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ABSTRACT
The top-k dominating query returnsk data objects which dominate
the highest number of objects in a dataset. This query is an impor-
tant tool for decision support since it provides data analysts an intu-
itive way for finding significant objects. In addition, it combines the
advantages of top-k and skyline queries without sharing their disad-
vantages: (i) the output size can be controlled, (ii) no ranking func-
tions need to be specified by users, and (iii) the result is indepen-
dent of the scales at different dimensions. Despite their importance,
top-k dominating queries have not received adequate attention from
the research community. In this paper, we design specialized algo-
rithms that apply on indexed multi-dimensional data and fully ex-
ploit the characteristics of the problem. Experiments on synthetic
datasets demonstrate that our algorithms significantly outperform a
previous skyline-based approach, while our results on real datasets
show the meaningfulness of top-k dominating queries.

1 Introduction

Consider a datasetD of points in ad-dimensional spaceRd. Given
a (monotone) ranking functionF : Rd → R, a top-k query [14,
9] returnsk points with the smallestF value. For example, Figure
1 shows a set of hotels modeled by points in the 2D space, where
the dimensions correspond to (preference) attribute values; travel-
ing time to a conference venue and room price. For the ranking
functionF = x + y, the top-2 hotels arep4 andp6. An obvious
advantage of the top-k query is that the user is able to control the
number of results (through the parameterk). On the other hand,
it might not always be easy for the user to specify an appropriate
ranking function. In addition, there is no straightforward way for
a data analyst to identify the most important objects using top-k
queries, since different functions may infer different rankings.

Besides, askyline query[2] retrieves all points which are not
dominated by any other point. Assuming that smaller values are
preferable to larger at all dimensions, a pointp dominatesanother
pointp′ (i.e.,p � p′) when

(∃ i ∈ [1, d], p[i] < p′[i]) ∧ (∀ i ∈ [1, d], p[i] ≤ p′[i]) (1)
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wherep[i] denotes the coordinate ofp in thei-th dimension. Con-
tinuing with the example in Figure 1, the skyline query returns
pointsp1, p4, p6, andp7. [2] showed that the skyline contains the
top-1 result for any monotone ranking function; therefore, it can be
used by decision makers to identify potentially important objects
to some database users. A key advantage of the skyline query is
that it does not require the use of a specific ranking function; its
results only depend on the intrinsic characteristics of the data. Fur-
thermore, the skyline is not affected by potentially different scales
at different dimensions (monetary unit or time unit in the example
of Figure 1); only the order of the dimensional projections of the
objects is important. On the other hand, the size of the skyline can-
not be controlled by the user and it can be as large as the data size
in the worst case. As a result, the user may be overwhelmed as she
may have to examine numerous skyline points manually in order to
identify the ones that will eventually be regarded as important.
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Figure 1: Features of hotels

From an analyst’s point of view, an intuitive score function for
modeling the importance of a pointp ∈ D could be:

µ(p) = | { p′ ∈ D | p � p′ } | (2)

In words, thescoreµ(p) is the number of points dominated by point
p. The following property holds forµ:

∀ p, p′ ∈ D, p � p′ ⇒ µ(p) > µ(p′) (3)

Therefore, we can define a natural ordering of the points in the
database, based on theµ function. Accordingly, thetop-k dom-
inating query returnsk points inD with the highest score. For
example, the top-2 dominating query on the data of Figure 1 re-
trievesp4 (with µ(p4) = 3) andp5 (with µ(p5) = 2). This result
may indicate to an analyst the most popular hotels to the confer-
ence participants (considering price and traveling time as selection
factors). Normally, a participant will try to book atp4 and, if this
hotel is fully-booked, try the next one (p5). From this example,
we can already see that a top-k dominating query is a powerful de-
cision support tool, since it identifies the most significant objects
in an intuitive way. From a practical perspective, top-k dominat-
ing queries combine the advantages of top-k queries and skyline



queries without sharing their disadvantages. The number of results
can be controlled without specifying any ranking function. In addi-
tion, data normalization is not required; the results are not affected
by different scales or data distributions at different dimensions.

We are the first to recognize the importance of top-k dominating
query as a data analysis tool and its advantages over top-k and sky-
line queries — Papadias et al. [23] did not explore such advantages
although they introduced top-k dominating query as an extension
of skyline query. In this paper, we identify the importance and prac-
ticability of the query and define some of its potential extensions.
A simple evaluation method for top-k dominating queries, based
on skyline computation, was proposed in [23]. The basic idea is
to compute the skyline, find the top-1 objecto in it (note that the
top-1 point must belong to the skyline), removeo fromD and iter-
atively apply the same procedure, untilk results have been output.
This skyline-based approach may perform many unnecessary score
countings, since the skyline could be much larger thank. In ad-
dition, we note that the R-tree (used in the solution of [23]) may
not be the most appropriate index for this query; since computing
µ(p) is in fact anaggregatequery, we can replace the R-tree by an
aggregate R-tree(aR-tree) [17, 22].

Motivated by these observations, we propose specialized algo-
rithms that operate on aR-trees. Our technical contributions include
(i) a batch counting technique for computing scores of multiple
points simultaneously, (ii) a counting-guided search algorithm for
processing top-k dominating queries, and (iii) a priority-based tree
traversal algorithm that retrieves query results by examining each
tree node at most once. We enhance the performance of (ii) with
lightweight counting, which derives relatively tight upper bound
scores for non-leaf tree entries at low I/O cost. Furthermore, to our
surprise, the intuitivebest-firsttraversal order [13, 23] turns out not
to be the most efficient for (iii) because of potential partial dom-
inance relationships between visited entries. Thus, we perform a
careful analysis on (iii) and propose anovel, efficient tree traversal
order for it. Extensive experiments show that our methods signif-
icantly outperform the skyline-based approach. Finally, we define
two interesting query variants;aggregatetop-k dominating queries
andbichromatictop-k dominating queries and show how our meth-
ods can be extended to process them.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 discusses the properties of top-k dom-
inating search and proposes optimizations for the existing solution
in [23]. We then propose eager/lazy approaches for evaluating top-
k dominating queries. Section 4 presents an eager approach that
guides the search by deriving tight score bounds for encountered
non-leaf tree entries immediately. Section 5 develops an alterna-
tive, lazy approach that defers score computation of visited en-
tries and gradually refines their score bounds when more tree nodes
are accessed. Section 6 introduces extensions of top-k dominating
queries and discusses their evaluation. In Section 7, experiments
are conducted on both real and synthetic datasets to demonstrate
that the proposed algorithms are efficient and also top-k dominating
queries return meaningful results to users. Section 8 discusses alter-
native approaches for top-k dominating queries and query process-
ing on non-indexed data. Finally, Section 9 concludes the paper.

2 Related Work

Top-k dominating queries include a counting component which is
a case of multi-dimensional aggregation; in this section, we review
related work on spatial aggregation processing. In addition, as the
dominance relationship is relevant to skyline queries, we survey
existing methods for computing skylines.

2.1 Spatial Aggregation Processing

R-trees [12] have been extensively used as access methods for multi-
dimensional data and for processing spatial queries, e.g., range
queries, nearest neighbors [13], and skyline queries [23]. The ag-
gregate R-tree (aR-tree) [17, 22] augments to each non-leaf entry
of the R-tree an aggregate measure of all data points in the subtree
pointed by it. It has been used to speed up the evaluation of spatial
aggregate queries, where measures (e.g., number of buildings) in a
spatial region (e.g., a district) are aggregated.

x
0.5 1

0.5

1

y

e
1 e

2

e
3 e

4

e
5

e
6

e
7

e
13e

9

e
10

e
11

e
12

e
14

e
15 e

16

e
8

e17

e18

e19

e20

W

 

e
1

e
2

contents of leaf nodes omitted

10

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
11

e
12

e
13

e
14

e
15

e
16

e
17

e
18

e
19

e
20

10 10 10

2 3

3 2

3 2

2 3

3 2

2 3

2 3

3 2

root node

 

(a) a set of points (b) aCOUNTaR-tree

Figure 2: aR-tree example

Figure 2a shows a set of points in the 2D space, indexed by the
COUNTaR-tree in Figure 2b. Each non-leaf entry stores theCOUNT
of data points in its subtree. For instance, in Figure 2b, entrye17

has a count 10, meaning that the subtree ofe17 contains 10 points.
Suppose that a user asks for the number of points intersecting the
regionW , shown in Figure 2a. To process the query, we first ex-
amine entries in the root node of the tree. Entries that do not inter-
sectW are pruned because their subtree cannot contain any points
in W . If an entry is spatially covered byW (e.g., entrye19), its
count (i.e., 10) is added to the answer without accessing the cor-
responding subtree. Finally, if a non-leaf entry intersectsW but it
is not contained inW (e.g.,e17), search is recursively applied to
the child node pointed by the entry, since the corresponding sub-
tree may contain points inside or outsideW . Note that the counts
augmented in the entries effectively reduce the number of accessed
nodes. To evaluate the above example query, only 10 nodes in the
COUNTaR-tree are accessed but 17 nodes in an R-tree with the
same node capacity would be visited.

2.2 Skyline Computation

Börzs̈onyi et al. [2] were the first to propose efficient external mem-
ory algorithms for processing skyline queries. The BNL (block-
nested-loop) algorithm scans the dataset while employing a bounded
buffer for tracking the points that cannot be dominated by other
points in the buffer. A point is reported as a result if it cannot be
dominated by any other point in the dataset. On the other hand,
the DC (divide-and-conquer) algorithm recursively partitions the
dataset until each partition is small enough to fit in memory. After
the local skyline in each partition is computed, they are merged to
form the global skyline. The BNL algorithm was later improved to
SFS (sort-filter-skyline) [8] and LESS (linear elimination sort for
skyline) [11] in order to optimize the average-case running time.

The above algorithms are generic and applicable for non-indexed
data. On the other hand, [25, 16, 23] exploit data indexes to acceler-
ate skyline computation. The state-of-the-art algorithm is the BBS
(branch-and-bound skyline) algorithm [23], which is shown to be
I/O optimal for computing skylines on datasets indexed by R-trees.

Recently, the research focus has been shifted to the study of
queries based on variants of the dominance relationship. [20] pro-
pose a data cube structure for speeding up the evaluation of queries
that analyze the dominance relationship of points in the dataset.



However, incremental maintenance of the data cube over updates
has not been addressed in [20]. Clearly, it is prohibitively expen-
sive to recompute the data cube from scratch for dynamic datasets
with frequent updates. [6] identify the problem of computingtop-k
frequent skylinepoints, where the frequency of a point is defined
by the number of dimensional subspaces. [5] study thek-dominant
skylinequery, which is based on thek-dominance relationship. A
point p is said tok-dominate another pointp′ if p dominatesp′ in
at least onek-dimensional subspace. Thek-dominant skyline con-
tains the points that are notk-dominated by any other point. When
k decreases, the size of thek-dominant skyline also decreases. Ob-
serve that [20, 6, 5] cannot be directly applied to evaluate top-k
dominating queries studied in this paper.

Finally, [28, 24] study the efficient computation of skylines for
every subspace; [26] propose a technique for retrieving the sky-
line for a given subspace; [1, 15] investigate skyline computation
over distributed data; [10, 7] develop techniques for estimating the
skyline cardinality; [21] study continuous maintenance of the sky-
line over a data stream; and [4] address skyline computation over
datasets with partially-ordered attributes.

3 Preliminary
In this section, we discuss some fundamental properties of top-k
dominating search, assuming that the data have been indexed by
an aR-tree. In addition, we propose an optimized version for the
existing top-k dominating algorithm [23] that operates on aR-trees.

3.1 Score Bounding Functions

Before presenting our top-k dominating algorithms, we first intro-
duce some notation that will be used in this paper. For an aR-tree
entry e (i.e., a minimum bounding box) whose projection on the
i-th dimension is the interval[e[i]−, e[i]+], we denote its lower
cornere− and upper cornere+ by

e− = (e[1]−, e[2]−, · · · , e[d]−)

e+ = (e[1]+, e[2]+, · · · , e[d]+)

Observe that bothe− ande+ do not correspond to actual data points
but they allow us to express dominance relationships among points
and minimum bounding boxes conveniently. As Figure 3 illus-
trates, there are three cases for a point to dominate a non-leaf entry.
Sincep1 � e−1 (i.e., full dominance),p1 must also dominateall
data points indexed undere1. On the other hand, pointp2 dom-
inatese+

1 but note−1 (i.e., partial dominance), thusp2 dominates
some, but not all data points ine1. Finally, asp3 � e+

1 (i.e., no
dominance),p3 cannot dominate any point ine1. Similarly, the
cases for an entry to dominate another entry are: (i) full dominance
(e.g.,e+

1 � e−3 ), (ii) partial dominance (e.g.,e−1 � e+
4 ∧e+

1 � e−4 ),
(iii) no dominance (e.g.,e−1 � e+

2 ).
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Figure 3: Dominance relationship among aR-tree entries

Given a tree entrye, whose sub-tree has not been visited,µ(e+)
andµ(e−) correspond to thetightmostlower and upper score bounds

respectively, for any point indexed undere. As we will show later,
µ(e+) andµ(e−) can be computed by a search procedure that ac-
cesses only aR-tree nodes that intersecte along at least one dimen-
sion. These bounds help pruning the search space and defining a
good order for visiting aR-tree nodes. Later in Sections 4 and 5, we
replace the tight boundsµ(e+) andµ(e−) with loose lower and up-
per bounds for them (µl(e) andµu(e), respectively). Boundsµl(e)
andµu(e) are cheaper to compute and can be progressively refined
during search, therefore trading-off between computation cost and
bound tightness. The computation and use of score bounds in prac-
tice will be further elaborated there.

3.2 Optimizing the Skyline-Based Approach

Papadias et al. [23] proposed a Skyline-Based Top-k Dominating
Algorithm (STD) for top-k dominating queries, on data indexed by
an R-tree. They noted that the skyline is guaranteed to contain the
top-1 dominating point, since a non-skyline point has lower score
than at least one skyline point that dominates it (see Equation 3).
Thus, STD retrieves the skyline points, computes theirµ scores and
outputs the pointp with the highest score. It then removesp from
the dataset, incrementally finds the skyline of the remaining points,
and repeats the same process.

Consider for example a top-2 dominating query on the dataset
shown in Figure 4. STD first retrieves the skyline pointsp1, p2,
andp3 (using the BBS skyline algorithm of [23]). For each skyline
point, a range query is issued to count the number of points it dom-
inates. After that, we haveµ(p1) = 1, µ(p2) = 4, andµ(p3) = 1.
Hence,p2 is reported as the top-1 result. We now restrict the re-
gion of searching for the next result. First, Equation 3 suggests that
the region dominated by the remaining skyline points (i.e.,p1 and
p3) needs not be examined. Second, the region dominated byp2

(i.e., the previous result) may contain some points which are not
dominated by the remaining skyline pointsp1 andp3. It suffices to
retrieve the skyline points (i.e.,p4 andp5) in the constrained (gray)
regionM shown in Figure 4. After counting their scores using the
tree, we haveµ(p4) = 2 andµ(p5) = 1. Finally, we compare them
with the scores of retrieved points (i.e.,p1 andp3) and reportp4 as
the next result.
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Figure 4: Constrained skyline

In this section, we present two optimizations that greatly reduce
the I/O cost of the above solution by exploiting aR-trees. Our first
optimization is calledbatch counting. Instead of iteratively ap-
plying separate range queries to compute the scores of the skyline
points, we perform them in batch. Algorithm 1 shows the pseudo-
code of this recursive batch counting procedure. It takes two para-
meters: the current aR-tree nodeZ and the set of pointsV , whose
µ scores are to be counted. Initially,Z is set to the root node of
the tree andµ(p) is set to 0 for eachp ∈ V . Let e be the cur-
rent entry inZ to be examined. As illustrated in Section 3.1, ife
is a non-leaf entry and there exists some pointp ∈ V such that
p � e+ ∧ p � e−, thenp may dominate some (but not guaranteed
to dominate all) points indexed undere. Thus, we cannot imme-



diately decide the number of points ine dominated byp. In this
case, we have to invoke the algorithm recursively on the child node
pointed bye. Otherwise, for each pointp ∈ V , its score is incre-
mented byCOUNT(e) when it dominatese−. BatchCount correctly
computes theµ score for allp ∈ V , at a single tree traversal.

Algorithm 1 Batch Counting
algorithm BatchCount(NodeZ, Point setV )

1: for all entriese ∈ Z do
2: if Z is non-leaf and∃p ∈ V, p � e+ ∧ p � e− then
3: read the child nodeZ′ pointed bye;
4: BatchCount(Z′, V );
5: else
6: for all pointsp ∈ V do
7: if p � e− then
8: µ(p):=µ(p)+COUNT(e);

Algorithm 2 is a pseudo-code of the Iterative Top-k Dominating
Algorithm (ITD), which optimizes the STD algorithm of [23]. Like
STD, ITD computes the top-k dominating points iteratively. In the
first iteration, ITD computes inV ′ the skyline of the whole dataset,
while in subsequent iterations, the computation isconstrainedto a
regionM . M is the region dominated by the reported pointq in the
previous iteration, but not any point in the setV of retrieved points
in past iterations. At each loop, Lines 6–8 compute the scores for
the points inV ′ in batches ofB points each (B ≤ |V ′|). By de-
fault, the value ofB is set to the number of points that can fit into a
memory page. Our second optimization is that we sort the points in
V ′ by a space-filling curve (Hilbert ordering) [3] before applying
batch counting, in order to increase the compactness of the MBR
of a batch. After merging the constrained skyline with the global
one, the objectq with the highestµ score is reported as the next
dominating object, removed fromV and used to compute the con-
strained skyline at the next iteration. The algorithm terminates after
k objects have been reported.

For instance, in Figure 4,q corresponds to point(0, 0) andV =
∅ in the first loop, thusM corresponds to the whole space and
the whole skyline{p1, p2, p3} is stored inV ′, the points there are
sorted and split in batches and theirµ scores are counted using
the BatchCount algorithm. In the beginning of the second loop,
q = p2, V = {p1, p3}, andM is the gray region in the figure.
V ′ now becomes{p4, p5} and the corresponding scores are batch-
counted. The next point is then reported (e.g.,p4) and the algorithm
continues as long as more results are required.

Algorithm 2 Iterative Top-k Dominating Algorithm (ITD)

algorithm ITD(TreeR, Integerk)
1: V :=∅; q:=origin point;
2: for i := 1 to k do
3: M :=region dominated byq but by no point inV ;
4: V ′:=skyline points inM ;
5: sort the points inV ′ by Hilbert ordering;
6: for all batchesVc of (B) points inV ′ do
7: initialize all scores of points inVc to 0;
8: BatchCount(R.root,Vc);
9: V :=V ∪ V ′;

10: q:=the point with maximum score inV ;
11: removeq from V ;
12: report q as thei-th result;

4 Counting-Guided Search
The skyline-based solution becomes inefficient for datasets with
large skylines asµ scores of many points are computed. In addi-
tion, not all skyline points have largeµ scores. Motivated by these
observations, we study algorithms that solve the problem directly,
without depending on skyline computations. This section presents

aneagerapproach for the evaluation of top-k dominating queries,
which traverses the aR-tree and computes tight upper score bounds
for encountered non-leaf tree entries immediately; these bounds de-
termine the visiting order for the tree nodes. We discuss the basic
algorithm, develop optimizations for it, and investigate by an ana-
lytical study the improvements of these optimizations.

4.1 The Basic Algorithm

Recall from Section 3.1 that the score of any pointp indexed under
an entrye is upper-bounded byµ(e−). Based on this observation,
we can design a method that traverses aR-tree nodes in descending
order of their (upper bound) scores. The rationale is that points with
high scores can be retrieved early and accesses to aR-tree nodes that
do not contribute to the result can be avoided.

Algorithm 3 shows the pseudo code of the Simple Counting-
Guided Algorithm (SCG), which directs search by counting upper
bound scores of examined non-leaf entries. A max-heapH is em-
ployed for organizing the entries to be visited in descending order
of their scores.W is a min-heap for managing the top-k dominat-
ing points as the algorithm progresses, whileγ is thek-th score in
W (used for pruning). First, the upper bound scoresµ(e−) of the
aR-tree root entries are computed in batch (using the BatchCount
algorithm) and these are inserted into the max-heapH. While the
scoreµ(e−) of H ’s top entrye is higher thanγ (implying that
points with scores higher thanγ may be indexed undere), the top
entry is deheaped, and the nodeZ pointed bye is visited. IfZ is a
non-leaf node, its entries are enheaped, after BatchCount is called
to compute their upper score bounds. IfZ is a leaf node, the scores
of the points in it are computed in batch and the top-k setW (also
γ) is updated, if applicable.

Algorithm 3 Simple Counting Guided Algorithm (SCG)

algorithm SCG(TreeR, Integerk)
1: H:=new max-heap;W :=new min-heap;
2: γ:=0; . thek-th highest score found so far
3: BatchCount(R.root,{e− | e ∈ R.root});
4: for all entriese ∈ R.root do
5: enheap(H, 〈e, µ(e−)〉);
6: while |H| > 0 andH ’s top entry’s score> γ do
7: e:=deheap(H);
8: read the child nodeZ pointed bye;
9: if Z is non-leafthen

10: BatchCount(R.root,{e−c | ec ∈ Z});
11: for all entriesec ∈ Z do
12: enheap(H, 〈ec, µ(e−c )〉);
13: else . Z is a leaf
14: BatchCount(R.root,{p | p ∈ Z});
15: updateW andγ, using〈p, µ(p)〉,∀p ∈ Z

16: report W as the result;

As an example, consider the top-1 dominating query on the set of
points in Figure 5. There are 3 leaf nodes and their corresponding
entries in the root node aree1, e2, ande3. First, upper bound scores
for the root entries (i.e.,µ(e−1 ) = 3, µ(e−2 ) = 7, µ(e−3 ) = 3) are
computed by the batch counting algorithm, which incurs 3 node
accesses (i.e., the root node and leaf nodes pointed bye1 ande3).
Sincee2 has the highest upper bound score, the leaf node pointed
by e2 will be accessed next. Scores of entries ine2 are computed in
batch and we obtainµ(p1) = 5, µ(p2) = 1, µ(p3) = 2. Sincep1

is a point andµ(p1) is higher than the scores of remaining entries
(p2, p3, e1, e3), p1 is guaranteed to be the top-1 result.

4.2 Optimizations

Now, we discuss three optimizations that can greatly reduce the
cost of the basic SCG. First, we utilize encountered data points to
strengthen the pruning power of the algorithm. Next, we apply a
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Figure 5: Computing upper bound scores

lazy counting method that delays the counting for points, in order
to form better groups for batch counting. Finally, we develop a
lightweight technique for deriving upper score bounds of non-leaf
entries at low cost.

The pruner set. SCG visits nodes and counts the scores of points
and entries, based only on the condition that the upper bound score
of their parent entry is greater thanγ. However, we observe that
points which have been counted, but have scores at mostγ can also
be used to prune early other entries or points, which are dominated
by them.1 Thus, we maintain a pruner setF , which contains points
that (i) have been counted exactly (i.e., at Line 15), (ii) have scores
at mostγ, and (iii) are not dominated by any other point inF . The
third condition ensures that only minimal information is kept in
F .2 We perform the following changes to SCG in order to useF .
First, after deheaping an entrye (Line 7), we check whether there
exists a pointp ∈ F , such thatp � e−. If yes, thene is pruned
and the algorithm goes back to Line 6. Second, before applying
BatchCount at Lines 10 and 14, we eliminate any entries or points
that are dominated by a point inF .

Lazy counting. The performance of SCG is negatively affected
by executions of BatchCount for a small number of points. A batch
may have few points if many points in a leaf node are pruned with
the help ofF . In order to avoid this problem, we employ alazy
countingtechnique, which works as follows. When a leaf node is
visited (Line 13), instead of directly performing batch counting for
the pointsp, those that are not pruned byF are inserted into a set
L, with their upper bound scoreµ(e−) from the parent entry. If,
after an insertion, the size ofL exceedsB (the size of a batch), then
BatchCount is executed for the contents ofL, and allW , γ, F are
updated. Just before reporting the final result set (Line 16), batch
counting is performed for potential resultsp ∈ L not dominated
by any point inF and with upper bound score greater thanγ. We
found that the combined effect of the pruner set and lazy counting
lead to 30% I/O cost reduction of SCG, in practice.

Lightweight upper bound computation. As mentioned in Sec-
tion 3.1, the tight upper score boundµ(e−) can be replaced by a
looser, cheaper to compute, boundµu(e). We propose an opti-
mized version of SCG, called Lightweight Counting Guided Algo-
rithm (LCG). Line 10 of SCG (Algorithm 3) is replaced by a call
to LightBatchCount, which is a variation of BatchCount. In spe-
cific, when bounds for a setV of non-leafentries are counted, the
algorithm avoids expensive accesses at aR-tree leaf nodes, but uses
entries at non-leaf nodes to derive looser bounds.

LightBatchCount is identical to Algorithm 1, except that the re-
cursion of Line 2 is applied whenZ is at least two levels above leaf

1Suppose that a pointp satisfiesµ(p) ≤ γ. Applying Equation 3, if a point
p′ is dominated byp, then we haveµ(p′) < γ.
2Note thatF is the skyline of a specific data subset.

nodes and there is a point inV that partially dominatese; thus, the
else statement at Line 5 now refers to nodes one level above the
leaves. In addition, the condition at Line 7 is replaced byp � e+;
i.e., COUNT(e) is added toµu(p), even if p partially dominates
entrye.

As an example, consider the three root entries of Figure 5. We
can compute loose upper score bounds forV = {e−1 , e−2 , e−3 },
without accessing the leaf nodes. Since,e−2 fully dominatese2 and
partially dominatese1, e3, we getµu(e2) = 9. Similarly, we get
µu(e1) = 3 andµu(e3) = 3. Although these bounds are looser
than the respective tight ones, they still provide a good order of vis-
iting the entries and they can be used for pruning and checking for
termination. In Section 7, we demonstrate the significant compu-
tation savings by this lightweight counting (ofµu(e)) over exact
counting (ofµ(e−)) and show that it affects very little the pruning
power of the algorithm. Next, we investigate its effectiveness by a
theoretical analysis.

4.3 Analytical Study

Consider a datasetD with N points, indexed by an aR-tree whose
nodes have an average fanoutf . Our analysis is based on the as-
sumption that the data points are uniformly and independently dis-
tributed in the domain space[0, 1]d, whered is the dimensionality.
Then, the tree heighth and the number of nodesni at leveli (let
the leaf level be0) can be estimated byh = 1 + dlogf (N/f)e
and ni = N/f i+1. Besides, the extent (i.e., length of any 1D
projection)λi of a node at thei-th level can be approximated by
λi = (1/ni)

1/d [27].

We now discuss the trade-off of lightweight counting over exact
counting for a non-leaf entrye. Recall that theexactupper bound
scoreµ(e−) is counted as the number of points dominated by its
lower cornere−. On the other hand, lightweight counting obtains
µu(e); an upper bound ofµ(e−). For a givene−, Figure 6 shows
that the space can be divided into three regions, with respect to
nodes at leveli. The gray regionM2 corresponds to the maximal
region, covering nodes (at leveli) that arepartially dominated by
e−. While computingµ(e−), only the entries which arecompletely
insideM2 need to be further examined (e.g.,eA). Other entries are
pruned after either disregarding their aggregate values (e.g.,eB ,
which intersectsM1), or adding these values toµ(e−) (e.g.,eC ,
which intersectsM3).
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 Figure 6: I/O cost of computing upper bound

Thus, the probability of accessing a (i-th level) node can be ap-
proximated by the area ofM2, assuming that tree nodes at the same
level have no overlapping. To further simplify our analysis, sup-
pose that all coordinates ofe− are of the same valuev. Hence, the
aR-tree node accesses required for computing the exactµ(e−) can



be expressed as3:

NAE(e−) =

h−1X

i=0

ni · [(1− v + λi)
d − (1− v − λi)

d] (4)

In the above equation, the quantity in the square brackets corre-
sponds to the volume ofM2 (at level i) over the volume of the
universe (this equals to 1), capturing thus the probability of a node
at leveli to be completely insideM2. The node accesses of light-
weight computation can also be captured by the above equation,
except that no leaf nodes (i.e., at level 0) are accessed. As there are
many more leaf nodes than non-leaf nodes, lightweight computa-
tion incurs significantly lower cost than exact computation.

Now, we compare the scores obtained by exact computation and
lightweight computation. The exact scoreµ(e−) is determined by
the area dominated bye−:

µ(e−) = N · (1− v)d (5)

In addition to the above points, lightweight computation counts also
all points inM2 for the leaf level into the upper bound score:

µu(e) = N · (1− v + λ0)
d (6)

Summarizing, three factorsN , v, andd affect the relative tight-
ness of the lightweight score bound over the exact bound.

• WhenN is large, the leaf node extentλ0 is small and thus
the lightweight score is tight.

• If v is small, i.e.,e− is close to the origin and has high domi-
nating power, thenλ0 becomes less significant in Equation 6
and the ratio ofµu(e) to µ(e−) is close to 1 (i.e., lightweight
score becomes relatively tight).

• As d increases (decreases),λ0 also increases (decreases) and
the lightweight score gets looser (tighter).

In practice, during counting-guided search, entries close to the
origin have higher probability to be accessed than other entries,
since their parent entries have higher upper bounds and they are pri-
oritized by search. As a result, we expect that the second case above
will hold for most of the upper bound computations and lightweight
computation will be effective.

5 Priority-Based Traversal
In this section, we present alazyalternative to the counting-guided
method. Instead of computing upper bounds of visited entries by
explicit counting, we defer score computations for entries, but main-
tain lower and upper bounds for them as the tree is traversed. Score
bounds for visited entries are gradually refined when more nodes
are accessed, until the result is finalized with the help of them. For
this method to be effective, the tree is traversed with a carefully-
designed priority order aiming at minimizing I/O cost. We present
the basic algorithm, analyze the issue of setting an appropriate or-
der for visiting nodes, and discuss its implementation.

5.1 The Basic Algorithm

Recall that counting-guided search, presented in the previous sec-
tion, may access some aR-tree nodes more than once due to the ap-
plication of counting operations for the visited entries. For instance
in Figure 5, the node pointed bye1 may be accessed twice; once
for counting the scores of points undere2 and once for counting

3For simplicity, the equation does not consider the boundary effect (i.e.,v
is near the domain boundary). To capture the boundary effect, we need to
bound the terms(1− v + λi) and(1− v − λi) within the range[0, 1].

the scores of points undere1. We now propose a top-k dominating
algorithm which traverses each node at most once and has reduced
I/O cost.

Algorithm 4 shows the pseudo-code of this Priority-Based Tree
Traversal Algorithm (PBT). PBT browses the tree, while maintain-
ing (loose) upperµu(e) and lowerµl(e) score bounds for the en-
triese that have been seen so far. The nodes of the tree are visited
based on apriority order. The issue of defining an appropriate or-
dering of node visits will be elaborated later. During traversal, PBT
maintains a setS of visited aR-tree entries. An entry inS can ei-
ther: (i) lead to a potential result, or (ii) be partially dominated by
other entries inS that may end up in the result.W is a min-heap,
employed for tracking the top-k points (in terms of theirµl scores)
found so far, whereasγ is the lowest score inW (used for pruning).

First, the root node is loaded, and its entries are inserted intoS
after upper score bounds have been derived from information in the
root node. Then (Lines 8-18), whileS contains non-leaf entries, the
non-leaf entryez with the highest priority is removed fromS, the
corresponding tree nodeZ is visited and (i) theµu (µl) scores of
existing entries inS (partially dominatingez) are refined using the
contents ofZ, (ii) µu (µl) values for the contents ofZ are com-
puted and, in turn, inserted toS. Note that for operations (i) and
(ii), only information from the current node andS is used; no addi-
tional accesses to the tree are required. Updates and computations
of µu scores are performed incrementally with the information of
ez and entries inS that partially dominateez. W is updated with
points/entries of higherµl thanγ. Finally (Line 20), entries are
pruned fromS if (i) they cannot lead to points that may be in-
cluded inW , and (ii) are not partially dominated by entries leading
to points that can reachW .

Algorithm 4 Priority-Based Tree Traversal Algorithm (PBT)

algorithm PBT(TreeR, Integerk)
1: S:=new set; . entry format inS: 〈e, µl(e), µu(e)〉
2: W :=new min-heap; . k points with the highestµl

3: γ:=0; . thek-th highestµl score found so far
4: for all ex ∈ R.root do
5: µl(ex):=

P
e∈R.root∧e+

x �e−COUNT(e);
6: µu(ex):=

P
e∈R.root∧e−x �e+COUNT(e);

7: insertex into S and updateW ;
8: while S contains non-leaf entriesdo
9: removeez: non-leaf entry ofS with the highestpriority;

10: read the child nodeZ pointed byez;
11: for all ey ∈ S such thate+

y � e−z ∧ e−y � e+
z do

12: µl(ey):=µl(ey) +
P

e∈Z∧e+
y �e−COUNT(e);

13: µu(ey):=µl(ey) +
P

e∈Z∧e+
y �e−∧e−y �e+COUNT(e);

14: Sz:=Z ∪ {e ∈ S | e+
z � e− ∧ e−z � e+};

15: for all ex ∈ Z do
16: µl(ex):=µl(ez) +

P
e∈Sz∧e+

x �e−COUNT(e);

17: µu(ex):=µl(ex) +
P

e∈Sz∧e+
x �e−∧e−x �e+COUNT(e);

18: insert all entries ofZ into S;
19: updateW (andγ) by e′ ∈ S whose score bounds changed;
20: remove entriesem from S whereµu(em) < γ and¬∃e ∈

S, (µu(e) ≥ γ) ∧ (e+ � e−m ∧ e− � e+
m);

21: report W as the result;

It is important to note that, at Line 21 of PBT, all non-leaf entries
have been removed from the setS, and thus (result) points inW
have their exact scores found.

To comprehend the functionality of PBT consider again the top-
1 dominating query on the example of Figure 5. For the ease of
discussion, we denote the score bounds of an entrye by the in-
tervalµ?(e)=[µl(e), µu(e)]. Initially, PBT accesses the root node



and its entries are inserted intoS after their lower/upper bound
scores are derived (see Lines 5–6);µ?(e1)=[0, 3], µ?(e2)=[0, 9],
µ?(e3)=[0, 3]. Assume for now, that visited nodes are prioritized
(Lines 9-10) based on the upper bound scoresµu(e) of entries
e ∈ S. Entry e2, of the highest scoreµu in S is removed and
its child nodeZ is accessed. Sincee−1 � e+

2 and e−3 � e+
2 ,

the upper/lower score bounds of remaining entries{e1, e3} in S
will not be updated (the condition of Line 11 is not satisfied). The
score bounds for the pointsp1, p2, andp3 in Z are then computed;
µ?(p1)=[1, 7], µ?(p2)=[0, 3], andµ?(p3)=[0, 3]. These points are
inserted intoS, andW={p1} with γ=µl(p1)=1. No entry or point
in S can be pruned, since their upper bounds are all greater thanγ.
The next non-leaf entry to be removed fromS is e1 (the tie with
e3 is broken arbitrarily). The score bounds of the existing entries
S={e3, p1, p2, p3} are in turn refined;µ?(e3) remains[0, 3] (unaf-
fected bye1), whereasµ?(p1)=[3, 6], µ?(p2)=[1, 1], andµ?(p3)
=[0, 3]. The scores of the points indexed bye1 are computed;
µ?(p4)=[0, 0], µ?(p5)=[0, 0], andµ?(p6)=[1, 1] andW is updated
to p1 with γ=µl(p1)=3. At this stage, all points, except fromp1,
are pruned fromS, since theirµu scores are at mostγ and they are
not partially dominated by non-leaf entries that may contain poten-
tial results. Although no point frome3 can have higher score than
p1, we still have to keepe3, in order to compute the exact score of
p1 in the next round.

5.2 Traversal Orders in PBT

An intuitive method for prioritizing entries at Line 9 of PBT, hinted
by theupper bound principleof [19] or thebest-first orderingof
[13, 23], is to pick the entryez with the highest upper bound score
µu(ez); such an order would visit the points that have high prob-
ability to be in the top-k dominating result early. We denote this
instantiation of PBT by UBT (for Upper-bound Based Traversal).

Nevertheless a closer look into PBT (Algorithm 4) reveals that
the upper score bounds alone may not offer the best priority order
for traversing the tree. Recall that the pruning operation (at Line
20) eliminates entries fromS, saving significant I/O cost and lead-
ing to the early termination of the algorithm. The effectiveness of
this pruning depends on thelowerbounds of the best points (stored
in W ). Unless these bounds are tight enough, PBT will not termi-
nate early andS will grow very large.

For example, consider the application of UBT to the tree of Fig-
ure 2. The first few nodes accessed are in the order: root node,
e18, e11, e9, e12. Althoughe11 has the highest upper bound score,
it partially dominateshigh-level entries (e.g.,e17 ande20), whose
child nodes have not been accessed yet. As a result, the best-k score
γ (i.e., the current lower bound score ofe11) is small, few entries
can be pruned, and the algorithm does not terminate early.

Thus, the objective of search is not only to (i) examine the en-
tries of large upper bounds early, which leads to early identification
of candidate query results, but also (ii) eliminate partial dominance
relationships between entries that appear inS, which facilitates the
computation of tight lower bounds for these candidates. We now
investigate the factors affecting the probability that one node par-
tially dominates another and link them to the traversal order of PBT.
Let a andb be two random nodes of the tree such thata is at level
i andb is at levelj. Using the same uniformity assumptions and
notation as in Section 4.3, we can infer that the two nodesa andb
not intersect along dimensiont with probability4:

Pr(a[t] ∩ b[t] = ∅) = 1− (λi + λj)

a andb have a partial dominance relationship when they intersect

4The current equation is simplified for readability. The probability equals
0 whenλi + λj > 1.

along at least one dimension. The probability of being such is:

Pr(
_

t∈[1,d]

a[t] ∩ b[t] 6= ∅) = 1− (1− (λi + λj))
d

The above probability is small when the sumλi + λj is minimized
(e.g.,a andb are both at low levels).

The above analysis leads to the conclusion that in order to min-
imize the partially dominating entry pairs inS, we should priori-
tize the visited nodes based on their level at the tree. In addition,
between entries at the highest level inS, we should choose the
one with the highest upper bound, in order to find the points with
high scores early. Accordingly, we propose an instantiation of PBT,
called Cost-Based Traversal (CBT). CBT corresponds to Algorithm
4, such that, at Line 9, the non-leaf entryez with the highest level is
removed fromS and processed; if there are ties, the entry with the
highest upper bound score is picked. In Section 7, we demonstrate
the advantage of CBT over UBT in practice.

5.3 Implementation Details

A straightforward implementation of PBT may lead to very high
computational cost. At each loop, the burden of the algorithm is
the pruning step (Line 20 of Algorithm 4), which has worst-case
cost quadratic to the size ofS; entries are pruned fromS if (i)
their upper bound scores are belowγ and (ii) they are not partially
dominated by any other entry with upper bound score aboveγ. If
an entryem satisfies (i), then a scan ofS is required to check (ii).

In order to check for condition (ii) efficiently, we use a main-
memory R-treeI(S) to index the entries inS having upper bound
score aboveγ. When the upper bound score of an entry drops be-
low γ, it is removed fromI(S). When checking for pruning ofem

at Line 20 of PBT, we only need to examine the entries indexed by
I(S), as only these have upper bound scores aboveγ. In particu-
lar, we may not even have to traverse the whole indexI(S). For
instance, if a non-leaf entrye′ in I(S) does not partially dominate
em, then we need not check for the subtree ofe′. As we verified
experimentally, maintainingI(S) enables the pruning step to be
implemented efficiently. In addition toI(S), we tried additional
data structures for accelerating the operations of PBT (e.g., a pri-
ority queue for popping the next entry fromS at Line 9), however,
the maintenance cost of these data structures (as the upper bounds
of entries inS change frequently at Lines 11-13) did not justify the
performance gains by them.

6 Extensions
This section discusses interesting extensions to the basic form of
top-k dominating queries we have studied so far. We note that the
query types that are discussed here are original; to our knowledge
they have not been mentioned or studied in the literature before.

6.1 Generic Aggregate Functions and Point Significance

We can generalize the top-k dominating query to include any ag-
gregate functionagg (i.e., instead ofCOUNT) and weightsw(p) of
significance on pointsp (i.e., instead of all points having the same
significancew(p) = 1). The generalized scoring function is de-
fined as:

µagg(p) = agg { w(p′) | p′ ∈ D ∧ p � p′ } (7)

It is not hard to see that our proposed techniques can be directly
used for a generalized top-k dominating query, for distributive and
monotone aggregate functions (likeSUM, MAX, MIN) and weights
of importance on the points. For this purpose, we can use an aggre-
gate R-tree, where entries are augmented with the aggregate score
of w(p), for all pointsp under them.



Only slight modifications have to be made in our algorithms be-
cause the fundamental property of score dominance (in Equation
3) holds not only forCOUNT(i.e., the default top-k dominating
query), but also forSUMandMAX. The case forSUMcan be directly
solved by our algorithms. RegardingMAX, the counting opera-
tions (in ITD, LCG) and incremental refinement of score bounds (in
PBT) need to be modified forMAXcorrespondingly. Interestingly,
MAXprovides us an opportunity to further optimize such counting
operations and score refinements. As an example, Figure 7a shows
the locations of the points with their weights in brackets. The points
are indexed by aMAXaR-tree and the non-leaf entriese2 ande3 are
augmented with the weights 0.9 and 0.7 respectively. Suppose that
we need to computeµmax(p1), the score ofp1. We first access the
child node ofe2 and updateµmax(p1) to 0.9. Now, even though
p1 partially dominatese3, we need not access the node ofe3 as it
cannot further improveµmax(p1).

Note that query results forMIN can be obtained by evaluating a
query forMAX. Specifically, assuming that the interval[0, 1] is the
domain of possible weightsw(p), our algorithms can be adapted
as follows: (i) for each visited point (and entry), convert its weight
w(p) to 1 − w(p), (ii) evaluate the query forMAXto retrieve re-
sults, and (iii) at the end, transform each result valuev to 1− v for
obtaining the final results.
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Figure 7: Variants of top-k dominating queries

6.2 Bichromatic Top-k Dominating Queries

Given aproviderdatasetDP and aconsumerdatasetDA, the score
of an objectp ∈ DP is defined as:

µA(p) = | { a ∈ DA | p � a } | (8)

A bichromatic top-k dominating query retrievesk data objects in
DP with the highestµA score. As an example of the applicabil-
ity of this query, consider the points in Figure 7b, whereDP =
{p1, p2, p3} stores the feature values of different hotels (shown as
white points) andDA = {a1, a2, a3, a4} records the requirements
for a hotel specified by different customers (shown as black points).
For example, customera1 = (0.55, 0.73) will only stay in a hotel
whosex (time to the conference venue) andy (room price) val-
ues are at most 0.55 and 0.73 respectively. The bichromatic top-k
dominating query could be used to find the most popular hotel; i.e.,
the one that fulfills the requirements of the largest number of cus-
tomers. In this example, we haveµA(p1) = 2, µA(p2) = 3, and
µA(p3) = 1. Thus, the bichromatic top-1 point isp2.

Algorithms ITD and LCG can be adapted for bichromatic queries
with slight modifications. In particular, candidate points are ac-
cessed from the aR-tree onDP while their scores are counted using
the aR-tree onDA.

The extensions of PBT for bichromatic queries are more com-
plex. Two setsSP andSA are employed for managing visited en-
tries inDP andDA respectively, and initially they contain root

entries of the corresponding tree. First, a non-leaf entryeA (e.g.,
according to CBT order) is removed fromSA. After accessing the
child node ofeA, its entries are inserted toSA in order to refine
score bounds of entries inSP . Second, a non-leaf entryeP (e.g.,
according to CBT order) is removed fromSP . After accessing the
child node ofeP , its entries are inserted toSP and their score
bounds are refined by entries inSA. Whenever score bounds of
entries inSP change, the result setW and the best-k scoreγ are
updated. In addition, an entryex ∈ SP is pruned when its upper
bound scoreµu

A(ex) is belowγ. On the other hand, an entry inSA

is pruned if it is not partially dominated by any entry inex ∈ SP

with µu
A(ex) ≥ γ. The above procedure repeats untilSA becomes

empty andSP contains the same objects as inW (i.e, all other
entries inSP have been eliminated).

7 Experimental Evaluation
In this section, we experimentally evaluate the performance of the
proposed algorithms. All algorithms in Table 1 were implemented
in C++ and experiments were run on a Pentium D 2.8GHz PC with
1GB of RAM. For fairness to the STD algorithm [23], it is imple-
mented with the spatial aggregation technique (discussed in Section
2.1) for optimizing counting operations on aR-trees. In Section 7.1
we present an extensive experimental study for the efficiency of the
algorithms with synthetically generated data. Section 7.2 studies
the performance of the algorithms on real data and demonstrates
the meaningfulness of top-k dominating points.

Name Description
STD Skyline-Based Top-k Dominating Algorithm [23]
ITD Optimized version of STD (Sec. 3.2)
SCG Simple Counting Guided Algorithm (Sec. 4)
LCG Lightweight Counting Guided Algorithm (Sec. 4)
UBT Upper-bound Based Traversal Algorithm (Sec. 5)
CBT Cost-Based Traversal Algorithm (Sec. 5)

Table 1: Description of the algorithms

7.1 Experiments With Synthetic Data

Data generation and query parameter values. We produced
three categories of synthetic datasets to model different scenar-
ios, according to the methodology in [2]. UI contains datasets
where point coordinates are random valuesuniformly and indepen-
dently generatedfor different dimensions. CO contains datasets
where point coordinates arecorrelated. In other words, for a point
p, its i-th coordinatep[i] is close top[j] in all other dimensions
j 6= i. Finally, AC contains datasets where point coordinates are
anti-correlated. In this case, points that are good in one dimension
are bad in one or all other dimensions. Table 2 lists the range of pa-
rameter values and their default values (in bold type). Each dataset
is indexed by an aR-tree with 4K bytes page size. We used an LRU
memory buffer whose default size is set to 5% of the tree size.

Parameter Values
Buffer size (%) 1, 2,5, 10, 20

Data size,N (million) 0.25, 0.5,1, 2, 4
Data dimensionality,d 2, 3, 4, 5
Number of results,k 1, 4,16, 64, 256

Table 2: Range of parameter values

Lightweight counting optimization in Counting-Guided search.
In the first experiment, we investigate the performance savings when
using the lightweight counting heuristic in the counting-guided al-
gorithm presented in Section 4. Using a default uniform dataset,
for different locations of a non-leaf entrye−, (after fixing all coor-
dinates ofe− to the same valuev), we compare (i) node accesses



of computing the exactµ(e−) with that of computing a conserva-
tive upper boundµu(e) using the lightweight approach and (ii) the
difference between these two bounds. Figure 8a shows the effect
of v (i.e., location ofe−) on node accesses of these two compu-
tations. Clearly, the lightweight approach is much more efficient
than the exact approach. Their cost difference can be two orders
of magnitude whene− is close to the origin. Figure 8b plots the
effect ofv on the value of upper bound score. Even though light-
weight computation accesses much fewer nodes, it derives a score
that tightly upper bounds the exact score (µu(e) is only 10% looser
thanµ(e−)). Summarizing, the lightweight approach is much more
efficient than the exact approach while still deriving a reasonably
tight upper bound score.
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Figure 8: The effect ofv, UI, N =1M, d = 3

Orderings in Priority-Based Traversal. In Section 5.2, we in-
troduced two priority orders for selecting the next non-leaf entry
to process at PBT: (i) UBT chooses the one with the highest up-
per bound score, and (ii) CBT, among those with the highest level,
chooses the one with the highest upper bound score. Having the-
oretically justified the superiority of CBT over UBT (in Section
5.2), we now demonstrate this experimentally. For the default top-
k dominating query on a UI dataset, we record statistics of the two
algorithms during their execution. Figure 9a shows the value ofγ
(i.e., the best-k score) for both UBT and CBT as the number of
loops executed. Note that in UBT/CBT, each loop (i.e., Lines 8–20
of Algorithm 4) causes one tree node access. Sinceγ rises faster in
CBT than in UBT, CBT has higher pruning power and thus termi-
nates earlier. Figure 9b plots the size ofS (i.e., number of entries
in memory) with respect to the number of loops. The size ofS in
CBT is much lower than that in UBT. Hence, CBT requires less
CPU time than UBT on book-keeping the information of visited
entries and negligible memory compared to the problem size. Both
figures show that our carefully-designed priority order in CBT out-
performs the intuitive priority order in UBT by a wide margin.

0e0

2e5

4e5

6e5

8e5

1e6

 0  1000  2000  3000  4000  5000  6000  7000

g
a

m
m

a

loop

UBT
CBT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  1000  2000  3000  4000  5000  6000  7000

s
iz

e
 o

f 
S

loop

UBT
CBT

(a) Value ofγ (b) Size ofS

Figure 9: The effect of ordering priorities, UI,N =1M, d = 3

Comparison of all algorithms and variants thereof. We now
compare all algorithms and their variants (STD, ITD, SCG, LCG,
UBT, CBT) for the default query parameters on UI, CO, and AC
datasets (Figure 10). In this and subsequent experiments, we com-
pile the I/O and CPU costs of each algorithm, by charging 10ms
I/O time per page fault, and show their I/O-CPU cost-breakdown.
ITD performs much better than the baseline STD algorithm of [23]

(even though STD operates on the aR-tree), due to the effectiveness
of the batch counting and Hilbert ordering techniques for retrieved
(constrained) skyline points. LCG and CBT significantly outper-
form ITD, as they need not compute the scores for the whole sky-
line, whose size grows huge for AC data. Note that the optimized
version of counting-guided search (LCG) outperforms the simple
version of the algorithm that computes exact upper bounds (SCG)
by a wide margin. Similarly, for priority-based traversal, CBT out-
performs UBT because of the reasons explained in the previous ex-
periment. Observe that the best priority-traversal algorithm (CBT)
has lower I/O cost than optimized counting-guided search (LCG),
since CBT accesses each node at most once but LCG may access
some nodes more than once during counting operations.
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Figure 10: Query cost (k = 16, N =1M, d = 3)

In remaining experiments, we only compare the best algorithms
from each gender (ITD, LCG, and CBT), for a wide range of query
and system parameter values. First, we study the effect of the buffer
on the performance of the algorithms. Figure 11 shows the cost
of the algorithms as a function of buffer size (%). Observe that
the costs of LCG and CBT with the smallest tested buffer (1% of
the tree size) are still much lower than that of ITD with the largest
buffer size (20%). Since CBT accesses each tree node at most once,
its cost is independent of the buffer. Clearly, CBT outperforms its
competitors for all tested buffer sizes. We note that the memory us-
age (for storing visited tree entries) of ITD, LCG, and CBT for UI
data are 0.03%, 0.02%, 0.96% of the tree size, respectively, and are
further reduced by 30% for CO data. For AC data the correspond-
ing values are 2.72%, 0.11%, and 1.48%. Besides, their memory
usage increases slowly withk and rises sublinearly withN . Even
atd = 5, their memory usage is only two times of that atd = 3.

We also investigated the effect ofk on the cost of the algorithms
(see Figure 12). In some tested cases of Figure 12a, the cost of
ITD is too high for the corresponding bar to fit in the diagram; in
these cases the bar is marked with a “≈” sign and the actual cost
is explicitly given. Observe that LCG and CBT outperform ITD in
all cases. Ask increases, ITD performs more constrained skyline
queries, leading to more counting operations on retrieved points.
CBT has lower cost than LCG for UI data because CBT accesses
each tree node at most once. For CO data, counting operations in
LCG become very efficient and thus LCG and CBT have similar
costs. On the other hand, for AC data, there is a wide performance
gap between LCG and CBT.

Figure 13 plots the cost of the algorithms as a function of the
data dimensionalityd. Again, ITD is inferior to its competitors for
most of the cases. Asd increases, the number of skyline points
increases rapidly but the number of points examined by LCG/CBT
increases at a slower rate. Again, CBT has lower cost than LCG for
all cases. Figure 14 investigates the effect of the data sizeN on the
cost of the algorithms. WhenN increases, the number of skyline
points increases considerably and ITD performs much more batch
counting operations than LCG. Also, the performance gap between
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Figure 11: Cost vs. buffer size (%),k = 16, N =1M, d = 3
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Figure 12: Cost vs.k, N =1M, d = 3
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Figure 13: Cost vs.d, N =1M, k = 16
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Figure 14: Cost vs.N , d = 3, k = 16

LCG and CBT widens.

Finally, we investigate the performance of the proposed algo-
rithms for bichromatic top-k dominating queries. In this experi-
ment, eachproviderdatasetDP (consumerdatasetDA) contains 1
million points in a 3-dimensional space,k is set to 16 and the LRU
memory buffer size is fixed to 5% of the sum of both tree sizes.
Figure 15 illustrates the cost of the algorithms for different combi-
nations ofDP andDA. For instance, the column UI/CO represents
the combination thatDP is a UI dataset andDA is a CO dataset.
The least expensive case is CO/CO because few points are exam-
ined inDP and the counting cost onDA is low. On the other hand,
the case AC/UI is the most expensive as many points need to be
examined inDP and the counting cost onDA is also high. Ob-
serve that LCG and CBT outperform ITD in all cases. Except the
cases CO/CO and CO/AC where LCG and CBT have similar costs,

CBT outperforms LCG by a wide margin in the other 7 cases. In
summary, for both monochromatic and bichromatic top-k dominat-
ing queries, CBT is the best algorithm, while in only few cases (for
correlated datasets) its performance is similar to LCG.
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Figure 15: Bichromatic queries,k = 16, NP = NA = 1M , d = 3



7.2 Experiments With Real Data

DatasetsWe experimented with three real multidimensional datasets:
FC5, NBA6, andBASEBALL7. FC contains 581012 forest land cells
(i.e., data objects), having four attributes: horizontal distance to
hydrology (hh), vertical distance to hydrology (vh), horizontal dis-
tance to roadways (hr), and horizontal distance to fire points (hf).
ForFC, small values are preferable to large ones at all dimensions.
NBAcontains regular season statistics of 19112 NBA players (i.e.,
data objects). In order for the query to be meaningful, only few
important attributes are selected for NBA players: games played
(gp), points (pts), rebounds (reb), and assists (ast). BASEBALL
consists of statistics of 36898 baseball pitchers (i.e., data objects).
Similarly, few important attributes are chosen for baseball pitchers:
wins (w), games (g), saves (sv), and strikeouts (so). In the last two
datasets, large values are preferable for all dimensions and each
player is uniquely identified by his/her name and year.

Performance Experiment Table 3 shows the cost of the algo-
rithms on two largest datasets (FC andBASEBALL) for different
values ofk, by fixing the buffer size to 5% of the tree size. Observe
that the cost of ITD becomes prohibitively expensive at high values
of k. Clearly, CBT has the lowest cost and the performance gap
between the algorithms widens ask increases.

time (seconds)
FC BASEBALL

k ITD LCG CBT ITD LCG CBT
1 262.3 162.0 62.0 4.6 13.0 0.9
4 413.0 166.6 69.7 9.4 16.5 1.8
16 814.2 204.2 78.9 22.8 18.4 2.5
64 2772.7 282.2 99.4 69.7 22.8 3.5
256 9942.1 523.0 176.4 271.1 38.6 5.9

Table 3: Query cost vs.k, real datasets

Meaningfulness of top-k dominating query results Table 4
shows the dominating scores and the attribute values of the top-
5 dominating players in theNBAandBASEBALLdatasets. Readers
familiar with these sports can easily verify that the returned results
match the public view of super-star players. Although the ranking
of objects by theirµ-scores may not completely match with every
personalized ranking suggested by individuals, a top-k dominating
query at least enables them to discover some representative “top”
objects without any specific domain knowledge. In addition, we
note that some of the top-k results do not belong to the skyline. For
example, theNBAplayer “Kevin Garnett / 2002” is the top-3 result,
even though it is dominated by the top-1 result (i.e., not a skyline
point). Similarly, the top-4BASEBALLpitcher is dominated by the
top-2. These players could not be identified by skyline queries.

Score NBA Player / Year gp pts reb ast
18585 Wilt Chamberlain / 1967 82 1992 1952 702
18299 Billy Cunningham / 1972 84 2028 1012 530
18062 Kevin Garnett / 2002 82 1883 1102 495
18060 Julius Erving / 1974 84 2343 914 462
17991 Kareem Abdul-Jabbar / 1975 82 2275 1383 413

Score BASEBALL Pitcher / Year w g sv so
34659 Ed Walsh / 1912 27 62 10 254
34378 Ed Walsh / 1908 40 66 6 269
34132 Dick Radatz / 1964 16 79 29 181
33603 Christy Mathewson / 1908 37 56 5 259
33426 Lefty Grove / 1930 28 50 9 209

Table 4: Top-5 dominating players
5Forest cover dataset, UCI KDD Archive. http://kdd.ics.uci.edu
6NBA Statistics v2.0. http://basketballreference.com/statsdownload.htm
7The Baseball Archive v5.3. http://baseball1.com/statistics/

The next experiment compares theµ-score distribution of top-
k dominating points and skyline points. For this, we first retrieve
the skyline points and then compute top-k dominating points, by
settingk to the number of skyline points (69 forNBA and 50 for
BASEBALL). Figure 16 plots the scores of top-k dominating points
and skyline points in the descending order. Clearly, top-k dominat-
ing points have much higher scores than skyline points, especially
for theBASEBALLdataset. This indicates that the top-k dominat-
ing points may be more informative regarding the popularity of the
players, when compared to skyline points. In addition, since the
skyline sizes of both datasets cannot be controlled by users, the sky-
line results could appear too many or too few to the user. Finally,
the skyline query does not provide the user an ordering of impor-
tance of the results, which could facilitate their post-processing.
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8 Discussion

In this section, we discuss the limitations of alternative solutions
for processing top-k dominating queries, based on dominating area
computation or materialization. In addition, we study the evalua-
tion of top-k dominating queries on non-indexed data.

8.1 Alternative Solutions

In order to gain a deeper understanding of the problem, we first ex-
plore straightforward solutions and discuss why they are either in-
feasible or inefficient. A simple approach for computing the top-k
dominating points could be to findK � k points with the high-
estdominating areafirst and then compute their scores in order to
obtain the final result. The dominating area [15] of a pointp is de-
fined asΦ(p) =

Qd
i=1(1− p[i]), assuming that the data domain is

[0, 1]d. This solution provides a good approximation of the actual
results for uniform datasets. Nevertheless, if the data distribution
is not uniform, the dominating area of a pointp is not necessarily
proportional toµ(p). Therefore, it is hard to set a boundK that
guarantees no result loss. In addition, recall that the scoreµ(p) of a
pointp is not only decided by its own coordinates but also by other
points in the dataset. Unlike measuring the dominating area, com-
putingµ(p) (or even its close approximation) requires accesses to
the data (i.e., incurs I/O cost).

Another approach is to materialize the scores for every point in
the dataset such that top-k dominating queries can be processed
very fast. However, the maintenance cost of the scores can be very
high. Suppose that we have pre-computed the scores for all the
points of Figure 4. If a point (e.g.,p7) is deleted from the dataset,
the score of any point (e.g.,p1, p2, p4) dominating it must be decre-
mented. Similarly, when a new pointp′ is inserted to the dataset,
µ(p′) needs to be computed and the score of any point dominating
p′ must be incremented. Since a single update may lead to score
modifications for many points (which may be expensive to find),
this approach is not appropriate for dynamic datasets.



8.2 Algorithms for Non-indexed Data

We now discuss how top-k dominating queries can be evaluated
efficiently on non-indexed data. To ease our discussion, we assume
thatY memory pages are available, the page capacity isB and the
dataset containsN tuples.

The basic block-nested-loop join algorithm can be adapted to
compute the scores of all data points and then return top-k results.
However, this method requiresN

B
· (1 + N

Y B
) page accesses and

does not scale well for large datasets. A better approach would be
to adapt the skyline-based solution in Section 3.2 for non-indexed
data. This solution is composed of two main operations: (i) finding
the skyline (or constrained skyline), and (ii) counting the scores
of the retrieved points (in batch). The skyline operation can be
implemented by LESS [11], the state-of-the-art external memory
skyline algorithm on non-indexed data. The counting operation,
implemented by scanning the dataset, can be performed in batches
of every Y B points (i.e., available memory). Although this ap-
proach only computes the scores for skyline points (and constrained
skyline points), its performance deteriorates for datasets with large
skyline. Another disadvantage is that the worst case I/O-cost of
LESS is still quadratic toN , according to [11].

We assert that the best solution is to first bulk-load an aR-tree
(e.g., using the algorithm of [18]) from the dataset and then com-
pute top-k dominating points by our algorithms. Bulk-loading re-
quires externally sorting the points atN

B
·(2+2·dlogY−1

N
Y B

e) disk
page accesses, which scales well for large datasets. As we showed
in Section 7, CBT and LCG (our best algorithms) are scalable.

9 Conclusion
In this paper, we studied the interesting and important problem of
processing top-k dominating queries on indexed multi-dimensional
data. Although the skyline-based algorithm in [23] is applicable to
the problem, it suffers from poor performance, as it unnecessar-
ily examines many skyline points. This motivated us to develop
carefully-designed solutions that exploit the intrinsic properties of
the problem for accelerating query evaluation. First, we proposed
ITD, which integrates the algorithm of [23] with our optimization
techniques (batch counting and Hilbert ordering). Next, we de-
veloped LCG, a top-k dominating algorithm that guides search by
computing upper bound scores for non-leaf entries, and utilizes a
lightweight (i.e., I/O-inexpensive) technique for computing upper
bound scores. Then, we proposed I/O efficient algorithm CBT that
accesses each node at most once. The effectiveness of our op-
timizations (lightweight counting technique in LCG and traversal
order in CBT) was analyzed theoretically.

Our experimental study suggests that LCG and CBT are the best
algorithms, typically being several times faster than ITD; a method
that is already significantly faster than the naive skyline-based ap-
proach of [23]. LCG and CBT scale well with the buffer size,k,
and the data sizeN . In addition, they scale better than ITD with
the data dimensionalityd. Nevertheless, the performance of LCG
varies according to the data distribution. CBT outperforms LCG for
uniform and anti-correlated data, while the two methods have sim-
ilar cost for correlated data. As CBT has stable performance across
different data distributions, its usage for top-k dominating queries
is recommended. Our experiments on real datasets demonstrate
that top-k dominating queries may deliver more useful results than
skyline queries. Finally, for the first time in the literature, we de-
fined and studied interesting variants of top-k dominating queries;
queries with arbitrary aggregate functions (as opposed toCOUNT),
queries where points carry weights of importance (as opposed to all
points having the same importance), and bichromatic top-k domi-
nating queries (where dominance is counted on another dataset).

In the future, we plan to develop specialized algorithms for non-
indexed data that rely on spatial hashing. Finally, we intend to
devise cheap, approximate techniques that compute the top-k dom-
inating set with some error guarantee.
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