions the
space into a number of cells (polygons), one for each point
in D, such that for everyp ∈ D, every point inside the
Voronoi cellV (p) (of p) is closer top than any other point
inD. We now briefly discuss how Voronoi cells can be used
for RNN search. Letq be the query point andP ∗ be the set
of points whose Voronoi cell shares common border with
that ofV (q). It turns out that the RNN set ofq is a subset
of P ∗. The reason is that every pointp′,p′ 6= q, p′ /∈ P ∗ is
nearer to some point inP ∗ than toq.

Computation and maintenance of the Voronoi diagram
for every combination of dimensions, for any distance mea-
sure, and for anyk (for reversek nearest neighbor retrieval)
is infeasible. As a result, a useful operation for RNN search
is the computation ofV (q) in an ad-hoc dimensional sub-
space and for any distance measure. In the literature, most
Voronoi cell computation methods are appropriate for the
Euclidean distance metric only. [20] propose a method for
computing an approximation (superset) ofV (q), by using
a set of NNs aroundq. [25] suggests a technique for com-
puting the exact Voronoi cell ofq. Both methods are based
on intersections of bisectors, which is computationally ex-
pensive. In addition, they are appropriate for 2D data; in
Section 4.2, we discuss why these methods are expensive in
arbitrary dimensionality.

Exact Voronoi cell computation for arbitrary dimen-
sional data is discussed in [16]. The proposed algorithm
requires examining all the data points and is very expensive.
In this paper, we aim at the computation of anapproximate
Voronoi cell VW (q) of q, which is based on only a subset
W ⊆ D of points that are currently known. It can be easily
shown thatVW (q) (spatially) covers the exactV (q) for any
W ⊆ D. [20] discusses a heuristic solution for comput-
ing an approximation ofV (q) in 2D space only and did not
provide any analysis about the approximation quality and



the space complexity of their approximation. [4] proposes
an off-line method for computing an approximation ofV (q)
with asymptotic bounds on approximation quality and space
complexity. Such a method requires examining many points
in the dataset and it cannot be adapted to solve our problem
where the points are discovered on-line. In Section 4.2, we
present techniques for approximating Voronoi cells.

3 A Framework for RNN Search
We set up the problem studied in this paper by propos-

ing a storage model based on DSM and a framework for
projected NN and RNN queries on this model.

3.1 Problem Setting

We consider a setD of d-dimensional points.D is stored
in 2d binary tables, two for each dimension. The tables
A+

i andA−
i correspond to dimensioni and have identical

contents; the IDs of all points inD and their values in the
i-th dimension. The only difference is thatA+

i is sorted in
ascending order of the values of thei-th attribute, whereas
in A−

i tuples are sorted in the reverse order. We store the
same information in two tables in order to be able to access
attribute valuessequentiallyin both directions (ascending
and descending order).1 Let pi be the value of the pointp
in dimensioni. Given a valueqi, for all pointsp satisfying
pi ≥ qi (pi < qi), their values in thei-th dimension can
be retrieved in ascending (descending) order, by searching
A+

i (A−
i ) for qi and accessing the remainder of the table

sequentially. Search can be facilitated by sparse B+–trees,
built on top of the binary tables.

We emphasize that only the set ofquerydimensions (in-
stead of all dimensions) are considered during query pro-
cessing. In the rest of the paper, we used to denote the
number of query dimensions (not the data dimensionality).
Our goal is to solve RNN queries based on the above data
model. Definition 1 states the result set of a RNN query.
Unless otherwise stated, we consider Euclidean distance as
the dissimilarity functiondist(). We shall discuss other dis-
tance functions in Section 4.2.

Definition 1 Given a query pointq and a datasetD, a RNN
query retrieves the setRNN(q) = {p ∈ D|dist(p, q) <
NNdist(p,D)} whereNNdist(p,D) denotes the NN dis-
tance ofp in D.

3.2 Incremental Nearest Neighbor Search

In this section we show how to adapt the NRA top-k al-
gorithm [9] for incremental retrieval of projected NN from
our storage scheme. The proposed projected NN algorithm
is extended to solve projected RNN queries in Section 3.3.

1Modern hard disks have huge capacity, so the double storage is not a
problem. In addition, for applications with vertically fragmented data over
distributed servers, we need not store the data twice. Each server is only
required to return two streams of values forA+

i andA−
i .

For each dimensioni, tuples greater (smaller) thanqi are
retrieved from tableA+

i (A−
i ), sequentially. The valuepi

for a particular pointp is either inA+
i or in A−

i . Points
which have been seen in some (but not all) dimensions are
indexed in memory using a hash table. LetΛ(p) be the set
of dimensions where pointp has been seen. Considering
Euclidean distance, we can compute the minimum possible
distance ofp from q as follows:

mindist(q, p)=

√ ∑
i∈Λ(p)

|pi−qi|2+
∑

i/∈Λ(p)

(min{v(A+
i )−qi,qi−v(A−

i )})2 (1)

, since, in the best case,pi is equal to the closest value toqi

seen in eitherA+
i or A−

i in all dimension wherepi has not
been seen yet.2

Points which have been seen in all dimensions are re-
moved from the hash table and inserted into a min-heap.
Let ptop be the top object in this heap. Ifdist(q, ptop) is
smaller thanmindist(q, p) for all other points (including
completely unseen points)p 6= ptop , thenptop is output as
the next NN. In this way, all NNs are (incrementally) output,
or the user may opt to terminate search after a satisfactory
set of NN has been output.

3.3 A Framework for RNN Search

As discussed in Section 2.1, RNN algorithms operate in
two steps; (i) thefilter stepretrieves a candidate set which
contains all the actual results, and (ii) theverification step
eliminates false hits and reports the actual RNNs. This
framework allows us to consider filter algorithms and veri-
fication algorithms independently. In this section, we focus
on the filter step, because it dominates the overall cost (as
verified in our experiments). Verification algorithms will be
discussed in detail in Section 5.

Figure 3 shows a high-level pseudocode, describing the
framework of RNN algorithms that operate on decomposed
data. In simple words, the RNN algorithms expand the
space aroundq, discovering RNN candidates and at the
same time constraining the additional space that needs to be
searched by exploiting the locations of discovered points.
S denotes the MBR of the space that potentially contains
RNNs of the query pointq, not found yet. Initially, it is
set to MBR of the universeU , since there is no information
about the location of RNNs before search.

Let v(A+
i ) and v(A−

i ) be last values seen on
files A+

i and A−
i , respectively, by sorted accesses

at the binary tables. Theaccessed spaceA =
([v(A−

1 ), v(A+
1 )], [v(A−

2 ), v(A+
2 )], · · · , [v(A−

d ), v(A+
d )]),

is defined by the minimum bounding rectangle (MBR) of
the values seen at all binary tables. First, we setA to the
MBR of q. Let C be the candidate set andF be the set of
points (false hits) that have been seen in all dimensions, but

2If for some dimensioni, A+
i is exhausted then termv(A+

i ) − qi is
removed. Similarly, ifA−

i is exhausted, termqi − v(A−
i ) is removed.



are not RNNs. Pruned points are maintained inF in order
to assist early identification of whether some candidates are
false hits (see line 6 of the algorithm). Initially, bothC and
F are set to empty. We will illustrate the semantics ofC
andF shortly.

Algorithm Filter (Pointq, SourcesA)
1. S:=U ; A:=q;
2. C:=∅; F :=∅;
3. while (S * A)
4. p:=GetNext(A);
5. Reduce(S, p);
6. if (∃p′ ∈ C ∪ F, dist(p, p′) ≤ dist(p, q))
7. F :=F ∪ {p};
8. else
9. C:=C ∪ {p};
10. return C;

Figure 3. The Filter Algorithm

The filter algorithm has two core operations;GetNext
andReduce. Here, we only state their specifications. Their
concrete implementations will be studied in Section 4. The
function GetNext(A) probes the set of binary tablesA
(e.g., in a round-robin fashion) and then returns acomplete
pointp whose values in all dimensions have been seen. The
functionReduce(S, p) usesp to reduce the search spaceS.

By Definition 1, if a pointp is nearer to some other point
p′ thanq, thenp cannot be a RNN ofq. In this case,p is
said to beprunedby p′. At Line 6 of the algorithm, we
check whetherp can be pruned by some other points inC
or F . If so, p is pruned and then added toF . Otherwise,
p is added to the candidate setC because it is a potential
result. The filter step terminates, as soon as the space to be
searchedS is completely covered by the accessed spaceA
(i.e., no more candidates can be discovered). Note that if
S is covered byA in some dimensions and directions, the
corresponding tables are pruned from search. Formally, for
each dimensioni, let [S−

i , S+
i ] be the projection ofS in i.

If v(A−
i ) < S−

i , then streamA−
i is pruned. Similarly, if

v(A+
i ) > S+

i , then streamA+
i is pruned.

4 Filter Algorithms
In this section, we propose filter algorithms for RNN

search. Section 4.1 discusses an adaptation of the TPL algo-
rithm [22] on our data model. Section 4.2 proposes a care-
fully designed and efficient RNN algorithm. The algorithms
follow the framework of Figure 3, thus we confine our dis-
cussion on the implementation ofGetNext and Reduce
operations.

4.1 The TPL Filter

The TPL filter algorithm adapts the access pattern and
pruning techniques of the TPL algorithm [22], however,
without relying on R–trees. TheGetNext function of TPL
returns the next NN ofq, by applying the incremental al-
gorithm described in Section 3.2. TheReduce function

shrinks the search spaceS by applying the clipping method
of [22] directly onS. Let p be the next NN ofq. Formally,
Reduce(S, p) returns the MBR enclosingS ∩ ⊥q(p, q).

The main disadvantage of the TPL filter is that MBR
clipping introduces more dead space than necessary (as dis-
cussed in Section 2.1). Thus, it does not prune the search
space effectively, increasing the number of accesses. A mi-
nor disadvantage is that it employs incremental NN search.
In Section 4.2, we show that we can take advantage of points
seen in all dimensions, as soon as they are identified, no
matter whether they are the next NN ofq or not.

4.2 The Greedy Filter

The Greedy filter algorithm is a carefully designed RNN
algorithm on our data model, which does not share the
drawbacks of the TPL filter algorithm. TheGetNext func-
tion of our algorithm is not based on incremental NN search.
Instead, we modify the process of Section 3.2 to immedi-
ately return a point, as soon as it has been seen in all di-
mensions. The rationale is thatcompletepoints seen earlier
than the next NN may shrink the search space fast, allowing
earlier termination of the filter step.

The Greedy filter algorithm also applies an improved
method for reducing the search spaceS. The MBR of the
exact Voronoi cellV (q) of q is the minimal search space
S, as discussed in Section 2.3. SinceV (p) is unknown be-
fore search, our algorithm progressively computes a more
refined approximation of it while retrieving points. LetW
be a set of known (i.e., retrieved) points aroundq. Based
on W , we can compute an approximationVW (p) of V (p),
by taking the intersection of all halfplanes

⋂
p∈W ⊥q(p, q).

Halfplane intersection (forL2 norm) is both computation-
ally expensive and space consuming. According to [16],
each incremental computation requiresO(|W |dd/2e) time
andO(d|W |dd/2e) space (vertices of the resulting Voronoi
cell). In addition, computation of halfplanes is far more
complex for distance metrics other thanL2. Finally, half-
plane intersection cannot be directly applied for RkNN
search, which will be discussed in Section 6. We observe
that, setting the search spaceS to any superset ofVW (q)
guarantees that no results outside the accessed spaceA will
be missed, thus exact computation ofVW (q) may not be
necessary for RNN retrieval. Next, we discuss two methods
that compute conservative approximations ofVW (q) that do
not rely on halfplane intersection and can be computed for
arbitraryLp distance norms.

4.2.1 Approximation using intercepts

Our first method approximatesVW (q), dynamically and
efficiently, as new points are retrieved. In addition, the
approximated cell requires only bounded space, which is
much smaller than the space required for representing the
exactV (q) in the worst case. Initially, we show how this
method works with the Euclidean distance and then extend



it for anyLp distance norm.
First, we partition the search space aroundq into 2d

quadrants, as shown in Figure 4a. Consider the upper right
quadrant in this example. Figure 4b illustrates how to de-
rive the (local) search space for this quadrant. Suppose we
have discovered 5 pointsa, b, c, e, f there. For each point
p found (p ∈ {a, b, c, e, f}), we compute the intercepts of
⊥(p, q) with the axes of the quadrant. It turns out that it
suffices to compute and maintain the intercept closest toq
for each dimension. LetM be the MBR containingq and
these intercepts. Lemma 2 (based on Lemma 1) guarantees
thatM contains all potential RNNs in the quadrant. After
M has been computed for all quadrants, the (global) search
spaceS is taken as their MBR, as shown in Figure 4a.
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Figure 4. Voronoi cell approximation

Lemma 1 Consider the quadrantQ with coordinates no
smaller thanq in all dimensions. Letp be a point inQ and
let e be the intercept of⊥(p, q) with some axisr, i.e., e =
(q1, . . . , qi−1, cr, qi+1, . . . , qd). For any pointp′, for which
∀i ∈ [1, d] : p′i ≥ ei, we havedist(p′, q) ≥ dist(p′, p).

Proof. We first comparedist(e, q) anddist(e, p) with the
corresponding distancesdist(p′, q) anddist(p′, p) for every
dimension individually. For any dimensioni, let diffq =
|p′i − qi| − |ei − qi| (diffq ≥ 0, sinceei ≥ qi andp′i ≥ ei).
Similarly, let diffp = |p′i − pi| − |ei − pi|. If p′i ≤ pi,
thendiffp ≤ 0. If p′i ≥ pi, thendiffp ≤ diffq, since
qi ≤ pi ≤ p′i. Thus, in any case,diffp ≤ diffq. Since, in
all dimensionsp′ can only be closer top thane is andp′ can
only be further thanq thane is, and due to the monotonicity
of the Euclidean distance (based on the atomic dimensional
distances), we havedist(p′, q) ≥ dist(p′, p).

Lemma 2 Consider a quadrantQ defined byq. LetI be the
set of the intercepts that are closest toq for each dimension.
Let M be the MBR defined byq and these intercepts.M
encloses all RNNs ofq in Q that are located outside the
accessed spaceA.

When multiple points exist in a quadrant, the nearest in-
tercepts toq dominate in pruning. Thus, Lemma 2 can be
trivially proved. We can prove versions of Lemmas 1 and
2 for anyLp metric, since the basic proof (of Lemma 1) is

based on the monotonicity property of Euclidean distance.
An intercept coordinatee = (q1, . . . , qi−1, cr, qi+1, . . . , qd)
for some axisr, of the halfplane betweenq and a seen point
x, can be easily computed from the equationdist(e, q) =
dist(e, x). Thus, our technique can be applied for anyLp

norm.
We stress that our Voronoi cell approximation technique

is functionally different from the one in [20]. We use in-
tercepts (based on anyLp norm) to compute a rectangle
that enclosesV (q), whereas [20] compute a more com-
plex 2D approximation of the cell. Thus, our method is
applicable for any dimensionality (with significantly lower
space requirements) and distance metric. Our approxima-
tion method is expected to outperform the TPL filter dis-
cussed in Section 4.1, since it optimally clips the quadrants
containing points using information about these points. On
the other hand, the TPL filter operates on the MBR of the
whole search spaceS, which is harder to prune. The only
drawback of our technique is that each retrieved point is not
utilized in pruning other quadrants except the one it resides
in. In the next section, we propose another pruning tech-
nique that utilizes the effect of discovered points in neigh-
boring quadrants.

4.2.2 Approximation using a hierarchical grid

In this section, we propose a method that approximates
the MBR that coversVW (p) with the help of a multi-
dimensional grid. This approach has several advantages.
First, it provides a guarantee on the quality of the approxi-
mation. Second, no memory is needed for storing the cells.
Third, this technique can directly be used for other distance
metrics. Initially, we assume that the Euclidean distance is
used; later we discuss other distance metrics.
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Figure 5. Reducing search space using a grid

Figure 5a shows an exemplary8 × 8 grid that partitions
the search spaceS. Whenever a new point is retrieved by
GetNext, we check (by the use of bisectors) whether a cell
can be pruned by the points which have been seen in all
dimensions. If not, the cell (shown in red) is included in the
revised search spaceS′ for the next round (to be used for the
next retrieved point). Instead of explicitly including all non-
pruned cells inS′, we consider the MBR of them (since the
decomposed tables are essentially accessed until the MBR



of V (q) anyway). Thus, we need not explicitly maintain
in memory any grid information. When the algorithm is
invoked for the next point, the search spaceS is smaller than
before, thus the cells become smaller and the approximation
quality improves incrementally.

Yet, the drawback of the above technique is that it re-
quires high computational cost, especially in high dimen-
sional space, since a large number of cells must be checked.
In order to reduce the CPU cost we introduce a hierarchical
grid, as shown in Figure 5b and employ branch-and-bound
techniques to speed up computation. We first attempt to
prune a high level cell. If pruning fails, then we partition
it into smaller ones and apply the above procedure recur-
sively. In Figure 5b, the maximum recursion level is set to
3. This parameter is a tradeoff between the approximation
quality and the computational cost.

Figure 6 shows this hierarchical grid based traversal al-
gorithm for search space reduction. First, the newly dis-
covered pointp is added to the set of pointsW , used for
pruning (i.e.,W = C ∪ F ). Then, we dynamically impose
a hierarchical grid to the current search spaceS and prune
its cells hierarchically.S′ denotes the output search space
(MBR of cells that are not pruned). In theTraverse func-
tion, a celle is examined when (i) it is not covered byS′,
and (ii) it cannot be pruned by any points inW . At recur-
sion level 0, pruning terminates andS′ is enlarged to cover
e. Note that the outputS′ of this algorithm is guaranteed to
be no larger than2e than the exact MBR ofVW (q), in each
dimension, wheree is the length of a cell at the finest grid
resolution. As a result, the proposed technique provides a
good approximation guarantee.

Algorithm Grid-Reduce(MBR S,Pointp)
1. Global SetW ; // reuse content in previous run
2. W :=W ∪ {p};
3. S′:=∅;
4. Traverse(S′, S,MAX LEVEL, q, W );
5. S:=S′;

Algorithm Traverse(MBR S′,Cell e,Int level,Pointq,SetW )
1. if (e * S′) // e not covered byS′

2. if (∀p ∈ W, e cannot be pruned byp)
3. if (level = 0)
4. enlargeS′ to covere;
5. else
6. partitione into 2d sub-cells;
7. for eachcell e′ ⊆ e
8. Traverse(S′, e′, level − 1, q, W );

Figure 6. Hierarchical Grid Traversal
The grid-based Greedy filter algorithm can be applied for

other distance metrics by using alternative pruning meth-
ods for cells (i.e., not based on perpendicular bisectors), de-
scribed by Lemma 3 (straightforwardly proven).

Lemma 3 Let M be a rectangle. For any distance met-
ric, if maxdist(p, M) ≤ mindist(q, M) then ∀p′ ∈
M,dist(p, p′) ≤ dist(q, p′).

5 Verification of Candidates
In this section, we discuss whether the candidates ob-

tained in the filter step are actual RNNs. In addition, we
discuss early (progressive) computations of RNNs before
the verification step. Finally, we show a method that min-
imizesF , i.e., the set of points that are not candidates, but
they are used to pruneC.

5.1 Concurrent Verification

The filter step terminates with a setC of candidate points
and a setF of false hits; points that have been seen in all
dimensions, but they are found not to be RNNs. Normally,
each candidatep ∈ C is verified by issuing a range search
aroundp with radiusdist(q, p). If another point is found
within this range thenp is not an RNN ofq, otherwise it is
returned. In order to reduce the number of range queries,
we perform verification in two steps. First, we check each
p ∈ C whether they are closer to some other seen point in
C∪F than toq. These candidates can be immediately elimi-
nated. The second step is to check the remaining candidates
by range queries. Instead of issuing individual queries for
each candidate, we perform aconcurrent verification, which
continues traversing the binary tables from the point where
the filter algorithm has stopped, until all candidates have
been verified. The overall verification algorithm is shown
in Figure 7. The main idea of the second step is to compute
a rectangleM for each candidatep (based ondist(q, p)),
where its potential neighbors closer thanq may be con-
tained. While accessing the binary tables in search for these
point, each complete pointw is checked on whether it can
prune any of the remaining candidates inC (not onlyp). If
p cannot be pruned, then it is reported as a result.

Algorithm Concurrent-Verification (SourcesA,Candidate SetC,False Hit SetF )
1. C:=C − {p ∈ C|∃p′ ∈ (F ∪ C − {p}), dist(p, p′) ≤ dist(p, q)};
2. for eachp ∈ C
3. δ:=dist(p, q);
4. M :=([p1 − δ, p1 + δ], [p2 − δ, p2 + δ], · · · , [pd − δ, pd + δ]);
5. while (p ∈ C ∧ M * A) // p not removed andM not completely accessed
6. w:=GetNext(A);
7. C:=C − {p′ ∈ C|dist(p′, w) ≤ dist(p′, q)};
8. if (p ∈ C)
9. reportp as a result;

Figure 7. Concurrent Verification Algorithm

5.2 Progressive RNN Computation

Our algorithmic framework allows early report of points
that are definitely in the RNN set, before the verification
phase. Progressive report of results is very useful in prac-
tice, since the user can examine early results, while wait-
ing for the complete response set. Given a candidate point
p, let M(p) be the MBR enclosing the region withp as
center and the range asdist(p, q). Formally, we have
M(p) = ([p1−δ, p1+δ], [p2−δ, p2+δ], · · · , [pd−δ, pd+δ]),
whereδ = dist(p, q). During the filter step, if a candi-
datep satisfies (i)M(p) ⊆ A, and (ii) ∀p′ ∈ (C ∪ F −



{p}), dist(p, p′) > dist(p, q), thenp can be immediately
reported as a result. In the example of Figure 8a,M(p) is
enclosed inA and does not contain any other point butp.
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Figure 8. Optimizing the filter step

5.3 Reducing the Set of False Hits

During the filter step, we maintain a potentially large set
F of points that are false hits, but may be used for candidate
pruning. We can reduce this set, by eliminating points that
may not be used to prune any candidate. A pointp ∈ F can
be discarded if (i)p does not fall in the verification range of
any existing candidate, and (ii)⊥p(q, p)∩S ⊆ A. ⊥p(q, p)
is the part of the data space containing points closer top
thanq. Only the points in this region can be pruned byp. If
its intersection with the search spaceS is already covered
by the accessed spaceA, then any complete points found
later cannot be pruned by the pointp. Note that this con-
dition can be generalized for arbitrary distance metrics, by
replacing⊥p(q, p) by the region closer top than toq. Fig-
ure 8b illustrates an example, where a (non-candidate) point
p can be pruned fromF .

6 RkNN Search
In this section, we discuss how our framework can be

adapted for the generalized problem of RkNN search: find
all pointsp such thatq belongs to thek-NN set ofp. The
TPL filter can be generalized for RkNN search, if we se-
lect a k-subset{θ1, θ2, · · · , θk} of the points inC ∪ F .
Let clip(S, q, θi) be the MBR (inS) that may contain some
points closer to the query pointq than the pointθi. Let S′

be the MBR that enclosesclip(S, q, θi)∀i ∈ [1, k]. Observe
that other RNN results cannot be outsideS′ because all such
points are nearer to allθ1, θ2, · · · , θk than toq. Therefore,
S′ becomes the new search space after a new point has been
retrieved. Appropriatek-subsets ofC ∪ F to be used for
pruning can be selected using the heuristics of [22].

The Greedy filter can be adapted for RkNN search, by
considering thek-th closest intercept for each axis adjacent
to each quadrant. Due to space constraints, the proof for the
correctness of this approach is omitted. We stress that this
technique is deterministic, as opposed to the probabilistic
nature of selectingk-subsets in the TPL filter. In addition,
it is applicable to anyLp distance norms. The grid-based
Greedy filter can also be easily extended for RkNN search;

a cell in this case is pruned if it falls outside⊥q(q, p) for at
leastk pointsp ∈ C ∪ F .

For the verification step of RkNN search, for each candi-
date pointp, we keep a counter of the points inC∪F , which
are closer top than toq, during the filter step. Every time
a new point is accessed, these counters are updated. Even-
tually, verification is required only for candidates for which
the counter is smaller thank. We note that we have also
extended our framework successfully forbichromaticRNN
queries [20]. Details are omitted due to space constraints.

7 Experimental Evaluation
In this section, we evaluate the proposed RNN algo-

rithms using synthetic and real datasets. All algorithms
(TPL, G-IA for Greedy with intercept approximation, and
G-HG for Greedy with hierarchical grid) were implemented
in C++. All experiments were performed on a Pentium IV
2.3GHz PC with 512MB memory. The maximum recursion
level of the search space reduction algorithm in G-HG is
fixed to 5 (i.e., a grid of32d finest cells). For each experi-
mental instance, the query cost is averaged over 100 queries
with the same properties. We considered Euclidean distance
in all experiments, since TPL is inapplicable for other dis-
tance metrics.

7.1 Experimental Settings

We generated uniform synthetic datasets (UI) by assign-
ing random numbers to attribute values of objects indepen-
dently. The default number of objects in a synthetic dataset
is N = 100K. We also used a real dataset (JESTER [11]),
which contains a total of 4.1M ratings of 100 jokes from
73K users. A joke may not be rated by all users. We ex-
tracted the attributes (i.e., jokes) having value for at least
60K objects (i.e., users) and then constructed binary tables
for them (22 attributes). Query objects are users randomly
chosen from the dataset. For a particular query objectq
we use only the attributes for whichq has ratings to issue
a projected RNN query. In this way, we are able to ex-
tract query workloads with a specified number of query di-
mensions. The query result can be used to recommendq
to his/her RNNs as a potential “buddy”, sinceq has similar
taste in jokes as them.

Attribute values of both UI and JESTER datasets are
normalized to the range[0, 1]. We tried different access
patterns for sequential accesses to the binary tables during
RNN evaluation (i.e., round-robin, equi-depth, etc.). We
found no practical difference between these schemes, thus
we use a round-robin accessing scheme in all experiments
reported here.

7.2 Experimental Results

We study the performance of RNN search with respect
to various factors. Figure 9a shows the filter and verifica-
tion costs (in terms of accesses) of the algorithms on the UI



and JESTER datasets for queries withd = 3 dimensions.
The filter costs of the algorithms are proportional to their
search space. The MBR clipping technique in TPL prunes
the space too loosely. G-IA is more effective in space re-
duction than TPL. Finally, G-HG has the lowest filter cost
as it utilizes the pruning power of discovered points in all
quadrants. The concurrent verification algorithm is very ef-
ficient; verification costs less than 10% of the total cost.
Since TPL and G-IA search more space than G-HG, they
eventually discover more points than G-HG, which can be
used to prune more candidates. This explains the higher
verification cost of G-HG compared to the other methods.
As Figure 9b shows, the CPU cost of the algorithms follows
the same trend as the number of accesses. Unless otherwise
stated, we consider JESTER as the default dataset in subse-
quent experiments.
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Figure 9. Cost on different datasets, d = 3
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Figure 10. Data access types, d = 3, JESTER

The next experiment justifies why we use only sorted ac-
cesses to the binary tables, whereas one could develop RNN
algorithms that extend TA [9]. We implemented versions
of TPL, G-IA, and G-HG that perform random accesses;
whenever an object is seen from a binary table,d − 1 ran-
dom accesses to all other tables are applied to retrieve the
values of the object in all other dimensions. Thus, there
are nopartially seen objects. Figure 10 compares the origi-
nal filter algorithms with their versions that employ random
accesses (for queries withd = 3). Observe that the total ac-
cess cost when using random accesses is much higher than
when not. In practice, their access cost difference is even
higher, provided that random accesses are more expensive
than sorted ones in real applications.

Figure 11 shows the access and CPU cost of the algo-
rithms as a function of query dimensionalityd. G-HG out-
performs the other algorithms in terms of accesses and the

performance gap widens asd increases. The pruning effec-
tiveness of TPL and G-IA decreases with dimensionality.
A bisector is less likely to prune all dimensions and reduce
the global MBR, thus TPL is not very effective. Besides,
for a discovered pointp, the number of neighbor quadrants
increase withd and G-IA fails to utilizep in pruning them.
The CPU cost has a slightly different trend. G-HG becomes
very expensive atd = 5 (and higher values) because it
needs to examine a large number of hierarchical cells. We
recommend G-IA for high query dimensionality, because it
achieves good balance between accesses and CPU cost.
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Figure 11. Cost vs dimensionality d, JESTER

Figure 12 shows the cost of the algorithms as a function
of the data sizeN , on 3D UI datasets. All the algorithms are
scalable as their costs increase sub-linearly asN increases.
Again, G-HG outperforms the other methods and the per-
formance gap widens asN increases.

0.0e0

2.0e4

4.0e4

6.0e4

8.0e4

1.0e5

1.2e5

1.4e5

 0  100  200  300  400  500  600  700  800

A
cc

es
se

s

data size (K)

TPL
G-IA

G-HG

0.0

0.2

0.4

0.6

0.8

1.0

 0  100  200  300  400  500  600  700  800

C
P

U
 (

s)

data size (K)

TPL
G-IA

G-HG

(a) access cost (b) CPU cost

Figure 12. Cost vs data size N , d = 3, UI

We also compared the algorithms for RkNN search. Fig-
ure 13 shows the performance of the algorithms with respect
to k. Access costs of the algorithms increase sub-linearly as
k increases. The cost of TPL increases at the fastest rate be-
cause it applies a heuristic, which only considers subsets of
discovered points in reducing the search space. On the other
hand, G-IA and G-HG employ deterministic and systematic
approaches for reducing the search space effectively. Re-
garding CPU cost, TPL is the most expensive as it needs
to examine several subsets of points. Also, G-HG becomes
more expensive than G-IA at high values ofk because some
high level (hierarchical) cells cannot be immediately pruned
and more low level cells need to be visited.

Figure 14 shows the progressiveness of the algorithms
for a typical R4NN query on a 3D UI dataset. All the al-
gorithms generate the first few results early because all of



them follow the same filter framework algorithm. Their ef-
fectiveness of reducing the search space only affects their
total cost. The arrows indicate that G-HG terminated first,
followed by G-IA and TPL. Finally, we compared the per-
formance of G-IA and G-HG forL1 andL∞ (TPL is in-
applicable in this experiment) and found that G-HG con-
sistently outperforms G-IA in terms of accesses. Detailed
results are omitted due to lack of space.

0.0e0

1.0e4

2.0e4

3.0e4

4.0e4

5.0e4

6.0e4

7.0e4

8.0e4

 0  2  4  6  8  10  12  14  16

A
cc

es
se

s

k

TPL
G-IA

G-HG

0.0

0.5

1.0

1.5

2.0

2.5

 0  2  4  6  8  10  12  14  16

C
P

U
 (

s)

k

TPL
G-IA

G-HG

(a) access cost (b) CPU cost

Figure 13. Cost vs k, d = 3, JESTER
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8 Conclusion
We proposed the first algorithms for projected RNN

queries (and their variants) on the decomposed data model
and evaluated their performance on both synthetic and real
datasets. We also proposed the first techniques for retriev-
ing RNN results in a progressive way. The algorithm G-HG
requires the least number of data accesses while G-IA is
more balanced between access cost and CPU cost. In terms
of flexibility, G-HG is applicable to any distance metric, G-
IA is applicable to anyLp distance norm, and TPL is only
applicable toL2 norm. In the future, we will study more
optimizations for projected RNN algorithms on vertically
decomposed data.
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