Efficient Aggregation of Ranked Inputs

Nikos Mamoulis, Kit Hung Cheng, Man Lung Yiu, and David W. Chgun
Department of Computer Science
University of Hong Kong
Pokfulam Road
Hong Kong
{ni kos, khcheng, m yi u2, dcheung}@s. hku. hk

Abstract

A top-k query combines different rankings of the same set
of objects and returns the k objects with the highest com-
bined score according to an aggregate function. We bring
to light some key observations, which impose two phases
that any top-% algorithm, based on sorted accesses, should
go through. Based on them, we propose a new algo-
rithm, which is designed to minimize the number of ob-
ject accesses, the computational cost, and the memory re-
quirements of top-k search. Adaptations of our algorithm
for search variants (exact scores, on-line and incremental
search, top-% joins, other aggregate functions, etc.) are
also provided. Extensive experiments with synthetic and
real data show that, compared to previous techniques, our
method accesses fewer objects, while being orders of mag-
nitude faster.

1 Introduction

there), orrandomly by explicitly queryingS; aboutz. On

the other hand, in this paper, we focus on fogueries in

the case where the atomic scores in each source can be ac-
cessed only in sorted order; i.e., it is not possible to know
the score of an object in sourég, before all objects better
thanz in S; have been seen there. This case has received
increasing interest [8, 12, 9, 10] for several reasons.t,Firs

in many applications, random accesses to scores are impos-
sible [6]. For instance, a typical web search engine does
not explicitly return the similarity between a query and a
particular document in its database (it only ranks simibar t
the query documents). Second, even when random accesses
are allowed, they are usually considerably more expensive
that sorted accesses. Third, we may want to merge (pos-
sibly unbounded) streams of ranked inputs [10], produced
incrementally and/or on-demand, where individual scores
of random objects are not available at anytime.

Fagin et al. [6] proposed a tdp-algorithm that performs

“no random accesses” (NRA) and proved that it is asymp-
totically no worse (in terms of accesses) than any kop-
method based on sorted accesses only. Nevertheless, as

Several applications combine ordered scores of the same S&thown in [8, 12, 9, 10], NRA algorithms can have signif-

of objects from different (distributed) sources and rethn

objects in decreasing order of their combined scores, ac-
cording to an aggregate function. Assume for example that
we wish to retrieve the restaurants in a city in decreasing or

icant performance differences in terms of (i) accesses, (ii
computational cost, and (iii) memory requirements. The
number of accesses is a significant cost factor, especially f
middleware applications which charge by the amount of in-

der of their aggregate scores with respect to how cheap the3formation transferred from the various (distributed) s®st

are, their quality, and their closeness to our hotel.

)) s Ifehre The computational cost is critical for real-time applicats,
separate services can incrementally provide ranked Ifsts o

whereas memory is an issue for NRA algorithms, which, as

the restaurants based on their scores in each of the que%pposed to random-access based methods (e.g., [13]), have

components, the problem is to identify tkherestaurants
with the best combined (e.g., average) score.

This problem, known as the tapguery, has received con-

siderable attention. Fagin’s early algorithm [4], latetiop

mized in [13, 7, 6], assumes that the score of an object

can be accessed from each soutgcbothsequentially (i.e.,

after all objects with higher ranking thanhave been seen

*Work supported by grant HKU 7380/02E from Hong Kong RGC.

large buffer requirements [12, 9].

The first contribution of this paper is the identification of
some key observations, which have been overlooked by past
research and apply on the whole family of “no random ac-
cesses” (NRA) algorithms. These observations impose two
phases that any NRA algorithm should go througbrav-

ing phase, during which the set of tdpeandidates grows
and no pruning can be performed andhasinking phase,

during which the set of candidates shrinks until the top- [S [S [S5]

k result is finalized. Our second contribution is a careful c0.9 [a09] c0.9
implementation of a tog algorithm, which is based on d0.8 | b0.8 | a0.9
these observations and employs appropriate data stracture b06 | e0.6 | b0.8

to minimize the accesses, computational cost, and memory e0.3]d04| d0.6
requirements of tof-search. Our algorithm can be imple- a01]|¢c02]|e05
mented as a standalone rank aggregation tool or as a multi-

way merge join operator for dynamically produced ranked Figure 1. Three ranked inputs

inputs. Extensive experiments with synthetic and real data
show that, compared to previous techniques, our method ac-

cesses (sometimes significantly) fewer objects, whiledein in [6, 13, .7]) retr[eves ObJe.CtS from the ranked'lnputs ina
orders of magnitude faster. round-robin fashion and directly computes their aggregate

scores by performing random accesses to the sources where
The rest of the paper is organized as follows. In Section 2 the object has not been seen. A priority queue is used to or-
we review related work on top-query processing. Section ganize the best objects seen so far. Létbe the last score
3 motivates this research and identifies some key propertieseen in source;; T = ~(l4,. .., L) defines ahreshold
on the behavior of NRA algorithms. Section 4 describes (i.e., alower bound) for the aggregate score of objectsmeve
LARA, our optimized NRA algorithm, which is built on seen in anys; yet. If thek-th highest aggregate score found
these properties. In Section 5, we discuss important vari-sg far is at least equal B, then the algorithm is guaranteed

ants of topk queries and how LARA can be adapted for tg have found the top-objects and terminates.
each of them. LARA is experimentally compared with pre-

vious algorithms of NRA tope search in Section 6. Finally,
Section 7 concludes the paper.

For the case where random accesses are either impossible

or much more expensive compared to sorted ones, [6] pro-

poses an algorithm, referred to as “no-random accesses”

(NRA). NRA computes the top-result, performing sorted

2 Background and Related Work accesses only. It iteratively retrieves objectdérom the
ranked inputs in a round-robin fashion. NRA maintains

Let D be a collection ofn objects (e.g., images) and these objects and uppet® and lower+!* bounds of their

S1,59,...,5, be a set ofm ranked inputs (e.g., search aggregate scores, based on their atomic scores seen so far
engine results) of the objects, based on thwmic scores and the upper and lower bounds of scores in egclvhere

(e.g., similarity to a query) on different features (e.gloc, they have not been seen. Bouyitf is computed by assum-
texture, etc.). An aggregate functigr(e.g., weighted sum) ing that for everyS;, wherexz has not been seen yet's

maps them atomic scores:y, zo, ..., x,, of an objectx score inS; is the highest possible (i.e., the scéref the

in S1,5,,...,5, to an aggregate scorg. Functiony is last object seen ;). Bound~!® is computed by assuming
monotone if (z; < y;,Vi) = v, < v,. Given~, atop-k that for everysS;, wherex has not been seen yets score
queryon Sy, Ss, ..., S, (also calledrank aggregation) re- in .S; is the lowest possible (i.e),if scores range fror to

trievesR, ak-subset ofD (k < n), such that/z € R,y € 1). Let W}, be the set of thé objects with the largest'®.

D — R:~, > ,. Consider the example of Figure 1 show- If the smallest lower bound ii¥’;, is at least the largest®

ing three ranked inputs for objecfs, b, ¢, d, e} and assume of any objectz not in W,,, thenW,, is reported as the top-
that the score of an object in each source ranges frém result and the algorithm terminates. NRA is described by
1. Atop-1 query withsumas aggregate functionreturns the pseudocode of Figure 2.

b with scorey, = v(0.6,0.8,0.8) = 2.2.
Algorithm NRA (ranked inputsSy, Sa, ..., Sm)

Fagin_et al. [6] present a comprehgnsive analytiqal study 1.~ perform a sorted access on eath
of various methods for tog-aggregation of ranked inputs 2. for each newly accessed objectipdatey!?;
by monotone aggregate functions. They identify two types 3. if less thark objects have been seen Sl?ﬂ%n goto Line 1;
of accesses to the ranked listerted accesses andindom ~ 4- for each objeck seen so far compute, ™,
. 5. W :=thek objects with the highest'’;
accesses. The first operation, iteratively reads objeds ang .- min{yl : z € W}:
their scores sequentially, whereas a random access is a rez. v := max{ % : z ¢ Wy };
quest for an object’s score in sorfggiven the object's ID. 8. if t <wthengoto Line 1;
In some applications, both sorted and random accesses ar& "6PO"W} as the topk result
possible, whereas in others, some of the sources may allow Figure 2. The NRA algorithm
only sorted or random accesses.

For the case where sorted and random accesses are posdiet us see how NRA processes the toguery for the
ble, athreshold algorithm (TA) (independently proposed ranked inputs of Figure 1 angd = sum assuming that the

atomic scores in each source range froto 1. In the first
loop, NRA accesses (from S; and.S3) anda (from S5).

Wy = {c}, wherey?® = 1.8. In addition, the object with
the highesty“’ is a, with y%* = 2.7. Sincey? < ~¥°,
NRA loops to access a new round of objects (Line 8). Af-
ter a second and a third round of acces$Es= {b}, with

b = 2.2 (which happens to be the exact scogs®f b, since
we saw it in all sources). NRA still does not terminate, be-
causey’ = 2.4 > ! (i.e.,c may eventually become the
best object). After the fourth roundy;, = {b} and the
highest upper bound is** = 2.2. Sincey*’ < +, the
algorithm terminates, reportirigas the topt object.

A simple variation of the basic NRA algorithm is Stream-
Combine (SC) [8]. SC reports only objects which have been

seen in all sources, thus their scores should be exact an{®Sses

above the best-case score of all objects ndt/in In addi-

cient non-binary operator for top-queries which can also
be adapted for generic rank joins.

Finally, [2, 3] study topk queries in environments where
the scores of the objects can be accessed sequentially from
only one source, whereas the other sources allow (possibly
expensive) random score evaluations. Adapted versions of
TA were proposed for this case. Besides, probabilistic ex-
tensions of topk algorithms for approximate retrieval have
been proposed in [14].

3 The Two Phases of NRA Methods

In this section, we motivate our research and bring to light
some key observations on the behavior of “no random ac-
" (NRA) top: algorithms. These observations im-

pose two phases that any NRA algorithm should essentially

tion, an object is reported as soon as it is guaranteed to hdO through; ayrowing and ashrinking phase.

in the top+4 set. In other words, the algorithm does not wait
until the whole topk result has been computed in order to
output it, but provides the top-objects with their scores
on-line. A difference of SC with NRA is that it does not
maintain W, but only the topk objects with the highest

3.1 Motivation

NRA (see Figure 2) repeatedly accesses objects from the
sorted inputs, updates the worst-case and best-case s€ores
all objects seen so far, and checks whether the termination

v, If one of these objects has its exact score computed, itcondition holds. Note that, from these operations, updatin

is immediately output.
J* is a more generic rank aggregation operator proposed i

[12]. J* is appropriate for merging ranked inputs based on a

join condition on attributes other than the scores, such tha
only thek join results with the highest aggregate scores are
output. The topt query we have defined is a special case
of this problem, where the joined attributes are the object
IDs (unique in eactb;) and the join condition is equality.

7! andWW}, can be performed fast. First, only a few objects

n are seen at each loop anft should be updated only for

them. Second, thk highest such scores can be maintained

in W, efficiently with the help of a priority queue. On the
other hand, updating®® for each object is the most time-
consuming task of NRA. Ldt be the last score seen so far

in S;. When a new object is accessed fréin /; is likely

to change. This change affects the upper bourdgor all

J* can be used as an operator in a query plan which joinsobjects that have been seen in some other stream, but not

multiple ranked inputs. Nevertheless, for tbjueries J*
is less efficient than NRA, as shown in [9].

NRA-RJ [9] is a ‘partially’ non-blocking version of NRA,

S;. Thus, a significant percentage of the accessed objects
must update thei“?; it is crucial to perform these updates
efficiently and only when necessary.

which outputs an object as soon as it is guaranteed to pf\nother important issue is the minimization of the required

in the top# (like SC), however, without necessarily having

memory, i.e., the maximum number of candidate kopb-

computed its exact aggregate score (like NRA). This rnayjects. NRA (see Figure 2) allocates memory for every newly

affect the operability of following operators, if they rarpi

seen object, until the termination condition> w is met.

exact aggregate scores or values of other attributes tlean th HOWever, during tope processing, we should avoid main-
score. In view of this, [L0] proposed another version of taining information about objects that we know that may

NRA that outputs exact scores on-line (like SC) and can
be applied for any join predicate (like J*). This algorithm

uses a threshold which is inexpensive to compute, appro
priate for generic rank join predicates. However, it is much
looser compared t@' and incurs more object accesses than

never be included in the result. Finally, we should avoid re-
dundant accesses to any ingijtthat does not contribute to

_the scores of objects that may end up in the tasult.

3.2 Behavior of NRA algorithms

necessary in top-queries. [12], [9], and [10] focused on We now provide a set of claims that impose some use-

binary implementations of top4oin algorithms, which can

ful rules towards defining a top-algorithm of minimal

be used as operators in queries that involve ranking. How-computational cost, memory requirements, and object ac-

ever, as already shown in [9], non-binary algorithms could

be more efficient than combinations of binary operators for ~(i, .

problems withm > 2. In this paper, we propose an effi-

cesses. Let be thek-th highest score i, andT =
.+, Im). We can show the following:

Claim 1 If ¢ < T, objects which have not been seen so far

in any input can end up in the tdpresult.

Proof. Lety be thek-th object inWW;, andx be an object,
which has not been seen so far in asty The score ofy

in all inputs wherey has not been seen, could be the lowest
possible, thatis, = !” = ¢. In addition, the atomic scores
of z could be the highest possible, i.e;,= [; in all inputs
S;, resulting iny, = T. t < T implies that we can have
7y < 7Yz, thusz can take the place gf in the top# result.

O

Claim 2 If t < T, any of the objects seen so far can end up
in the top# result.

Proof. Let y be thek-th object inWV;, andx be an object
which has been seen in at least one inputz i W, the
claim trivially holds. Letz ¢ W}. From the monotonicity
property ofv, we can derive thal’ < ~+“, since in the
sourcesS;, wherex has been seen;’s score is at least;
and in all other inputsS;, x's score can bé; in the best
case. Fromy!’ =t < T andT < ~4*, we getyl} < 42°,
which implies that: can replace in the top4 result. [0
Claims 1 and 2 imply that while < T" the set of candidate
objects can onhgrow and there is nothing that we can do
about it. Thus, while < T, we should only update Wy
and T while accessing objects from the sources and need
not apply expensive updates and comparisons on y“® upper
bounds.

As soon ast > T holds, NRA should start maintaining
upper bounds and compare the highgdt(vx ¢ W) with

t, in order to verify the termination condition of Line 8 in
Figure 2. An important observation is thattif> 7, all
objects that have never been seen in &hgannot end up
in the top% result:

Claim 3 If t > T', no object which has not been seen in any
input can end up in the top+esult.

Proof. Lety be thek-th object inW,, andx be an object,
which has not been seen so far in afiy Thenv, < T,
because:; < [;, Vi and due to the monotonicity of. Thus
Ve < T <t <P <4, ie., the aggregate score of
cannot exceed the aggregate scorg.of [J

The implication of Claim 3 is that once conditiagn> T

4 Lattice-based Rank Aggregation

Our Latice-based Bnk Aggregation (LARA) algorithm is

an optimized “no random accesses” method, based on the
observations discussed in the previous section. We iden-
tify the operations required in each (growing and shrinking
phase and choose appropriate data structures, in order to
support them efficiently. LARA takes its name from the
lattice it uses to reduce the computational cost and the num-
ber of sorted accesses in the shrinking phase. For now, we
will assume that the aggregate functipis (weighted) sum.
Later, we will discuss the evaluation of tépgueries that
involve other aggregate functions, as well as combinations
thereof.

4.1 The growing phase

As discussed, while < T (i.e., during the growing phase),

the set of candidate objects can only grow and it is pointless
to attempt any pruning. Thus LARA only maintains (i) the
set of objects seen so far with their partial aggregate store
and the set of sources where from each object has been ac-
cessed, (i)W, the set of topk objects with the highest
lower score bounds (used to comptiteand (iii) an array

with the highest scores seen so far from each source (used
to incrementally comput@).

We implement (i) by a hash tabl® (with object-ID as
search key) that stores, for each already seen obijeit$
ID, a bitmap indicating the sources where franmas been
seen, its aggregate scoyf so far, and a numberos,, (to
be discussed shortly). For (ii), we use a heap (i.e., pyiorit
gueue) to organizé&l,. Whenever an object is accessed
from an inputS;, we update the hash table wittf (in O(1)
time). At the same time, we check:ifis already iniWy.
For this, we use entryos,., which denotes the position of
x in the heap oWV, (pos, is set tok + 1 if x is not inT17y,).

If = already existed iV, its position is updated i/, (in
O(log k) time) and the Apg k) positional updates of any
other object inlV},, are reflected in the hash table (in O(1)
time for each affected object). If is not in Wy, its up-
datedy!® is compared to that of thie-th object inW, (i.e.,

is satisfied, the memory required by the algorithm can only {he cyrrent value of) and, if larger, a replacement takes
shrink, as we neeq not keep objec.ts never been seen befor@ace (again in Qg k) time). Finally, L is updated and’
Summarizing, Claims 1 through 3 imply two phases that all js jncrementally computed from the previous value in O(1)

NRA algorithms go through; growing phase during which
T < t and the set of top- candidates can only grow and a
shrinking phase during which > T and the set of candidate
objects can only shrink, until the tdpresult is finalized.
Finally, the next corollary (due to Claim 3) helps reducing
the accesses during the shrinking phase.

Corollary 1 If t > T and all current candidate objects have
already been seen accessed from ingytno further ac-
cesses t; are required in order to compute the tbpe-
sult.

time; if y = sumand7?"¢" (I?"") denotes the value &f
(1;) before the last access, thén= 777 — (7" 4 [;.

After each access, the data structures are updated and the
conditiont > T is checked. The first time this condition

is true, the algorithm enters the shrinking phase, disclisse
in the next paragraph. The overall time required to update

1The partial aggregate score is (incrementally) derived when is ap-
plied only on the set of inputs wherehas been seen. ff is (weighted)
sum then this score correspondsté.

the data structures and check the condition 7' for ad- seen only inv, but currently not inlW;. If ¢ is not smaller
vancing to the shrinking phase islof k) per access, which than anyy“? for eachv, LARA terminates reporting/,.

x

is worst-case optimal given the operations required at thiSLet us now discuss how the data structures maintained by

phase. LARA are updated after a new objecthas been accessed
_— from an inputS;. One of the following cases apply, after

4.2 The shrinking phase is looked up in the hash tablg:

Oncet > T is satisfied, LARA progresses to the shrinking) .) o)

phase, where upper score bounds are maintained and com- 1 @ is not found inH. In this casey is ignored, as dis-

pared tot, until the top# result is finalized. LARA applies cussed in paragraph 4.2.1.

several optimizations, in order to improve the performance 5

_ x € W}, (checked byos,). In this casey!? is updated
of this phase.

and so ise’s position in the priority queue dfy,.

4.2.1 Immediate pruning of unseen objects 3. = ¢ W. In this case, we first check whetherwas
the leader of the lattice nod€"“” wherex belonged,
before it was accessed &f. If so, a new leader for
vPrev is selected. Then, we check whethecan now
enterlWy, (by comparing it witht?"<?). If so, we check
whether the object evicted frof;, becomes a leader
for its corresponding lattice node. Otherwigds pro-
moted from v27¢? to the parent node which contains
S; in addition to the other inputs, where has been
seen (and we check whether it becomes the new leader
there).

According to Claim 3, during the shrinking phase, no new
objects can end up in the tdpguery result; if a newly ac-
cessed object is not found in the hash table, it is simply
ignored and we proceed to the next access. This not only
saves many unnecessary computations, but also reduces the
memory requirements to the minimal value (i.e., the num-
ber of accessed objects untib> T'); no more memory will

ever be needed by the algorithm.

4.2.2 Efficient verification of termination

Let C be the set of candidate objects that can end up in4-3 The basic version of LARA
the top# result. Letz be the object in(C' — W) with

the greatest“’; the algorithm terminates i** < ¢. An
important issue is how to efficiently maintaiit®. A brute-
force technique (to our knowledge, used by previous NRA
implementations [6, 8, 9]) is to explicitly updat&® for all
objects inC' and recompute“?, after each access (or after a
number of accesses from each source). This involves a grea%1
deal of computations, since all objects must be accessed an
updated.

LARA, as presented so far, is described by the pseudocode
of Figure 3. The algorithm repeatedly accesses objects from
the various inputs and depending on whether it is in the
growing or shrinking phase it performs the appropriate op-
erations. As an example of LARAs operability, consider
gain the topt query on the three inputs of Figure 1, for

= sum Let us assume that the inputs are accessed in
a round-robin fashion. After three rounds of sorted ac-

cesses (9 accesses), LARA enters the shrinking phase, since
Instead of explicitly maintainingy“® for eachxz € C, t = %l)b = 22andT = 0.6 + 0.6 + 0.8 = 2.0. Fig-

LARA reduces the computations based on the following ure 4a shows the contents of the lattit&, (k = 1), and
idea. For every combinationin the powerset ofn inputs L = {l1,1,13} at this stage. For instance, objecfas-
{S1,-..,Sm}, we keep track of the objeet’ in C' suchthat signed to nodes; S;, where it is also the leader) has been
(i) =¥ has been seen exactly in thénputs, (i) 2" ¢ W, seen at exacthp; andS;. ¢'s score considering only these
and (iii) 2V has the highest partial aggregate score amongdimensions i4.8. To computey;‘gls3 = ~¥0, LARA adds

all objects that satisfy (i) and (ii). Note thatft < t we I, (the highest possible scorean have inS,) to~%. Since
can immediately conclude that no candidate seen exactly inﬂﬁglsr5 > t, LARA proceeds to access the next object from

thew inputs may end up in the result. Thus, by maintaining 51 which ise. Now, 7 becomes).9 < t and the object

l
the set ofz” objects, one for each combinatianwe can is promoted to nodé‘lgz. We still havey“ .. > t, thus
check the termination condition by performing only a small | ARA accesses the next object frash A

m : which isd. Now,
numbef of O(2") comparisons. 7!’ becomesl.2 < t and the object is promoted 18 Ss.

Specifically, as soon as LARA enters the shrinking phase, it Figure 4b shows the lattice at this stage. Note that fpiv
constructs a (virtual) lattic§. For every combinatiom of for every (occupied) lattice node is at m®$t.e.,ﬁ§1S2 =

inputs (i.e., node i), it maintains the ID of itdeader 2, Y =2.0,7"8 5, =720 = 2.2,948,5, =4t = 2.1), thus
which is the object with the highest partial aggregate score LARA terminates.

2Top+ queries usually combine a small < 10 number of ranked ~ NOt€ that no objects can be ?—SSigned to the bo‘@ﬂnd
inputs [5]. Thus, in typical applications, > 2™ top S1 ... S,, nodes of the lattice virtually contains all

Algorithm LARA (ranked inputsSy, Sa, ..., Sm)

1. growing:=true; /[*initially in growing phase */

2. access next objeetfrom next inputS;;

3. if growing then

4. updateyl?; /* partial aggr. score */

5. if v > ¢ then

6. updatéVy, to includez in the correct position;
7. updater’;

8. if t > T then

9. growing =f al se; construct lattice;

10. goto Line 2;

11. else/* shrinking phase */
12. if zin H then

13. updatey!?; /* partial aggr. score */

14. if x € Wy, then /* already inWy, */

15. updatdVy, to includex in the correct position;
16. else/* x was not inWy, */

17. vh"¢? .= |attice node where belonged;

18. if z was leader in2" Y then

19. update leader fary™“?;

20. if v!* > ¢ then

21. updatd¥Vy, to includex in the correct position;
22. check ify (evicted fromWWy) is leader ofv,;
23. elsecheck ifz is leader of node,, := v2"°Y U S;;

24, w:i=max{y% : v € G}; I* use lattice leaders */
25. if t < uthen goto Line 2;
26. reportlW; as the topk result;

Figure 3. The LARA algorithm

W= {(b,2.2)}
1,03, 1,=0.4,1,=0.8

(b) after 11 accesses

(a) after 9 accesses

Figure 4. The lattice at two stages of LARA

expected to be Q("). Finally, the cost of (iii) is O(1), since

a mere comparison to the previous leader is required. Sum-
ming up, for each access in the shrinking phase, the lattice
maintenance cost for LARA is Qfg k + 2™) and check-

ing the termination condition requires Z¥{) comparisons

(as discussed). Overall, the cost of LARA (at each access)
is O(log k) in the growing phase and g k + 2™) in the
shrinking phase. These numbers are much lower compared
to the O¢) cost of NRA (assuming. > 2™). Our exper-
imental results verify the performance gap between LARA
and past NRA algorithms. In the next paragraphs, we dis-
cuss some optimizations that further reduce the computa-
tional cost and the number of object accesses during the
shrinking phase of LARA.

4.4.1 Reducing the number of candidates

The basic version of LARA (see Figure 3), does not explic-
itly prune any object, but keeps updating their lower and
upper bounds until the termination condition holds. How-
ever, we can reduce the number of topandidates at min-
imal cost, during the regular operations of LARA. First, if
for the last accessed objeet y“* < ¢, we can immedi-
ately deleter from H and avoid its promotion to the parent
lattice nodev,,. Consider again the application of LARA
on the example of Figure 1, right after the 9th access (Fig-
ure 4a). Where is accessed fron$; (10th access)y®
become®.9 + 0.8 < 2.2 = ¢, thus LARA can immediately
prunee and avoid promoting it to nodg,; S,.

As a second optimization, during the execution of the algo-
rithm, if all objects in a lattice node havey*“® not greater
thant (verified by comparing with the leader:,, of v), we
can safely prune all objects from significantly reducing
the number of candidates i and avoiding redundant up-
date operations (for these objects) in the future.

(useless) objects never been seen during the growing phas&#-2 Reducing the number of comparisons

and.5;S,, contains objects seen at all sources. None At the beginning of the shrinking phase, the majority of the

of the objects seen at all sources can be further improved; i ; .
i attice nodes are populated and highly unlikely to be pruned
70 =~ for them. Thus these are eitherlii,, or pruned. Pop gny y pru

sincet is marginally greater thafi’, and as a result much
smaller than the upper score bounds of most objects. Since
we expect that the comparisons right at the beginning of the
Each access in the shrinking phase of LARA may involve shrinking phase will hardly prune any object or node, it is
(i) updatingWy, (ii) updating the leader of the lattice node Wwise todelay pruning attempts until there are high chances
wherez existed, and/or (iii) updating the leader of the lattice for the termination condition to hold.

node where ta: is promoted. Operation (i) costSIO¢#) et 4 be the largest upper bound of objects not in
time (as in the growing phase). The cost of (ii) is@(7, when LARA enters the shrinking phase (i.e.,
since we need to scan the entire set of candidates in order tq, .- max{y% : v € G}). If u < t, LARA immediately ter-
find the new leader. Nevertheless, (ii) is not required unles yinates (Lines 25-26 of Figure 3). Every new access (e.g.,
a used to be the leader of"", which happens with ex- from sources;) reducesy* for half of the lattice nodes
pected probabllltyw. Thus, the amortized cost of op- (g g, those including;) by Al = 17" —I,, wherel”"*" is
eration (ii) is O zr=ry). Quantity|vf|isn in the worst the previous value it$; (beforel; was accessed). In addi-
case, but its expected valueds . Hence, the cost of (i) is tion, the new access might increasédowever, note that it

4.4 Analysis and Optimizations

is not possible to prune all lattice nodes, while- Al > ¢. noring any new object oncE > t, and (iii) minimal object
Thus, after computing for the first time, and after every accesses by ‘drying up’ inputs.

consequent access, instead of updating all upper bounds

and performing lattice operations, while— Al > t, we 5 Variants of Top-k Search

setu :=u — Al (and update as usual), without attempting
any actual comparisons. As soonas Al < t, we begin
updating upper bounds (andgl.

So far we have discussed how LARA processes kop-

qgueries wheny = sum In addition, note that LARA can

terminate before the complete scores of all objects in the

4.4.3 Reducing the number of accesses top-k result are known. Finally, the algorithm does not out-
put any result until the whole top-set is known and does

At the latter stages of LARA, we can exploit Corollary 1 not incrementally output the results in increasing order of

to avoid accessing inputs that do not contribute to the ag-their aggregate scores. In this section, we show how LARA

gregate score of remaining candidates. Bgbe a source can be adapted for different variants and requirements of a

(e.9.,51), such that (i) all objects ifV;, have already been top-k search.

seen at5; and (ii) for all lattice nodes that do not contain

that source (€.9.52, Ss, S253) 7“0 < t. Obviously, no 5.1 EXxactscores

object in any of these nodes can end up in thekaopsult.

In addition, for all objectst in all other nodes (e.g.$1,

5189, 5153, 515253), x; is already known. Thus)o more

accesses to S; are needed for computing the tope result.

LARA terminates as soon s> v, Va ¢ Wy, even when

the exact aggregate score is not known for all objects in
Wy. Some applications, however, may require the exact
o)) ~scores of all objects in the tapresult. LARA can be easily
Based on this idea, LARA, while checking for the termi- gqapted to address this requirement, at the probable expens
nation condition, keeps track of the pruned/empty nodes, of performing additional accesses. LARA-EX operates ex-
whose subsets are all pruned/empty (i.e., by the use of actly Jike the original algorithm, but after the tdpresult
bitmap). In addition, it maintains a bitmafy, which has been finalized, it continues to perform accesses to the
indicates the sources where all objectslify, have been innyts where each € W), has not been seen yet, until the
seen. The termination condition is checked in a level-wise gyact scores of all objects have been computed. Another
bottom-up fashion, starting from nodes with one infut gitference between LARA-EX and the basic algorithm is
then moving to nodes with two inpuf; S, etc. Atthe first at after entering the shrinking phase, the lattice is ot d
level, all pruned/empty nodes which are also séiin are rectly constructed, but we continue to access objectse(disr
marked as ‘dead’. Atlevela node is marked ‘dead’ only garding those that were not seen in the growing phase), until
if (i) the node is pruned/empty, (ii) its immediate subsets yy, contains only objects that have been seen at all inputs.

are all marked ‘dead’, and (iii) the corresponding combi- only then the lattice is constructed and pruning begins.
nation of bits inby,, is set. A dead node needs never

been checked again in the future, since, there may be n®%.2 On-line and incremental search

new objectr that can end up im with v%* > ¢t. We can o o i

‘dry up’ inputs by exploiting Corollary 1 as follows. Let Some applications requiren-line generation of the top-

v = S$185...5_1Si+1... Sy be a lattice node that con- result; as soon as an object is guaranteed to be in thé top-
tains all nodes bus;. If v is marked dead, then we know result, it is immediately output. We propose an adaptation
that it is pointless to attempt any more accesses ffom of LARA, denoted by LARA-OL, that serves this purpose.

S; is thendried up and the total number of accesses is de- N the growing phase, LARA'O'Z-I; maintains, ?bpart from
creased. Wy, the object{z with the highesty”. As long asy;’ < T,

) we know thath is not guaranteed to be better than all unseen
Note that if LARA follows the same read schedule as NRA objects (due to Claim 1). Wheﬂb > T. LARA-OL con-
[6], it never performs more accesses than NRA. TNUS, g5 the attice and compares upper boundsyfttuntil
LARA is instance optimal [6] with respect to the number Ib > qub vy € G. When this condition becomes true
of performed accesses. On the cher hand,_LARA may per-ig immediately output, since we can be certain that it is part
form fewer accesses than NRA in the possible case that an 1, top# result. At this point, we decremeht:=k — 1
input S; has been dried up before the thpesult has been : '
finalized, by simply rejecting accessesSpfrom the read

schedule.

and compute the net. If v!* < T, the algorithm again en-
ters the phase of accessing objects and upd&tipgndh,

until ! > T; then the lattice is re-constructed and upper-
In summary, LARA achieves (i) high computational effi- bound comparisons begin. A subtle matter to note is that
ciency by attempting no pruning during the growing phase W, is maintained during the whole process for the purpose
and exploiting the lattice and several optimizations in the of comparingt with 7. As soon ag > T', never-seen ob-
shrinking phase, (ii) minimal memory requirements by ig- jects can be ignored.

LARA-OL can be easily converted to LARA-IN; an algo- are organized in a priority queue based on their aggregate
rithm that outputs the objects with the highest score score. These are output incrementally, as soon as they are
crementally, without a constraint.. LARA-IN does not known to have greatest score thanif in the rest of lat-
maintain¥;, but only the objech with the highest score tice nodes. When a new tuple is read (e.g., fil@m it is

in the worst case (i.e., with the higheg?). As long as immediately joined with combinations in the lattice nodes
vt < T we simply access objects and maintainWhen that do not include its source, but include sources joined
vi® > T, the lattice is constructed and maintained, until with it (e.g., nodesS andS o T, but notT). The new tuple

b > ~ub vy € G; his then output as the next object. is accommodated in the corresponding lattice node and join
Note that since LARA-IN is incremental, no object is ever results are immediately added to the corresponding nodes.
pruned; LARA-IN outputsll objects in decreasing order of Combinations in each lattice node are indexed in order to
their aggregate score. Thus, all new objects are consideredacilitate efficient probing (e.g., using hash tables).

for inclusion in the lattice. Afteh has been output the new

h is computed and if/!* < T the algorithm again enters 5.4 Other aggregate functions

the phase of merely accessing objects and updatinmtil

~1 > T then the lattice is updated and reused. We now discuss how LARA (and NRA top-methods in

) . . general) can be adapted to solve fogueries with aggre-

LARA-IN can be implemented as a (binary or multiway) gate functions other thasumand combinations of them. A
top-k operator in a complex query processing plan that yyia| function ismax; a top max query can be processed
may also involve other operators (i.e., like the NRA-RJ by accessing at mostobjects from each input, which guar-

operator proposed in [9]). For demand-driven retrieval, gniees that the objects with the maximum score any
a GetNext() function accesses object scores from the in- input are found.

put sources (which may be tuples also containing other at-

tributes) and produceis when it is guaranteed to have the 54.1 Theni n aggregate function

highest aggregate score. After producinghe LARA-IN

operator maintains its state, from which it continues at the A function which requires special attentionnsn; a top#

next call ofGetNext(). m n query asks for thé objects with the highestinimum
o _ score at all inputs. Without loss of generality, let us assum
5.3 Top+ join queries that the minimum possible score at each inptit.isn that

casen? is 0 for all objects which have not been seen at all
inputs. As a result, the growing phase terminates when
objects have been seen at all inputs. When this happens, the
score of the last object iy, is at least the smallest score
seen in any input (i.et,> T'). Thus, wheny = i n, only
exact (not partial) scores can be output.

The top# query we have seen so far is a special case of top-
k join queries [12, 10, 11], where the results of joins are
to be output in order of an aggregate score on their various
components. Consider, for example, the following top-
query expressed in SQL:

EE'{)I\EACE R'S" d’T S.id, T.id In the shrinking phase, accessing objects from&nyhere

V\HEEE g zg = ? g l; < tis of no use, since no object which has not been seen
ORDER BY R score + S score + T.score there can end up in the tdpresult. When LARA enters the

STOP AFTER k: shrinking phase, itimmediately prunes all lattice nodesl(a
their objects) that do not include any of these streams and
The top% query we have examined is a special case, where'dries up’ the streams. These operations are encompassed
id=a =D, tuplei ds are unique, alR, S, T have the by the optimization of Section 4.4.3.

same collection of tuplé ds, gnd tuples from each rela- \ye can further improve the efficiency of LARA by delaying
tion are ranked based on their scores. [12, 10] propose aly,g peginning of the shrinking phase as follows. Instead of
gorithms for solving generic topjoins. Here, we discuss 4ccessing the inputs in a round-robin fashion, we always ex-
how LARA can be converted to LARA-J, a tdpjoin 0p- hanq the input with the largest By doing so, the number

erator that incrementally outputs_join_ r_esults _based oim the of objects withy“? greater tham, when the shrinking phase
aggregate scores. Instead of maintaining a single hagh tabl begins, will be minimized, since their maximum potential

V_V'th all objects seen so far, L,AR,A"] materializes the lat- scores in the inputs where they have not been seen will not
tice and stores for each combination of sources, tuple COM-pa much greater than

binations that partially satisfy the join (e.g., tuplesnfr&

that match with tuples fron$ are stored in nod& o S of 5.4.2 Weighted and complex aggregates

the lattice). For each lattice node, the combination with th

highesty“’ is maintained as usual. LARA-J does not keep a So far, we have discussed tépgueries for which all com-

W, but combinations in the top lattice node (eRj,So T) ponents have equal weights. In practice, the user may assign

weights of importance to each input of the aggregate func-visual effects, etc.). A good movie is likely to have high
tion. For example, assuming that = 3, aweighted sum scores in all criteria, whereas a B-movie is likely to per-
function could be defined ag, = 0.5x1 + 0.3z2 + 0.2x3, form averagely or bad in all of them. To generate an ob-
indicating that the importance ¢f; (50%) is greater than ject x, first, a number, from 0 to 1 is selected using a
the importances of; (30%) andSs (20%) in the merged Gaussian distribution centered(ab. z’s atomic scores are
scores. Similarly, weight coefficients can be combined with then generated by a Gaussian distribution centergd, at
other aggregate functions, likeé n. LARA can be directly Finally, AC contains datasets where object scoresaatie
applied for weighted functions. A simple optimization is to correlated. In this case, objects that are good in one dimen-
access inputs of higher weight with higher probability, as sion are bad in one or all other dimensions. For instance, a
they contribute more to the aggregate function. In this way, good hotel in terms of quality (e.g., 5-star) is usually a bad
objects which have not been seen in the sources of higheione in terms of price (e.g., very expensive) and vice versa.
weights will be pruned earlier, resulting at an early termrin -~ To generate an objeat, first, we pick a numbef:, from

tion of the algorithm. 0 to 1, like we did for CO datasets. This time, however,

In general, an aggregate function can be defined by a reguWe use a very small variance, so thatfor differentx are

lar expression involving nested (potentially weightedyn very close td).5 and to _each other. The at9m|c scores;of

m n, max subexpressions. An example of such a function are then.generated uniformly and normahzeq to sum up.to
is v = min{a:,sum0.52s,0.503}}. An interesting is- He- _In this way, the gggregate scores of gll ppjects are quite
sue is whether we can extend tbpalgorithms to process similar, but their individual scores vary significantly.

such complex functions. A plausible solution is to use bi- We used two real datasets from the UCI KDD ArcRivEC
nary, incremental tog-operators in a query evaluation tree, contains a set of 581,012 objects, correspondirigte 30-

as suggested in [12, 9, 10, 11]. Another possibility is to meter forest land cells. Each object is described by various
process all inputs simultaneously by a single application o variables, such as horizontal and vertical distance todtydr

a top+ algorithm. In this case, lower and upper bounds ogy, distance to roadways, and distance to fire points. As-
are defined for an object by applying the complex aggre- suming that the values of these attributes are obtained from
gate function using the values seen so far and the minimumdifferent sources, we simulate tdpgueries that combine
and maximum values at the inputs, where the object has nothem in an aggregate score (e.g., find kheells with the
been seen. LARA can directly be applied for such complex smallest aggregate distance to hydrology, roadways, and fir

aggregate functions. points). The second dataset we used is CE, which contains
_) unweighted Public Use Microdata Series (PUMS) census
6 Experimental Evaluation data from the Los Angeles and Long Beach areas for the

])] ~ years 1970, 1980, and 1990. Each object in CE is a person
In this section, we experimentally evaluate the effective- (o household) characterized by attributes such as age, ren
ness of LARA, by comparing it with previous NRA algo- \yages, number of working hours last week, and number of
rithms. For each top-variant, (i.e., classic top-search, \yorking weeks last year. Using combinations of these at-
exact scores, incremental search, etc.), a version of LARAyihytes, we can define aggregate ranking functions, like,
is compared with a version of NRA known to perform best e.g., life quality. The cardinality of CE is 84,443,
for that variant. All algorithms were implemented in C++
and experiments were run on a Pentium 4 2.26GHz PC with6.2 Experimental comparison

512 MB of RAM.)))
In the first set of experiments, we compare LARA with the

6.1 Description of datasets NRA algorithm of [6] for top4 queries withy = sum in

terms of object accesses and computational cost. We imple-
For the experiments, we used both synthetically generatedmented both algorithms so that they check the termination
and real data. All generated object scoresrange fréml. condition after every access. In this way, the number of
We produced three types of synthetic datasets to model dif-accesses is minimized, since every access in the shrinking
ferent input scenarios, using the same methodology as [1] phase can potentially terminate search.

In datasets of type Ul the object scores are random num—Figures 5a-5¢ compare the efficiency (in CPU time) of the

bers uniformly and independently generated for the differ- fwo methods on uniform data (UI), for a range of parameter
ent sources. CO contains datasets where object scores are ' 9 P

correlated. In other words, the score; of an objectz in values. The default values for the parametersiare 50K,

. . m = 3, andk = 20. In each experiment, we fix two pa-
sources; is very close tar; in all other sources; 7 S; rameters to their default values and vary the value of the
with high probability. An real dataset example that falls y

in this class is a set of movies with their scores according third one. In all experimental instances, LARA is about 2
to different criteria (actors performance, costumes dgsig 3http://kdd.ics.uci.edu

100000 1e+006 100000
NRA —+— L NRA —+— NRA —+—

LARA A LARA 24 | LARA A L
10000 1 100000 /// 10000 72*/4/*’/’4/
2 1000 E 310000 E 2 1000 F
3 3 3
E E E
[}) 5] AN
A\ L AN
E 100 ol o £ 1000 N A E 100 A A
A .
N N I
A iy
10 100 4 E 10°F
1 P 10 . . . 1 P
10 20 30 40 50 60 70 80 90 100 3 4 5 6 7 20 40 60 80 100 120 140 160 180 200
of objects (x1000) # of sources k
@ Ul,m =3,k =20 (b) Ul, n = 50K, k = 20 () Ul,m =3,n=50K
40000 10000 —— 164006 [.
—t NRA —— —
LARA ——& LARA & LARA ——&

100000 ¢

30000 - 1000 ¢

10000 |

20000 100 g

time (msec)
time (msec)

accesses

1000 AAAAAAA
I
10000 | 10 ¢ E e

4 100 4x

0 1 10

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

of objects (x1000) # of objects (x1000) # of objects (x1000)
(d)Ul,m =3,k=20 (e) COm =3,k =20 () AC, m =3,k =20

Figure 5. Top- k queries on synthetic data (~ =sum)

orders of magnitude faster than NRA. First, as explained in NRA), because many accesses are required until thé top-
Section 4, LARA does not attempt checking for termina- result is finalized. The shrinking phase delays and a lot of
tion during the growing phase. Second, the shrinking phaseunnecessary bookkeeping is performed by NRA. Value
of LARA is much more efficient than that of NRA, since has a smoother effect on LARA, which manages to retrieve
at each access only a few updates are performed and théhe result very fast compared to NRA.

number of compar!sons 'S,("), a,s opposed to @) re- In the next experiment, we compare LARA and NRA for
quired by NRA. This explains the increase of performance y,, ;. 4 eries on real data. From the FC dataset we extracted
gap V_"th the Increase of. On the other _han_d, the differ- ¢ rankings of the objects according to their horizontal
ence is insensitive te» andk, as shown in Figure 5b and distance to hydrologyhf), vertical distance to hydrology
Figure 5c. (vh), horizontal distance to roadwaykr}, and horizontal
LARA outperforms NRA in terms of the number of object distance to fire pointshf). The distances in each ranking
accesses, as well, but the difference is marginal. Indica-were normalized fronf) to 1 and reversed (by subtracting
tively, Figure 5d shows the number of object accesses onthem from1) in order for1 to indicate high preference and
uniform data by both methods as a functionnofLARA'S 0 low preference. For different combinations of these rank-
optimization described in Section 4.4.3 saves 1%-5% ofings, we applied a tof® query and compared the perfor-
NRA's accesses, because of ‘dried up’ streams towards themances of LARA and NRA. Figure 6 summarizes the re-
end of the algorithm. The difference in accesses is similar sults. NRA performs 8% to 65% more accesses than LARA
when other parameters change (i/e.andk). As we will (see Figure 6a). This is attributed to the distribution & th
see later, LARA may accesses significantly fewer objects scores which is irregular in some sources (evh); these
than NRA in topk queries on real data, where the distribu- sources are ‘dried up’ during the shrinking phase of LARA,
tion of scores in different inputs varies significantly. when the remaining scores there cease to be relevant to the

The performance gap between NRA and LARA is similar top-k result.. On the othgr hand, NRA accesses Obj?CtS in
for correlated and anticorrelated data (Figures 5e and 5f).a round-rob_m fash_lon, W'_thOUt pruning any input, ur_1t|I the
As expected, the cost of both methods is relatively low for (0P resultis finalized. Figure 6b shows that LARAis 3 to
correlated data, however, NRA becomes significantly more 4 orders of magmtute faster than NRA forth_e testeq queries.
expensive than LARA for large, since more operations \€Xt to ach time measurement, we also include in paren-
(O(n)) are required by NRA, as increases in both growing theses the time spent by each algorithm unt T for the

and shrinking phases. For AC, the cost is high (extreme forﬁrSt time. The numbers show tha_‘t LARA is significantly
faster than NRA not only because it avoids expensive book-

[attributes of FC | NRA | LARA]

{hh, hr, hf} 110529 | 102168
{hh,vh,hr} | 358611 | 217054
{hh,vh, hf} | 536097 | 393915
{hh, hr, hf, vh} | 501231 | 315042

(a) number of accesses

[aftributesof FC [NRA | LARA]
{hh, hr, hf} 517 (377) [0.25(0.15)
{hh, vh, br} 1047 (471) | 0.5(0.18)
{hh, vh, hf} 1614 (703) | 0.8(0.3)

{hh, br, hf, vh} | 3415 (1412)| 1.06 (0.48)

(b) time in seconds

Figure 6. Forest coverage (v =sum k = 20)

[attributes of CE [NRA [LARA |

Comparing with Figure 5a, observe that the performance of
LARA-EX is very similar to that of LARA; when the top-
result is guaranteed to have been found, a few (or no) ob-
jects miss some score frol;, so only a few (or no) extra
accesses are required. SC is 5%-25% faster than NRA, be-
cause it avoids the maintenancel@f,; however, SC is still
very expensive compared to LARA-EX.

We also implemented LARA-IN and NRA-RJ [9] and com-
pared the two incremental algorithms. Note that LARA-IN
and NRA-RJ do not prune any object, as all of them are
incrementally output. In addition, the optimization of Sec
tion 4.4.3 is not applicable for LARA, since no stream can
be pruned in incremental processing. Thus, the two algo-
rithms perform exactly the same number of accesses (as-

{r,wh,wy,w} | 171187 161880 suming that they follow identical access scheduteg§g-
{a, wh,wy,w} | 186694 | 185962 ure 8b shows their performances for uniform data as a func-
{a{\:l'v\yr?’mm/;y{m} ;ggigg ;g;i?g tion of the number of results. LARA-IN produces results
— (’a) nUMber of acCesses at signifi(_:antly higher speed compared to_NRA—RJ, thus
: our algorithm is appropriate for topprocessing over fast
[attributes of CE | NRA [LARA | streams. Results on other distributions and real datarare si
gm%% ggg g;g 8:2 Eg:ggg ilar and they are omitted due to space constraints.
{w, wh, wy} 224(122) | 0.25(0.18) Next, we compare the top-join version of LARA (i.e.,
{a.r, wh, Wy'(‘k’)")}tim :i?wzs(:c?c?rz ds°-56 (032) LARA-J) with a tree of binary HRIN operators [10]. We

joined three relationR, S, andT, of the same schemai: ¢,
score,j). | isthe attribute with respect to which the re-
lations are joined (i.,eR j =S.j =T.j inajoin result)
and the results are ranked bym{R. scor e, S. score,
keeping and checking during the growing phase<(T), T. scor e}. The selectivity of the join is 0.2% (we also ex-
but also because it minimizes the operations and comparPerimented with different join selectivities and derivéus
isons at the shrinking phase¥ 7). ilar results). The three relations are rankedstoyor e and
Figure 7 shows similar findings for tags queries on the their tuples are retrieved incrementally. For HRJIN, we used

N the evaluation planR x S) x T (other plans have simi-
I?; ﬂgﬁzegef:)\r/vzzr)?\gl?\t/:g?sir?érsvrg)e,l?s(?)%?)),/vggr()wzm lar performance). Figure 8c plots the number of tuples ac-
(wages) census data attributes. This time, the pen‘ormanceCesseOI by LARA-J and HRIN until they output the same

gap in accesses is not large, however, the improvement otnumber of results. This reflects tloetput rate of the ap-
LARA over NRA in terms of’computat’ions is huge. The proaches (i.e., how many results they can produce after a

efficiency of NRA can be improved iV, andu are not up- specific number of accesses). Observe that LARA-J pro-

dated/computed after every access. but everv multiole ac_duces results much earlier than HRJIN. The space used by
cesses frorrr)1 each source ﬁowever,this incre)z/;\ses tr?e numt-h e two methods to accommodate intermediate results (not
) ' shown in the graph) is roughly proportional to the number of

ber Of. accesses. In addition, even wht_an many (e.g., Fensaccesses. Both methods are computationally efficient (200
of) objects are accessed before checking for termination,

A . results are output in just8 msec by LARA-J and4 msec
LARA is still more than an order of magnitude faster than) - .
NRA. In summary, LARA minimizes the CPU cost of tdp- by the plan of HRJIN operators). HRJIN's efficiency is due

ueries. while keeping the number of accesses minimal to the computationally cheap threshold bound it uses; how-
q ' ping " ever, more accesses are required to compute the same re-

In the next set of experiments we compare versions of sult as LARA-J. This experiment not only demonstrates the
LARA for variants of topk processing with past NRA im- applicability of LARA to top+ join queries but also indi-
plementations for these variants. We first compare LARA- cates that multiway top-operators can be more effective
EX with SC [8] for exact topk processing. In all tested (in terms of accesses) than trees of binary join operators.
cases with synthetic and real data, LARA-EX and SC have

Sl.mllfar performances to LARA and NRA, reSpeCtlvely_' In- 4We used a multiway implementation of NRA-RJ, instead of a tree of
dicatively, here we show the performance asa function of yinary NRA-RJ operators. A binary operator tree fior> 2 incurs many

n, for m = 3, £ = 20 on uniform datasets (Figure 8a). more object accesses, as discussed in [9].

Figure 7. Census data (v =sum k = 20)

100000 100000
sC

LARA-EX

NRA-R] —F+—
VAN I LARA-IN -~

10000 10000

[N
o
)
=)

time (msec)
time (msec)

AN

i
1<)
<]
=
o
<]

U N N AN
Dl

N

N

N
T

.
S)
=
S)

H
o
o
o
\
‘

accesses

20000
18000
16000 -
14000
12000
10000 -
8000 -
6000
4000 4
2000

HRIN ——
LARA-J

A

..
B

10 20 30 40 50 60 70 80 90 100
of objects (x1000) k
(a) exact scores (Utn = 3, k = 20)

20 40 60 80 100 120 140 160 180 200

(b) incremental toge (Ul, n = 50K, m = 3)

éO 4‘0 60 éO 160 1‘20 1;10 1‘60 1;30 200
k
(c) top+ joins, (Ul,n = 50K, m = 3)

Figure 8. Variants of top- k search (v =sum

[attributes of FC | NRA | LARA | LARA-OPT |

{hh, hr, hf} 56582 | 56582 54356
{hh, vh, hr} 100579 | 100579 100579
{hh, vh, hf} 113663 | 113663 86023
{hh, hr, hf, vh} 240196 | 240196 210315
(a) number of accesses
[attributes of FC[NRA | LARA [LARA-OPT |
{hh, hr, hf} 112 (92)| 0.22(0.16) 0.22 (0.16)
{hh, vh, hr} {189 (152) 0.36 (0.29) 0.36 (0.29)
{hh, vh, hf} ~ |211(179) 0.47(32)| 0.39(0.3)
{hh, hr, hf, vh} {654 (412) 1.1(0.72)] 1.1(0.72)

(b) time in seconds

magnitude faster. In addition, LARA incurs fewer object
accesses; the savings are marginal for synthetic data, but
can be significant for real data. Finally, LARA has minimal
memory requirements, since no unseen objects in the grow-
ing phase are considered in the shrinking phase. We have
also shown how LARA can be adapted for several top-
variants (exact scores, on-line and incremental searph, to

k joins, other aggregate functions, weighted search, atc.) |
the future we plan to optimize LARA for top-variants, es-
pecially for complex aggregate functions and fofwins.

References

Figure 9. Forest coverage (~ =m n, k = 20)

Finally, we compare LARA with NRA for toge nmi n
gueries. For the NRA implementation, we used the op-
timization discussed in Section 5.4.1, where sources with
l; < t are immediately pruned. We implemented two ver-
sions of LARA; one that uses that optimization and another
(LARA-OPT) that expands the input with the larggstrig-

ure 9 compares the three algorithms on the FC dataset. Note
that LARA-OPT may incur fewer object accesses compared
to LARA and NRA, due to the more optimized scan of
the inputs. On the other hand, LARA-OPT is not always
faster than LARA, because it has the additional complexity
of maintaining the input with the largekt

7 Conclusions

In this paper we proposed a new algorithm for processing

(1]
(2]
(3]
(4]

(5]

(6]
(7]
(8]

El

top-k queries by sequentially accessing sources of ranked[10]

atomic object scores. LARA is based on some core ob-

servations about the behavior of all “no-random-accesses”11]

(NRA) algorithms. The main advantage of LARA com-

pared to previous NRA implementations is its high effi- [12]

ciency at no cost of redundant object accesses. LARA em-
ploys a lattice to facilitate efficient computation of the re
sult and easy detection and pruning of sources that do not

[13

contribute to the result. Experimental comparison with pre [14]

vious NRA implementations, show that LARA is orders of

S. Borzinyi, D. Kossmann, and K. Stocker. The skyline operator.
In ICDE, 2001.

N. Bruno, L. Gravano, and A. Marian. Evaluating top-k gas over
web-accessible databasesIGDE, 2002.

K. C.-C. Chang and S.-W. Hwang. Minimal probing: Suppagtex-
pensive predicates for top-k queries.iGMOD Conference, 2002.
R. Fagin. Combining fuzzy information from multiple systemb
Computer System Sci., 58(1):83-99, 1999.

R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarityaseh

and classification via rank aggregation. $fTGMOD Conference,
2003.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation altjoris
for middleware. InPODS, 2001.

U. Glntzer, W.-T. Balke, and W. KieRling. Optimizing multi-featu
queries in image databases.MhDB Conference, 2000.

U. Guntzer, W.-T. Balke, and W. Kie3ling. Towards efficient multi
feature queries in heterogeneous environment$ERE Int'l Conf.
on Information Technology (ITCC), 2001.

I. F. llyas, W. G. Aref, and A. K. EImagarmid. Joining rankieguts
in practice. InVLDB Conference, 2002.

I. F. llyas, W. G. Aref, and A. K. EImagarmid. Supportingt& join
queries in relational databases.MhDB Conference, 2003.

I. F. llyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elgaamid.
Rank-aware query optimization. BGMOD Conference, 2004.

A. Natsey, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. Stevit Sup-

porting incremental join queries on ranked inputsVUDB Confer-
ence, 2001.

] S. Nepal and M. V. Ramakrishna. Query processing issugsage

(multimedia) databases. I€DE, 1999.

M. Theobald, G. Weikum, and R. Schenkel. Top-k query @atbn
with probabilistic guarantees. M_DB Conference, 2004.

