
Shortest Path Computation with No Information Leakage

Kyriakos Mouratidis∗

School of Information Systems
Singapore Management University

kyriakos@smu.edu.sg

Man Lung Yiu†

Department of Computing
Hong Kong Polytechnic University

csmlyiu@comp.polyu.edu.hk

ABSTRACT

Shortest path computation is one of the most common queries in

location-based services (LBSs). Although particularly useful, such

queries raise serious privacy concerns. Exposing to a (potentially

untrusted) LBS the client’s position and her destination may reveal

personal information, such as social habits, health condition, shop-

ping preferences, lifestyle choices, etc. The only existing method

for privacy-preserving shortest path computation follows the obfus-

cation paradigm; it prevents the LBS from inferring the source and

destination of the query with a probability higher than a threshold.

This implies, however, that the LBS still deduces some informa-

tion (albeit not exact) about the client’s location and her destina-

tion. In this paper we aim at strong privacy, where the adversary

learns nothing about the shortest path query. We achieve this via

established PIR techniques, which we treat as black-box building

blocks. Experiments on real, large-scale road networks assess the

practicality of our schemes.

1. INTRODUCTION
The wide availability of positioning systems and the diffusion

of smart-phones has led to an expanding market of location-based

services (LBSs). Clients of these services may use their mobile

devices to get driving directions to their destination, to retrieve fa-

cilities close to their location (e.g., clinics, pharmacies, police sta-

tions), to learn who of their social contacts are nearby, etc.

In this paper we consider shortest path queries in transportation

networks. Such a network could represent the road segments in a

city, where each segment is associated with a cost (e.g., its length

or the time required to drive through it). The query computes the

sequence of road segments to reach from a source s (usually the

client’s current location) to a destination t so that the summed cost

along the path is minimized. This is one of the most common

queries in LBSs. Examples of popular services that support shortest

path computation include Google Maps, Map Quest, etc.

∗Supported by the Living Analytics Research Centre (LARC), un-
der Singapore National Research Foundation and Interactive &
Digital Media Programme Office, Media Development Authority.
†Supported by grant PolyU 5333/10E from Hong Kong RGC.

Practical as these services may be, users view them with increas-

ing skepticism. The very nature of the queries may disclose per-

sonal information (such as health status, shopping habits, lifestyle

choices, etc) which may be tracked and misused by the LBS. Pos-

sible forms of misuse include commercial profiling, governmen-

tal surveillance, unsolicited and intrusive advertising, etc. The re-

cent example of a leading mobile device company, which had been

tracking the locations of its clients without their consent [3, 36],

underlines the serious privacy risks in using LBSs. Note that the

shortest path query in particular, may disclose information not only

about the current position of the client, but also about her intended

destination and path taken. The aforementioned risks motivate the

development of methods to safeguard client privacy.

The only existing approach for private shortest path queries fol-

lows the location obfuscation approach [22]. Instead of the query

source s, this scheme sends to the LBS a set S that includes s and a

number of fake source locations. Similarly, it sends to the LBS a set

of candidate destinations T that includes t and several fake destina-

tions. The LBS computes the shortest path from every location in

S to every location in T . Among the |S| · |T | returned paths (where

|S| and |T | are the cardinalities of the two sets) the client keeps the

one that corresponds to her original source-destination pair. Unfor-

tunately, this approach reveals to the LBS substantial information

about the query; e.g., the source s is known to be among the loca-

tions in S, and t among the |T | candidate destinations.

To avoid such information leakages and provide strong privacy,

a promising direction is to apply private information retrieval

(PIR) [4]. PIR allows a data item (e.g., a disk page) to be retrieved

from a server, without the server obtaining any clues about which

item was retrieved. Unlike obfuscation, PIR offers cryptographic

privacy guarantees, based on reductions to problems that are ei-

ther computationally infeasible or theoretically impossible to solve.

PIR is generally resource-intensive. However, recent PIR protocols

achieve practical response times (in the order of seconds over Giga-

byte databases [37]), and have been successfully applied to private

spatial queries in Euclidean space [29, 19]. As yet, there has been

no PIR-based solution for shortest path computation.

Our objective in this paper is to develop practical schemes for an-

swering shortest path queries without the LBS deducing any infor-

mation about the queries. In other words, the LBS knows only that

a query is being executed, and can infer nothing else. To meet this

requirement, we decide to use existing PIR protocols as building

blocks, and rely on their proven security guarantees. Nevertheless,

the nature of shortest paths imposes many challenges in developing

an efficient PIR-based solution. First, different shortest paths con-

tain different numbers of edges. The result size itself, or the number

of data accesses during processing, may reveal information about

whether the path is short or long. We must ensure that leakages

of this type are prevented. Second, although current PIR protocols

achieve reasonable retrieval times, they remain much slower than

unsecured disk reads. Therefore, a wise choice of data organization

and indexing strategies is of paramount importance to achieve tol-

erable response times. Third, the PIR building blocks themselves

impose limitations. For instance, the PIR protocol we use [37] may

only support files up to a certain size, calling for special provisions

in solution design. To summarize, our main contributions are:

• We formalize a general methodology that provably achieves to-

tal query privacy;

• We develop specific schemes that implement this general

methodology;

• We enhance them with novel space optimizations;

• We evaluate our solutions on real road networks and assess their

trade-offs.

2. RELATED WORK
In this section we survey obfuscation and PIR-based methods for

privacy protection in LBSs, along with work on related problems.

2.1 Obfuscation Methods
Spatial k-anonymity is a type of obfuscation for location pri-

vacy that is inspired by the concept of k-anonymity in relational

databases [34]. The architecture includes (i) the clients, (ii) the

LBS that hosts a spatial database and answers queries on it, and

(iii) a trusted mediator, commonly referred to as the Anonymizer.

The clients update the Anonymizer about their most recent loca-

tions, and forward to it their queries. Posed a spatial query, the

Anonymizer replaces the coordinates of the originating client u

with a region (usually a square or a circle) that includes u and at

least k − 1 other clients. This k-anonymous region is forwarded

to the LBS, which reports back to the Anonymizer possible query

answers for any point inside the region. The Anonymizer filters the

results, and forwards to u the actual answer to its query. The pri-

vacy assurance offered to clients is that, even if the LBS knows the

exact locations of all clients, it is unable to identify which among

the k clients inside the anonymous region is the query originator.

There exist several spatial k-anonymity methods for range and

nearest neighbor (NN) queries in Euclidean space [25, 16], as well

as adaptations that drop the Anonymizer from the model, and in-

stead have the clients collaboratively form the k-anonymous re-

gions [5, 12]. There also exist spatial k-anonymity methods for

NN processing on road networks [35, 26]; here, instead of a spatial

region, a set of road segments is used to anonymize u, with the re-

quirement that at least k − 1 other clients are also located on these

segments.

Another class of obfuscation methods use fake locations instead

of k-anonymous regions. In [8, 20], for instance, the client for-

wards to the LBS a set of fake query locations along with her ac-

tual position. The assumption underlying this technique is that the

LBS is unaware of clients’ locations, so that it is unable to tell apart

the decoys. Another approach is to choose a fake location u′ near

the client and forward it as the query point [40, 30]. In this set-

ting, nearest neighbor queries can be answered by incrementally

fetching from the LBS the NNs of u′ and stopping when the set of

retrieved data objects is guaranteed to contain the NNs of the actual

client’s location.

The only method to protect shortest path queries in road net-

works follows the obfuscation paradigm [22]. This scheme as-

sumes the existence of an Obfuscator, which plays a role similar

to an Anonymizer, i.e., it serves as a trusted mediator between the

clients and the LBS. A client u querying about the shortest path

from a source s to a destination t, relays its request to the Ob-

fuscator. The Obfuscator appends s and t with a number of de-

coys, producing obfuscation sets S and T , which it then forwards

to the LBS. The latter computes all shortest paths from any candi-

date source in S to any candidate destination in T . Upon receipt

of these paths, the Obfuscator picks the one that corresponds to the

real source and destination, and reports it to the client. To improve

performance, [22] suggests that the fake sources and destinations

are chosen close to the real s and t.

By definition, obfuscation methods disclose some information

about the query location, thus providing weak privacy. For in-

stance, spatial k-anonymity methods reveal to the LBS that the user

lies inside the k-anonymous region, which is only a part of the en-

tire data space (and usually a small one). Similarly, in methods that

append u with decoys, the LBS is offered a finite set of alternatives

for u to be located at. If the LBS can additionally disqualify some

decoys (e.g., via contextual knowledge), its chances of guessing

correctly the client’s location increase. On the other hand, in [40,

30] the LBS does not acquire the actual client location, but it still

gains information about her whereabouts, because u′ lies in her

vicinity. For the specific case of shortest path privacy in [22], the

LBS obtains knowledge of a finite set of alternatives for s and t

(|S| and |T | candidate locations, respectively) which, moreover, lie

near the actual source and destination, providing a rough idea of

their positions. Also, this method discloses strong clues about the

length and composition of the shortest path itself, since the |S| · |T |
paths returned have similar lengths and possibly share many edges

too. Our objective in this paper is to prevent leakage of any clues

about the query, including any knowledge about s, t, or the path.

Although not an obfuscation method per se, another approach

considered for location privacy is space transformation [18, 38, 39].

In this model, the database owner, who is different from the LBS,

maps the data from the original Euclidean space into a transformed

space using a keyed function. A querying client u (in possession of

the secret key) converts her location into the transformed space and

forwards it to the LBS. The latter, although unaware of the secret

key and thus unable to map the data and query back to the original

space, is still able to compute the query result. [18] supports ap-

proximate NN processing, [38] provides exact NN results, and [39]

additionally answers range queries. All methods in this category

are tailored to spatial queries in the Euclidean space, and are inap-

plicable to road networks (or graph data in general). Transforma-

tion techniques are meant for single client settings, because posses-

sion of the secret key by multiple ones implies that any client may

collude with the LBS to “decrypt” another’s query. Also, trans-

formation schemes are susceptible to access pattern attacks [37].

For example, the LBS may observe the access frequencies of items

in the transformed space and use them in tandem with contextual

knowledge about the original space to deduce a (partial) mapping

between the two spaces.

2.2 PIR-based Methods
Private information retrieval (PIR) is a primitive for retrieving

data hosted by a server, without the server learning anything about

the clients’ access patterns [4]. The privacy guarantees of PIR pro-

tocols rely on reductions to problems that are either computation-

ally infeasible or theoretically impossible to solve1. In this work

we use PIR schemes as building blocks in order to exploit these

strong guarantees.

Many types of single-server PIR are known to incur prohibitive

computation and/or communication overheads for sizable datasets

1For a complete survey of PIR techniques and an in-depth descrip-
tion of their inner workings, the interested reader is referred to [10].

[33]. However, recent hardware-aided PIR protocols are shown

to be both secure and practical. These protocols utilize a tamper-

resistant, secure co-processor (SCP) that is installed at the server

and is trusted by the clients. For example, [37] features constant

communication and amortized polylogarithmic computation cost.

PIR schemes have been applied in the context of spatial queries.

The first such method appeared in [11] for NN processing, but re-

lied on a particularly expensive PIR protocol. More recent pro-

posals utilize hardware-aided PIR and report reasonable computa-

tion/communication overheads for NN retrieval (a few seconds for

Gigabyte databases) [19, 29]. Importantly, [29] asserts that it is not

enough to retrieve disk pages from the LBS via a PIR protocol, but

the number of pages accessed should be the same for all queries.

Otherwise, clues may be given about the data of interest and there-

fore about the query itself. So far there has been no PIR-based

method for shortest path queries.

2.3 Relevant Privacy Issues on Graph Data
In this paper we aim at preventing the LBS from deducing clues

about the shortest path queries it is called to answer. There exist

several streams of work on different (yet related) privacy issues in

processing road network data.

One of them focuses on protecting graph data when outsourced

to third-party servers or on the cloud (see [9] and references

thereof). The main idea in these proposals is to modify the graph

so that its exact information is concealed from the hosting server

but some of its key topological characteristics are preserved. While

this class of methods aims to protect the graph data from the pro-

cessing server, our objective is to protect the clients’ queries; in our

model, the road network data are known to the LBS, which may be

their owner in the first place.

Another body of related work deals with verifying the accuracy

and correctness of the results returned by the processing server

[28, 23]. Database authentication schemes have been proposed for

shortest path verification in road networks [41]. These approaches

are orthogonal to our problem – in our setting the LBS is curi-

ous, but not malicious, i.e., it is interested in learning the clients’

queries, but would not falsify nor tamper with their results.

Targeting LBS clients that move in road networks, there have

also been methods for identity protection (as opposed to location

privacy), such as mix-zone techniques [1, 27]. Assuming that the

clients need continuous access to an LBS as they walk or drive

through a road network, they wish to hide their identity. For this

purpose they use pseudonyms to communicate with the LBS. To

prevent the linking of pseudonyms with the underlying client iden-

tities (through observation of long-term client movements), the

pseudonyms change whenever clients enter a mix-zone. Mix-zones

are usually placed at road junctions.

Graph problems have also been considered in the semi-trusted

model, where multiple parties hold different pieces of information

and collaboratively answer a query without disclosing their part

of the data to each other. For example, [2] proposes a protocol

that allows two entities, which hold different parts of a graph, to

compute the all-pair shortest distances in the combined (i.e., com-

plete) graph. In [6] an entity needs to compute a shortest path

from a source to a destination without crossing a polygonal ob-

stacle known only to another entity.

3. PRELIMINARIES
In this section we frame the problem, define our privacy objec-

tive and outline a provably secure methodology. We then present

characteristics of SCP technology and of the employed PIR proto-

col that guide our solution design.

��������

��	�
�

����������	
	

��
������	

���

��

��
���

���	�

Figure 1: System architecture

3.1 Problem Formulation and System Model

Query: A road network is modeled as a weighted graph G =
(V,E), where V is the set of nodes, and E the set of edges. The

nodes v ∈ V represent junctions, or positions on a road where

the traffic conditions or the orientation change, such as road turns.

Every edge e ∈ E connects two nodes and is associated with a pos-

itive weight w(e) that models the cost to traverse e, e.g., the trav-

eling time from one node to the other, the length of e, etc. A path

from a source node s ∈ V to a destination node t ∈ V is a sequence

of edges starting at s and leading to t. The cost of a path is defined

as the sum of costs across its edges. The path from s to t with the

smallest cost is called the shortest path and is denoted as SP (s, t).
We consider that E includes directed edges and that s, t lie on two

network nodes; the discussion easily extends to undirected edges

and our contributions apply to query sources/destinations that lie

anywhere on the road network (e.g., in between the endpoints of an

edge). We assume that all nodes have Euclidean coordinates.

Architecture: The road network G is hosted by an LBS – G may

be owned by the LBS itself or another entity. The LBS stores on

the disk the graph data and any indexing information thereof, orga-

nized in equal-sized blocks (pages). The clients of the LBS pose

shortest path queries on G, and the LBS needs to report the results

back to them. A secure co-processor (SCP) is installed at the LBS,

and offers a PIR interface for clients to retrieve disk pages from the

database of the LBS. Details about the SCP and the PIR protocol

employed are given in Section 3.2. Although we assume that the

database resides on disk, the PIR interface (and our entire frame-

work) applies to storage in main memory or a solid state drive.

The architecture is visualized in Figure 1. When a client wishes

to pose a query, she establishes an encrypted connection (e.g., SSL)

with the SCP and answers the query via a multi-round protocol. In

each round, the client requests specific disk pages from the SCP,

which retrieves them from the database (one by one) in a way obliv-

ious to the LBS. The data fetched determine the page requests in the

next round, and so on, until the shortest path is computed.

Adversary: The adversary in our model is the LBS. We assume

that it knows the client’s identity (e.g., via user log-in) or may infer

it2. The adversary is curious, but not malicious [37], i.e., it wishes

to gain information about the clients’ queries, yet it executes page

access routines correctly, and would not falsify the data in any way.

The road network information and its index (if any) are not en-

crypted, i.e., their plaintext is available to the LBS, who may well

be their owner. The adversary is also aware of the processing pro-

tocol in use. Its computational power is polynomially bounded (a

common assumption that enables the use of cryptographic primi-

tives, such as secure hash functions, etc).

Security Objective and Privacy Guarantee: Our objective is to

develop practical protocols for processing shortest path queries at

2Even without user log-in (such as in Google Maps), identification
is possible via background knowledge (e.g., user profile/search his-
tory), especially if information about the client’s source and desti-
nation also leaks.

the LBS without the latter deducing any information about the

queries. The database comprises a set of files, e.g., a header file,

a graph data file, an index file, etc. Similar to [29], we assert that

every shortest path query follows the same query plan – this is nec-

essary in order to achieve our privacy goal, as we make clear in

the security proof below. Specifically, we ensure that every query

(i) executes in the same number of rounds, (ii) in each round it

accesses the same files in the same order, and (iii) from each file

accessed in a specific round, it retrieves the same number of pages.

The query plan is determined by the processing protocol (we will

see how) and is publicly available. For example, if the protocol sug-

gests that in the second round 5 pages are fetched from file F1 and

then 10 from file F2, every query in its second round must fetch 5

pages from F1 followed by 10 from F2 (in this order). This implies

that even though a certain query may need fewer than the specified

pages from a file, the protocol pads its requests with dummy page

retrievals in order to conform to the query plan. The following the-

orem proves that our methodology achieves the security objective.

THEOREM 1. Our methodology leaks no information to the ad-

versary about the shortest path query. Equivalently, every pro-

cessed query is indistinguishable from any other.

PROOF. Each page requested from a file is retrieved via an es-

tablished PIR protocol. Therefore, the adversary is oblivious of

which page of the file is being read. What is only visible to the LBS

is that a page is being accessed in the specific file. Since all queries

follow the same query plan, the number of page retrievals in the var-

ious files and their chronological order is identical for all queries,

lending the adversary no means to tell any two of them apart. For

this reason too, even if the exact same query is re-executed, the

LBS is unable to detect that it is processing the same query. Hav-

ing established that the adversary gains no information from query

execution, the proof is completed by the fact that it is also unable

to intercept the client’s page requests (to the SCP) and the page

contents sent back from the SCP (to the client), because they are

transmitted via a secure connection (SSL).

The general methodology described above fulfills our privacy

objective. However, the challenge now lies in determining spe-

cific processing schemes which (i) ensure that all queries follow

the same query plan, and (ii) are practical in terms of performance

(e.g., in terms of query response time, space overhead, etc). Be-

fore presenting any schemes, we provide some background about

hardware-aided PIR that determines our design principles.

3.2 Background and Design Considerations
We require a PIR interface that allows clients to securely access

the database of the LBS – as explained in Section 2.2, hardware-

aided PIR is currently the only practical option. To provide a read-

ily deployable framework, we rely on existing SCP technology and

PIR protocols. Hence, we review their properties and limitations.

The SCP is trusted by the clients and installed at the process-

ing server. It has access to the server’s disk and may execute a set

of cryptographic primitives. SCPs support complete tamper detec-

tion, so that clients may remotely assess whether they operate un-

molested and unobserved by any potential adversary. The tamper-

resistance of SCPs comes at the cost of excessive heat dissipation

which, in turn, limits their computation speed and memory capac-

ity. General purpose SCPs are available in the market, such as the

IBM 4764 PCI-X Cryptographic Coprocessor.

To fetch disk pages obliviously from the database of the LBS, we

employ the protocol of [37] due to its superior performance (note

however that alternative PIR protocols could be used). Retrieving a

disk page has an amortized computation cost of O(log2 N), where

N is the total number of pages in the accessed file. The amortized

complexity is used because some retrievals may involve reorgani-

zation in parts of the file. In absolute terms, a real implementation

on IBM 4764 takes around one second to retrieve a page from a Gi-

gabyte file. The communication cost incurred is constant, i.e., the

amount of data transferred to the client (via the SSL connection)

have the same size as the original disk page read.

The computation cost of the protocol, albeit much smaller than

other PIR approaches, is still several times larger than a plain (un-

secured) disk read. To ensure the viability of our schemes, a key

objective in our design is to keep the number of pages fetched per

query (i.e., per shortest path computation) as small as possible.

This will also limit the communication cost.

Importantly, the protocol of [37] requires that the SCP has at

least c ·
√
N memory, where c is a parameter with a typical value

of 10. In conjunction with the limited memory on the SCP, this

implies that files larger than a certain size cannot be supported –

in our experiments, the SCP (IBM 4764) has 32 MByte RAM and

may support files up to 2.5 GByte. It is also indicative that the

memory capacity in SCP technology increases much slower than,

say, hard disk capacity. Therefore, in our solution design it is es-

sential to keep the database size small.

A final remark regards our choice to adopt a multi-round method-

ology, i.e., to have the client lead query processing with repetitive

page requests. One could wonder why the processing logic is not

completely shipped to the SCP, so that it runs locally the necessary

rounds of the protocol, and directly reports to the client the query

result (shortest path). The reason is that programming on the SCP

is particularly cumbersome, and also that complicated code may

lead to prolonged execution due to the aforementioned overheating

issues. In our design, we use the SCP merely as an interface to se-

curely fetch specific disk pages (one at a time), using off-the-shelf

functionality in order to ensure direct applicability.

4. BASELINE SOLUTIONS
There exist several approaches to process shortest path queries

in the literature, but they are unsuitable to our model. The straight-

forward way to answer the query is to invoke a disk-based version

of Dijkstra’s algorithm [7], A* search [14], etc. Data organization

aside, performance in our setting would be prohibitive. As elabo-

rated previously, all queries in a secure scheme must perform the

same number of page retrievals. This implies that every query will

incur the same processing cost as the costliest possible shortest path

computation. It is a known fact that for certain source-destination

pairs (e.g., the anti-diagonal nodes in G), these algorithms access

almost the entire road network. This would bound every query to

incur a cost equivalent to accessing all pages in the database.

There are indexing methods where search runs first on a hyper-

graph in order to guide processing in the underlying network G,

such as HiTi [15]. These approaches rely on the same expansion

principles as Dijkstra’s algorithm in the voluminous (due to heavy

materialization) hyper-graph, and run into similar problems.

Several pre-computation methods also exist, such as Landmark

[13], Arc-flag [21], SPQ [32], etc. The idea is to materialize

some information together with each node or edge, so that when

the node/edge is reached by network expansion, it helps narrow

down the possible hops to adjacent nodes. Adapting these meth-

ods to our setting reduces in part the deficiencies of plain network

search. However, performance remains problematic because dis-

tant source-destination pairs still require reading a large portion of

the database (thus bounding any query to an equally high process-

ing cost). For the sake of comparison with our advanced schemes,

we present the two best-performing adaptations we constructed

from this category, based on Landmark and Arc-flag.

Adaptation of Landmark (LM): Landmark [13] chooses a num-

ber of anchor nodes in G and pre-computes for each v ∈ V the

shortest path costs (from v) to the anchors. The vector of costs,

called Landmark vector, is kept with v and helps compute estimates

for the cost of SP (v, t) to the destination t. This information is uti-

lized by A* search which visits first nodes with a small estimated

cost to t. We adapt Landmark to our setting and use it as a baseline

in our experiments; we refer to this scheme as LM.

To enhance performance, we exploit locality. In particular, we

first partition G into regions. For each region we allocate one disk

page and inside store the information (i.e., the adjacency lists and

Landmark vectors) of all its nodes. The resulting file is denoted as

Fd. It is essential that the partitioning method does not waste space,

i.e., it leaves in every disk page as little empty space as possible,

in order to keep the database small. To produce regions that fulfill

this requirement we use a method described in Section 5.6.

In the first round of processing, the querying client requests for

and receives a header file, denoted as Fh. This file includes the par-

titioning information, i.e., it allows mapping any point that lies on

the network to the region that contains it. Additionally, for each re-

gion it indicates the page number in Fd that holds its data. Finally,

it also specifies the query plan (the plan’s derivation is described

after the algorithm outline). The header is small and must be ac-

cessed by any querying client. It is therefore retrieved from the

LBS in its entirety, without using the PIR interface, i.e., without

involving the SCP.

Having received the header, the client locally maps its source

and destination into the containing regions Rs and Rt, termed the

source and the destination region, respectively. In round two, she

fetches from Fd the pages that hold the data of these two regions

(via the SCP and the secure connection, so that the LBS is oblivi-

ous of which regions these are). She initializes an A* search at s

using the Rs data. When the search encounters a node that belongs

to another region, a new round of processing is initiated and the

corresponding Fd page is fetched via the PIR interface, and so on,

until the destination t is reached. Note that all queries must abide

by the query plan, which means that upon reaching t, the client may

need to make dummy requests until the necessary number of page

retrievals is reached.

To determine the query plan, we execute the algorithm (without

dummy requests) from all possible sources s ∈ V to all possible

destinations t ∈ V , and record the maximum number of pages

needed from Fd. Observe that in LM the query plan is simply de-

fined by the number of pages retrieved, because every round fetches

exactly one page from Fd, with the exception of the first round,

which fetches two (for Rs and Rt).

Adaptation of Arc-flag (AF): Arc-flag [21] requires partitioning

the road network into regions. For each edge e ∈ E, it keeps a bit-

vector where every bit corresponds to a region – the bit for a region

is set to 1 only if there is a shortest path from one endpoint of e to

a node in that region that passes through e. With this information,

processing a shortest path query only considers edges whose bit for

the destination region is 1. We construct a second baseline, termed

AF, that relies on Arc-flag.

The adaptation is similar to LM. A major difference, however, is

that we drop the requirement that the data of a region (adjacency

lists of nodes and bit-vectors of edges) must fit in a disk page. For

large networks this would lead to numerous regions, and thus huge

bit-vectors. Instead, we allocate for each region a fixed number

of pages, to be retrieved together during query processing. The

number of pages per region is a parameter of the method.

To conclude the discussion about pre-computation techniques,

we stress that full materialization is also inadequate for our setting.

This approach would compute and materialize the shortest paths

for every possible source-destination pair, so that the result for any

query could be looked up directly. The problem is that, even for

small road networks, the space needed to store all paths is orders

of magnitude larger than the maximum supported by the PIR inter-

face. For the smallest network in our evaluation (Oldenburgh, with

around 6K nodes), this approach requires approximately 20 GByte,

which increases cubicly with the network size.

The spatial network literature includes methods for shortest path

computation on the air [17], i.e., where the road network data are

periodically broadcast, and the clients tune in the channel to process

their queries locally. Their objective is to construct a broadcast cy-

cle and inside distribute indexing information in order to minimize

(i) the time that the client keeps its receiver on and (ii) the distance

(in the broadcast cycle) between the first and the last data packet

needed for query processing. These methods are inapplicable to

our case due to the different nature of the problem (e.g., on the air

there is no random access because the clients cannot control the

broadcast schedule – once missed, a packet can only be received in

the next broadcast cycle). However, the technique in [17] includes

the idea of partitioning the network and broadcasting, for every pair

of source-destination regions, the intermediate regions that may ap-

pear in a path between them. The pre-computation in Section 5.2

employs a similar idea.

5. CONCISE INDEX SCHEME
The main performance factors in our design, as established in

Section 3.2, are query processing cost and database size. The for-

mer is linked directly to the maximum number of pages needed for

any possible source-destination pair (due to the fixed query plan

requirement). The latter, i.e., database size, indirectly affects the

retrieval cost (recall that the time to fetch a page via the SCP in-

creases polylogarithmically with the number of pages in the file),

but the primary reason to keep it small is because the PIR interface

may support files up to a certain size only.

Our first scheme is termed Concise Index (CI). It features a mini-

mal space overhead and a manageable query processing cost. In CI

the database consists of four files, namely the header, the look-up,

the network index and the region data file; we denote them as Fh,

Fl, Fi, Fd, respectively. Their roles are as follows.

• Header: CI partitions the network into regions. The header

helps the client map her source and destination to their host re-

gions. It also includes the query plan.

• Look-up: It enables browsing the network index file.

• Network index: It includes pre-computed information that helps

guide the shortest path search.

• Region data: It stores the actual network information of each

region, i.e., node coordinates, adjacency lists, etc.

We first present the pre-processing steps in CI, i.e., network par-

titioning and pre-computation (Sections 5.1 and 5.2). Next, we

describe the exact contents of each file (Section 5.3). Then, we

discuss the derivation of the query plan and the query processing

algorithm (Section 5.4). Finally, we propose space optimization

techniques (Sections 5.5 and 5.6).

5.1 Network Partitioning
CI, as well as subsequent schemes, relies on a partitioning of the

road network into regions. The choice of partitioning method is

�

�

�

�

�

�

�� ��

��

��	�

��

Figure 2: KD-tree partitioning and border nodes

important. One requirement is that it must be easily representable

in terms of Euclidean coordinates. The reason is that clients are

unaware of node or region identifiers3, and may only express their

source and destination in terms of Euclidean coordinates. Another

requirement is that space is not wasted. Since regions are to be

placed on disk and it is essential to keep the database small, we need

to leave as little unutilized space in each page as possible. Impor-

tantly, the partitioning should facilitate query processing, implying

that regions should be chosen such that shortest paths are likely to

cross as few of them as possible. Last but not least, the partitioning

information should be expressible in a concise form, because it will

be sent to the clients (as part of Fh) over a communication network.

A simple partitioning method is to superimpose a KD-tree (in

Euclidean space) on the road network. This technique produces

regions of comparable quality (in terms of facilitating shortest path

computation) to more sophisticated and complex alternatives [24].

Additionally, the tree structure (which essentially determines the

mapping between Euclidean coordinates and network regions) can

be represented in a very concise form.

Each leaf of the tree holds the nodes that lie inside its spatial ex-

tent; a node’s information includes its identifier, its coordinates and

its adjacency list (i.e., the list of adjacent nodes and the weights of

the corresponding edges). Every leaf determines a region and is as-

sociated with a region identifier Ri. Figure 2 illustrates the KD-tree

partitioning of a sample road network. The bold lines correspond

to the split lines of the tree nodes. Region R1 is defined by the leaf

shown shaded, and holds the information of all nodes inside. The

tree structure can be represented simply by the splitting coordinate

(either on the x or y axis) used in every node of the tree, e.g., the

first split is at x = 4, followed by splits at y = 5 and y = 6 in the

left and right child of the root, and so on.

KD-tree partitioning fulfills all requirements we set, except for

high disk page utilization. The idea in CI is that node information

for each region is placed in a single disk page4. That can be en-

forced by splitting the tree nodes until the network information in

every leaf fits in a page. The problem, however, is that this may

leave up to 50% of the page empty, leading to an unnecessarily

large database. We developed a KD-tree construction method that

minimizes unutilized space and effectively reduces the database

size. We leave the details of this technique for Section 5.6.

3Node and region identifiers are a matter of naming during database
creation, and cannot be assumed known to the client in advance.
4Note that placing region information contiguously on the disk
(i.e., ignoring physical page boundaries) leads to regions that may
cross over to a second page. We wish to avoid this for performance
reasons that will become clear shortly.

�

�

�

�� ��

�� ��

�� ��

��
�	

��

��

��

Figure 3: Shortest paths between border nodes

5.2 Pre-computation
CI pre-computes and materializes some shortest path informa-

tion. Key in this process is the notion of border nodes. These

are intersection points of the network edges with the splitting lines

of the KD-tree. In Figure 2, for example, region R1 has 6 bor-

der nodes, represented as solid squares. Border nodes are treated

as normal network nodes during pre-processing, but they are dis-

carded afterwards (i.e., not stored in any file).

The fundamental property of border nodes is that any path start-

ing from a source s inside some region Rs to a destination outside

of it must pass through one of the border nodes of Rs. Similarly,

any path to a destination t in region Rt (from a source outside of

it) passes through a border node of Rt. Consider a shortest path

SP (s, t) and let v and v′ be the border nodes of the source and

destination region, respectively, that appear in this path. Due to

its cost minimality, SP (s, t) is guaranteed to include SP (v, v′).
The above facts combined suggest that SP (s, t) passes necessarily

via SP (v, v′) for some border node pair (v, v′). In Figure 3, as-

sume that s is somewhere in R1 and t in R8. If the shortest path

SP (s, t) passes through border node v1, it necessarily includes ei-

ther SP (v1, v2) (shown red) or SP (v1, v3) (shown blue), where

v2 and v3 are the border nodes of R8.

Based on this observation, CI computes for every pair of regions

Ri, Rj the shortest paths from all border nodes in Ri to all border

nodes in Rj . Let Si,j be the set of intermediate regions crossed by

at least one of these paths. For example, the consideration of bor-

der node pair (v1, v2) in Figure 3 would include (the identifiers of)

R3, R4, R7 into region set S1,8. By definition, any shortest path

from a source in Ri to a destination in Rj may pass only through

Ri, Rj and regions in Si,j . This pre-computation process is also

necessary for Si,j sets where i = j (i.e., when source and destina-

tion regions are the same) because a shortest path between border

nodes of Ri might still pass through a neighboring region.

5.3 File Formation
After partitioning and pre-computation, the CI files are formed.

Region Data File (Fd): As mentioned previously, Fd includes ex-

actly one page for every region Ri. Inside it keeps the network

information of Ri, including node identifiers, their adjacency lists

and incident edge weights.

Network Index File (Fi): Fi contains the pre-computed Si,j in-

formation. The region sets Si,j are stored into pages in ascending

order of composite key (i, j). They are placed contiguously into

pages, with the objective of minimizing the total number of pages

each of them spans. In particular, for Si,j sets with size smaller

than a page (as in the vast majority of cases), we prevent them from

stretching over two pages. This implies that during file formation,

�������� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ����

��
��� ��
��� ��
��� ��
���

������� ������� ������� ������� ���

��

��

��
����������������

�������

Figure 4: Fl and Fi example

if the free space in a page is not enough to host the next Si,j set (in

(i, j) order), the space is left unutilized and the region set is placed

in the next page of the file. This is important in order to reduce

the PIR retrieval cost per region set. The same reasoning applies

to (the rare case of) region sets larger than a page; an Si,j set with

size, say, 2.2 times the page capacity, is not allowed to stretch over

four pages – if necessary, its data start in a new page in order to

span three pages in total.

Figure 4 (in its lower part) illustrates an example of Fi. The

striped space at the end of the pages is unutilized. The figure

demonstrates the general case, where edges are directed. In case

of an undirected graph, sets Si,j and Sj,i would be identical, and

hence region sets Si,j where i > j would be omitted from the

network index file.

Look-up File (Fl): Fl is essentially a dense index over Fi, as

shown in Figure 4. Specifically, for every (i, j) pair, Fl stores a

look-up entry that indicates the page number in Fi that holds re-

gion set Si,j . The Fl entries are sorted on composite key (i, j).
The pages in Fl are packed, i.e., each stores the maximum possible

number of look-up entries. This implies that for any pair (i, j), a

division by that number indicates the Fl page that holds the corre-

sponding look-up entry (which in turn leads to the actual Si,j data

in Fi). Note that Fl is much smaller than Fi because a look-up en-

try takes up less space than the average Si,j set. Also, its size can

be reduced by omitting the (i, j) values because they are implicitly

defined by their order in Fl.

Header File (Fh): The header includes the KD-tree information

that allows mapping s and t to their host regions. For each leaf

of the KD-tree (i.e., for each region) the header also stores (i) a

region identifier (e.g., R1, R2, etc), and (ii) the page number in Fd

that holds the actual network information of the region. The header

additionally specifies the query plan and meta-data about the other

three files (e.g., filename, size, record length for Fl, etc). Fh is

small and needs to be downloaded by every client who wishes to

pose a query. Therefore, it discloses no information about the query

itself, and is downloaded in full directly from the LBS, without

involving the PIR interface.

5.4 Query Processing
Consider a client who wishes to know the shortest path from

source s to destination t, and ignore the query plan for the time. In

the first round of processing, the client receives the header file Fh.

Based on the coordinates of s and t, she uses the KD-tree informa-

tion to determine the source and destination regions Rs, Rt. Note

that there is no requirement that s and t are network nodes; they

could lie anywhere on the road network.

In the second round, the client uses the PIR interface and fetches

the page in the look-up file Fl that corresponds to pair (s, t). She

extracts the look-up entry for the specific pair and learns the page

number in the network index file Fi that stores the Ss,t set. In the

third round, she fetches that page from Fi (via the SCP); if Ss,t

stretches to nearby pages, they are also retrieved (this incorporates

an implementation detail elaborated shortly).

In the fourth round, the client requests (via the SCP) the pages of

Fd that include the network information of Rs, Rt, and all regions

in Ss,t. Upon receipt of these data, she possesses a subgraph of G

that is guaranteed to contain the desired shortest path. SP (s, t) is

computed using Dijkstra’s algorithm in this subgraph.

Query Plan: In addition to the above accesses, the query plan may

require extra (dummy) page retrievals. In the first round the en-

tire Fh is downloaded. In round two, there is always a single page

fetched from Fl. In round three, we force each query to retrieve

as many pages from Fi as the maximum number of pages spanned

by any Si,j set. This means that even if a single Si,j set spreads

over three pages in the file (while every other fits in one or two),

any query will need to make three retrievals in Fi. An important

implementation detail here is that the client does not know in ad-

vance how many pages Ss,t spans, but she knows from the query

plan that the maximum it could be is three. Therefore, it requests

for the page indicated by the look-up entry for pair (s, t) plus the

subsequent two pages5.

Regarding round four, let m be the maximum number of regions

inside any Si,j set. Recall that each region’s data fit in a single page

of Fd. The query plan ensures that every query accesses m + 2
pages in Fd (the extra two pages account for Rs and Rt).

5.5 Index Compression
In this section we describe a technique to bring down the space

overhead of CI (and, indirectly, the PIR retrieval cost too). Specifi-

cally, we reduce the size of the network index file. The crucial ob-

servation is that the Si,j sets for nearby (i, j) pairs have significant

overlaps due to locality. This motivates an in-page compression

mechanism, which takes place as Fi is being formed.

When storing an Si,j set into a disk page, we check which of

the region sets already in this page has the largest overlap (i.e., the

largest number of common elements) with Si,j . Let this set be

Sk,l. We use Sk,l as reference for Si,j and only store its delta in-

formation, determined as follows. Let n be the number of elements

(region identifiers) that appear in Si,j but not in Sk,l. These region

identifiers must be definitely indicated in the delta information to

ensure correctness of shortest path computation.

If the number of elements in Sk,l plus n is no larger than value

m (introduced in Section 5.4), the delta includes just these n region

identifiers. Expressing the Si,j information this way, implicitly in-

flates its contents (by those region identifiers that belong to Sk,l

but not to Si,j). This, however, incurs no response slow-down, be-

cause anyway a shortest path query from Ri to Rj needs to perform

a number of dummy requests in the region data file in order to reach

m+ 2 in total (so as to adhere to the query plan) – essentially, our

compression strategy replaces some of the dummy requests with

fetching unneeded region data.

On the other hand, if the number of elements in Sk,l plus n ex-

ceeds m, the delta information of Si,j must additionally specify

region identifiers not to be fetched. These identifiers should be-

long to Sk,l but not to Si,j . We need to indicate as many such

elements for exclusion, as to inflate Si,j only up to a cardinality of

m. For example, assume that Si,j includes elements R1, R2, R8,

while Sk,l contains R1, R2, R3, R4, R5. The delta information of

Si,j definitely includes R8. If m ≥ 6, there is no need to indicate

exclusions. A shortest path query from Ri to Rj will fetch from

5As boundary-case exception, if the look-up entry leads to either of
the last two pages in Fi, the client requests for its last three pages.

Fd all 5 regions in Sk,l plus R8 (plus a number of dummies, if nec-

essary). On the other hand, if m = 5, the delta information must

exclude at least one of R3, R4, R5.

Note that our Fi compression mechanism is applied within indi-

vidual pages and not across them. That is, we do not use reference

sets Sk,l outside the page meant to hold Si,j because that would im-

ply additional page requests in Fi and increase the response time.

5.6 Packed Partitioning
As explained in Section 5.1, we choose a KD-tree to perform

network partitioning for a variety of reasons. However, the stan-

dard KD-tree would leave up to 50% unutilized space in Fd. Here

we propose a tree packing mechanism that guarantees high space

utilization (over 95% in our experiments). We need to allocate ex-

actly one page for each tree leaf (region), and inside store the in-

formation of all nodes that lie in its spatial extent (including their

coordinates, adjacency list, etc). The difficulty of the problem lies

in the variable length of node information, because adjacency lists

of different nodes have different sizes. Assuming that the largest

node information takes up z bytes, our strategy guarantees that all

pages in Fd (but the last) have no more than z unutilized bytes. To

achieve this, we construct an unbalanced KD-tree.

Suppose that each disk page has size B bytes, and assume that

the first split (at the root of the KD-tree) is meant to be vertical, like

in Figure 2. We sort the information of all nodes based on their x

coordinate and place them contiguously to form a byte-stream. The

split is made at the (2i · (B − z))-th byte of the stream, where i is

the smallest integer for which the split position is to the right of the

middle byte in the stream. All nodes to the left of the split position

(including the node that owns the information stored in the specific

position) are placed into the left child of the root.

Consider now the subtree at the root’s left child. The child is split

iteratively in a way similar to a plain KD-tee, i.e., splits happen at

the middle byte of the node information stream. The power of the

algorithm is that we can arbitrarily push the node that overlaps

with the split position either to the left or right of the split, without

fear of eventually overflowing any of the resulting leaves (pages).

This is the case, because when we had split the root we implicitly

allowed a leeway of z bytes per region (which is enough by defi-

nition to fit any node’s information). On the other hand, the splits

lead eventually to 2i leaves. Having squeezed at least 2i · (B − z)
bytes into 2i leaves, we are sure to utilize at least B − z bytes per

page.

The process applied to the root is now recursively repeated for

its right child. That is, we sort its contents on y coordinate. In the

resulting byte-stream, we perform a split at position 2j ·(B−z) for

the smallest integer j that puts the split to the right of the middle

byte. Splits in its own left child happen simply at the middle byte,

leading to 2j leaves that hold at least 2j · (B − z) bytes of data. In

its right child, a byte-stream is formed and split in a way similar to

the root, and so on.

6. PASSAGE INDEX SCHEME
As we show in the experiments, CI requires little extra space

compared to simply storing the raw network data. However, the

longest paths in G may span a considerable number of regions (im-

plying that value m, in Section 5.4, may be large). That leads to

a significant number of PIR accesses in Fd which dominate the re-

sponse time. Motivated by this fact, we propose the Passage Index

(PI) scheme – with the use of more space, PI achieves a drastic re-

duction in the number of pages needed, and thus in response time.

In PI, instead of having the client retrieve all intermediate regions

between Rs and Rt, we materialize an exact subgraph that links

them. Specifically, pre-computation is the same as in CI. However,

instead of keeping Si,j , we record for every pair of Ri and Rj

the exact edges that appear in one or more shortest paths between

their border nodes. Essentially, these edges define a subgraph Gi,j ,

such that every shortest path from Ri to Rj is guaranteed to pass

entirely through the union of Ri, Rj and Gi,j . In the example of

Figure 3, G1,8 includes, among others, the edges that belong to the

two shortest paths (shown in red and blue).

PI involves four files, formed as explained in Section 5.3, the

difference being that the network index file includes the Gi,j infor-

mation (instead of Si,j). Placement into physical pages follows the

same principles. In query processing, however, there are only three

rounds. The first two are identical to CI, while the third fetches (i)

from Fi the subgraph Gs,t that corresponds to the source and des-

tination regions, and (ii) the two pages in Fd that hold the network

information of Rs and Rt. Regarding the query plan, let h be the

maximum number of pages spanned by any subgraph Gi,j in the

network index file. Each shortest path computation should retrieve

in the first round the entire header (directly from the LBS, without

involving the SCP), in the second round one page from Fl, while

in the third round exactly h pages from Fi and two pages from Fd.

Note that if h = 1, which may be the case for a small network, PI

answers the query with only four PIR accesses.

In PI the network index file vastly dominates the space require-

ments. To reduce its size, we observe that subgraphs Gi,j exhibit

locality (i.e., for nearby (i, j) pairs the subgraphs share many com-

mon edges) and apply a similar compression to Section 5.5. When

inserting Gi,j into an Fi page, we chose as reference the subgraph

in the same page with the largest number of common edges. The

delta information in this case does not need to indicate exclusions

(as they do not affect the query plan), but simply specifies the edges

in Gi,j that are missing from the reference subgraph.

As we show in Section 7, the compression strategy reduces space

drastically. However, the network index file may still be volumi-

nous. In our experiments, the database size in PI is two orders

of magnitude larger than CI, which renders it inapplicable to the

largest networks we used (it exceeds the maximum file size sup-

ported by the PIR interface). Besides PIR-imposed limitations, the

LBS may need to host multiple databases and therefore allocate

only a specific amount of space to support queries on G. Below

we propose two techniques that sacrifice in part the efficiency of PI

(i.e., response time) in order to reduce space requirements.

Hybrid Scheme (HY): PI performs a small number of page re-

trievals, but needs a lot of space. On the other hand, CI requires

little space, but if value m (i.e., the maximum number of regions

across all Si,j sets) is large, response time will suffer due to the PIR

access cost. HY is a hybrid between the two schemes that features

faster response time than CI and smaller space requirements than

PI. Importantly, the space-time trade-off may be tuned to suit the

application requirements.

Using the same pre-computation as CI, we form region sets Si,j

for all (i, j) pairs. Instead of placing them directly into Fi, we iter-

atively identify the region set with the largest number of elements

(i.e., the one that determines value m, and therefore the number of

PIR accesses) and replace it with its Gi,j counterpart. This replace-

ment procedure increases gradually the size of Fi, and reduces the

number of PIR accesses, i.e., accelerates processing. Replacement

stops when a desirable trade-off between space and response time

is struck, or when Fi reaches the maximum permissible size. The

network index file stores for every (i, j) pair either a region set Si,j

or a subgraph Gi,j .

The header is similar to CI/PI. In Fl, all look-up entries have

the same format, regardless of whether they lead to a region set or

subgraph in Fi, and are intermixed transparently in the file. A key

difference from previous schemes is that Fi and Fd are concate-

nated into a single file. The reason will become clear shortly.

Assume for simplicity that each of the Si,j sets (that were not

replaced by subgraphs during pre-processing) fits in one page of

Fi. Query processing is identical to CI/PI in the first two rounds

(accessing Fh and Fl). In the third round, after retrieving the look-

up entry for pair (s, t), we access Fi and fetch Ss,t or the first page

of Gs,t (whichever was stored in Fi during pre-processing). If it

is Ss,t, in the fourth round we access from Fd the pages that store

Rs, Rt and all regions in Si,j . If it is Gs,t, the fourth round fetches

from Fi the subsequent pages of the subgraph information (recall

that the third round only fetched the first page of Gs,t), and from

Fd the network data of Rs, Rt.

Note that if Fi and Fd are separate files, the adversary can ob-

serve how many pages are accessed from each, and infer whether

the client’s query was answered via a region set or a subgraph. This

is a leakage we cannot afford; if the query was answered via a re-

gion set Si,j , the adversary (which is aware of the replacement pro-

cess and its parameters) can immediately narrow down the possible

source-destination regions to those who were not chosen for re-

placement during pre-computation, and vice versa. Hence, Fi and

Fd are concatenated into the same physical file. The query plan

requires accessing one page from this combined file in round three.

For round four, we compute the maximum number of pages needed

for any (i, j) pair and assert that every query fetches as many.

A final remark about HY regards the general case where not all

Si,j sets fit in a single page. Let r be the maximum number of

pages that an (un-replaced) region set spans in Fi. In this case, any

query in round three must access exactly r pages from the network

index file, be it for a region set or a subgraph. These r pages are

consecutive in Fi to guarantee that if the (s, t) pair corresponds to

a region set, Ss,t will be read in full. If it is a subgraph (i.e., Gs,t),

its remaining pages (past the r-th) will be read in round four.

Clustered PI (PI*): Another alternative to reduce the space re-

quirements of PI is to keep the scheme as is, but allocate more than

one page per region. We name this variant clustered PI and denote

it as PI*. Partitioning uses the packed KD-tree approach in Section

5.6, with the extended leaf/region capacity. The exact number of

pages per region is a system parameter that determines the trade-

off between space and time.

The above amendment effectively reduces the size of Fi because

it leads to (i) fewer regions, and (ii) fewer border nodes in total

(because there are fewer KD-tree splits). In turn, fewer regions

imply fewer subgraphs Gi,j in Fi. Also, fewer border nodes imply

materializing shortest path information (in the form of subgraphs)

for fewer border node pairs. The more pages allocated per region,

the smaller the network index file. Size aside, the construction and

usage of Fi is similar to the original PI.

Regarding Fd formation, the pages that correspond to a region

are placed contiguously on disk. As per normal, Fd is accessed

in the third round of processing to retrieve the network data of Rs

and Rt. However, all pages of these two regions must be fetched.

This is the only difference from the original PI processing, which

increases (to a controllable degree) the response time. For instance,

if 3 pages are allocated per region, the clustered PI retrieves 6 pages

of Fd per query (instead of just two in the original scheme).

7. EXPERIMENTS
In this section we evaluate empirically our schemes on real road

networks. We also quantify the effectiveness of individual opti-

mizations.

Table 1: Road networks
Road network Number of nodes Number of edges

Oldenburg (Old.) 6,105 7,029

Germany (Ger.) 28,867 30,429

Argentina (Arg.) 85,287 88,357

Denmark (Den.) 136,377 143,612

India (Ind.) 149,566 155,483

North America (Nor.) 175,813 179,179

Table 2: System specifications
System parameter Value

Disk page size 4 KByte

Disk seek time 11 ms

Disk read/write rate 125 MByte/s

SCP read/write rate 80 MByte/s

SCP encryption/decryption rate 10 MByte/s

Communication bandwidth 384 Kbit/s (48 Kbyte/s)

Communication round-trip time 700ms

7.1 Experiment Setup
The evaluation considers our advanced PIR-based methods (CI,

PI, HY, PI*) and the baseline competitors (LM, AF; described in

Section 4). CI and PI are parameterless, whereas HY and PI* in-

volve a parameter each to tune their index size. By default, the

methods incorporate all optimizations presented in the paper (e.g.,

the packed partitioning in Section 5.6, the index compression in

Section 5.5, etc). We also provide measurements for an obfusca-

tion method based on [22] (OBF); this is for the sake of a perfor-

mance indication only, because privacy-wise OBF leaks substantial

information about the client queries, as explained in Section 2.1.

We implemented all methods in C++ and conducted experiments

on a machine with an Intel Core2 Quad CPU 2.83 GHz and 4 GByte

of RAM. Table 1 describes the road networks used in our evalua-

tion: Oldenburg was obtained from Brinkhoff et al.6 and the rest

from the Digital Chart of the World7. Our machine uses a Seagate

320 GB (7,200 RPM) hard disk,8 with 11 ms disk seek time, 125

MBbyte/s disk read/write rate, and 4 KByte disk page size. Similar

to [37], we adopt the IBM 4764 PCI-X Cryptographic Coproces-

sor9 as the SCP and strictly simulate its performance. The SCP has

32 MByte memory and may support file sizes up to 2.5 GByte. Ta-

ble 2 summarizes the specifications of the SCP and the hard disk

(these values determine the time to retrieve a disk page via the PIR

interface, as detailed in [37]). The client communicates with the

LBS using a link with round trip time of 700ms and bandwidth

384 Kbit/s (i.e., 48 Kbyte/s) – this corresponds to a moving client

connected via a 3G network [31].

The average response time of a method is measured by running

a workload of 1,000 shortest path queries. It denotes the elapsed

time from query submission until obtaining the shortest path re-

sult. It consists of: (i) server processing time, (ii) communication

time, and (iii) client-side computation time. For the obfuscation

method (OBF), component (i) refers to the processing of obfus-

cated queries at the server. For the PIR-based methods, component

(i) corresponds to the PIR time for fetching disk pages from the

database.

6http://iapg.jade-hs.de/personen/brinkhoff/generator/
7http://www.maproom.psu.edu/dcw/
8http://www.seagate.com/www/en-us/products/desktops/
barracuda hard drives/
9http://www-03.ibm.com/security/cryptocards/pcixcc/
overhardware.shtml

7.2 Tuning of Baseline Schemes
The performance of baseline approaches is affected by their pa-

rameter values, namely, the number of anchor nodes in LM, and

the number of regions (i.e., the number of Arc-flag bits kept with

each edge) in AF. For fairness, we tune their parameters so that

they achieve the shortest possible response time. Since the optimal

values vary for different road networks, we fine-tune LM and AF

individually for each dataset.

In Figure 5 we describe LM tuning for the Argentina network.

The plots show its response time and space requirements with re-

spect to the number of anchor nodes (i.e., the length of the Land-

mark vector kept with each node). LM achieves the shortest re-

sponse time when 5 anchors are used. Figure 5(a) shows that too

few anchors lead to slow execution. The reason is that the Land-

mark vectors are not descriptive enough to effectively narrow down

the search space (i.e., to guide the A* search), which results in

fetching too many pages. On the other hand, the more anchors

used, the larger the Fd file (see Figure 5(b)). Given that PIR ac-

cesses become more expensive when the file size increases (as ex-

plained in Section 3.2), using too long Landmark vectors harms

responsiveness.

The fine-tuning (and the trends) of AF is similar. For Argentina

network, AF achieves the best response time when the number of

Arc-flag bits is 8. We omit the charts for brevity.

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16 18 20

R
es

p
o
n
se

 t
im

e
(s

)

Number of landmarks

(a) Response time (s)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20

S
to

ra
g
e

sp
ac

e
(M

B
)

Number of landmarks

(b) Space requirements (MB)

Figure 5: LM fine-tuning (Argentina)

7.3 Comparison on Real Datasets
We first compare AF, LM, CI and PI on the Argentina network,

and present the results in Table 3. The response time is dominated

by the PIR cost, while the communication time and the client-side

computations account only for a small fraction of the total time.

With CI the client receives query results 3 times faster than AF and

LM. PI is even more efficient, outperforming the baseline schemes

by more than 5 times. To interpret performance, the table also

shows the number of PIR accesses in the region data and network

index files. AF and LM require reading more than half the database

for each query in order to abide by the query plan. Turning to our

methods, CI incurs 5 times more PIR accesses than PI; however,

they have a smaller difference in response time. This is because

PI performs retrievals on a much larger network index file than CI,

i.e., each access costs more. Table 3 also presents the space re-

quirements of the schemes. PI has the largest database, due to its

voluminous index.

Figure 6 illustrates the response time of an obfuscation method

(OBF) based on [22]. To reduce the amount of information leaked,

we form the obfuscation sets of s and t with decoys randomly and

uniformly chosen in the road network, instead of selecting loca-

tions near them (as in [22]). The figure shows the overall response

time versus the size of obfuscation sets S and T (where |S| = |T |)
on the Argentina network. For |S| and |T | in the order of tens,

OBF is less efficient than our schemes (CI and PI, represented by

horizontal lines) due to its large communication and server pro-

cessing costs. OBF provides weak privacy (there are |S| and |T |

Table 3: Components of response time (Argentina)
Method AF LM CI PI

Response time (s) 324.18 311.93 105.45 58.17

PIR time (s) 272.56 265.38 88.09 54.21

Communication time (s) 51.47 46.43 17.34 3.94

Client-side computations (s) 0.12 0.02 0.02 0.01

PIR page accesses of 595 of 536 of 193 of 2 of
the region data file 820 1,096 775 775

PIR page accesses of 0 0 2 of 36 of
the network index file 1,327 274,788

Total storage space (MB) 3.28 4.38 8.40 1,102

specific positions where s and t could lie). It is therefore not di-

rectly comparable to the strongly secure methods we study and is

not considered further.

 10

 100

 1000

 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
(s

)

Size of |S|, |S|=|T|

OBF
CI
PI

Figure 6: Effect of |S| on OBF, with |S| = |T | (Argentina)

Figure 7 compares AF, LM, CI, and PI on different road networks

(namely, Old., Ger., Arg.). The results fall in line with those in

Table 3 and establish the superiority of PI. However, its storage

space grows rapidly with the size of the road network. For larger

datasets (Den., Ind., Nor.), the network index file of PI exceeds the

2.5 GB limit, rendering the scheme inapplicable, and calling for its

tunable-size variants, HY and PI*. We postpone the investigation

of this larger-network case to Section 7.5.

 0

 50

 100

 150

 200

 250

 300

 350

Old. Ger. Arg.

R
es

p
o
n
se

 t
im

e
(s

)

Dataset

AF
LM

CI
PI

(a) Response time (s)

 0.1

 1

 10

 100

 1000

 10000

Old. Ger. Arg.

S
to

ra
g
e

sp
ac

e
(M

B
)

Dataset

AF
LM

CI
PI

(b) Space requirements (MB)

Figure 7: Performance on different road networks

7.4 Effectiveness of Optimizations
In this section we examine the effectiveness of the two enhance-

ments introduced in Section 5, namely packed partitioning (Sec-

tion 5.6) and index compression (Section 5.5).

In Figure 8 we compare versions of CI and PI with packed versus

plain KD-tree partitioning; the plain KD-tree variants are denoted

as CI-P and PI-P. Figure 8(a) illustrates space utilization in the re-

gion data file Fd for different networks. Packing achieves over 95%

utilization in Fd in all cases. In contrast, the utilization for CI-P and

PI-P can be as low as 51% (for Ger.). The higher utilization in CI

and PI implies that Fd contains a smaller number of regions (equiv-

alently, takes up fewer pages), leading also to a smaller network

index file Fi. This explains the vast reduction in database size for

CI and PI in Figure 8(c) (note the logarithmic scale). Importantly,

the packed partitioning improves significantly the response time of

CI. This is because most accesses in CI are performed in the re-

gion data file, which is significantly smaller than CI-P. On the other

hand, the response time of PI is relatively unaffected, because it

reads only two pages from Fd.

 40

 50

 60

 70

 80

 90

 100

Old. Ger. Arg.

S
p

ac
e

u
ti

li
za

ti
o
n
 i

n
 F

d
 (

%
)

Dataset

CI
CI-P

PI
PI-P

(a) Space utilization in Fd (%)

 0

 20

 40

 60

 80

 100

 120

 140

Old. Ger. Arg.

R
es

p
o
n
se

 t
im

e
(s

)

Dataset

CI
CI-P

PI
PI-P

(b) Response time (s)

 0.1

 1

 10

 100

 1000

 10000

Old. Ger. Arg.

S
to

ra
g
e

sp
ac

e
(M

B
)

Dataset

CI
CI-P

PI
PI-P

(c) Space requirements (MB)

Figure 8: Effect of packed partitioning on CI and PI

In Figure 9 we compare the full-fledged CI and PI against their

counterparts without index compression (denoted as CI-C, PI-C).

Figure 9(b) shows that the compression reduces storage space

significantly, especially for datasets with larger sizes. The PI-C

scheme (without compression) produces a network index file be-

yond 2.5 GByte on Argentina network. Its bar is marked as ‘Nil’,

indicating that it is inapplicable in this case – on the other hand, PI

(with compression) applies successfully. Figure 9(a) illustrates that

index compression improves the response time of PI but not that of

CI. The reason is explained by the number of PIR page accesses in

Table 3, namely, that most accesses in CI are made on the region

data file (whose size remains unchanged), whereas most accesses

in PI are made on the network index file (whose size is reduced).

 0

 20

 40

 60

 80

 100

 120

Old. Ger. Arg.

R
es

p
o
n
se

 t
im

e
(s

)

Dataset

NilNil

CI
CI-C

PI
PI-C

(a) Response time (s)

 0.1

 1

 10

 100

 1000

 10000

Old. Ger. Arg.

S
to

ra
g
e

sp
ac

e
(M

B
)

Dataset

Nil

CI
CI-C

PI
PI-C

(b) Space requirements (MB)

Figure 9: Effect of compression on CI and PI

7.5 Experiments on Larger Networks
In this section we consider larger road networks (Den., Ind.,

Nor.), where PI is inapplicable due to the size of its network in-

dex file. The place of PI is taken by Hybrid Scheme (HY) and

Clustered PI (PI*). Both HY and PI* enable tuning the network

index size. We investigate the space-time trade-off in each of them

before comparing with alternatives.

We first justify the design rationale of HY by examining the car-

dinalities |Si,j | of region sets in the network index of CI. In Figure

10(a) we run CI on Denmark and plot a histogram showing the

number of Si,j sets for different cardinalities. Since the largest re-

gion set has cardinality 229 (i.e., m = 229), the query plan of CI

requires fetching 229+2 disk pages from the region data file, lead-

ing to a long response time (see horizontal line in Figure 10(b)).

However, the majority of region sets have cardinalities below 100,

implying that there is plenty of space for improvement with HY.

In Figures 10(b) and 10(c) we use a cardinality threshold as the

tuning parameter for HY – any region set Si,j with cardinality

greater than the threshold is replaced by the corresponding Gi,j

subgraph. The threshold essentially controls the number of PIR re-

trievals in the query plan. The smaller this parameter, the shorter

the response time (and the larger the space required). In terms of

response time, the best threshold value is the smallest for which

the network index file does not exceed the maximum size sup-

ported. Although HY is meant to be a compromise between the

time-intensive CI and the space-intensive PI, for very large thresh-

old values it becomes slower than CI. The reason is that HY stores

both region data and network index into the same file (of increased

size), which means that each PIR access in HY is more expensive

than in CI.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250

F
re

q
u
en

cy

Number of regions in Si,j

(a) Distribution of |Si,j | in CI

 0

 50

 100

 150

 200

 20 40 60 80 100 120 140 160 180 200

R
es

p
o
n
se

 t
im

e
(s

)

Maximum number of regions in Si,j

HY
CI

(b) Response time (s)

 10

 100

 1000

 10000

 20 40 60 80 100 120 140 160 180 200

S
to

ra
g
e

sp
ac

e
(M

B
)

Maximum number of regions in Si,j

DB size limit
HY
CI

(c) Space requirements (MB)

Figure 10: Performance of HY vs. limit on |Si,j | (Denmark)

The performance of PI* is determined by the number of cluster

pages, i.e., the number of disk pages allocated per region in the

region data file. Figure 11 shows the response time and space re-

quirements of PI* on Denmark network. As explained at the end of

Section 6, when the cluster size increases, the response time rises

(and the space consumption drops). PI* achieves its best perfor-

mance at the smallest cluster size (2) for which the network index

file is within the size limit of the PIR interface.

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20

R
es

p
o
n
se

 t
im

e
(s

)

Number of cluster pages

PI*
CI

(a) Response time (s)

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

S
to

ra
g
e

sp
ac

e
(M

B
)

Number of cluster pages

DB size limit
PI*
CI

(b) Space requirements (MB)

Figure 11: Performance of PI* vs. cluster size (Denmark)

In the last experiment we compare CI, HY, and PI* on three large

networks. As AF and LM are particularly inefficient, we exclude

them from the charts. We tune both HY and PI* for the best running

time, while space requirements stay within the PIR-imposed bound.

The results in Figure 12 show that PI* achieves the fastest query

processing in all cases.

 0

 50

 100

 150

 200

 250

Den. Ind. Nor.

R
es

p
o
n
se

 t
im

e
(s

)

Dataset

CI
HY
PI*

(a) Response time (s)

 10

 100

 1000

 10000

Den. Ind. Nor.

S
to

ra
g
e

sp
ac

e
(M

B
)

Dataset

CI
HY
PI*

(b) Space requirements (MB)

Figure 12: Performance on larger networks

8. CONCLUSIONS
In this paper we propose the first PIR-based framework for pri-

vate shortest path computation. Our objective is that the process-

ing server answers client queries without inferring any information

about them. We propose a suite of schemes that are readily deploy-

able (as they rely on off-the-shelf PIR building blocks) and empir-

ically evaluate them on large, real road networks. While perfor-

mance is reasonable for the degree of privacy achieved, the space

and time overheads imposed are significantly higher than unpro-

tected query processing. A challenging topic for future work is

to reduce these overheads. A possible direction is via (lossless or

lossy) compression of network data, taking into account their char-

acteristics/structure. Another is the development of approximate

schemes with bounded cost deviation from the actual shortest path.

9. REFERENCES
[1] A. Beresford and F. Stajano. Location privacy in pervasive

computing. Pervasive Computing, IEEE, 2(1):46 – 55, 2003.

[2] J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in
the semi-honest model. In ASIACRYPT, pages 236–252, 2005.

[3] J. Cheng. How apple tracks your location without your consent and
why it matters.
http://arstechnica.com/apple/news/2011/04/how-apple-tracks-your-
location-without-your-consent-and-why-it-matters.ars, April
2011.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In FOCS, pages 41–50, 1995.

[5] C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial
cloaking algorithm for anonymous location-based service. In GIS,
2006.

[6] A. S. Das, K. Srinathan, R. K. Tiwari, and V. Srivastava. Privacy
preserving computation of shortest path in presence of a single
convex polygonal obstacle. In MDM, pages 248–252, 2007.

[7] E. W. Dijkstra. A Note on Two Problems in Connection with Graphs.
Numerische Mathematik, 1:269–271, 1959.

[8] M. Duckham and L. Kulik. A Formal Model of Obfuscation and
Negotiation for Location Privacy. In PERVASIVE, 2005.

[9] J. Gao, J. X. Yu, R. Jin, J. Zhou, T. Wang, and D. Yang.
Neighborhood-privacy protected shortest distance computing in
cloud. In SIGMOD Conference, pages 409–420, 2011.

[10] W. I. Gasarch. A survey on private information retrieval (column:
Computational complexity). Bulletin of the EATCS, 82:72–107, 2004.

[11] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan.
Private queries in location based services: anonymizers are not
necessary. In SIGMOD Conference, pages 121–132, 2008.

[12] G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE: Anonymous
Location-based Queries in Distributed Mobile Systems. In WWW,
2007.

[13] A. V. Goldberg and C. Harrelson. Computing the shortest path: A∗

search meets graph theory. In SODA, pages 156–165, 2005.

[14] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE TSSC, 4(2):100–107,
1968.

[15] S. Jung and S. Pramanik. An efficient path computation model for
hierarchically structured topographical road maps. IEEE TKDE,
14(5):1029–1046, 2002.

[16] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preserving
Location-based Identity Inference in Anonymous Spatial Queries.
IEEE TKDE, 19(12), 2007.

[17] G. Kellaris and K. Mouratidis. Shortest path computation on air
indexes. PVLDB, 3(1):747–757, 2010.

[18] A. Khoshgozaran and C. Shahabi. Blind Evaluation of Nearest
Neighbor Queries Using Space Transformation to Preserve Location
Privacy. In SSTD, 2007.

[19] A. Khoshgozaran, C. Shahabi, and H. Shirani-Mehr. Location
privacy: going beyond k-anonymity, cloaking and anonymizers.
Knowl. Inf. Syst., 26(3):435–465, 2011.

[20] H. Kido, Y. Yanagisawa, and T. Satoh. An Anonymous
Communication Technique using Dummies for Location-based
Services. In ICPS, 2005.

[21] E. Köhler, R. H. Möhring, and H. Schilling. Fast point-to-point
shortest path computations with arc-flags. In 9th DIMACS

Implementation Challenge - Shortest Paths, 2007.

[22] K. C. K. Lee, W.-C. Lee, H. V. Leong, and B. Zheng. Navigational
path privacy protection: navigational path privacy protection. In
CIKM, pages 691–700, 2009.

[23] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic
authenticated index structures for outsourced databases. In SIGMOD

Conference, pages 121–132, 2006.

[24] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm.
Partitioning graphs to speedup dijkstra’s algorithm. ACM Journal of

Experimental Algorithmics, 11, 2006.

[25] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The New Casper: Query
Processing for Location Services without Compromising Privacy. In
VLDB, 2006.

[26] K. Mouratidis and M. L. Yiu. Anonymous query processing in road
networks. IEEE Trans. Knowl. Data Eng., 22(1):2–15, 2010.

[27] B. Palanisamy and L. Liu. Mobimix: Protecting location privacy with
mix-zones over road networks. In ICDE, pages 494–505, 2011.

[28] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
completeness of relational query results in data publishing. In
SIGMOD Conference, pages 407–418, 2005.

[29] S. Papadopoulos, S. Bakiras, and D. Papadias. Nearest neighbor
search with strong location privacy. PVLDB, 3(1):619–629, 2010.

[30] D. Riboni, L. Pareschi, and C. Bettini. Integrating identity, location,
and absence privacy in context-aware retrieval of points of interest. In
MDM, pages 135–140, 2011.

[31] P. Romirer-Maierhofer, F. Ricciato, A. D’Alconzo, R. Franzan, and
W. Karner. Network-wide measurements of tcp rtt in 3g. In TMA,
pages 17–25, 2009.

[32] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. In SIGMOD Conference,
pages 43–54, 2008.

[33] R. Sion and B. Carbunar. On the practicality of private information
retrieval. In NDSS, 2007.

[34] L. Sweeney. k-Anonymity: A Model for Protecting Privacy. IJUFKS,
10(5):557–570, 2002.

[35] T. Wang and L. Liu. Privacy-aware mobile services over road
networks. PVLDB, 2(1):1042–1053, 2009.

[36] C. Williams. Apple under pressure over iphone location tracking.
http://www.telegraph.co.uk/technology/apple/8466357/Apple-under-
pressure-over-iPhone-location-tracking.html, April
2011.

[37] P. Williams and R. Sion. Usable pir. In NDSS, 2008.

[38] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis. Secure
knn computation on encrypted databases. In SIGMOD Conference,
pages 139–152, 2009.

[39] M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis. Enabling search
services on outsourced private spatial data. VLDB J., 19(3):363–384,
2010.

[40] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. SpaceTwist: Managing
the Trade-Offs Among Location Privacy, Query Performance, and
Query Accuracy in Mobile Services. In ICDE, 2008.

[41] M. L. Yiu, Y. Lin, and K. Mouratidis. Efficient verification of shortest
path search via authenticated hints. In ICDE, pages 237–248, 2010.

