Efficient Processing of Tops# Dominating Queries on Multi-Dimensional Data’

Man Lung Yiu Nikos Mamoulis
Department of Computer Science Department of Computer Science
Aalborg University University of Hong Kong
DK-9220 Aalborg, Denmark Pokfulam Road, Hong Kong
mly@cs.aau.dk nikos@cs.hku.hk
ABSTRACT wherep[i] denotes the coordinate pfin thei-th dimension. Con-

tinuing with the example in Figure 1, the skyline query returns
pointsp1, pa, ps, andpr. [2] showed that the skyline contains the
top-1 result for any monotone ranking function; therefore, it can be
used by decision makers to identify potentially important objects
to some database users. A key advantage of the skyline query is
that it does not require the use of a specific ranking function; its
results only depend on the intrinsic characteristics of the data. Fur-
thermore, the skyline is not affected by potentially different scales
at different dimensions (monetary unit or time unit in the example

The top4 dominating query returns data objects which dominate
the highest number of objects in a dataset. This query is an impor-
tant tool for decision support since it provides data analysts an intu-
itive way for finding significant objects. In addition, it combines the
advantages of top-and skyline queries without sharing their disad-
vantages: (i) the output size can be controlled, (ii) no ranking func-
tions need to be specified by users, and (iii) the result is indepen-
dent of the scales at different dimensions. Despite their importance,

top-k dominating queries have not received adequate attention from of Figure 1); only the order of the dimensional projections of the

the research community. In this paper, we design specialized algo'objects is important. On the other hand, the size of the skyline can-

rithms that apply on indexed multi-dimensional data and fully ex- . .
ploit the characteristics of the problem. Experiments on synthetic not be controlled by the user and it can be as large as the data size

datasets demonstrate that our algorithms significantly outperform am the worst case. As a result, the user may be overwhelmed as she

- . . may have to examine numerous skyline points manually in order to
previous skyline-based approach, while our results on real datasets Y ky P y

show the meaningfulness of tdpdominating queries. identify the ones that vvm eventually be regarded as important.

1 Introduction sricey 13,

Consider a datasé? of points in ad-dimensional spac&®. Given 05 Py ©

a (monotone) ranking functioff : R — R, atop-k query[14, Sy ©

9] returnsk points with the smallesk’ value. For example, Figure

1 shows a set of hotels modeled by points in the 2D space, where

the dimensions correspond to (preference) attribute values; travel- S S —— R

ing time to a conference venue and room price. For the ranking .05 1

function F = z + y, the top-2 hotels arps andps. An obvious X (time to conf. venue)

advantage of the top-query is that the user is able to control the

number of results (through the parametgr On the other hand,

it might not always be easy for the user to specify an appropriate From an analyst’s point of view, an intuitive score function for

ranking function. In addition, there is no straightforward way for modeling the importance of a poiptc D could be:

a data analyst to identify the most important objects usingktop- _ / /

queries, since different functions may infer different rankings. wp)=I{p eDlp-p}| @
Besides, askyline queny2] retrieves all points which are not Inwords, thescorey(p) is the number of points dominated by point

dominated by any other point. Assuming that smaller values are P- The following property holds fog.:

prgfereb_le to Iarge;r at all dimensions, a pgirdominatesanother Vp,p €D, prp = pulp) > u®) 3)

pointp’ (i.e.,p > p’) when

F=x+y*. oPs P;

Figure 1: Features of hotels

Therefore, we can define a natural ordering of the points in the

(3ie[1,d), pli) <p'[i)) AVie[l,d], pi] <p'[]) (1) database, based on thefunction. Accordingly, theop-+ dom-
inating query returnsk points in D with the highest score. For
“Research supported by grant HKU 7160/05E from Hong Kong RGC. example, the top-2 dominating query on the data of Figure 1 re-

trievesp, (with pu(ps) = 3) andps (with p(ps) = 2). This result
may indicate to an analyst the most popular hotels to the confer-
Permission to copy without fee all or part of this material is granted provided €nce participants (considering price and traveling time as selection
that the copies are not made or distributed for direct commercial advantage, factors). Normally, a participant will try to book at, and, if this
the VLDB copyright notice and the title of the publication and its date appear, hotel is fully-booked, try the next ongy). From this example,
and notice I Svn that copying = by permision of e Ve L Daa, we can afeacl see tha ateominating query i a powerul de-
or to redistribute to lists, requires a fee’ and/or special [’)ermission from the _C'S'O”_S“PPO“ tool, since it 'dem'_f'es the mos_t S|gn|f|canF objects
publisher, ACM. in an intuitive way. From a practical perspective, toglominat-
VLDB ‘07, September 23-28, 2007, Vienna, Austria. ing queries combine the advantages of togueries and skyline
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

gueries without sharing their disadvantages. The number of results2.1 Spatial Aggregation Processing

can be controlled without specifying any ranking function. Inaddi- g yees [12] have been extensively used as access methods for multi-
tion, data normalization is not required; the results are not affected dimensional data and for processing spatial queries, e.g

range
by different scales or data distributions at different dimensions. queries, nearest neighbors [13], and skyline queries [23]. The ag-

We are the first to recognize the importance of togeminating gregate R-tree (aR-tree) [17, 22] augments to each non-leaf entry
query as a data analysis tool and its advantages ovet &y sky- of the R-tree an aggregate measure of all data points in the subtree

line queries — Papadias et al. [23] did not explore such advantagespointed by it. It has been used to speed up the evaluation of spatial
although they introduced top-dominating query as an extension aggregate queries, where measures (e.g., number of buildings) in a

of skyline query. In this paper, we identify the importance and prac- spatial region (e.g., a district) are aggregated.
ticability of the query and define some of its potential extensions. W

A simple evaluation method for top-dominating queries, based Doeyy oo W \

on skyline computation, was proposed in [23]. The basic ideais [[o] [o2. | ¢ ! oot riode
to compute the skyline, find the top-1 objecin it (note that the i |

i o €9 €17€15/ €190

top-1 point must belong to the skyline), remav&om D and iter- - ! 10 [0 1of 10
atively apply the same procedure, urititesults have been output. 057 :

Lol e |l |<hadl| ex?] e

This skyline-based approach may perform many unnecessary score fL> e s °
countings, since the skyline could be much larger tharin ad- ol gpe L 20 | 56
dition, we note that the R-tree (used in the solution of [23]) may % i“ 6‘7 ‘ef‘

2 3

e Jewl; ¢ el
‘311\912} (615‘91%
1 R

not be the most appropriate index for this query; since computing eig' s N cononts of leaf nodes omifed
u(p) is in fact anaggregatequery, we can replace the R-tree by an a) a set of points b) EOUNTGR-tree
aggregate R-treéaR-tree) [17, 22]. @ P (b)

Motivated by these observations, we propose specialized algo- Figure 2: aR-tree example

rithms that operate on aR-trees. Our technical contributions include Figure 2a shows a set of points in the 2D space, indexed by the

(i) a batch counting technique for computing scores of multiple coyNBR-tree in Figure 2b. Each non-leaf entry storestRNT
points simultaneously, (ii) a counting-guided search algorithm for ¢ q4ata points in its subtree. For instance, in Figure 2b, entry

processing topk dominating queries, and (iii) a priority-based tree pa5 4 count 10, meaning that the subtree;gfcontains 10 points.
traversal algorithm that retrieves query results by examining each Suppose that a user asks for the number of points intersecting the
tree node at most once. We enhance the performance of (ii) with region W, shown in Figure 2a. To process the query, we first ex-
lightweight counting which derives relatively tight upper bound 5 mine entries in the root node of the tree. Entries that do not inter-
scores for no_n-le_a_f tree er_ltrles at low 1/O cost. Furthermore, to our sectlV are pruned because their subtree cannot contain any points
surprise, the intuitiveest-firstraversal order [13, 23] turns outnot i, 7. If an entry is spatially covered by (e.g., entryero), its
to be the most efficient for (i) because of potential partial dom- . nt (i.e., 10) is added to the answer without accessing the cor-
inance relationships between visited entries. Thus, we perform aresponding subtree. Finally, if a non-leaf entry interségtdut it
careful ar_1a|ysis on_(iii) and proposenavel, efficient tree traver_sal_ is not contained ifV (e.g.,e17), search is recursively applied to
_orderfor it. Extensive expe_rlments show that our _methods S|gn_|f- the child node pointed by the entry, since the corresponding sub-
icantly outperform the skyline-based approach. Finally, we define yree may contain points inside or outsiié. Note that the counts
two interesting query variantaggregateiop-k dominating queries 5 gmented in the entries effectively reduce the number of accessed
andbichromatictop-k dominating queries and show how our meth- |, 54es. To evaluate the above example query, only 10 nodes in the
ods can be extended to process them. COUNTaR-tree are accessed but 17 nodes in an R-tree with the
The rest of the paper is organized as follows. Section 2 reviews same node capacity would be visited.
the related work. Section 3 discusses the properties of tdpm-
inating search and proposes optimizations for the existing solution
in [23]. We then propose eager/lazy approaches for evaluating top- Borzsinyi etal. [2] were the first to propose efficient external mem-
k dominating queries. Section 4 presents an eager approach thapry algorithms for processing skyline queries. The BNL (block-
guides the search by deriving tight score bounds for encounterednested-loop) algorithm scans the dataset while employing a bounded
non-leaf tree entries immediately. Section 5 develops an alterna-buffer for tracking the points that cannot be dominated by other
tive, lazy approach that defers score computation of visited en- points in the buffer. A point is reported as a result if it cannot be
tries and gradually refines their score bounds when more tree nodeglominated by any other point in the dataset. On the other hand,
are accessed. Section 6 introduces extensions of tigminating the DC (divide-and-conquer) algorithm recursively partitions the
queries and discusses their evaluation. In Section 7, experimentsdataset until each partition is small enough to fit in memory. After
are conducted on both real and synthetic datasets to demonstratéhe local skyline in each partition is computed, they are merged to
that the proposed algorithms are efficient and alsditdpminating form the global skyline. The BNL algorithm was later improved to
queries return meaningful results to users. Section 8 discusses alterSFS (sort-filter-skyline) [8] and LESS (linear elimination sort for
native approaches for topdominating queries and query process- Skyline) [11] in order to optimize the average-case running time.

2.2 Skyline Computation

ing on non-indexed data. Finally, Section 9 concludes the paper. The above algorithms are generic and applicable for non-indexed
data. On the other hand, [25, 16, 23] exploit data indexes to acceler-
2 Related Work ate skyline computation. The state-of-the-art algorithm is the BBS

(branch-and-bound skyline) algorithm [23], which is shown to be
Top-k dominating queries include a counting component which is 1/0 optimal for computing skylines on datasets indexed by R-trees.
a case of multi-dimensional aggregation; in this section, we review Recently, the research focus has been shifted to the study of
related work on spatial aggregation processing. In addition, as thequeries based on variants of the dominance relationship. [20] pro-
dominance relationship is relevant to skyline queries, we survey pose a data cube structure for speeding up the evaluation of queries
existing methods for computing skylines. that analyze the dominance relationship of points in the dataset.

However, incremental maintenance of the data cube over updatesespectively, for any point indexed underAs we will show later,
has not been addressed in [20]. Clearly, it is prohibitively expen- p(et) andu(e™) can be computed by a search procedure that ac-
sive to recompute the data cube from scratch for dynamic datasetscesses only aR-tree nodes that interseadbng at least one dimen-

with frequent updates. [6] identify the problem of computiag-% sion. These bounds help pruning the search space and defining a
frequent skylingooints, where the frequency of a point is defined good order for visiting aR-tree nodes. Later in Sections 4 and 5, we
by the number of dimensional subspaces. [5] study:tdeminant replace the tight bounds(e™) andu(e ™) with loose lower and up-
skylinequery, which is based on thedominance relationship. A per bounds for them () andy (e), respectively). Bounds' (e)
point p is said tok-dominate another point’ if p dominateg’ in andp*(e) are cheaper to compute and can be progressively refined
at least oné-dimensional subspace. Tkhedominant skyline con- during search, therefore trading-off between computation cost and

tains the points that are nbtdominated by any other point. When bound tightness. The computation and use of score bounds in prac-
k decreases, the size of thedominant skyline also decreases. Ob- tice will be further elaborated there.

serve that [20, 6, 5] cannot be directly applied to evaluatektop-
dominating queries studied in this paper.

Finally, [28, 24] study the efficient computation of skylines for Papadias et al. [23] proposed a Skyline-Based Fd@peminating
every subspace; [26] propose a technique for retrieving the sky- Algorithm (STD) for top# dominating queries, on data indexed by
line for a given subspace; [1, 15] investigate skyline computation an R-tree. They noted that the skyline is guaranteed to contain the
over distributed data; [10, 7] develop techniques for estimating the top-1 dominating point, since a non-skyline point has lower score
skyline cardinality; [21] study continuous maintenance of the sky- than at least one skyline point that dominates it (see Equation 3).
line over a data stream; and [4] address skyline computation over Thus, STD retrieves the skyline points, computes theicores and

3.2 Optimizing the Skyline-Based Approach

datasets with partially-ordered attributes. outputs the poinp with the highest score. It then remove$rom
_ the dataset, incrementally finds the skyline of the remaining points,
3 Prellmlnary and repeats the same process.

In this section, we discuss some fundamental properties oktop- Consider for example a top-dominating query on the dataset
dominating search, assuming that the data have been indexed byshown in Figure 4. STD first retrieves the skyline poipts po,

an aR-tree. In addition, we propose an optimized version for the andps (using the BBS skyline algorithm of [23]). For each skyline
existing topk dominating algorithm [23] that operates on aR-trees. point, a range query is issued to count the number of points it dom-
inates. After that, we have(p:) = 1, u(p2) = 4, andu(ps) = 1.
Hence,p; is reported as the top-1 result. We now restrict the re-
Before presenting our top-dominating algorithms, we firstintro- gjon of searching for the next result. First, Equation 3 suggests that
duce some notation that will be used in this paper. For an aR-tree he region dominated by the remaining skyline points (pe.and
entry e (i.e., a minimum bounding box) whose projection on the ..y needs not be examined. Second, the region dominates by
i-th dimension is the intervakli]~, e[i] *], we denote its lower (je. the previous result) may contain some points which are not

3.1 Score Bounding Functions

corere™ and upper corner” by dominated by the remaining skyline pointsandps. It suffices to
e =(e[1]7,e[2] 7, ,eld) retrieve the skyline points (i.eps andps) in the constrained (gray)
region M shown in Figure 4. After counting their scores using the
et = (e[1]",e[2]T, - ,e[d]h) tree, we havey(ps) = 2 andu(ps) = 1. Finally, we compare them

with the scores of retrieved points (i.ps, andps) and reporip, as

Observe that botl™ ande™ do not correspond to actual data points the next result.

but they allow us to express dominance relationships among points
and minimum bounding boxes conveniently. As Figure 3 illus- 19
trates, there are three cases for a point to dominate a non-leaf entry.
Sincep: > e (i.e., full dominance)p; must also dominatall ,
data points indexed underi. On the other hand, point, dom- o
inatese;” but note; (i.e., partial dominance), thys, dominates
some, but not all data points in. Finally, asps ¥ ¢f (i.e., no _
dominance)ps cannot dominate any point iey. Similarly, the .
cases for an entry to dominate another entry are: (i) full dominance 7
(e.g.ef = e3), (i) partial dominance (e.ge; > ef Aef ¥ e)), rrrT T
(iii) no dominance (e.gg; # ed).

Figure 4: Constrained skyline

p

" i In this section, we present two optimizations that greatly reduce

et the 1/O cost of the above solution by exploiting aR-trees. Our first
optimization is calledbatch counting Instead of iteratively ap-

1 plying separate range queries to compute the scores of the skyline

- 4 points, we perform them in batch. Algorithm 1 shows the pseudo-

1 9P code of this recursive batch counting procedure. It takes two para-

o meters: the current aR-tree nodeand the set of point®’, whose

s 1 scores are to be counted. Initially, is set to the root node of

the tree andu(p) is set to O for eaclp € V. Lete be the cur-

rent entry inZ to be examined. As illustrated in Section 3.1¢if

is a non-leaf entry and there exists some p@int V such that

Given a tree entry, whose sub-tree has not been visite¢k ™) p = et Ap ¥ e, thenp may dominate some (but not guaranteed
andu(e™) correspond to theghtmostower and upper score bounds to dominate all) points indexed under Thus, we cannot imme-

Figure 3: Dominance relationship among aR-tree entries

diately decide the number of points éindominated byp. In this an eagerapproach for the evaluation of tdpdominating queries,
case, we have to invoke the algorithm recursively on the child node which traverses the aR-tree and computes tight upper score bounds

pointed bye. Otherwise, for each point € V, its score is incre- for encountered non-leaf tree entries immediately; these bounds de-
mented byCOUNTe) when it dominates™. BatchCount correctly termine the visiting order for the tree nodes. We discuss the basic
computes the: score for allp € V, at a single tree traversal. algorithm, develop optimizations for it, and investigate by an ana-
Algorithm 1 Batch Counting lytical study the improvements of these optimizations.

algorithm BatchCount(NodeZ, Point setl) 4.1 The Basic Algorithm

1: forall entriese € Z do Recall from Section 3.1 that the score of any pgiimidexed under

: al = " _
g i eraréot?]ele:;i%ni%;IggnTeZ b)//\eén # e then an entrye is_upper-bounded by(e™). Based on this obs_,ervation, _

4 BatchCountg’, V): we can design a method that traverses aR-tree nodes in descending
5 else order of their (upper bound) scores. The rationale is that points with

6: for all pointsp € V do high scores can be retrieved early and accesses to aR-tree nodes that
7: if p > e~ then do not contribute to the result can be avoided.

8: w(p):=p(p)+*COUNTe); Algorithm 3 shows the pseudo code of the Simple Counting-

Guided Algorithm (SCG), which directs search by counting upper
bound scores of examined non-leaf entries. A max-hiéadp em-
ployed for organizing the entries to be visited in descending order
of their scoresI¥ is a min-heap for managing the tépdominat-

ing points as the algorithm progresses, whils thek-th score in

W (used for pruning). First, the upper bound scqiés™) of the
aR-tree root entries are computed in batch (using the BatchCount
algorithm) and these are inserted into the max-hBap/Nhile the
scoreu(e”) of H's top entrye is higher thany (implying that
points with scores higher thanmay be indexed undes), the top
entry is deheaped, and the nadepointed bye is visited. If Z is a
non-leaf node, its entries are enheaped, after BatchCount is called
to compute their upper score boundsZlfs a leaf node, the scores

of the points in it are computed in batch and the kogetWW (also

~) is updated, if applicable.

Algorithm 2 is a pseudo-code of the Iterative Thfdominating
Algorithm (ITD), which optimizes the STD algorithm of [23]. Like
STD, ITD computes the tog-dominating points iteratively. In the
firstiteration, ITD computes i’ the skyline of the whole dataset,
while in subsequent iterations, the computationdastrainedo a
regionM. M is the region dominated by the reported pajim the
previous iteration, but not any point in the 3&bf retrieved points
in past iterations. At each loop, Lines 6—-8 compute the scores for
the points inV’ in batches ofB points each B < |V’|). By de-
fault, the value ofB is set to the number of points that can fit into a
memory page. Our second optimization is that we sort the points in
V' by a space-filling curve (Hilbert ordering) [3] before applying
batch counting, in order to increase the compactness of the MBR
of a batch. After merging the constrained skyline with the global
one, the object with the highestu score is reported as the next i i i _ _
dominating object, removed frofii and used to compute the con- Algorithm 3 Simple Counting Guided Algorithm (SCG)
strained skyline at the next iteration. The algorithm terminates after algorithm SCG(TreeR, Integerk)

k objects have been reported. H:=new max-heapi¥:=new min-heap;

For instance, in Figure 4, corresponds to poir(0, 0) andV = 7:=0; _ > thek-th highest score found so far
@ in the first loop, thusM corresponds to the whole space and > PatclTCountR.root,{e ‘g € R.root});
the whole skyline{p1, p2, ps } is stored inV’, the points there are or aenﬁg;%?fse(g R(.;’g%)'o
sorted and split in batches and thgirscores are counted using . while |H| > 6ar;gH’s top; entry's score> do
the BatchCount algorithm. In the beginning of the second loop, +: e:=deheapH); v
q = p2, V. = {p1,ps}, and M is the gray region in the figure. read the child nod& pointed bye;

V' now becomegp., ps } and the corresponding scores are batch-

N TRWNE

if Z is non-leafthen

counted. The next point is then reported (epg),and the algorithm ~ 10: BatchCountR.root,{e. | ec € Z});
continues as long as more results are required. 11 for all entriese. € Z do
. . — . 12: enheafll, (e, u(ec)));
Algorithm 2 Iterative Topx Dominating Algorithm (ITD) 13: else > Zis a leaf
algorithm ITD(Tree R, Integerk) 14: BatchCountR.root,{p | p € Z});
1: V:=g; g:=origin point; 15; updatéd?” and-~y, using(p, u(p)),¥p € Z
2:fori:=1tokdo o 16: report W as the result;
3: M:=region dominated by but by no point inV/;
4 V':=skyline poi'nts/ inM; _ As an example, consider the top-1 dominating query on the set of
5 sort the points i”” by Hilbert ordering; points in Figure 5. There are 3 leaf nodes and their corresponding
6: forall batches/. of (B) points inV" do entries in the root node aeg, ez, andes. First, upper bound scores
7: initialize all scores of pomts i to O; for the root entries (i.eu(e;) = 3, u(ey) = 7, ule;) = 3) are
8 BatchCountR.root,V.); . . 3,
9 V=V UV computed by the batch counting algorithm, which incurs 3 node
10: q:-:the poir{t with maximum score i accesses (i.e., the_ root node and leaf nodes pointed bpdes). _
11 removey from V; Sincee: has the highest upper bound score, Fhe leaf node pplnted
12: report g as thei-th result; by e2 will be accessed next. Scores of entriesdrare computed in
batch and we obtaip(p1) = 5, u(p2) = 1, u(ps) = 2. Sincep,
4 Counting-Guided Search is a point andu(p1) is higher than the scores of remaining entries

') o _ (p2,p3, €1, e3), p1 is guaranteed to be the top-1 result.
The skyline-based solution becomes inefficient for datasets with

large skylines ag scores of many points are computed. In addi-
tion, not all skyline points have largescores. Motivated by these Now, we discuss three optimizations that can greatly reduce the
observations, we study algorithms that solve the problem directly, cost of the basic SCG. First, we utilize encountered data points to
without depending on skyline computations. This section presents strengthen the pruning power of the algorithm. Next, we apply a

4.2 Optimizations

15
n Ps
4 b
Py p4o
0.5 e
O 3
i r, % .
op, Ps||"7 Py
p
_ e2 9

Figure 5: Computing upper bound scores

lazy counting method that delays the counting for points, in order
to form better groups for batch counting. Finally, we develop a
lightweight technique for deriving upper score bounds of non-leaf
entries at low cost.

The pruner set. SCG visits nodes and counts the scores of points

nodes and there is a point in that partially dominates; thus, the

else statement at Line 5 now refers to nodes one level above the
leaves. In addition, the condition at Line 7 is replacedhby e™;

i.e., COUNTe) is added tou*(p), even if p partially dominates
entrye.

As an example, consider the three root entries of Figure 5. We
can compute loose upper score boundstor= {e],e;,e5 },
without accessing the leaf nodes. Sineg fully dominatese; and
partially dominates:1, e3, we getu*(e2) = 9. Similarly, we get
u"(e1) = 3 andu®(es) = 3. Although these bounds are looser
than the respective tight ones, they still provide a good order of vis-
iting the entries and they can be used for pruning and checking for
termination. In Section 7, we demonstrate the significant compu-
tation savings by this lightweight counting (pf‘(e)) over exact
counting (ofu(e™)) and show that it affects very little the pruning
power of the algorithm. Next, we investigate its effectiveness by a
theoretical analysis.

and entries, based only on the condition that the upper bound score4.3 Analytical Study

of their parent entry is greater than However, we observe that
points which have been counted, but have scores ateest also

Consider a datasé with N points, indexed by an aR-tree whose

be used to prune early other entries or points, which are dominatednodes have an average fangutOur analysis is based on the as-

by them! Thus, we maintain a pruner sEt which contains points
that (i) have been counted exactly (i.e., at Line 15), (ii) have scores
at mosty, and (iii) are not dominated by any other pointfih The

third condition ensures that only minimal information is kept in
F.2 We perform the following changes to SCG in order to #ise
First, after deheaping an entey(Line 7), we check whether there
exists a poinp € F, such thap > e~ . If yes, thene is pruned
and the algorithm goes back to Line 6. Second, before applying
BatchCount at Lines 10 and 14, we eliminate any entries or points
that are dominated by a point in.

Lazy counting. The performance of SCG is negatively affected
by executions of BatchCount for a small number of points. A batch
may have few points if many points in a leaf node are pruned with
the help of F. In order to avoid this problem, we employlazy
countingtechnique, which works as follows. When a leaf node is
visited (Line 13), instead of directly performing batch counting for
the pointsp, those that are not pruned iy are inserted into a set

L, with their upper bound scorg(e™) from the parent entry. If,
after an insertion, the size @fexceeds3 (the size of a batch), then
BatchCount is executed for the contentdgfand alliv, ~, F' are
updated. Just before reporting the final result set (Line 16), batch
counting is performed for potential resulise L not dominated

by any point inF’ and with upper bound score greater tharniWe
found that the combined effect of the pruner set and lazy counting
lead to 30% 1/O cost reduction of SCG, in practice.

Lightweight upper bound computation. As mentioned in Sec-
tion 3.1, the tight upper score boupde ™) can be replaced by a
looser, cheaper to compute, boupti(e). We propose an opti-
mized version of SCG, called Lightweight Counting Guided Algo-
rithm (LCG). Line 10 of SCG (Algorithm 3) is replaced by a call
to LightBatchCount, which is a variation of BatchCount. In spe-
cific, when bounds for a sét of non-leafentries are counted, the

algorithm avoids expensive accesses at aR-tree leaf nodes, but uses

entries at non-leaf nodes to derive looser bounds.
LightBatchCount is identical to Algorithm 1, except that the re-
cursion of Line 2 is applied whefi is at least two levels above leaf

1Suppose thata poiptsatisfiesu(p) < ~. Applying Equation 3, if a point
p’ is dominated by, then we haveu(p’) < .
2Note thatF is the skyline of a specific data subset.

sumption that the data points are uniformly and independently dis-
tributed in the domain spade, 1%, whered is the dimensionality.
Then, the tree heighit and the number of nodes; at level: (let

the leaf level bed) can be estimated by = 1 + [log,(N/f)]

andn; = N/f"'. Besides, the extent (i.e., length of any 1D
projection) \; of a node at the-th level can be approximated by
i = (1/n:)Y 4 [27].

We now discuss the trade-off of lightweight counting over exact
counting for a non-leaf entry. Recall that theexactupper bound
scoreu(e™) is counted as the number of points dominated by its
lower cornere™. On the other hand, lightweight counting obtains
1" (e); an upper bound ofi(e ™). For a givene™, Figure 6 shows
that the space can be divided into three regions, with respect to
nodes at level. The gray region\/> corresponds to the maximal
region, covering nodes (at levélthat arepartially dominated by
e~ . While computingu(e™), only the entries which arsompletely
inside M> need to be further examined (e.g4,). Other entries are
pruned after either disregarding their aggregate values (©sg.,
which intersects\/;), or adding these values ja(e™) (e.g.,ec,
which intersectd\fs).

(0,1)

B

My

0.0

(1,0)

Figure 6: 1/0 cost of computing upper bound

Thus, the probability of accessingath level) node can be ap-
proximated by the area dfl>, assuming that tree nodes at the same
level have no overlapping. To further simplify our analysis, sup-
pose that all coordinates ef are of the same value Hence, the
aR-tree node accesses required for computing the gxact) can

be expressed &s the scores of points under. We now propose a top-dominating
algorithm which traverses each node at most once and has reduced
1/0 cost.

Algorithm 4 shows the pseudo-code of this Priority-Based Tree
Traversal Algorithm (PBT). PBT browses the tree, while maintain-
In the above equation, the quantity in the square brackets corre-ing (loose) uppey:“(e) and lowery!(e) score bounds for the en-
sponds to the volume af/; (at level:) over the volume of the triese that have been seen so far. The nodes of the tree are visited
universe (this equals to 1), capturing thus the probability of a node hased on griority order. The issue of defining an appropriate or-
at level: to be completely insidé/,. The node accesses of light- dering of node visits will be elaborated later. During traversal, PBT
weight computation can also be captured by the above equation,maintains a sef of visited aR-tree entries. An entry ifi can ei-
except that no leaf nodes (i.e., at level 0) are accessed. As there argner- (i) lead to a potential result, or (i) be partially dominated by
many more leaf nodes than non-leaf nodes, lightweight computa- gther entries ins that may end up in the resulty is a min-heap,

h—1
NAg(e™) = Zn A =v+ X)) =1 —v=2)Y @)

tion incurs significantly lower cost than exact computation. employed for tracking the top-points (in terms of their.’ scores)

_ Now, we compare the scores obtained by exact computation andfound so far, whereasis the lowest score ifi (used for pruning).

lightweight computation. The exact scquée™) is determined by First, the root node is loaded, and its entries are inserteddinto

the area dominated by : after upper score bounds have been derived from information in the
pe) =N-(1— v)d (5) root node. Then (Lines 8-18), whikecontains non-leaf entries, the

non-leaf entrye. with the highest priority is removed froifi, the
In addition to the above points, lightweight computation counts also corresponding tree nod# is visited and (i) the:* (u') scores of
all points in M, for the leaf level into the upper bound score: existing entries it (partially dominating:..) are refined using the
contents ofZ, (i) u* (u') values for the contents of are com-

u _ . o d
pi(e) = N-(1-v+ o) ®) puted and, in turn, inserted 1. Note that for operations (i) and
Summarizing, three facto¥, v, andd affect the relative tight- (i), only information from the current node arftlis used; no addi-
ness of the lightweight score bound over the exact bound. tional accesses to the tree are required. Updates and computations

of u* scores are performed incrementally with the information of
e WhenN is large, the leaf node exteny is small and thus ¢, and entries inS that partially dominate.. W is updated with
the lightweight score is tight. points/entries of higher' than~. Finally (Line 20), entries are
pruned fromS if (i) they cannot lead to points that may be in-
cluded inW, and (ii) are not partially dominated by entries leading
to points that can readv.

e If vissmall,i.e.e™ is close to the origin and has high domi-
nating power, then\, becomes less significant in Equation 6
and the ratio of.* (e) to u(e™) is close to 1 (i.e., lightweight

score becomes relatively tight). Algorithm 4 Priority-Based Tree Traversal Algorithm (PBT)
)) algorithm PBT(TreeR, Integerk)
e As d_lncrea_ses (decreases), also increases (decreases)and 1. g:=pew set: > entry format inS: (e, zi' (e), 1" (e))
the lightweight score gets looser (tighter). 2: W:=new min-heap: > k points with the highest!

3: v:=0; > the k-th highestu! score found so far

In practice, during counting-guided search, entries close to the 2 for aIlI e. € Roroot do

origin have higher probability to be accessed than other entries, 5 - COUNTe):
since their parent entries have higher upper bounds and they are pri- _ “u(el)'__zeeR'”"’“ei*‘57 COUNI;)"
oritized by search. As aresult, we expect that the second case above_’ r (6”)'_266R~rootw; et e);

inserte, into S and updatéV;

will hold for most of the upper bound computations and lightweight . . X
8: while S contains non-leaf entriedo

computation will be effective.

9: removee.: non-leaf entry ofS with the highespriority;
n thi i i termative to th i ded 11: forall e, € Ssuchthaey # e; Ae, = el do
n this section, we presentiazyalternative to the counting-guide 12: ! = COUNTe):
method. Instead of computing upper bounds of visited entries by “u(ey) H l(ey) + EeEZAEJ e~ te);
explicit counting, we defer score computations for entries, but main- 13: p(ey)=uey) + Xeeznet ye-ney et COUNTE);

tain lower and upper bounds for them as the tree is traversed. Score14: S.=ZUf{ecS|effe Ney =eT)
bounds for visited entries are gradually refined when more nodes 15: forall e, € Z do

are accessed, until the result is finalized with the help of them. For 16: p(ex)=p' (e2) + X cs. pet v COUNTe);
this method to be effective, the tree is traversed with a carefully- 17: p(es) = (ex) + Y ces. net e nes s+ COUNTE);
designed priority order aiming at minimizing 1/0O cost. We present : ; ; .

. ; ; .) 18: insert all entries of into S,
the basic algorithm, analyze the issue of setting an appropriate or-19. updaté¥’ (and~) by e’ € S whose score bounds changed:;
der for visiting nodes, and discuss its implementation. 20: remove entries,, from S whereu*(e,,) < v and—3e €
5.1 The Basic Algorithm S, (u*(e) =) A (" # emNe™ = en);

Recall that counting-guided search, presented in the previous sec-21: report W' as the result,

tion, may access some aR-tree nodes more than once due to the ap- |t js important to note that, at Line 21 of PBT, all non-leaf entries
plication of counting operations for the visited entries. For instance paye been removed from the s&tand thus (result) points i

in Figure 5, the node pointed iy may be accessed twice; once have their exact scores found.

for counting the scores of points under and once for counting To comprehend the functionality of PBT consider again the top-

3For simplicity, the equation does not consider the boundary effectdi.e., 1 dominating query on the example of Figure 5. For the ease of
is near the domain boundary). To capture the boundary effect, we need todiscussion, we denote the score bounds of an entry the in-
bound the termgl — v + \;) and(1 — v — ;) within the rangd0, 1]. terval i, (e)=[p' (e), u*(e)]. Initially, PBT accesses the root node

and its entries are inserted inf after their lower/upper bound along at least one dimension. The probability of being such is:
scores are derived (see Lines 5-f)(e1)=[0, 3], 1« (e2)=[0, 9], 4

s (e3)=[0, 3]. Assume for now, that visited nodes are prioritized Pr(\/ alf]nbf] #2) =1-(1—i+X))

(Lines 9-10) based on the upper bound scqi&ée) of entries te(1,d]

e € S. Entry ez, of the highest scorg” in S is removed and
its child nodeZ is accessed. Sincg] ¥ ef ande; ¥ e,

the upper/lower score bounds of remaining entfies es} in S

will not be updated (the condition of Line 11 is not satisfied). The
score bounds for the points, p2, andps in Z are then computed;

1 (p1)=[1, 7], 1« (p2)=[0, 3], and . (p3)=[0, 3]. These points are
inserted intaS, and W ={p: } with y=x‘(p1)=1. No entry or point

in S can be pruned, since their upper bounds are all greatenthan
The next non-leaf entry to be removed frdsnis e; (the tie with

es3 is broken arbitrarily). The score bounds of the existing entries
S={es, p1,p2,p3} are in turn refinedj.. (es) remaing0, 3] (unaf-
fected bye:), whereasu. (p1)=[3, 6], 1« (p2)=[1,1], and u.(p3)
=[0,3]. The scores of the points indexed by are computed;
iy (pa)=[0, 0], s (p5)=[0, 0], and e, (ps)=[1, 1] and W is updated

to p1 with v=p!(p1)=3. At this stage, all points, except from, 5.3 Implementation Details

are pruned frond, since their.“ scores are at mostand they are A straightforward implementation of PBT may lead to very high
not partially dominated by non-leaf entries that may contain poten- computational cost. At each loop, the burden of the algorithm is
tial results. Although no point froms can have higher score than the pruning step (Line 20 of Algorithm 4), which has worst-case
p1, we still have to keeps, in order to compute the exact score of ¢ost quadratic to the size of; entries are pruned from if (i)

p1 in the next round. their upper bound scores are belgvand (i) they are not partially

5.2 Traversal Orders in PBT dominated by any other entry with upper bound score abové

an entrye,,, satisfies (i), then a scan 6fis required to check (ii).

In order to check for condition (i) efficiently, we use a main-
memory R-tred/ (S) to index the entries ity having upper bound
score above,. When the upper bound score of an entry drops be-
low ~, it is removed from/(S). When checking for pruning af,,,
at Line 20 of PBT, we only need to examine the entries indexed by
1(S), as only these have upper bound scores ahovie particu-
lar, we may not even have to traverse the whole infigx). For
instance, if a non-leaf entwy/ in 7(.S) does not partially dominate
em, then we need not check for the subtree='of As we verified
experimentally, maintainind(S) enables the pruning step to be
implemented efficiently. In addition t6(.S), we tried additional
data structures for accelerating the operations of PBT (e.g., a pri-
ority queue for popping the next entry froghat Line 9), however,
the maintenance cost of these data structures (as the upper bounds
of entries inS change frequently at Lines 11-13) did not justify the
'performance gains by them.

The above probability is small when the sugH-)\ ; is minimized
(e.g.,a andb are both at low levels).

The above analysis leads to the conclusion that in order to min-
imize the partially dominating entry pairs i#\, we should priori-
tize the visited nodes based on their level at the tree. In addition,
between entries at the highest level §h we should choose the
one with the highest upper bound, in order to find the points with
high scores early. Accordingly, we propose an instantiation of PBT,
called Cost-Based Traversal (CBT). CBT corresponds to Algorithm
4, such that, at Line 9, the non-leaf en¢érywith the highest level is
removed fromS and processed; if there are ties, the entry with the
highest upper bound score is picked. In Section 7, we demonstrate
the advantage of CBT over UBT in practice.

An intuitive method for prioritizing entries at Line 9 of PBT, hinted
by theupper bound principlef [19] or the best-first orderingof
[13, 23], is to pick the entry . with the highest upper bound score
1" (ez); such an order would visit the points that have high prob-
ability to be in the tope dominating result early. We denote this
instantiation of PBT by UBT (for Upper-bound Based Traversal).

Nevertheless a closer look into PBT (Algorithm 4) reveals that
the upper score bounds alone may not offer the best priority order
for traversing the tree. Recall that the pruning operation (at Line
20) eliminates entries frorfi, saving significant I/O cost and lead-
ing to the early termination of the algorithm. The effectiveness of
this pruning depends on th@wer bounds of the best points (stored
in W). Unless these bounds are tight enough, PBT will not termi-
nate early and will grow very large.

For example, consider the application of UBT to the tree of Fig-
ure 2. The first few nodes accessed are in the order: root node
e1s, €11, €9, e12. Althoughe;; has the highest upper bound score,
it partially dominateshigh-level entries (e.ge17 andezo), whose 6 Extensions
child nodes have not been accessed yet. As a result, thé beste
v (i.e., the current lower bound score @f;) is small, few entries
can be pruned, and the algorithm does not terminate early.

Thus, the objective of search is not only to (i) examine the en-
tries of large upper bounds early, which leads to early identification
of candidate query results, but also (ii) eliminate partial dominance 6.1 Generic Aggregate Functions and Point Significance
relationships between entries that appeaf iwhich facilitates the
computation of tight lower bounds for these candidates. We now
investigate the factors affecting the probability that one node par-
tially dominates another and link them to the traversal order of PBT.
Let a andb be two random nodes of the tree such thé at level
i andb is at levelj. Using the same uniformity assumptions and
notation as in Section 4.3, we can infer that the two nadasdb tage(p) = agg {w®) |p €D Ap>=p} 7
not intersect along dimensigrwith probability*:

This section discusses interesting extensions to the basic form of
top-k dominating queries we have studied so far. We note that the
query types that are discussed here are original; to our knowledge
they have not been mentioned or studied in the literature before.

We can generalize the tdpdominating query to include any ag-
gregate functiomgyg (i.e., instead o£COUNYand weightav(p) of
significance on pointg (i.e., instead of all points having the same
significancew(p) = 1). The generalized scoring function is de-
fined as:

It is not hard to see that our proposed techniques can be directly
Pr(aft]nbt] =2) =1— (A + X)) used for a generalized tdpdominating query, for distributive and
monotone aggregate functions (liIB&JM MAX MIN) and weights
of importance on the points. For this purpose, we can use an aggre-
“The current equation is simplified for readability. The probability equals gate R-tree, where entries are augmented with the aggregate score
Owhen); +X; > 1. of w(p), for all pointsp under them.

a andb have a partial dominance relationship when they intersect

Only slight modifications have to be made in our algorithms be-

entries of the corresponding tree. First, a non-leaf eafrye.g.,

cause the fundamental property of score dominance (in Equationaccording to CBT order) is removed frofu. After accessing the

3) holds not only forCOUNT(i.e., the default tog: dominating
query), but also fosUMandMAX The case foBUMcan be directly
solved by our algorithms. RegardindAX the counting opera-
tions (in ITD, LCG) and incremental refinement of score bounds (in
PBT) need to be modified favlAXcorrespondingly. Interestingly,
MAXprovides us an opportunity to further optimize such counting

child node ofe 4, its entries are inserted 184 in order to refine
score bounds of entries ifi>. Second, a non-leaf entey (e.g.,
according to CBT order) is removed froffp. After accessing the
child node ofep, its entries are inserted t8p and their score
bounds are refined by entries #u. Whenever score bounds of
entries inSp change, the result s& and the besk scorey are

operations and score refinements. As an example, Figure 7a showsipdated. In addition, an entey, € Sp is pruned when its upper

the locations of the points with their weights in brackets. The points
are indexed by MAXaR-tree and the non-leaf entriesandes are

bound scorg:% (e) is belowy. On the other hand, an entry iy
is pruned if it is not partially dominated by any entrydp € Sp

augmented with the weights 0.9 and 0.7 respectively. Suppose thatwith u% (e,) > ~. The above procedure repeats usti becomes

we need to computg. (p1), the score op:. We first access the
child node ofe; and updat@u,q.(p1) to 0.9. Now, even though
p1 partially dominategs, we need not access the nodecgfas it
cannot further improve ,q. (p1).

Note that query results favIN can be obtained by evaluating a
query forMAX Specifically, assuming that the intervél 1] is the
domain of possible weights(p), our algorithms can be adapted
as follows: (i) for each visited point (and entry), convert its weight
w(p) to 1 — w(p), (i) evaluate the query foMAXto retrieve re-
sults, and (iii) at the end, transform each result valte 1 — v for
obtaining the final results.

y 14
1 09 e, - a4' a
e y (price) 1
ws) s - b
o _
14
Ps! Pyl 054 1o a, o3
‘ .
l %] P° ofs
| 03O o
‘ P pd 7
O-----o-Z--k s
p
! pgo T T T T T T 111X
05 05 1

0 1 X (time to conf. venue)

(a) DominatingMlAXquery (b) Bichromatic query

Figure 7: Variants of toge dominating queries

6.2 Bichromatic Top-£ Dominating Queries

Given aproviderdataseDp and aconsumedatase® 4, the score
of an objectp € Dp is defined as:

pa(p)=|{a€Dalp=a}] (8)

A bichromatic topk dominating query retrievek data objects in
Dp with the highestua score. As an example of the applicabil-
ity of this query, consider the points in Figure 7b, whée =
{p1,p2, p3} stores the feature values of different hotels (shown as
white points) andD4 = {a1, a2, as, a4} records the requirements
for a hotel specified by different customers (shown as black points).
For example, customer, = (0.55,0.73) will only stay in a hotel
whosezx (time to the conference venue) apdroom price) val-
ues are at most 0.55 and 0.73 respectively. The bichromatié top-
dominating query could be used to find the most popular hotel; i.e.,
the one that fulfills the requirements of the largest number of cus-
tomers. In this example, we hayei (p1) = 2, pa(p2) = 3, and
1a(ps) = 1. Thus, the bichromatic top-1 pointjs.

Algorithms ITD and LCG can be adapted for bichromatic queries
with slight modifications. In particular, candidate points are ac-
cessed from the aR-tree @ while their scores are counted using
the aR-tree oD 4.

The extensions of PBT for bichromatic queries are more com-
plex. Two setsSp and.S4 are employed for managing visited en-
tries in Dp and D4 respectively, and initially they contain root

empty andSp contains the same objects asli# (i.e, all other
entries inSp have been eliminated).

7 Experimental Evaluation

In this section, we experimentally evaluate the performance of the
proposed algorithms. All algorithms in Table 1 were implemented
in C++ and experiments were run on a Pentium D 2.8GHz PC with
1GB of RAM. For fairness to the STD algorithm [23], it is imple-
mented with the spatial aggregation technique (discussed in Section
2.1) for optimizing counting operations on aR-trees. In Section 7.1
we present an extensive experimental study for the efficiency of the
algorithms with synthetically generated data. Section 7.2 studies
the performance of the algorithms on real data and demonstrates
the meaningfulness of top-dominating points.

Name Description

STD | Skyline-Based Top-k Dominating Algorithm [23]
ITD Optimized version of STD (Sec. 3.2)

SCG Simple Counting Guided Algorithm (Sec. 4)
LCG | Lightweight Counting Guided Algorithm (Sec. 4)
UBT | Upper-bound Based Traversal Algorithm (Sec.|5)
CBT Cost-Based Traversal Algorithm (Sec. 5)

Table 1: Description of the algorithms

7.1 Experiments With Synthetic Data

Data generation and query parameter values. We produced
three categories of synthetic datasets to model different scenar-
ios, according to the methodology in [2]. Ul contains datasets
where point coordinates are random valuagormly and indepen-
dently generatedor different dimensions. CO contains datasets
where point coordinates aoerrelated In other words, for a point

p, its i-th coordinatep[i] is close top[j] in all other dimensions

j # i. Finally, AC contains datasets where point coordinates are
anti-correlated In this case, points that are good in one dimension
are bad in one or all other dimensions. Table 2 lists the range of pa-
rameter values and their default values (in bold type). Each dataset
is indexed by an aR-tree with 4K bytes page size. We used an LRU
memory buffer whose default size is set to 5% of the tree size.

Parameter Values
Buffer size (%) 1,2,5,10, 20
Data size N (million) | 0.25,0.51, 2,4
Data dimensionalityd 2,3,4,5
Number of resultsk 1, 4,16, 64, 256

Table 2: Range of parameter values

Lightweight counting optimization in Counting-Guided search.

In the first experiment, we investigate the performance savings when
using the lightweight counting heuristic in the counting-guided al-
gorithm presented in Section 4. Using a default uniform dataset,
for different locations of a non-leaf entey, (after fixing all coor-
dinates ofe™ to the same value), we compare (i) node accesses

of computing the exagt(e™) with that of computing a conserva- (even though STD operates on the aR-tree), due to the effectiveness
tive upper bound:* (e) using the lightweight approach and (ii) the of the batch counting and Hilbert ordering techniques for retrieved
difference between these two bounds. Figure 8a shows the effect(constrained) skyline points. LCG and CBT significantly outper-
of v (i.e., location ofe™) on node accesses of these two compu- form ITD, as they need not compute the scores for the whole sky-
tations. Clearly, the lightweight approach is much more efficient line, whose size grows huge for AC data. Note that the optimized
than the exact approach. Their cost difference can be two ordersversion of counting-guided search (LCG) outperforms the simple
of magnitude where™ is close to the origin. Figure 8b plots the version of the algorithm that computes exact upper bounds (SCG)
effect of v on the value of upper bound score. Even though light- by a wide margin. Similarly, for priority-based traversal, CBT out-
weight computation accesses much fewer nodes, it derives a scorgperforms UBT because of the reasons explained in the previous ex-
that tightly upper bounds the exact scoué (e) is only 10% looser periment. Observe that the best priority-traversal algorithm (CBT)
thanu(e™)). Summarizing, the lightweight approach is much more has lower 1/O cost than optimized counting-guided search (LCG),
efficient than the exact approach while still deriving a reasonably since CBT accesses each node at most once but LCG may access

tight upper bound score.

2000

Xact ——

m
&

act ——

some nodes more than once during counting operations.

= | T time (s) Or/o0 @CPU o
1500 o 2000 - 1000 1
g H STD 60 1
4 es
8 g 800
§‘°°° %es 1500 1 STD M
: 500 § 40 SCG 600 - ITD
2e5 1000 - ITD
B SCG
0 i e S e 0e0 UBT 400
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 20 1
value value 500 A 11D 200 - LCG
scG UBT LCG || CBT UBT
(a) Node accesses (b) Upper bound score []LCG g CBT AllA CBT
0 = = 0 0 B= dataset
Ul co AC

Figure 8: The effect of, Ul, N =1M,d = 3

Orderings in Priority-Based Traversal. In Section 5.2, we in-
troduced two priority orders for selecting the next non-leaf entry

to process at PBT: (i) UBT chooses the one with the highest up- In remaining experiments, we only compare t.he best algorithms
per bound score, and (i) CBT, among those with the highest level, from €ach gender (ITD, LCG, and CBT), for a wide range of query

chooses the one with the highest upper bound score. Having the-8nd system parameter values. First, we stL_ldy the effect of the buffer
oretically justified the superiority of CBT over UBT (in Section ©N the performance of the algorithms. Figure 11 shows the cost
5.2), we now demonstrate this experimentally. For the default top- ©f the @lgorithms as a function of buffer size (%). Observe that

k dominating query on a Ul dataset, we record statistics of the two th€ €osts of LCG and CBT with the smallest tested buffer (1% of
algorithms during their execution. Figure 9a shows the valug of the tree size) are still much lower than that of ITD with the largest
(i.e., the best score) for both UBT and CBT as the number of buffer size (20%). Since CBT accesses each tree node at most once,
loops executed. Note that in UBT/CBT, each loop (i.e., Lines 8-20 its cost is independent of the buffer. Clearly, CBT outperforms its
of Algorithm 4) causes one tree node access. Sindges faster in competitors for all tested buffer sizes. We note that the memory us-

CBT than in UBT, CBT has higher pruning power and thus termi- 29 (for storing visited tree entries) of ITD, LCG, and CBT for Ul
nates earlier. Figure 9b plots the sizesfi.e., number of entries data are 0.03%, 0.02%, 0.96% of the tree size, respectively, and are

in memory) with respect to the number of loops. The sizé df further reduced by 30% for CO data. For AC data the correspond-
CBT is much lower than that in UBT. Hence, CBT requires less N9 values are 2.72%, 0.11%, and 1.48%. Besides, their memory
CPU time than UBT on book-keeping the information of visited USage increases slowly withand rises sublinearly wittv. Even
entries and negligible memory compared to the problem size. Both atd = 5. their memory usage is only two times of thatiat: 3.

figures show that our carefully-designed priority order in CBT out- e also investigated the effect bfon the cost of the algorithms
performs the intuitive priority order in UBT by a wide margin. (see Figure 12). In some tested cases of Figure 12a, the cost of

Figure 10: Query cost(= 16, N =1M, d = 3)

1e6

8e5

«©

&es

E

&

S
4e5

2e5

0e0

4+t
PR

BT <—
BT —+

8000
7000
6000

5000

24000

3000
2000
1000

BT <—
BT —+

0

1000 2000 3000 4000 5000 6000 7000

(a) Value ofy

0
0

1000 2000 3000 4000 5000 6000 7000

(b) Size ofS

Figure 9: The effect of ordering priorities, UN =1M,d = 3

Comparison of all algorithms and variants thereof. We now

ITD is too high for the corresponding bar to fit in the diagram; in
these cases the bar is marked with=g’ ‘sign and the actual cost
is explicitly given. Observe that LCG and CBT outperform ITD in
all cases. A< increases, ITD performs more constrained skyline
queries, leading to more counting operations on retrieved points.
CBT has lower cost than LCG for Ul data because CBT accesses
each tree node at most once. For CO data, counting operations in
LCG become very efficient and thus LCG and CBT have similar
costs. On the other hand, for AC data, there is a wide performance
gap between LCG and CBT.

Figure 13 plots the cost of the algorithms as a function of the
data dimensionalityi. Again, ITD is inferior to its competitors for
most of the cases. A4 increases, the number of skyline points

compare all algorithms and their variants (STD, ITD, SCG, LCG, increases rapidly but the number of points examined by LCG/CBT

UBT, CBT) for the default query parameters on Ul, CO, and AC

increases at a slower rate. Again, CBT has lower cost than LCG for

datasets (Figure 10). In this and subsequent experiments, we comall cases. Figure 14 investigates the effect of the data/éina the

pile the I/O and CPU costs of each algorithm, by charging 10ms cost of the algorithms. WhelV increases, the number of skyline
I/0 time per page fault, and show their I/O-CPU cost-breakdown. points increases considerably and ITD performs much more batch
ITD performs much better than the baseline STD algorithm of [23] counting operations than LCG. Also, the performance gap between

time (s) time (s) time (s)

300 mi e} 80 600 1D ITD ITD
1D 1D I 1D O cPU 1D mR7e) E VS
400 1D o CPU 500 CPU
60 ™
400
300
ITD 40 300 ITD
200 1D
20 . m ITD 200 LCG LCG LCG LCG LG
100 LCGeBT | | LCGCBT| |LCGCBT | |LCGCBT| | LCGCBT LCG(‘BT L(“'(‘m LCGCBT| |LCGCBT 1 cGCBT 100 i
Oall0a i0a 1H0a 11Aa , e || o | ||| e[|Nen||T e
0 e e e e bufer (%) 0 S buffer (%) 0 -t HE AL A, \ buffer (%)
(@) Ul (b) CO (c) AC
Figure 11: Cost vs. buffer size (%®),= 16, N =1M,d =3
time (s) D m time (s) time (s)
_ — . ~ ™D . ITD
5007 oo 068l 3477[d 80 — 10007 g yo A
o ITD
400 4 cru " O CcpU goo{ DCPU
300 D 600 7 D
™D 40
200 LCG . 400 4 1D ITD 1D
ITD 1D L
LCG
] CBT 20 1D “cn , LCG LeG
100 . , s
ﬂ LCGp | | LCGepr| | LCGeRT CBT H LeGCBT | |LcGCBT ﬂ LCGEBT Lu, ﬂ 200 ﬂLcGCBT L(,GCBT LCCCBT o ﬂ onr
0 ﬁﬁ Oo U008 HHE « oidnm loe 1om, ﬁ Oerl Qe ner e iaT,
4 16 64 256 1 4 256 1 4 16 64 256
(@) ul (b) co (c) AC
Figure 12: Costvsk, N =1M,d =3
time (s) I m time (s) D T time (s) ™ ™
1600 - o o 140 - | 2 600 ITD = o
1400 4 (= 1/e) 2023|=| 5421|%| [mi /6] 211 |= 563 |<| LCG O 10 1514|~| 13294/~
o cpu 1209 @cpy 5001 @ceu
1200 4 100 1
- 0o 400 1
1000 1 LCG 30
800 o - 300 4 LcG
600 1 1> LCG 200 LCG
400 1 ﬂ LCG CBT 40 D - 11D LCG LCG Bt
| CBT 20 1 CBT 100 1 " CBT
200 LCG CBT M . LCG! m CBT CBT B
ITDLCGCBT ITDLCGCBT
0 o= A, L d 0+ —Lom H d 0 = = B L d
2 3 4 5 2 3 4 5 2 3 4 5
(@) Ul (b) CO (c) AC
Figure 13: Costvsd, N =1M, k = 16
time (s) time (s) . 2)
0 ITD ITD % . o [i)lme () . ITD ITD
0 1o O 1o 1103 229
400 6 O cPU 500 O cPU LCG
200 400
ITD ITD
40 300 LCG
200 ITD
ITD LCG. CBT 200 - ITD 6
100 209 mo ﬂ . H'“CM LGCBT ﬂ ﬂ 100 HLCG LCG (BT
LCGepr | |LCC! y CBT “ BT
0 N (million) 0 L= LIOLE ﬂ H "N (million) 0 4 e = + N (million)
025 05 1 4 025 0 5 2
(b) CO (c) AC
Figure 14: CostvsN,d =3,k = 16
LCG and CBT widens. CBT outperforms LCG by a wide margin in the other 7 cases. In

summary, for both monochromatic and bichromatic kogleminat-
ing queries, CBT is the best algorithm, while in only few cases (for
correlated datasets) its performance is similar to LCG.

Finally, we investigate the performance of the proposed algo-
rithms for bichromatic toge dominating queries. In this experi-
ment, eaclproviderdatase®Dp (consumedatase®D 4) contains 1

million points in a 3-dimensional spadejs set to 16 and the LRU time (s)

memory buffer size is fixed to 5% of the sum of both tree sizes. 40 0 vo 876853 992 82

Figure 15 illustrates the cost of the algorithms for different combi- B cPy B A i

nations ofDp andD 4. For instance, the column UI/CO represents 300 w

the combination thaDp is a Ul dataset an® 4 is a CO dataset. 200 " cor

The least expensive case is CO/CO because few points are exam- o . e

ined inDp and the counting cost dR4 is low. On the other hand, 100 | 1€ o e o

the case AC/UI is the most expensive as many points need to be Ili [Lfm ﬂ ”m[’uf”'ﬂ o H(ET ﬂﬁ”mmb_nmm
examined inDp and the counting cost of?4 is also high. Ob- O T owur urco” Ul/AC CO/UI CO/COCO/A(‘ "AC/UI AC/CO AC/AC ((DP/lDAl)

serve that LCG and CBT outperform ITD in all cases. Except the
cases CO/CO and CO/AC where LCG and CBT have similar costs, Figure 15: Bichromatic queries,= 16, Np = N4 = 1M ,d = 3

7.2 Experiments With Real Data

DatasetsWe experimented with three real multidimensional datasets

FC®, NBA®, andBASEBALL. FC contains 581012 forest land cells
(i.e., data objects), having four attributes: horizontal distance to
hydrology fh), vertical distance to hydrology), horizontal dis-
tance to roadwaysh(), and horizontal distance to fire pointsf),

For FC, small values are preferable to large ones at all dimensions.

NBA contains regular season statistics of 19112 NBA players (i.e.,
data objects). In order for the query to be meaningful, only few
important attributes are selected for NBA players: games played
(gp), points pts), rebounds reb), and assistsas). BASEBALL
consists of statistics of 36898 baseball pitchers (i.e., data objects)
Similarly, few important attributes are chosen for baseball pitchers:
wins (W), games (), saves V), and strikeoutsq0). In the last two
datasets, large values are preferable for all dimensions and eac
player is uniquely identified by his/her name and year.

Performance Experiment Table 3 shows the cost of the algo-
rithms on two largest dataset8@ and BASEBALJ for different
values ofk, by fixing the buffer size to 5% of the tree size. Observe
that the cost of ITD becomes prohibitively expensive at high values
of k. Clearly, CBT has the lowest cost and the performance gap
between the algorithms widens ladncreases.

time (seconds)
FC BASEBALL
k ITD LCG | CBT ITD [LCG | CBT
1 262.3 | 162.0| 62.0 4.6 13.0 | 0.9
4 413.0 | 166.6 | 69.7 9.4 165 | 1.8
16 8142 | 204.2| 789 || 228 | 184 | 25
64 || 2772.7| 282.2| 994 || 69.7 | 228 | 35
256 || 9942.1| 523.0| 176.4| 271.1| 38.6 | 5.9

Table 3: Query cost vs, real datasets

Meaningfulness of top4 dominating query results Table 4

The next experiment compares thescore distribution of top-
k dominating points and skyline points. For this, we first retrieve
the skyline points and then compute tbpominating points, by
settingk to the number of skyline points (69 foddBA and 50 for
BASEBALI. Figure 16 plots the scores of tépdominating points
and skyline points in the descending order. Clearly, kamminat-
ing points have much higher scores than skyline points, especially
for the BASEBALLdataset. This indicates that the tblominat-
ing points may be more informative regarding the popularity of the
players, when compared to skyline points. In addition, since the
skyline sizes of both datasets cannot be controlled by users, the sky-
line results could appear too many or too few to the user. Finally,
‘the skyline query does not provide the user an ordering of impor-
tance of the results, which could facilitate their post-processing.

h 20000

18000

35000

Top-k Dominating —— Top-k Dominating —
P Skyling —— P Skyling ——

30000

16000 25000

score
score

14000 20000

12000 15000

10000 - 10000

70 40

(a) NBA (b) BASEBALL

Figure 16: Score distribution in real datasets

8 Discussion

In this section, we discuss the limitations of alternative solutions
for processing tog: dominating queries, based on dominating area
computation or materialization. In addition, we study the evalua-
tion of top+ dominating queries on non-indexed data.

shows the dominating scores and the attribute values of the top-

5 dominating players in thedBAandBASEBALLdatasets. Readers
familiar with these sports can easily verify that the returned results
match the public view of super-star players. Although the ranking
of objects by theip:-scores may not completely match with every
personalized ranking suggested by individuals, akamminating
query at least enables them to discover some representative “top
objects without any specific domain knowledge. In addition, we
note that some of the top+esults do not belong to the skyline. For
example, thdNBAplayer “Kevin Garnett / 2002 is the top-3 result,
even though it is dominated by the top-1 result (i.e., not a skyline
point). Similarly, the top-BASEBALLpitcher is dominated by the
top-2. These players could not be identified by skyline queries.

Score NBA Player / Year gp | pts reb | ast
18585 Wilt Chamberlain / 1967 | 82 | 1992 | 1952 | 702
18299 | Billy Cunningham /1972 | 84 | 2028 | 1012 | 530
18062 Kevin Garnett / 2002 82 | 1883 | 1102 | 495
18060 Julius Erving / 1974 84 | 2343 | 914 | 462
17991 | Kareem Abdul-Jabbar /1975 82 | 2275 | 1383 | 413
Score | BASEBALL Pitcher/Year | w g sV SO
34659 Ed Walsh /1912 27 | 62 10 | 254
34378 Ed Walsh / 1908 40 | 66 6 269
34132 Dick Radatz / 1964 16 | 79 29 | 181
33603 | Christy Mathewson /1908 | 37 | 56 5 259
33426 Lefty Grove / 1930 28 | 50 9 209

Table 4: Top-5 dominating players
SForest cover dataset, UCI KDD Archive. http://kdd.ics.uci.edu
SNBA Statistics v2.0. http://basketballreference.com/stimiwnload.htm
"The Baseball Archive v5.3. http://baseballl.com/statistics/

8.1 Alternative Solutions

In order to gain a deeper understanding of the problem, we first ex-
plore straightforward solutions and discuss why they are either in-
feasible or inefficient. A simple approach for computing the top-
»=dominating points could be to find" > k points with the high-
estdominating aredirst and then compute their scores in order to
obtain the final result. The dominating area [15] of a pgiig de-
fined as®(p) = [1_, (1 — p[i]), assuming that the data domain is
[0, 1]¢. This solution provides a good approximation of the actual
results for uniform datasets. Nevertheless, if the data distribution
is not uniform, the dominating area of a popts not necessarily
proportional top(p). Therefore, it is hard to set a bourdd that
guarantees no result loss. In addition, recall that the se@reof a
pointp is not only decided by its own coordinates but also by other
points in the dataset. Unlike measuring the dominating area, com-
puting 1(p) (or even its close approximation) requires accesses to
the data (i.e., incurs 1/O cost).

Another approach is to materialize the scores for every point in
the dataset such that tdpdominating queries can be processed
very fast. However, the maintenance cost of the scores can be very
high. Suppose that we have pre-computed the scores for all the
points of Figure 4. If a point (e.gp7) is deleted from the dataset,
the score of any point (e.g;, p2, p4) dominating it must be decre-
mented. Similarly, when a new poipt is inserted to the dataset,
u(p") needs to be computed and the score of any point dominating
p’ must be incremented. Since a single update may lead to score
modifications for many points (which may be expensive to find),
this approach is not appropriate for dynamic datasets.

8.2 Algorithms for Non-indexed Data

We now discuss how top-dominating queries can be evaluated
efficiently on non-indexed data. To ease our discussion, we assumé’
thatY memory pages are available, the page capaciBy &d the
dataset containd’ tuples. 10

The basic block-nested-loop join algorithm can be adapted to
compute the scores of all data points and then returrktogsults. [1]
However, this method require¥ - (1 + ;~5) page accesses and
does not scale well for large datasets. A better approach would be [2]
to adapt the skyline-based solution in Section 3.2 for non-indexed
data. This solution is composed of two main operations: (i) finding
the skyline (or constrained skyline), and (ii) counting the scores
of the retrieved points (in batch). The skyline operation can be
implemented by LESS [11], the state-of-the-art external memory
skyline algorithm on non-indexed data. The counting operation,
implemented by scanning the dataset, can be performed in batches
of everyY B points (i.e., available memory). Although this ap-
proach only computes the scores for skyline points (and constrained
skyline points), its performance deteriorates for datasets with large
skyline. Another disadvantage is that the worst case 1/O-cost of
LESS is still quadratic taV, according to [11].

We assert that the best solution is to first bulk-load an aR-tree
(e.g., using the algorithm of [18]) from the dataset and then com-
pute topk dominating points by our algorithms. Bulk-loading re-
quires externally sorting the points gt (2+2:[logy_; 15 |) disk
page accesses, which scales well for large datasets. As we showedh 1
in Section 7, CBT and LCG (our best algorithms) are scalable.

9 Conclusion

In this paper, we studied the interesting and important problem of (13]
processing togs dominating queries on indexed multi-dimensional [14]
data. Although the skyline-based algorithm in [23] is applicable to
the problem, it suffers from poor performance, as it unnecessar-
ily examines many skyline points. This motivated us to develop [15]
carefully-designed solutions that exploit the intrinsic properties of

the problem for accelerating query evaluation. First, we proposed [16]
ITD, which integrates the algorithm of [23] with our optimization
techniques (batch counting and Hilbert ordering). Next, we de- [17]
veloped LCG, a topg: dominating algorithm that guides search by
computing upper bound scores for non-leaf entries, and utilizes all8l
lightweight (i.e., I/O-inexpensive) technique for computing upper [19]
bound scores. Then, we proposed /O efficient algorithm CBT that
accesses each node at most once. The effectiveness of our oppq)
timizations (lightweight counting technique in LCG and traversal
order in CBT) was analyzed theoretically.

Our experimental study suggests that LCG and CBT are the best
algorithms, typically being several times faster than ITD; a method [22]
that is already significantly faster than the naive skyline-based ap-
proach of [23]. LCG and CBT scale well with the buffer size,
and the data siz&'. In addition, they scale better than ITD with
the data dimensionality. Nevertheless, the performance of LCG
varies according to the data distribution. CBT outperforms LCG for
uniform and anti-correlated data, while the two methods have sim- [25]
ilar cost for correlated data. As CBT has stable performance across
different data distributions, its usage for tgdominating queries [26]
is recommended. Our experiments on real datasets demonstrate
that top%x dominating queries may deliver more useful results than (27
skyline queries. Finally, for the first time in the literature, we de- 28]
fined and studied interesting variants of tbglominating queries;
queries with arbitrary aggregate functions (as oppos€zQ/NT,
gueries where points carry weights of importance (as opposed to all
points having the same importance), and bichromaticiktalemi-
nating queries (where dominance is counted on another dataset).

(3]
(4]
(5]

(6]
(7]
(8]
(9]

[20]

[12]

[21]

[23]

[24]

In the future, we plan to develop specialized algorithms for non-
indexed data that rely on spatial hashing. Finally, we intend to
evise cheap, approximate techniques that compute thie dopa-
inating set with some error guarantee.

References

W.-T. Balke, U. Qintzer, and J. X. Zheng. Efficient Distributed
Skylining for Web Information Systems. BEDBT, 2004.

S. Borzgnyi, D. Kossmann, and K. Stocker. The Skyline Operator.
In ICDE, 2001.

A. R. Butz. Alternative Algorithm for Hilbert's Space-Filling Curve.
IEEE Trans. ComputC-20(4):424-426, 1971.

C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified Computation of
Skylines with Partially-Ordered Domains. 8iGMOD, 2005.

C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. Finding
k-Dominant Skylines in High Dimensional Space StGMOD,

2006.

C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. On High
Dimensional Skylines. lEDBT, 2006.

S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust Cardinality and Cost
Estimation for Skyline Operator. /CDE, 2006.

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
Presorting. INCDE, 2003.

R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms
for Middleware. INnPODS 2001.

P. Godfrey. Skyline Cardinality for Relational Processing-dikKs,
2004.

P. Godfrey, R. Shipley, and J. Gryz. Maximal Vector Computation in
Large Data Sets. INLDB, 2005.

A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. I'5IGMOD, 1984.

G. R. Hjaltason and H. Samet. Distance Browsing in Spatial
DatabasesTODS 24(2):265-318, 1999.

V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A
System for the Efficient Execution of Multiparametric Ranked
Queries. INSIGMOD, 2001.

Z.Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline Queries
Against Mobile Lightweight Devices in MANETS. IICDE, 2006.

D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. INLDB, 2002.

I. Lazaridis and S. Mehrotra. Progressive Approximate Aggregate
Queries with a Multi-Resolution Tree Structure. 3tGMOD, 2001.

S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A
Simple and Efficient Algorithm for R-Tree Packing. I@DE, 1997.

9] C.Li, K.C.-C. Chang, and I. F. llyas. Supporting Ad-hoc Ranking

Aggregates. I'5IGMOD, 2006.

C. Li, B. C. Ooi, A. Tung, and S. Wang. DADA: A Data Cube for
Dominant Relationship Analysis. IBIGMOD, 2006.

X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky: Efficient
Skyline Computation over Sliding Windows. IBDE, 2005.

D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
Operations in Spatial Data WarehousesSBITD 2001.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive Skyline
Computation in Database Systemi@DS 30(1):41-82, 2005.

J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the Best Views of
Skyline: A Semantic Approach Based on Decisive Subspaces. In
VLDB, 2005.

K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline
Computation. InVLDB, 2001.

Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient Computation of
Skylines in Subspaces. IGDE, 2006.

1 Y. Theodoridis and T. K. Sellis. A Model for the Prediction of R-tree

Performance. 1f?PODS 1996.
Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient
Computation of the Skyline Cube. WiL.DB, 2005.

