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ABSTRACT
As mobile devices with positioning capabilities continue to pro-
liferate, data management for so-called trajectory databases that
capture the historical movements of populations of moving ob-
jects becomes important. This paper considers the querying of such
databases for convoys, a convoy being a group of objects that have
traveled together for some time.

More specifically, this paper formalizes the concept of a convoy
query using density-based notions, in order to capture groups of
arbitrary extents and shapes. Convoy discovery is relevant for real-
life applications in throughput planning of trucks and carpooling
of vehicles. Although there has been extensive research on tra-
jectories in the literature, none of this can be applied to retrieve
correctly exact convoy result sets. Motivated by this, we develop
three efficient algorithms for convoy discovery that adopt the well-
known filter-refinement framework. In the filter step, we apply line-
simplification techniques on the trajectories and establish distance
bounds between the simplified trajectories. This permits efficient
convoy discovery over the simplified trajectories without missing
any actual convoys. In the refinement step, the candidate convoys
are further processed to obtain the actual convoys. Our comprehen-
sive empirical study offers insight into the properties of the paper’s
proposals and demonstrates that the proposals are effective and ef-
ficient on real-world trajectory data.

1. INTRODUCTION
Although the mobile Internet is still in its infancy, very large

volumes of position data from moving objects are already being
accumulated. For example, Inrix, Inc. based in Kirkland, WA re-
ceive real-time GPS probe data from more than 650,000 commer-
cial fleet, delivery vehicles, and taxis [1]. As the mobile Internet
continues to proliferate and as congestion becomes increasingly
widespread across the globe, the volumes of position data being
accumulated are likely to soar. Such data may be used for many
purposes, including travel-time prediction, re-routing, and the iden-
tification of ride-sharing opportunities. This paper addresses one
particular challenge to do with the extraction of meaningful and
useful information from such position data in an efficient manner.
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The movement of an object is given by a continuous curve in the
(space, time) domain, termed a trajectory. The past trajectory of
an object is typically approximated based on a collection of time-
stamped positions, e.g., obtained from a GPS device. As an exam-
ple, Figure 1(a) depicts the trajectories of four objects o1, o2, o3,
and o4 in (x, y, t) space.

Given a collection of trajectories, it is of interest to discover
groups of objects that travel together for more than some minimum
duration of time. A number of applications may be envisioned. The
identification of delivery trucks with coherent trajectory patterns
may be used for throughput planning. The discovery of common
routes among commuters may be used for the scheduling of collec-
tive transport. The identification of cars that follow the same routes
at the same time may be used for the organization of carpooling,
which may reduce congestion, pollution, and CO2 emissions.
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Figure 1: Lossy-flock Problem

The discovery of so-called flocks [5, 13, 14] has received some
attention. A flock is a group of objects that move together within a
disc of some user-specified size. On the one hand, the chosen disk
size has a substantial effect on the results of the discovery process.
On the other hand, the selection of a proper disc size turns out to
be difficult, as situations can occur where objects that intuitively
belong together or do not belong together are not quite within any
disk of the given size or are within such a disk. And for some data
sets, no single appropriate disc size may exist that works well for all
parts of the (space, time) domain. In Figure 1(a), all objects travel
together in a natural group. However, as shown in Figure 1(b), ob-
ject o4 does not enter the disc and is not discovered as a member of
the flock. A key reason why this lossy-flock problem occurs is that
what constitutes a flock is very sensitive to the user-specified disc
size, which is independent of the data distribution. In addition, the
use of a circular shape may not always be appropriate. For exam-
ple, suppose that two different groups of cars move across a river
and each group has a long linear form along roads. A sufficient
disc size for capturing one group may also capture the other group
as one flock. Ideally, no particular shape should be fixed apriori.

To avoid rigid restrictions on the sizes and shapes of the trajec-
tory patterns to be discovered, we propose the concept of convoy
that is able to capture generic trajectory pattern of any shape and



any extent. This concept employs the notion of density connection
[12], which enables the formulation of arbitrary shapes of groups.
Given a set of trajectories O, an integer m, a distance value e, and
a lifetime k, a convoy query retrieves all groups of objects, i.e.,
convoys, each of which has at least m objects so that these objects
are so-called density–connected with respect to distance e during
k consecutive time points. Intuitively, two objects in a group are
density–connected if a sequence of objects exists that connects the
two objects and the distance between consecutive objects does not
exceed e. (The formal definition is given in Section 3.) Each group
of objects in the result of a convoy query is associated with the time
intervals during which the objects in the group traveled together.

The efficient discovery of convoys in a large trajectory database
is a challenging problem. Convoy queries compute sets of objects
and are more expensive to process than spatio-temporal joins [7],
which compute pairs of objects. Past studies on the retrieval of
similar trajectories generally use distance functions that consider
the distances between pairs of trajectories across all of time [10,
15, 25]. In contrast, we consider distances during relatively short
durations of time. Other relevant work concerns the clustering of
moving objects [17, 19, 21]. In these works, a moving cluster exists
if a shared set of objects exists across adjacent time, but objects
may join and leave a cluster during the cluster’s lifetime. Hence,
moving clusters carry different semantics and do not necessarily
qualify as convoys.

Jeung et. al. first proposed the convoy query and outlined pre-
liminary techniques for convoy discovery [4]. In this paper, we
extend the work, which develops more advanced algorithms and
analyzes each discovery method in real world settings. Specifically,
we introduce four effective and efficient algorithms for answering
the convoy query. The first method adopts the solution for mov-
ing cluster discovery to our convoy problem. The second method,
called CuTS (Convoy Discovery using Trajectory Simplification),
employs the filter-refinement framework — a set of candidate con-
voys are retrieved in the filter step, and then they are further pro-
cessed in the refinement step to produce the actual convoys. In
the filter step, we apply line simplification techniques [11] on the
trajectories to reduce their sizes; hence, it becomes very efficient
to search for convoys over simplified trajectories. We establish dis-
tance bounds between simplified trajectories, in order to ensure that
no actual convoy is missing from the candidate convoy set. The
third method (CuTS+) accelerates the process of trajectory simpli-
fication of CuTS to increase the efficiency of the filter step even
further. The last method, named CuTS*, is an advanced version of
CuTS that enhances the effectiveness of the filter step by introduc-
ing tighter distance bounds for simplified trajectories.

The main novelties of this paper are summarized as follows:

• Our filter step operates on trajectories processed by line sim-
plification techniques; this is different from most related works
that employ spatial approximation (e.g., bounding boxes) in
the filter step. The rationale is that conventional methods us-
ing bounding boxes introduce substantial empty space, ren-
dering them undesirable for the processing of trajectory data.

• To guarantee correct convoy discovery, we establish distance
bounds for range search over simplified trajectories. In con-
trast, the distance bounds studied elsewhere [8] are applica-
ble only to specific query types, not to the convoy problem.

• We study various trajectory simplification techniques in con-
junction with different query processing mechanisms. In ad-
dition, we show how to tighten the distance bounds.

• We present comprehensive experimental results using several
real trajectory data sets, and we explain the advantages and
disadvantages of each proposed method.

The remainder of this paper is organized as follows: In Section 2,
we discuss previous methods related to the convoy query. We for-
mulate the focal problem of this paper in Section 3. A modified
method of moving cluster for the convoy discovery is shown in
Section 4. We propose more efficient methods based on trajectory
simplification in Sections 5 and 6. Section 7 reports the results of
experimental performance comparisons, followed by conclusions
in Section 8.

2. RELATED WORK
We first review existing work on trajectory clustering and, then

cover trajectory simplification, which is an important aspect of our
techniques for convoy discovery. We end by considering spatio-
temporal joins and distance measures for trajectories.

2.1 Clustering over Trajectories
Given a set of points, the goal of spatial clustering is to form

clusters (i.e., groups) such that (i) points within the same cluster
are close to each other, and (ii) points from different clusters are
far apart. In the context of trajectories, the locations of trajectories
can be clustered at chosen time points. Consider the trajectories in
Figure 2(a). We first obtain a cluster c1 at time t = 1, then a cluster
c2 at t = 2, and eventually a cluster c3 at t = 3.

Kalnis et al. propose the notion of a moving cluster [19], which
is a sequence of spatial clusters appearing during consecutive time
points, such that the portion of common objects in any two con-
secutive clusters is not below a given threshold parameter θ, i.e.,
|ct∩ct+1|
|ct∪ct+1| ≥ θ, where ct denotes a cluster at time t. There is a
significant difference between a convoy and a moving cluster. For
instance, in Figure 2(a), o2, o3, and o4 form a convoy with 3 ob-
jects during 3 consecutive time points. On the other hand, if we
set θ = 1 (i.e., require 100% overlapping clusters), the overlap
between c1 and c2 is only 3

4
, and the above objects will not be dis-

covered as a moving cluster. Next, in Figure 2(b), if we set θ = 1
2

then c1, c2, and c3 become a moving cluster. However, this is not a
convoy.
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Figure 2: Convoys Versus Moving Clusters

Spiliopoulou et al. [24] study transitions in moving clusters (e.g.,
disappearance and splitting) between consecutive time points. As
transitions are based on the consideration of common objects at
consecutive time points, their techniques do not support convoy
discovery either. Next, Li et al. [21] study the notion of moving
micro cluster, which is a group of objects that are not only close
to one another at the current time, but are also expected to move
together in the near future. Recently, Lee et al. [20] have proposed
to partition trajectories into line segments and build groups of close
segments. This proposal does not consider the temporal aspects of
the trajectories. As a result, some objects can belong to the same
group even though they have never traveled close together (at the
same time). Most recently, Jensen et al. [17] have proposed tech-
niques for maintaining clusters of moving objects. They consider
the clustering of the current and near-future positions, while we
consider past trajectories.



As mentioned earlier, several slightly different notions of a flock
[13, 14] relate to that of a convoy. The notion most relevant to our
study defines a flock as a group of at least m objects staying to-
gether within a circular region of radius e during a specified time
interval [5, 13]. Al-Naymat et al. [5] apply random projection to
reduce the dimensionality of the data and thus obtain better per-
formance. Gudmundsson et al. [13] propose approximation tech-
niques and exploit an index to accelerate the computation of flock.
It is also shown that the discovery of the longest-duration flock is
an NP-hard problem. It is worth noticing that these studies exhibit
the lossy-flock problem identified in Section 1.

2.2 Trajectory Simplification
A trajectory is often represented as a polyline, which is a se-

quence of connected line segments. Line simplification techniques
have been proposed to simplify polylines according to some user-
specified resolution [11, 16].

The Douglas-Peucker algorithm (DP) [11] is a well-known and
efficient method among the line simplification techniques. Given
a polyline specified by a sequence of T points 〈p1, p2, · · · , pT 〉
and a distance threshold δ, the goal is to derive a new polyline
with fewer points while deviating from the original polyline by
at most δ. The DP algorithm initially constructs the line segment
p1pT . It then identifies the point pi farthest from the line. If this
point’s (perpendicular) distance to the line is within δ then DP re-
turns p1pT and terminates. Otherwise, the line is decomposed at pi,
and DP is applied recursively to the sub-polylines 〈p1, p2, · · · , pi〉
and 〈pi, · · · , pT 〉. As the worst-case time complexity of this al-
gorithm is O(T 2), Hershberger et al. [16] show a faster version of
this method with time complexity of O(T · log T ). However, it is
assumed that an object’s trajectory cannot intersect itself, which is
not a valid assumption for the data we consider.

The DP technique deals with line simplification only in the spa-
tial domain, ignoring the time domain of the trajectories. Consider
the example in Figure 3(a). Since the distance from p2 to p1p3

is within δ, the DP algorithm omits p2 and simply returns p1p3.
Similarly, q2 is also omitted and the polygon is simplified to q1q3.

In contrast, Meratnia et al. [23] take into account the temporal
aspects in line simplification. Figure 3(b) exemplifies the work-
ing procedure of their algorithm (say, DP*). First, DP* derives
the point p′2 on the line p1p3 by calculating the ratio of p2’s time
between t=1 of p1 and t=3 of p3. Then, it measures the distance
D(p2, p

′
2) between p2 and p′2, instead of the perpendicular distance

from p2 to p1p3. Since D(p2, p
′
2) > δ, p2 is still kept after the sim-

plification, while it was removed by using DP in Figure 3(a).�
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Figure 3: Comparison of Different Trajectory Simplifications

2.3 Distance Measures and Joins
A basic way of measuring the distance between two trajectories

used in the literature is to compute the sum of their Euclidean dis-
tances over time points. Such a distance measure may not be able
to capture the inherent distance between trajectories because it does
not take into account particular features of trajectories (e.g., noise,
time distortion). Thus, it is important to devise a distance function
that “understands” the characteristics of trajectories.

A well-known approach is Dynamic Time Warping (DTW) [25],
which applies dynamic programming for aligning two trajectories
in such a way that their overall distance is minimized. More recent
proposals for trajectory distance functions include Longest Com-
mon Subsequence (LCSS) [15], Edit Distance on Real Sequence
(EDR) [10], and Edit distance with Real Penalty (ERP) [9]. Lee
et al. [20] point out that the above distance measures capture the
global similarity between two trajectories, but not their local simi-
larity during a short time interval. Thus, these measures cannot be
applied in a simple manner for convoy discovery.

Given two data sets P1 and P2, spatio-temporal joins find pairs
of elements from the two sets that satisfy predicates with both spa-
tial and temporal attributes [18]. The close-pair join reports all
object pairs (o1, o2) from P1 × P2 with distance Dτ (o1, o2) ≤ e
within a time interval τ being bounded by a user-specified distance
e. Plane-sweep techniques [6, 26] have been proposed for evalu-
ating spatio-temporal joins. Like the close-pair join, the trajectory
join [7] aims at retrieving all pairs of similar trajectories between
two datasets. Bakalov et al. [7] represent trajectories as sequences
of symbols and apply sliding window techniques to measure the
symbolic distance between possible pairs. These studies consider
pairs of objects, whereas we consider sets of objects.

3. PROBLEM DEFINITION
This section formalizes the convoy problem. We start with the

definitions of distances for points, line segments, and bounding
boxes :

DEFINITION 1. (Distance Functions)
• Given two points pu and pv , D(pu, pv) is defined as the Eu-

clidean distance between pu and pv .
• Given a point p and a line segment l, DPL(p, l) is defined

as the shortest (Euclidean) distance between p and any point
on l.

• Given two line segments lu and lv , DLL(lu, lv) is defined as
the shortest (Euclidean) distance between any two points on
lu and lv , respectively.

• With Bu and Bv being boxes then Dmin(Bu,Bv) is defined
as the minimum distance between any pair of points belong-
ing to each of the two boxes.

The boxes introduced in the definition will be used for the bound-
ing of line segments. Next, the time domain is defined as the or-
dered set {t1, t2, · · · , tT }, where tj is a time point and T is the
total number of time points.

In our problem setting, we consider a practical trajectory database
model. We assume each trajectory may have a different length from
others and may also appear or disappear at any time in T . In addi-
tion, each location of a trajectory can be sampled either regularly
(e.g., every second) or irregularly (i.e, some missing time points
from T may exist between two consecutive time points of the tra-
jectory).

The trajectory of an object o is represented by a polyline that is
given as a sequence of timestamped locations o = 〈pa, pa+1, · · · , pb〉,
where pj = (xj , yj , tj) indicates the location of o at time tj , with



ta being the start time and tb being the end time. The time inter-
val of o is o.τ = [ta, tb]. A shorthand notation is to use o(tj) for
referring to the location of o at time tj (i.e., location pj).

Figure 4 illustrates the polylines representing the trajectories of
three objects o1, o2, and o3, during the time interval from t1 to t4.
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Figure 4: An Example of a Convoy

As a precursor to defining the convoy query, we need to un-
derstand the notion of density connection [12]. Given a distance
threshold e and a set of points S, the e-neighborhood of a point p
is given as NH e(p) = {q ∈ S | D(p, q) ≤ e}. Then, given a
distance threshold e and an integer m, a point p is directly density–
reachable from a point q if p ∈ NH e(q) and |NH e(q)| ≥ m. A
point p is said to be density–reachable from a point q with respect
to e and m if there exists a chain of points p1, p2, ..., pn in set S
such that p1 = q, pn = p, and pi+1 is directly density–reachable
from pi.

DEFINITION 2. (Density–Connected) Given a set of points S,
a point p ∈ S is density–connected to a point q ∈ S with respect
to e and m if there exists a point x ∈ S such that both p and q are
density–reachable from x.

The definition of density–connection permits us to capture a group
of “connected” points with arbitrary shape and extent, and thus to
overcome the the lossy-flock problem shown in Figure 1. By con-
sidering density–connected objects for consecutive time points, we
define the convoy query as follows:

DEFINITION 3. (Convoy Query) Given a set of trajectories of
N objects, a distance threshold e, an integer m, and an integer
lifetime k, the convoy query returns all possible groups of objects,
so that each group consists of a (maximal) set of density-connected
objects with respect to e and m during at least k consecutive time
points.

Consider the convoy query with the parameters m = 2 and k =
3 issued over the trajectories in Figure 4. 〈o2, o3, [t1, t3]〉 is the
result, meaning that o2 and o3 belong to the same convoy during
consecutive time points from t1 to t3.

Table 1 offers the notations introduced in this section and to be
used throughout the paper.

4. COHERENT MOVING CLUSTER (CMC)
A simple technique for computing a convoy is to first perform

(density–connected) clustering on the objects at each time and then
to extract their common objects in an attempt to form convoys. This
approach is similar to the methods for discovering moving clusters
[19]. However, those are unable to discover the exact convoy re-
sults, as explained next:

Symbol Meaning
p Point/location (in the spatial domain)
t Time point
oi Original trajectory of an object

oi(t) Location of oi at time t
o′i Simplified trajectory (of oi)
l′i Line segment of o′i

o′i.τ Time interval of o′i
l′i.τ Time interval of l′i

D(pu, pv) Euclidean distance between points
DPL(p, l) The shortest distance from point to line segment

DLL(lu, lv) The shortest distance between line segments
B(l) The minimum bounding box of l

Dmin(Bu,Bv) The minimum distance between two boxes

Table 1: Summary of Notation

• Let ct and ct+1 be (snapshot) clusters at times t and t + 1.
These clusters belong to the same moving cluster if they
share at least the fraction θ objects (|ct∩ct+1|/|ct∪ct+1| ≥
θ), where θ is a user-specified threshold value between 0 and
1. The problem of applying moving cluster methods for con-
voy discovery is that no absolute θ value exists that can be
used to compute the exact convoy results—either false hits
may be found, or actual convoys may remain undiscovered,
as explained in Section 2.1.

• A moving cluster can be formed as long as two snapshot clus-
ters have at least θ overlap, even for only two consecutive
time. The lifetime (k) constraint does not apply to moving
clusters, but is essential for a convoy.

• As pointed in the previous section, a trajectory may have
some missing time points due to irregular location sampling
(e.g., o3 at t = 2 in Figure 5(a)). In this case, we cannot
measure the density–connection for all objects involved over
those missing times.

In order to solve the above problems for convoy discovery, we
extend the moving cluster method into our Coherent Moving Clus-
ter algorithm (CMC). First, we generate virtual locations for the
missing time points. If any trajectory has a location at time ti, but
another does not during its time interval, we apply linear interpola-
tion to create the virtual points at ti. Second, to accommodate the
lifetime (k) constraint, we require each candidate convoy to have
(at least) k clusters ct, ct+1, · · · , ct+k−1 during consecutive time
points. Third, we test the condition |ct∩ct+1∩· · ·∩ct+k−1| ≥ m,
to determine whether sufficiently many common objects are shared.
If all conditions are satisfied, the candidate is reported as an actual
convoy.

We proceed to illustrate algorithm CMC using Figure 5, with the
parameters m = 2 and k = 3. Let ci

t be the i-th snapshot cluster
at time t. Clusters at time t are obtained by applying a snapshot
density clustering algorithm (e.g., DBSCAN [12]) on the objects’
locations at time t.
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Figure 5: Query Processing of CMC, m = 2

Table 2 illustrates the execution steps of the algorithm. At time
t1, we obtain a cluster c1

1 (with objects o1, o2, and o3) and consider



it a convoy candidate v1. At time t2, we retrieve a cluster c1
2, which

is then compared with v1. Since c1
2 and v1 have m = 2 common

objects, we compute their intersection and update candidate v1. At
time t3, we discover two clusters c1

3 and c2
3. Since c1

3 shares no
objects with v1, we consider c1

3 as another convoy candidate v2.
As c2

3 shares m = 2 common objects with v1, we update v1 to
be its intersection with c2

3. Eventually, v1 is reported as a convoy
because it contains m = 2 common objects from clusters during
k = 3 consecutive time points.

Timestamp Clusters Candidate set V
t1 c1

1 v1 = c1
1

t2 c1
2 v1 = c1

1 ∩ c1
2

t3 c1
3, c2

3 v1 = c1
1 ∩ c1

2 ∩ c2
3, v2 = c1

3

Table 2: Execution Steps of CMC

Algorithm 1 presents the pseudocode for the CMC algorithm.
The algorithm takes as inputs a set of object trajectories O and
convoy query parameters m, k, and e.

We use V to represent the set of convoy candidates. We then
perform processing for each time point (in ascending order). The
set Vnext introduced in Line 3 is used to store candidates produced
at the current time t. Then, we consider only objects o ∈ O whose
time intervals cover time t, i.e., t ∈ o.τ . Their locations o(t) are
inserted into the set Ot. If any object o ∈ Ot has a missing location
at t, a virtual point is computed and then inserted.

Next, we apply DBSCAN on Ot to obtain a set C of clusters
(Line 7). The clusters in C are compared to existing candidates
in V . If they share at least m common objects (Line 11), the cur-
rent objects of the candidate v are replaced by the common objects
between c and v and are then inserted into the set Vnext (Lines 13–
15). At the same time, we increment the lifetime of the candidate
(Lines 14). Each candidate with its lifetime (at least) k is reported
as a convoy (Lines 17–18).

Clusters (in C) having insufficient intersections with existing
candidates are inserted as new candidates into Vnext (Lines 19–
23). Then all candidates in Vnext are copied to V so that they are
used for further processing in the next iteration.

Algorithm 1 CMC (Set of object trajectories O, Integer m, In-
teger k, Distance threshold e)
1: V ← ∅
2: for each time t (in ascending order) do
3: Vnext ← ∅
4: Ot ← {o(t) | o ∈ O ∧ t ∈ o.τ}
5: if Ot.size < m then
6: skip this iteration
7: C ← DBSCAN(Ot, e, m)
8: for each convoy candidate v ∈ V do
9: v.assigned ← false

10: for each snapshot cluster c ∈ C do
11: if |c ∩ v| ≥ m then
12: v.assigned ← true
13: v ← c ∩ v
14: v.endTime← t
15: Vnext ← Vnext ∪ v
16: c.assigned ← true
17: if v.assigned = false and v.lifetime≥ k then
18: Vresult ← Vresult ∪ v
19: for each c ∈ C do
20: if c.assigned = false then
21: c.startTime← t
22: c.endTime← t
23: Vnext ← Vnext ∪ c
24: V ← Vnext;
25: return Vresult

5. CONVOY DISCOVERY USING TRAJEC-
TORY SIMPLIFICATION (CUTS)

The CMC algorithm incurs high computational cost because it
generates virtual locations for all missing time points and performs
expensive clustering at every time. In this section, we apply the
filter-and-refinement paradigm with the purpose of reducing the
overall computational cost. For the filter step, we simplify the orig-
inal trajectories and apply clustering on the simplified trajectories
to obtain convoy candidates. The goal is to retrieve a superset of
the actual convoys efficiently. In the refinement step, we consider
each candidate convoy in turn. In particular, we perform cluster-
ing on the original trajectories of the objects involved to determine
whether the convoy indeed qualifies. The resulting CuTS algorithm
is guaranteed to return correct convoy results.

5.1 Simplifying Trajectories
Given a trajectory represented as a polyline o = 〈p1, p2, · · · , pT 〉,

and a tolerance δ, the goal of trajectory simplification is to derive
another polyline o′ such that o′ has fewer points and deviates from
o by at most δ. We say that o′ is a simplified trajectory of o with
respect to δ.

We apply the Douglas-Peucker algorithm (DP), as discussed in
Section 2.2, to simplify a trajectory. Initially, DP composes the
line p1pT and finds the point pi ∈ o farthest from the line. If
the distance DPL(pi, p1pT ) ≤ δ, segment p1pT is reported as the
simplified trajectory o′. Otherwise, DP recursively processes the
sub-trajectories 〈p1, · · · , pi〉 and 〈pi, · · · , pT 〉, reporting the con-
catenation of their simplified trajectories as the simplified trajec-
tory o′.
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Figure 6: Trajectory Simplification

Figure 6(a) illustrates the application of DP on the trajectories
in Figure 4. For o1 trajectory, we first construct the virtual line be-
tween its end points. Since the distance between the farthest point
(i.e., p1) and the virtual line exceeds δ, point p1 will be kept in o1’s
corresponding simplified trajectory o′1. Regarding o2, the distance
of the furthest point (i.e., p2) from the virtual line is below δ; thus,
all intermediate points are removed from o2’s simplified trajectory.
Figure 6(b) visualizes the simplified trajectories. Notice that each
point in a simplified trajectory corresponds to a point in the original
trajectory and is associated with a time value.

Measuring actual tolerances of simplified trajectories : We ob-
serve that an actual tolerance smaller than δ may exist so that the
simplified trajectory is valid. In the example of Figure 6(a), the ac-
tual tolerance of o′2 is determined by the distance between p2 and
the virtual line. We formally define the actual tolerance as follows:

DEFINITION 4. (Actual Tolerance) Let l′ be a line segment in
the simplified trajectory o′, whose original trajectory is o. The ac-
tual tolerance δ(l′) of l′ is defined as: maxt∈l′.τ DPL(o(t), l′).
The actual tolerance δ(o′) of o′ is defined as the maximum δ(l′)
value over all its line segments.



The actual tolerance of each line segment l′ of o′ can be com-
puted easily by examining the locations of o during the correspond-
ing time interval l′.τ . In addition, the derivation of these tolerance
values can be seamlessly integrated into the DP algorithm so that
the original trajectory o needs not be examined again.

The actual tolerances are valuable in the sense that they can be
exploited to tighten the distance computation for simplified trajec-
tories, as we will show in the next section.

5.2 Distance Bounds for Range Search
A simplified trajectory o′ may contain many omitted locations

in comparison to its original trajectory o. Thus, it is not possible
to perform (density–connected) clustering at individual time. If we
generate virtual positions for the omitted points as done in CMC,
there is no use for the trajectory simplification. The main chal-
lenge becomes one of performing clustering on the line segments
of simplified trajectories so that each snapshot cluster (on the orig-
inal trajectories) is captured by a cluster of line segments (from the
simplified trajectories).

In density-based clustering techniques (e.g., DBSCAN), the core
operation is e-neighborhood search, i.e., to find objects within dis-
tance e of a given object, at a fixed time t. We proceed to develop
the implementation of this core operation in the context of line seg-
ments. Let a line segment l′q be given; our goal is then to retrieve
all line segments l′i whose original trajectory oi can possibly satisfy
the condition D(oq(t), oi(t)) ≤ e for some time point t. This way,
all qualifying convoy candidates are guaranteed to be found in the
filter step.

Let o′q and o′i be simplified trajectories of the original trajectories
oq and oi. At a given time t, the locations of oq and oi are oq(t)
and oi(t). Observe that the endpoints of line segments in o′q are
timestamped. Let l′q be a line segment in o′q such that its time in-
terval l′q.τ covers t. Similarly, we use l′i to denote the line segment
in o′i satisfying t ∈ l′i.τ . Figure 7 shows an example of two line
segments l′q and l′i.

l’q

l’i

oq(t)

oi(t)

aq

ai

(l’q )

(l’i)

DLL(l’q , l’i )

Figure 7: Trajectory Segments with Time Intervals Covering t

Lemma 1 establishes the relationship between distances in the
original trajectories and those in the simplified trajectories.

LEMMA 1. Let o′q (o′i) be the simplified trajectory of original
trajectory oq (oi). Given a time t, let l′q (l′i) be the line segment in
o′q (o′i) with a time interval that covers t.

If DLL(l′q, l
′
i) > e + δ(l′q) + δ(l′i) then D(oq(t), oi(t)) > e.

Lemma 1 allows us to prune line segments l′i during the range
search of the given line segment l′q . Figure 8 illustrates the extended
range for search over simplified line segments with error bounds. In
Figure 8(a), half of the points on the original trajectory are omitted
(i.e., a 50% reduction) with the given δ value. To enable correct
discovery processing over the simplified trajectories (dotted lines),
we enlarge the search space as shown in Figure 8(b).

Notice that we still need to scan all l′i whose time intervals in-
tersect with that of l′q . For example, the time interval [t3,t7] of the
second line segment of o′q in Figure 9(a) intersects all of o′i’s line
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Figure 8: Range Search with Error Bounds

segments. To obtain better performance, we intend to prune a sub-
set S of line segments fast. During the range search of the given line
segment l′q , Lemma 2, next, enables us to prune an non-qualifying
S before examining its line segments. The proofs of Lemma 1 and
Lemma 2 are provided in the appendix.

LEMMA 2. Let S be a subset of line segments l′i (from simpli-
fied trajectories). Let B(S) be the minimum bounding box of all
segments in S, S.τ =

⋃
l′i∈S l′i.τ , and δmax(S) = maxl′i∈S δ(l′i).

Let line segment l′q have a time interval that intersects with that of
S, i.e., S.τ ∩ l′q.τ 6= ∅.

If Dmin(B(l′q),B(S)) > e + δ(l′q) + δmax(S) then
D(oq(t), oi(t)) > e holds for all l′i ∈ S.

We proceed to outline how to perform range search for l′q in mul-
tiple steps by gradually tightening the condition: First, we retrieve
a set of line segments S whose time intervals overlap with that of
l′q . We then apply Lemma 2 to prune non-qualifying line segments
in S at an early stage. Next, for each remaining line segment in
S, we discard non-qualifying line segments by applying Lemma 1.
Any surviving line segment is included in the e-neighborhood of
the line segment l′q . Using this multi-step range search for line seg-
ments, we are able to perform density–connected clustering of line
segments efficiently.
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Figure 9: Measure of ω(o′q, o
′
i) and Time Partitioning

Extension for trajectories : So far, we have addressed range search
only for line segments. In fact, it is feasible to generalize the search
to apply to an entire trajectory. And by applying clustering on tra-
jectories directly, we further reduce the cost of the filter step. As
we will see in the next section, the technique below is applicable
to sub-trajectories as well, enabling us to control the granularity of
the filter step.

We aim to retrieve all simplified trajectories o′i whose original
trajectories oi possibly satisfy the condition D(oq(t), oi(t)) ≤ e
for some time t. In case o′q and o′i have disjoint time intervals
(i.e., o′q.τ ∩ o′i.τ = ∅), they cannot belong to the same convoy.
Otherwise, we define their ω value as follows:

ω(o′q, o
′
i) = min{DLL(l′q, l

′
i)−δ(l′q)−δ(l′i) | l′i ∈ o′i, l′q ∈ o′q,

l′q.τ ∩ l′i.τ 6= ∅}.
Figure 9(a) shows an example of computing the ω(o′q, o

′
i) value

between two simplified trajectories o′q and o′i. Line segments with
shared time interval are linked by dotted lines, contributing a term



in the value of ω(o′q, o
′
i). If ω(o′q, o

′
i) > e, no time t exists such

that D(oq(t), oi(t)) ≤ e. Otherwise, their locations in the original
trajectories may be within distance e for some time t.

5.3 The CuTS Algorithm
We first present a general overview of the CuTS (Convoy Dis-

covery using Trajectory Simplification) algorithm, then illustrate
aspects of the algorithm with examples, and finally present the de-
tails of the algorithm.

In the filter step, we first apply simplification (with tolerance δ)
to the original trajectories in order to obtain their simplified tra-
jectories. We then partition the time domain (with each partition
covering λ time points) and assign the line segments of each o′i to
qualifying partitions. Next, we perform clustering on those line
segments. Clusters across adjacent partitions with common ob-
jects are used to form convoy candidates. In the refinement step,
we perform clustering of the original trajectories of the objects in
each convoy candidate. The total computational cost of the CuTS
algorithm is the sum of the simplification, the clustering, and the
refinement costs. Our experiments in Section 7 suggest that the
simplification and refinement costs are very low in practice.

To understand the filter step of CuTS better, consider Figure 9(b)
where the time domain is divided into equal-length (λ = 4) parti-
tions T1 and T2 with time intervals [t1, t4] and [t4, t7], respectively.
The time partition T1 contains the following line segments: l11 and
l21 of o′1, l12 of o′2, and l13 and l23 of o′3. Note that the line segment
l23 will be inserted into both T1 and T2 to avoid any possible false
dismissal when we compute the value of ω(o′q, o

′
i) in Figure 9(a).

Algorithm description. Algorithm 2 presents the pseudocode of
CuTS’s filter step. In addition to the convoy query parameters m, k,
and e, two internal parameters δ (tolerance for trajectory simplifica-
tion) and λ (the length of each partition) also need to be specified.
Those parameter values are relevant to the performance only (e.g.,
execution time) and do not affect the correctness. Guidelines for
choosing their values will be presented in Section 7.4.

Algorithm 2 CuTS Filter (Object set O, Integer m, Integer k,
Distance threshold e)
1: δ ← ComputeDelta(O, e)
2: for each trajectory oi ∈ O do
3: o′i ← Douglas-Peucker(oi, δ)
4: λ ← ComputeLambda(O, k, (

∑
i |oi|)/(

∑
i |o′i|))

5: V ← ∅
6: divide the time domain into λ-length disjoint partitions
7: for each time partition Tz (in ascending order) do
8: Vnext ← ∅
9: for each o′i satisfying o′i.τ ∩ Tz .τ 6= ∅ do

10: insert lji ∈ o′i (intersecting time interval of Tz) into G
11: C ← TRAJ-DBSCAN(G, e, m)
12: for each convoy candidate v ∈ V do
13: v.assigned← false
14: for each cluster c ∈ C do
15: if |c ∩ v| ≥ m then
16: v.assigned ← true
17: v′ ← c ∩ v
18: v′.lifetime← v.lifetime + λ
19: Vnext ← Vnext ∪ v′
20: c.assigned ← true
21: if v.assigned = false and v.lifetime≥ k then
22: Vcand ← Vcand ∪ v
23: for each c ∈ C do
24: if c.assigned = false then
25: c.lifetime ← λ
26: Vnext ← Vnext ∪ c
27: V ← Vnext

28: return Vcand

Lines 2–3 of the algorithm perform trajectory simplification for
all objects. Next, the time domain is partitioned, each partition
holding λ consecutive time points. Time partitions are then pro-
cessed iteratively in ascending order of their time. Let the current
loop consider the time partition Tz . The algorithm builds a poly-
line (i.e., a sequence of line segments) from a simplified trajectory
o′i, which contains the line segments of o′i whose time intervals in-
tersect to Tz . It then stores all the polylines from each simplified
trajectory into a data structure G. Next, density clustering is per-
formed for the sub-trajectories in G (see Line 11).

The set V keeps track of the convoy candidates found in previ-
ous iterations, whereas the set Vnext stores new candidates found
in the current iteration. For Lines 12–20, each cluster c ∈ C (found
in the current iteration) is joined with those in V , as long as their
intersections have at least m objects. Also, candidate convoys with
lifetime above k are inserted into the candidate set Vcand. Clusters
that cannot join with previous convoy candidates are then consid-
ered as new candidates (Lines 23–26).

Finally, Algorithm 3 contains the pseudocode of the refinement
step of the CuTS algorithm. Suppose that v is the convoy candidate
in the candidate set V that is currently being examined. We first
determine the time interval [tstart, tend] for v and then identify the
set O′ of the original trajectories whose line segments appear in v.
Finally, we apply CMC for trajectories in O′, considering only time
points in the interval [tstart, tend].

Algorithm 3 CuTS Refinement (Candidate set Vcand, Object
set O, Integer m, Integer k, Distance threshold e)
1: for each v ∈ Vcand do
2: tstart ← start time of v
3: tend ← end time of v

4: O′ ← {oi ∈ O | lji .τ ∈ v ∩ lji .τ ∈ oi}
5: call CMC(O′, m, k, e) with the time interval [tstart, tend]

6. EXTENSIONS OF CUTS
In this section, we introduce two enhancements of CuTS. One

accelerates the process of trajectory simplification and brings higher
efficiency. The other shortens the search range for clustering by
considering temporal information of trajectories, reducing the num-
ber of candidates after the filter step of CuTS.

6.1 Faster Trajectory Simplification - CuTS+
The Douglas-Peucker algorithm (DP) utilizes the divide-conquer

technique (see Section 2.2). It is well-known that techniques built
on the divide-conquer paradigm show the best performance if a
given input is divided into two sub-inputs equally in each division
step. Inspired by this, we modify the original DP algorithm for
speeding up the simplification process, obtaining DP+.

Specifically, DP+ selects the closest point to the middle of a
given trajectory among the points exceeding tolerance value δ at
each approximation step. Figure 10(a) demonstrates an original
trajectory having seven points, which has two intermediate points
p4 and p6 whose distances from p1p7 are greater than the given
δ value (the gray area in the figure). The DP method selects the
point having the largest distance (i.e., δ6); hence, the result of this
division step will be as shown in Figure 10(b).

In contrast, our DP+ method picks the point p4 that is the closest
to the middle point of p1, p2, · · · , p7 among intermediate points
exceeding δ (i.e., p4 and p6). This technique divides p1p7 into
two sub-trajectories p1p4 and p4p7, which have similar numbers of
points (Figure 10(c)). Therefore, the whole process of trajectory
simplification is expected to be more efficient.
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Figure 10: Comparison between DP and DP+

Compared with DP, DP+ may have lower simplification power.
In fact, each division process of DP+ does not preserve the shape
of a given original trajectory well; hence, the next division process
may not be as effective as that of DP. For example, in Figure 10(c),
p6 will be kept using DP+ because DPL(p6, p4p7) > δ, and then
the simplified trajectory will be p1, p4, p6, p7, whereas p1, p6, p7

will be the result of DP in Figure 10(b).
In spite of the lower reduction, DP+ can enhance the discovery

processing of CuTS in two areas. First, note that we are interested
in efficient discovery of convoys in this study. As long as the search
distances are bounded, faster simplification of trajectories can play
a more important role in finding convoys. Second, the actual tol-
erances obtained by DP+ are always smaller or equal to those ob-
tained by DP (e.g., δ4 < δ6 in the example). This tightens the error
bounds of range search for clustering, leading a more effective filter
step.

We extend CuTS to CuTS+, which is built on the DP+ simpli-
fication method. All other discovery processes of CuTS+ are the
same as those of CuTS.

6.2 Temporal Extension - CuTS*
Recall that CuTS applies trajectory simplification (DP) on orig-

inal trajectories in the filter step. However, as we will see shortly,
intermediate locations on simplified line segments cannot be asso-
ciated with fixed timestamps. Consequently, the bounds on dis-
tances between line segments may not be tight, the result being that
overly many convoy candidates can be produced in the filter step.
This may yield a more expensive refinement step.

In this section, we extend CuTS to CuTS* by considering tem-
poral aspects for both the trajectory simplification and the distance
measure on simplified trajectories. This enables us to tighten dis-
tance bounds between simplified trajectories, improves the effec-
tiveness of the filter step.

Comparison between DP and DP*: We discussed the differences
between the two trajectory simplification techniques DP [11] and
DP* [23] in Section 2.2. In Figure 3(b), DP* translates the time
ratio of p2 between p1 and p3 into a location p′2 on the line segment
p1p3. Since p2 exceeds the δ range of p′2, the point p2 is kept in the
simplified trajectory o′1, which is different from DP.

From the example, we can see that DP* has a lower vertex reduc-
tion ratio for trajectories. Nevertheless, DP* permits us to derive
tighter distance measures between trajectory segments, improving
the overall effectiveness of the filter step.
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Figure 11: Different Distance Measures of Trajectory Segments

Figure 11(a) shows two simplified line segments l′1 and l′2, ob-
tained from DP. Here, l′1 has the endpoints p′1 and p′4, correspond-
ing to its locations at times t1 and t4. Similarly, l′2 has endpoints
b′3 and b′5, corresponding to its locations at times t3 and t5. The
shortest distance between l′1 and l′2 is given by DLL(l′1, l

′
2).

Figure 11(b) contains simplified line segments from DP*. Since
DP* captures the time ratio in the simplified line segment, we are
able to derive the locations l′1(3) on l′1 and l′2(4) on l′2. Let l′p =
{pu, pv} be a simplified line segment having a time interval l′p.τ =
[u, v]. The location of l′p at a time t ∈ [u, v] is defined as:

l′p(t) = pu +
t− u

v − u
(pv − pu)

Note that the terms l′p(t), pu, and (pv − pu) are 2D vectors repre-
senting locations.

Before defining D∗(l′1, l
′
2) formally, we need to introduce the

time of the Closest Point of Approach, called the CPA time (tCPA)
[6]. This is the time when the distance between two dynamic ob-
jects is the shortest, considering their velocities. Let l′q = {qw, qx}
be another simplified line segment during l′q.τ = [w, x]. The CPA
time of l′p and l′q is computed by :

tCPA =
−(pu − qw) · (l′p(t)− l′q(t))

|l′p(t)− l′q(t)|2

where, l′q(t), qw, and (qw − qx) are also location vectors.
Observe that the common interval of l′1 and l′2 is [t3, t4] (gray

area in Figure 11(b)). The tightened shortest distance D∗(l′1, l
′
2)

between them is computed as :

D∗(l
′
1, l

′
2) = D(l′1(tCPA), l′2(tCPA)) tCPA ∈ (l′1.τ ∩ l′2.τ)

When their time intervals do not intersect, i.e., l′1.τ ∩ l′2.τ = ∅,
their distance is set to ∞ .

Clearly, D∗(l′1, l
′
2) is longer than DLL(l′1, l

′
2); hence, the line

segments in Figure 11(b) have a lower probability of forming a
cluster together than do those in Figure 11(a). These tightened dis-
tance bounds improve the effectiveness of the filter step.

Distance bounds for DP* simplified line segments: Using the
notations from Lemma 1, we derive the counterpart that uses the
tightened distance D∗ between line segments (as opposed to the
distance DLL). Lemma 3 establishes the relationship between dis-
tances in original trajectories and those in simplified trajectories
(obtained by DP*). The proof is provided in the appendix.

LEMMA 3. Suppose that o′q (o′i) is the simplified trajectory (from
DP*) of the original trajectory oq (oi). Given a time t, let l′q (l′i) be
the line segment in o′q (o′i) with time interval covering t.

If D∗(l′q, l
′
i) > e + δ(l′q) + δ(l′i) then D(oq(t), oi(t)) > e.

CuTS* algorithm for convoy discovery: We develop an enhanced
algorithm, called CuTS*, to exploit the above tightened distance
bounds for query processing. Two components of CuTS need to be
replaced. First, CuTS* applies DP* for the trajectory simplifica-
tion. Second, during density clustering in the filter step, Lemma 3
is utilized in the range search operations (as opposed to Lemma 1).
The above modifications improve the effectiveness of the filter step
in CuTS*. The following table summarizes the key components of
CuTS and its extensions.

Method CuTS CuTS+ CuTS*
simplification DP [11] DP+ [Section 6.1] DP* [23]

distance function DLL DLL D∗



7. EXPERIMENTS
In this experimental study, we first compare the discovery effi-

ciency between CMC, which is an adaption of a moving-clustering
algorithm (MC2) [19] for our convoy discovery problem, and the
CuTS family (CuTS, CuTS+, and CuTS*). We then analyze the
performance of each method of the CuTS family while varying the
settings of their key parameters.

We implemented the above algorithms in the C++ language on
a Windows Server 2003 operating system. The experiments were
performed using an Intel Xeon CPU 2.50 GHz system with 16GB
of main memory.

7.1 Dataset and Parameter Setting
For studying the performance of our methods in a real-world set-

ting, we used several real datasets that were obtained from vehicles
and animals. Due to the different object types, their trajectories
have distinct characteristics, such as the frequency of location sam-
pling and data distributions. The details of each dataset are de-
scribed as follows:

Truck: We obtained 276 trajectories of 50 trucks moving in the
Athens metropolitan area in Greece [2]. The trucks were carrying
concrete to several construction sites for 33 days while their loca-
tions were measured. To be able to find more convoys, we regarded
each trajectory as a distinct truck’s trajectory and removed the day
information from the data. Thus, the dataset became 276 trucks’
movements on the same day.
Cattle: To reduce a major cost for cattle producers, a virtual fenc-
ing project in CSIRO, Australia studied managing herds of cattle
with virtual boundaries. We obtained 13 cattle’s movements for
several hours from the project. Their locations were provided by
GPS-enabled ear–tags every second. A distinguishable aspect of
this dataset is its very large number of timestamps.
Car: Normal travel patterns of over 500 private cars were analyzed
for building reasonable road pricing schemes in Copenhagen, Den-
mark. We obtained 183 cars’ trajectories during one week [3]. Tra-
jectories in this dataset had very different lengths.
Taxi: The GPS logs of 500 taxis in Beijing, China were recorded
during a day and studied in Institute of Software, Chinese Academy
of Sciences. The locations of the trajectories were sampled irregu-
larly. For example, some taxis reported their locations every three
minutes, while some did it once in several minutes.

In our experiments, we defined a convoy as containing at least
3 objects (except Cattle due to the small number of objects) that
travel closely for 3 minutes (i.e., m = 3 and k = 180). We also
adjusted the values of neighborhood range e to be able to find 1 to
100 convoys for each dataset. To perform convoy discovery using
our main methods (CuTS, CuTS+, and CuTS*), we still need to
determine two key parameters, namely the tolerance value (δ) for
trajectory simplification and the length of time partition (λ). These
parameter values were computed by our guidelines that will be dis-
cussed in Section 7.4.

Table 3 provides (i) detailed information of each dataset, (ii) the
settings of the parameters to be used throughout our experiments,
and (iii) the number of convoys discovered by our proposed meth-
ods with the parameters.

7.2 CMC vs. The CuTS Family
First, we compared the efficiency of CMC versus the CuTS fam-

ily. Over all the datasets, the CuTS family was 3.9 times (at least)
to 33.1 times (at most) faster than CMC, as seen in Figure 12, and
especially CuTS* had the highest efficiency. The performance dif-

Truck Cattle Car Taxi
number of objects (N ) 267 13 183 500
time domain length (T ) 10586 175636 8757 965
average trajectory length 224 175636 451 82

data size (points) 59894 2283268 82590 41144
number of convoy objects (m) 3 2 3 3

convoy lifetime (k) 180 180 180 180
neighborhood range (e) 8 300 80 40

simplification tolerance (δ) 5.9 274.2 63.4 31.5
time partition length (λ) 4 36 24 4

number of convoys discovered 91 47 15 4

Table 3: Settings for Experiments

ferences were more obvious in the Car and the Taxi datasets though
their data sizes (total number of points) were less than 10% of Cat-
tle’s data size. Since those two datasets had many numbers of miss-
ing points and different lifetimes of each trajectory, CMC incurred
extra computational cost to make virtual points for those missing
times to measure density-connection correctly (see Section 4). It
also caused a considerable growth of the actual data size for the dis-
covery processing. Notice that our main methods, the CuTS family,
can perform the discovery without any extra processing regardless
of the number of missing points.
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Figure 12: Comparisons of Query Processing Time

In Figure 13, we report on the elapsed times of each method of
the CuTS family for the Cattle and Taxi datasets (magnified views
of the results in Figure 12). For brevity, we show the two most dis-
tinctive results only. In the results for the Cattle dataset, the sim-
plification cost dominates for all the methods. In general, convoy
processing is more sensitive to the number of objects N than to the
number of timestamps T since the clustering method (DBSCAN)
has O(N2) computational cost (O(N · log N) with a spatial in-
dex). The Cattle dataset has only 13 objects, and the cost of each
clustering is very low though it is performed T times. As a result,
the total discovery times are more influenced by the simplification
process than the filtering and refinement steps.
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Figure 13: Analysis of Query Processing Cost



The reason why each simplification method has different effi-
ciency will be studied in Section 7.3. Recall that, although the
CuTS family needs much time for trajectory simplification on the
Cattle dataset, their total discovery times are still much lower than
those of CMC in the previous experiments.

Another interesting observation found with the Cattle data is
that CuTS+ has not only faster trajectory simplification, but also
lower refinement cost. This is because DP+ as used in CuTS+ has
not only higher efficiency of simplification, but also tighter error
bounds than DP as used by CuTS, as described in Section 6.1.

Compared to the Cattle data, trajectory simplification had very
low computational cost on the Taxi dataset. As the Taxi dataset has
a short T but a larger N , the clustering cost dominates the discovery
time. In addition, since the number of convoy candidates was small
for this data (will be shown in the next experiments), only little
refinement was necessary.

For the other two datasets, the composition of computational
time was about 70%-80% for filtering (around 5%-15% for trajec-
tory simplification) and 20%-30% for refinement. Therefore, it is
very reasonable to ‘invest’ some time in trajectory simplification.

We also studied the effect of using the actual tolerance for the
range search of clustering. When we perform the trajectory simpli-
fication, we use the tolerance value δ, named the global tolerance
here. The key process of the simplification is to remove interme-
diate points whose distances from the virtual line linking two end
points of the original trajectory do not exceed δ. Any distance of
those removed points (i.e., actual tolerance) is always smaller than
or equal to the global tolerance (see Section 5.1). The actual tol-
erance is useful for range search since the search area should be
reduced.
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Figure 14: Effect of Actual Tolerance

Figure 14(a) demonstrates the filtering power of the global and
actual tolerances for CuTS*. We omit the results for CuTS and
CuTS+ because they are similar. As shown, the number of candi-
dates after the filtering step decreases considerably when we use
the actual tolerance. The advantage of the improved filtering by the
actual tolerance is reflected in the efficiency of convoy discovery
as shown in Figure 14(b). Yet, the effect is relatively small on the
Truck and the Taxi datasets. This is because some candidates that
do not need much computation for the refinement step are pruned
when using the actual tolerance. We present a more precise way of
measuring the filter’s effectiveness in the following section.

7.3 CuTS vs. CuTS+ vs. CuTS*
We have already discussed different techniques for trajectory

simplification. The difference between the original Douglas-Peucker
algorithm (DP) and its temporal extension DP* was covered in Sec-
tion 2.2. We also developed a DP variant, named DP+, in Section
6.1. It is of interest to compare the performance of those methods.

Figure 15(a) illustrates the differences of their reduction power

for the Cattle dataset. We skip the results for the other datasets
because they show similar trends. With the same values of toler-
ance, DP shows higher reduction rates than does DP*. This is nat-
ural since DP* uses the time-ratio distance to approximate points,
which is always equal to or greater than the perpendicular distance
of DP (see Section 6.2). Furthermore, the vertex reduction of DP+
is lower than that of DP. This is because DP+ does not preserve the
shapes of the original trajectories well when compared to DP. This
aspect was explained in Section 6.1.
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Figure 15: Comparison of Trajectory Simplification Methods

In Figure 15(b), DP+ exhibits the fastest elapsed time among the
methods because of its more effective division process. An inter-
esting observation of the figure is that the efficiency of all the meth-
ods grows as reduction ratios increase. Recall that all the methods
utilize the divide-and-conquer paradigm, which divides an input
trajectory until no point exceeds a given δ. With a larger value
of δ, their division processes are likely to meet the ‘end’ quicker.
For this reason, DP* also performs slower than the other methods
(lower reduction power than the others).

Next, we compare the discovery effectiveness and efficiency for
the CuTS family. Given very large values of e and δ, the CuTS fam-
ily may produce one candidate containing all actual results after the
filter step and then the candidate may be divided into a large num-
ber of real convoys through the refinement step. Thus, we cannot
use the count of false positives as a measure of the filters’ effective-
ness for our study.

Instead, we calculate refinement unit that represents the compu-
tational cost of candidates for the refinement step, which reflects the
filtering power of each method effectively. Specifically, the cluster-
ing cost of the convoy objects in each candidate is computed and
then multiplied by the candidate’s lifetime. As mentioned earlier,
the computational cost of clustering is either O(N2) without index
or O(N · log N) with a spatial index. To clarify the differences
of each filter method, we considered the clustering without index
support in our experiments. For example, if a convoy candidate has
3 objects and its lifetime is 2, the refinement unit is 32 × 2 = 18.
Next, we aggregate each candidate’s unit to obtain the total refine-
ment unit.

Figure 16 demonstrates the filtering power and the total discov-
ery times for the CuTS family when varying δ. We omit the results
for the Truck and Cattle datasets, but those two datasets will be used
in the next experiments. As expected, CuTS* has the lowest refine-
ment unit for both datasets, which yields the highest efficiency as
well. In addition, CuTS+ has a better filtering effectiveness than
does CuTS. As discussed in Section 6.1, the actual tolerances ob-
tained by DP+ of CuTS+ are always smaller or equal to those ob-
tained by DP of CuTS. As a result, the search range for clustering
is reduced, and the filtering power grows in the figure.
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Figure 16: Effect of Simplification Tolerance (δ)

Another observation found in Figure 16, for all members of the
CuTS family is that both the filters’ effectiveness and the discovery
efficiency decrease as the tolerance value increases as the δ values
affect not only the result of trajectory simplification, but also that
of range search for clustering.

Although the total elapsed times of the Car data grow steadily
with increasing δ, those of the Taxi data stay almost constant or
increase only very slightly. This is because the enlargement of the
search range is not sufficient to find more actual convoys with re-
spect to the given parameters. From this point, we can infer that the
trajectories of the Taxi dataset are distributed relatively uniformly,
and thus the number of taxis traveling together within a given (rea-
sonable) distance is low.

Lastly, we study how the size of the time partition λ affects the
results of the convoy discovery. In fact, a large value of λ yields
an ineffective filtering step, whereas more times of clustering are
performed with a small value of λ (see Section 5.3). In the Truck
dataset of Figure 17, CuTS* shows better performance than the
other methods regardless of the λ value. Also, both the effective-
ness of the filters and the efficiency of the discovery process de-
crease when λ > 10 for this dataset, for all methods of the CuTS
family.

On the other hand, the discovery efficiency of the CuTS family
declines over the Cattle dataset when λ < 30, although their refine-
ment unit increases steadily in the same range of λ. This implies
that an appropriate λ value is influenced by not only the filter’s ef-
fectiveness, but also another fact, possibly the length of trajectories
since the average size of Cattle’s trajectories is very large.

Another interesting observation found in the Cattle dataset is that
CuTS+ has similar efficiency to CuTS*, and it is even faster for
λ ≥ 50. As seen in Figure 13, trajectory simplification is the key
part of the total discovery time on this dataset. Therefore, faster
trajectory simplification (i.e., DP+) plays a more important role in
the discovery efficiency in this case.

7.4 Parameter Determination of CuTS
Proper values of δ and λ may be difficult to find in some appli-

cations since they are dependent on the data characteristics. In this
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Figure 17: Effect of Time Partitioning (λ)

section, we provide guidelines for determining settings for these
parameters. Note that the parameters do not affect the correctness
of discovery results, but only affect execution times.

Tolerance for trajectory simplification (δ) : It is obvious that a
larger value of δ for DP of CuTS achieves a higher reduction result
of trajectory simplification. On the other hand, a large δ value is
also used for the range search of clustering in the CuTS algorithm;
hence, the filter step of CuTS may not be tight enough to prune
many unnecessary candidate objects. In this tradeoff, our goal is
to find a value satisfying the following conditions : (i) the original
trajectories become well simplified, and (ii) the distance bounds are
sufficiently tight, implying an effective filter process.

As the first step, we perform the original DP algorithm over a
trajectory with δ = 0. In each step of the division process (see
details in Sections 2.2 and 5.1), we store the actual tolerance values
in ascending order. Since δ = 0, the process continues until all
intermediate points of the original trajectory are tested.

In the next step, we find the largest variance between two ad-
jacent tolerances stored, and then select the smaller one of those
two tolerances. For example, assume that the DP method with
δ = 0 results in the 10 actual tolerance values δ1, δ2, · · · , δ10 in
Figure 18(a) through the first step. The difference in the tolerance
values is the largest between δ5 and δ6. We then select δ5 as a tol-
erance value δs. This selection is performed as long as δi < e (the
dark gray bars in Figure 18(a)). From our experimental studies,
we found out that the filtering power of the CuTS family decreases
considerably on some datasets when we pick δi > e.

Lastly, we perform the above steps for a sufficient time (e.g.,
10% of N ) and average the δs values selected to obtain a final δ for
the processing of trajectory simplification.

The idea behind this method is to find a relatively small δ value
that achieves a reasonable reduction through simplification. In the
figure, if we pick δ10 and apply it to the trajectory simplification,
the reduction ratio will be nearly 100%. Likewise, the use of δ5

for the simplification is able to yield around a 50% reduction al-
though it does not necessarily follow the same division processes
with δ = 0 as the first step. If we pick δ6 instead, it may bring (ap-



proximately) 60% of trajectory reduction, which is slightly higher
than 50%. However, the value of δ6 is much bigger than δ5, and
the effectiveness of range search can decrease dramatically.
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Length of time partition (λ) : In Section 5.3, we discussed about
dividing the time domain T into time partitions for discovery pro-
cessing, each of which has length λ. If a time partition Ti has
a large value for λ, many line segments of a simplified trajectory
within Ti form a long polyline. Thus, the distances among those
polylines become small, and many objects are likely to form a clus-
ter together, leading to ineffective filtering results. In contrast, a
small value of λ involves many computationally expensive cluster-
ing processes (T/λ times).

Suppose that o′1 and o′2 in Figure 18(b) are simplified trajectories.
In the figure, one clustering with λ1 is obviously more efficient than
two processes with λ0 because both cases have the same minimum
distance between o′1 and o′2. From this example, we can infer the
value of λ1 by computing |o′|

|o| × o.τ , where |o| (|o′|) is the number
of points in the trajectory o (o′) and o.τ is the time interval of o.

In practice, however, there may be some time points that one
(simplified) trajectory has, but others do not have, such as p′2 on
o′3 in Figure 18(c). Using the λ1 for this case should not keep the
filter’s ‘good’ effectiveness, and we need to lower the λ1 value.
We can roughly estimate the probability that such case occurs by
looking at how densely a trajectory exits in the time space T . No-
tice that each trajectory may have a different length (o.τ ) and may
appear and disappear at any arbitrary time points in T . Thus, the
density of the trajectory is obtained by o.τ/T . Finally, the prob-
ability that an object has an intermediate time point within λ1 is
(λ1−2)×o.τ/T . Together, we obtain λ = λ1−(λ1−2)×o.τ/T ,
rewriting λ = o.τ × ( |o

′|
|o| × (1− o.τ

T
) + 2

T
).

So far, we have considered the computation of λ for a single
object. To obtain an overall value of λ, we perform the above
computation for all objects and average the values. Note that all
the statistics for this λ computation can be easily gathered when a
dataset is loaded into the system (or one scan for disk-based imple-
mentations).

Although this method does not capture the distribution of a dataset
precisely, the value of λ is quickly obtained and brings reasonable
efficiency of the CuTS family.

8. CONCLUSION
Discovering convoys in trajectory data is a challenging problem,

and existing solutions to related problems are ineffective at finding
convoys. This study formally defines a convoy query using density-
based notions, and it proposes four algorithms for computing the
convoy query. Our main algorithms (CuTS, CuTS+, and CuTS*)
use line simplification methods as the foundation for a filtering step
that effectively reduces the amounts of data that need further pro-
cessing. In order to ensure that the filters do not eliminate convoys,
we bound the errors of the discovery processing over the simplified
trajectories. Through our experimental results with real datasets,
we found that CuTS* showes the best performance. CuTS+ also

performes well when the given trajectories have a small number of
objects and long histories.
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APPENDIX
A. PROOFS OF LEMMAS

A.1 Proof of Lemma 1
Consider the example of Figure 7. To prove the lemma by con-

tradiction, assume the following equation holds:

D(oq(t), oi(t)) ≤ e

Since l′q is a line segment (with actual tolerance δ(l′q)) in the
simplified trajectory o′q , there exists a location aq on l′q such that
D(aq, oq(t)) ≤ δ(l′q). Similarly, there exists a location ai on l′i
such that D(ai, oi(t)) ≤ δ(l′i). Due to the triangular inequality,

D(aq, ai) ≤ D(aq, oq(t)) + D(oq(t), oi(t)) + D(oi(t), ai)

Combining the inequalities, we obtain:

D(aq, ai) ≤ δ(l′q) + e + δ(l′i) (1)

On the other hand, aq (ai) is a location on line segment l′q (l′i).
Hence, equation (2) holds

DLL(l′q, l
′
i) ≤ D(aq, ai) (2)

From the last two inequalities (1) and (2), we get:

DLL(l′q, l
′
i) ≤ e + δ(l′q) + δ(l′i) (3)

Therefore, the resulting contradiction of (3) proves Lemma 1.

A.2 Proof of Lemma 2
Note that for all l′i ∈ S, we have δmax(S) ≥ δ(l′i) and

Dmin(B(l′q),B(S)) ≤ DLL(l′q, l
′
i). If the following equation sat-

isfies:

Dmin(B(l′q),B(S)) > e + δ(l′q) + δmax(S)

then, the next equation must also hold:

DLL(l′q, l
′
i) > e + δ(l′q) + δ(l′i)

The rest of this proof follows directly from Lemma 1.

A.3 Proof of Lemma 3
Since l′q is a line segment (with actual tolerance δ(l′q)) in the

simplified trajectory o′q , the location l′q(t) meets:

D(l′q(t), oq(t)) ≤ δ(l′q)

Similarly, the location l′i(t) satisfies:

D(l′i(t), oi(t)) ≤ δ(l′i)

In addition, we have:

D∗(l
′
q, l

′
i) ≤ D(l′q(t), l

′
i(t))

The logic of the remainder of the proof is the same as in the proof
of Lemma 1.

B. ADDITIONAL EXPERIMENTS

B.1 MC vs. CMC
In this experiment, we intend to demonstrate empirically that

methods for the discovery of moving clusters cannot be used to
compute convoys directly (see Section 2.1). Specifically, we study
the discovery accuracies of convoys by a solution for moving clus-
ter (MC2). MC2 reports results of the convoy query if the portion
of common objects in any two consecutive clusters c1 and c2 is not
below a given threshold parameter θ, i.e., |c1∩c2|

|c1∪c2| ≥ θ.
Let Rm be a result set of convoys discovered by MC2 and Rc be

another set obtained by CMC (or CuTS). We measure the propor-
tions of false positives in Figure 19(a) by verifying whether each
convoy v ∈ Rm satisfies the query condition with respect to m, k,
and e using the results of CMC (i.e., ( |Rm−Rc|

|Rm| )× 100). Likewise,

false negatives in Figure 19(b) are computed by ( |Rc−Rm|
|Rc| )×100).
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Figure 19: Discovery Quality of the MC method for Convoys

In fact, MC2 reported bigger numbers of convoys than what
CMC does because MC2 does not have the lifetime constraint k.
This feature was especially obvious for the Cattle dataset that is
larger than the others. As a result, the proportions of actual con-
voys in the result set were very low, and the numbers of false pos-
itives were very high in Figure 19(a). For the other datasets, false
positives went up as the θ value grew since the number of con-
voys reported by MC2 also increased. Let θc1c2 be a ratio of com-
mon objects between two snapshot clusters c1 and c2. Assume that
there are four consecutive snapshot clusters c1, c2, c3, and c4, and
θc1c2 = 1.0, θc2c3 = 0.8, θc3c4 = 1.0. If we set the value of θ to
be equal to or smaller than 0.8, one moving cluster having all the
snapshot clusters will be reported (say MCc1c2c3c4 ). In contrast,
when θ > 0.8, MC2 will discover two moving clusters MCc1c2

and MCc3c4 . Therefore, a higher θ value may produce a larger
number of moving clusters as convoy results.

Even though MC2 returns many convoys, the result set did not
necessarily contain all actual convoys. We investigate this aspect by
computing false negatives in Figure 19(b). In general, the number
of false negatives increases as the θ value increases because the
number of convoys discovered by MC2 also increases. Note that
if many actual convoys exist for different parameter settings, the
proportions of both false positives and false negatives may increase
considerably. Therefore, the use of moving cluster methods for
convoy discovery is ineffective and unreliable.


