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Abstract. Emerging spatial crowdsourcing platforms enable the workers (i.e.,
crowd) to complete spatial crowdsourcing tasks (like taking photos, conducting
citizen journalism) that are associated with rewards and tagged with both time
and location features. In this paper, we study the problem of online recommend-
ing an optimal route for a crowdsourcing worker, such that he can (i) reach his
destination on time and (ii) receive the maximum reward from tasks along the
route. We show that no optimal online algorithm exists in this problem. There-
fore, we propose several heuristics, and powerful pruning rules to speed up our
methods. Experimental results on real datasets show that our proposed heuristics
are very efficient, and return routes that contain 82–91% of the optimal reward.

1 Introduction

Spatial crowdsourcing platforms1 2 publish crowdsourcing tasks that are associated with
rewards and tagged with spatial / temporal attributes (e.g., location, release time and
deadline). To complete a task, a worker must reach the task’s location before its dead-
line. Popular tasks include taking photos, reporting activities / accidents, and verifying
data on-site, etc.

Regarding the matching between tasks and workers, existing approaches on spatial
crowdsourcing can be divided into: (i) the server-centric mode [15,16], where the server
assigns tasks to workers based on their reported locations / regions, or (ii) the worker-
centric mode [3,7,10], where the server publishes its tasks and let workers to choose any
task freely. In this paper, we adopt the worker-centric mode as it protects the location
privacy of the worker [10] and enables the worker to choose tasks autonomously from
different crowdsourcing platforms which he has registered in.

The closest work to ours is the maximum task scheduling (MTS) problem [10]. It
returns a route that covers the maximum number of tasks (in a worker’s specified region,
e.g., his city). Since [10] considers the MTS problem at a snapshot, it would not update
the worker’s route when new tasks arrive. We illustrate it in Figure 1a. Assume that we
use the Manhattan distance and each grid takes a time unit to travel. Each task pi is
tagged with its release time and deadline. Suppose that the worker starts from s at time
0. The MTS route is s → p1 → p2. The solution in [10] would not update the route
when new tasks are released (e.g., p3, p4).
? The research is partly supported by grant GRF 152201/14E from Hong Kong RGC.
1 www.clickworker.com/en/mobile-crowdsourcing
2 features.en.softonic.com/mobile-crowdsourcing-does-it-work
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(a) snapshot route by MTS [10] (b) online route by our method
Fig. 1. Route recommendation for the worker: each task pi with [release time - deadline]

In this paper, we wish to support two extra requirements compared to [10]: (R1)
update the worker’s route online with respect to newly released tasks and (R2) align
with the worker’s trip, i.e., reaching a destination before expected time. It is impor-
tant to support R1 in order to assign a worker as many tasks as possible. New spatial
crowdsourcing tasks are indeed being released continuously in real systems3. We also
consider the requirement R2 as the worker may have planned his own activities, e.g.,
reaching a specified destination by an expected time [17]. Such worker is willing to take
crowdsourcing tasks along his trip provided that he can arrive at his destination on time.

To this end, we study the online route recommendation problem for spatial crowd-
sourcing workers, by taking requirements R1 and R2 into consideration. Figure 1b il-
lustrates the route recommended by our method. Suppose that the worker starts from s at
time 0 and plans to arrive at home (5, 0) at time 8. At time 0, the worker is recommended
to take the task p2. When new tasks are released (e.g., p3, p4), the worker is recom-
mended to take them. In summary, our recommended route is s→ p2 → p3 → p4 → d,
which covers 3 tasks and reaches the destination d on time.

To the best of our knowledge, this paper is the first on tackling the online route rec-
ommendation problem for spatial crowdsourcing workers with destination and arrival
time constraints. We contribute the followings:

– We show that no algorithm can achieve a non-zero competitive ratio [2] in our
online problem, meaning that the number of tasks found by any online algorithm
may be arbitrarily small compared to the optimal offline solution.

– We propose two categories of heuristics (GetNextTask and Re-Route) that offer
trade-offs between the response time and the number of tasks. GetNextTask greed-
ily selects the next task to complete so it incurs a short response time. On the other
hand, Re-Route produces a route with more tasks as it conducts a complete search
to update the optimal route with respect to newly released tasks.

– We further propose pruning rules to reduce the response time of Re-Route.
Experiments on real datasets show that our methods take less than 1 second to update
the route, and return routes that contain 82–91% of the optimal number of tasks.

The remainder of this paper is organized as follows. We formally define our prob-
lem in Section 2. Then, we illustrate our proposed heuristics in Section 3 and present

3 www.clickworker.com/en/clickworkerjob
www.lionbridge.com



optimization techniques in Section 4. In Section 5, we test the performance of our pro-
posed techniques on both real and synthetic datasets. Section 6 highlights the related
work. Finally, we conclude our paper in Section 7.

2 Problem Statement

We first introduce some terminology and then define our problem formally.

Definition 1 (Task p). We denote a task by psid,kid = (loc, [t−p , t
+
p ]), where loc is the

task’s location, t−p , t
+
p are the release time and deadline of the task, respectively. The

subscripts sid and kid denote the task’s server ID and task ID, respectively. A worker
may complete p and collect the reward4 if he can reach p.loc before t+p .

Definition 2 (Query q). We denote a query q by q = (s, d, [t−q , t
+
q ]). s and d are the

worker’s start and destination locations, respectively. t−q and t+q are the start time from
s and expected arrival time at d, respectively.

Definition 3 (Travel Time τ ). We denote the travel time as τ(v, u) = dist(v,u)
speedq

, where
dist(v, u) is the distance5 between v and u, and speedq is the (constant) travel speed
of the worker for q. τ(R) denotes the travel time along a route R (via vertices on R).

With the above terminology, we are ready to define our problem formally below.

Problem 1 (Oriented Online Route Recommendation (OnlineRR)). Let a worker’s
query be q = (s, d, [t−q , t

+
q ]). OnlineRR aims to find a route such that it covers the

maximum number of tasks and the worker can arrive at d by t+q . It may update the route
according to the worker’s live location and the new tasks released by crowdsourcing
servers.
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Fig. 2. System architecture

We adopt the system architecture as depicted in Figure 2. Spatial crowdsourcing
servers publish new spatial crowdsourcing tasks. A worker may install our route rec-
ommender on his mobile device (smartphone). The route recommender is responsible
for: (i) collecting task information from different servers continuously, (ii) recommend-
ing / updating a route based on the worker’s current location and available tasks.

4 The reward of a task can be collected by the same worker for only once. Similar to [10], we
assume that each task has a unit reward and can be completed immediately.

5 Our method can be applied to any distance function provided that it satisfies the triangle in-
equality, such as Euclidean distance, Manhattan distance, and road network distance.



3 Online Route Recommendation

First, we prove in Section 3.1 that no online algorithm can achieve a non-zero compet-
itive ratio in OnlineRR. Then, we propose two categories of heuristic approaches for
OnlineRR in Sections 3.2 and 3.3.

3.1 Competitive Analysis

We use the competitive ratio [2] to measure the performance of online algorithms. Since
OnlineRR is a maximization problem, the competitive ratio CR is defined as:

CR = min
e∈E

count(Ralg(e))

count(Ropt(e))
(1)

where E denotes the set of all problem instances, Ralg(e) is the route recommended by
an online algorithm alg for instance e, Ropt(e) is the optimal route Ropt for instance e
(cf. Definition 4), and count(R∗(e)) means the number of tasks on R∗(e).

Definition 4 (Optimal route Ropt(e) for OnlineRR). Given a problem instance e,
we denote its optimal route by Ropt(e), which is obtained under assumption that the
information of all tasks are known in advance (even before their release times).

We show our competitive analysis below. It applies to any online algorithm, includ-
ing both deterministic algorithms and randomized algorithms.

Theorem 1. No online algorithm has a non-zero competitive ratio for OnlineRR.

Proof. Since CR = mine∈E
count(Ralg(e))
count(Ropt(e))

, it suffices to find a specific instance (i.e.,
the adversary) that makes CR as low as possible. Without loss of generality, in the
following proof, we consider only locations on the positive half line [0,+∞). For the
query, we set t−q = 0, s = 0, t+q = 10, d = 7. Assume that speedq = 1, that is
τe(v, u) = |v − u|. We simply denote a task p by (p.loc, [t−p , t

+
p ]).

At time 0, the adversary releases a task p1 = (3, [0, 3]). At time m = 3, the adver-
sary will check the worker’s current location (say x), and then decides to further release
n tasks accordingly. There are two cases: (1) x = 0, or (2) x > 0. We show that the
adversary can release those n tasks to make CR arbitrarily small.

Case 1: x = 0. In this case, the adversary will release tasks p2≤i≤n+1 = (2, [3, 4])
(see Figure 3a). The worker cannot complete these tasks, since he cannot reach them

0(x)

p2...n+1: [3-4]

7

d

2 3

p1: [0-3]

0 7

d

x 3

p1: [0-3]

p2...n+1: [3-]

(a) Case 1: the worker cannot reach the location of (b) Case 2: the worker cannot proceed to
p2≤i≤n+1 before their deadline (i.e., time 4) p2≤i≤n+1 and arrive at d on time
Fig. 3. At time m = 3, adversaries release tasks p2≤i≤n+1 with [release time - deadline]



before their deadlines, and thus count(Ralg) = 0. But if all tasks are known in advance,
the worker can wait at position 2 until all tasks are released and finish them on time
m = 3. In this case, the competitive ratio is: CR = 0/n = 0.

Case 2: x > 0. In this case, the adversary would release n tasks p2≤i≤n+1 =
(0, [m,∞]) (see Figure 3b). As m + x + d > m + d = 10 = t+q , the worker cannot
proceed to position 0 at time m; otherwise, he cannot reach d before t+q . So, the worker
can finish at most the task p1 only if he moves directly to m at time 0. However, if all
tasks are known in advance, the worker could stay at 0 until time m = 3 to finish tasks
p2≤i≤n+1, and thus count(Ropt) = n. Therefore, CR ≤ 1/n→ 0 because n can be an
arbitrary large value.

3.2 Greedy Task Approach

In this section, we present a greedy approach that incurs low response times.
The greedy approach works as follows. Initially, it calls GetNextTask (cf. Algo-

rithm 1) to find the first task for the worker. Given the set of available6 tasks P and
the worker’s location snow at current time tnow, GetNextTask greedily selects the task
with the highest score ψp. Upon reaching the chosen task, GetNextTask is involved to
get the next task repeatedly until reaching d.

Algorithm 1 Get next best task
algorithm GetNextTask (Query q = (snow, d, [tnow, t

+
q ]), Set of available tasks P )

1: Cand← compute the set of feasible tasks from P . apply Equation 2
2: if Cand 6= ∅ then
3: pnext ← choose p ∈ Cand with best score ψp . ψp is a heuristic function
4: Return pnext

5: else
6: Apply policy Pstay or Pgo until Cand 6= ∅ or tnow + τ(snow, d) = t+q

Due to the tasks’ deadlines and the worker’s expected arrivial time (cf. Definitions 1,
2), the worker may complete a task p if: (i) he can reach p.loc before t+p , and (ii) he can
reach d no later than t+q . Therefore, we call a task to be feasible if it satisfies:

τ(snow, p) + τ(p, d) ≤ t+q − tnow and tnow + τ(snow, p) ≤ t+p (2)

If there is no feasible task for q, the worker may stay or move based on a pre-
defined policy (cf. Line 6 in Algorithm 1). In the policy Pgo, the worker simply
moves towards the destination d. In the policy Pstay , the worker waits at snow until
tnow + τ(snow, d) = t+q . When new feasible tasks are released, we resume the search
and invoke GetNextTask to obtain the next task.

We illustrate several heuristics for computing the score ψp. Figure 4a shows the map
of tasks which are labeled with release times and deadlines, and Figure 4b shows the

6 Available tasks are tasks released before the current time tnow.
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Heuristic Route

G-NN 〈s, p7, p5, d〉
G-ED 〈s, p7, p5, d〉

G-MCS 〈s, p1, p4, p6, d〉
Re-Route 〈s, p1, p2, p3, p8, d〉

(a) map of tasks with [release time - deadline] (b) result routes (with Pstay)

Route # of tasks Route # of tasks Route # of tasks

〈s, p1, d〉 1 〈s, p2, d〉 1 〈s, p3, d〉 1
〈s, p7, d〉 1 〈s, p1, p2, d〉 2 〈s, p1, p3, d〉 2
〈s, p2, p3, d〉 2 〈s, p7, p1, d〉 2 〈s, p1, p2, p3, d〉 3
〈s, p3, p1, d〉 not feasible · · · not feasible · · · not feasible

(c) all possible routes known at tnow = 0

Fig. 4. Example of query q = (s, d, [0, 10]) in OnlineRR (using Manhattan Distance)

result route of each heuristic. In this example, we use the query q = (s, d, [0, 10]), the
policy Pstay , and the Manhattan distance.

Nearest Neighbor Heuristic (G-NN). It chooses the nearest feasible task to the
worker’s current location snow, and thus setting ψp = τ(snow, p). In Figure 4, G-NN
produces the route 〈s, p7, p5, d〉.

Earliest Deadline Heuristic (G-ED). It chooses the task with the earliest deadline,
and thus setting ψp = t+p . In Figure 4, G-ED recommends the route 〈s, p7, p5, d〉.

Maximum Candidate Space Heuristic (G-MCS). It chooses the task p that can maxi-
mize the search space of feasible tasks (Equation 2) in future. The search space in future
is obtained under the assumption that p is just completed. The space shape differs for
different distance metrics, but we can use a general approach Monte Carlo [20] to com-
pare it. If a specific distance metric is used, then the exact candidate space size can be
calculated. Take Euclidean distance for example, the space size is the area of the ellipse
shown in Figure 5a, and thus we can calculate the score ψp using equations in Figure 5b
for Euclidean distance metric.

s'now d

t(s'now, p')+t(p', d)  tq-t'now

p'

+

rBp

rAp

p'
ψp = π · rAp · rBp

rAp = (t+q − t′now)/2

rBp =
√
rA2

p − (τ(s′now, d)/2)2

where t′now = tnow + τ(snow, p) and s′now = p.loc

(a) search space (in shade) (b) search space size calculation
Fig. 5. Feasible candidates search space for Euclidean distance metric



We illustrate how G-MCS works in Figure 4. At time 0, the feasible tasks are
p1, p2, p3, p7. Since p1 has the highest score (ψp1

), p1 is chosen to be visited. When the
worker reaches p1, a new task p4 is released while p7 expires, so the set of feasible tasks
becomes {p2, p3, p4}. Then p4 is chosen as it has the highest score (ψp4 ). Upon reaching
p4, the algorithm selects p6 as it has the best score among {p3, p6, p8}. After complet-
ing task p6, there are no more feasible tasks. After waiting for two more time units, the
worker moves toward d. In summary, G-MCS obtains the route 〈s, p1, p4, p6, d〉.

3.3 Complete Search for Route Approach

In this section, we present a complete search approach that tends to find more tasks than
the heuristics in Section 3.2.

Specifically, we formulate the following SnapshotRR problem, which takes the
current query and the set of available tasks as input. Then, we solve SnapshotRR by
enumerating all possible routes and obtain the one with the maximum number of tasks.

Problem 2 (Snapshot Route Recommendation (SnapshotRR)). Given a query q =
(snow, d, [tnow, t

+
q ]) at the current snapshot tnow, SnapshotRR aims to find a route

such that it covers the maximum number of tasks and the worker can arrive at d by t+q .

We illustrate this approach for the query q = (s, d, [0, 10]) in Figure 4. At time 0,
we apply Equation 2 and obtain the set of feasible tasks: P = {p1, p2, p3, p7}. Fig-
ure 4c shows all possible routes (known at time 0). The optimal route at time 0 is
〈s, p1, p2, p3, d〉.

We propose a simple optimization to solve SnapshotRR in Algorithm 2. At Line
3, we check whether there exists a new feasible task p (that was not available in the
previous call of Algorithm 2). If such p exists, we must solve SnapshotRR again.
Otherwise, the best route remains the same as in the previous call, so we need not solve
SnapshotRR again.

Algorithm 2 Complete search the result route
algorithm Re-Route (Query q = (snow, d, [tnow, t

+
q ]), Set of available tasks P )

1: Let Pprev be the set of available tasks in the previous call
2: if P 6= ∅ then
3: if ∃p ∈ P − Pprev such that p is feasible then . Equation 2
4: R← Solve SnapshotRR(q, P ) . conduct complete search
5: else
6: Apply policy Pstay or Pgo until P 6= ∅ or tnow + τ(snow, d) = t+q

We proceed to illustrate how Re-Route works in the example in Figure 4. At time 0,
Re-Route computes the routeR0 = 〈s, p1, p2, p3, d〉, and then the worker moves along
R0 to p1. Upon reaching p1, a new feasible task p4 is found, so Re-Route re-calculates
the route as R1 = 〈p1, p2, p3, d〉. When the worker reaches p2, a new feasible task p8 is
found, so Re-Route updates the route to R2 = 〈p2, p3, p8, d〉. After reaching p8, a new
task p9 is found but it is not feasible. Thus, Re-Route would not computes the route



again (cf. Line 3 in Algorithm 2). Eventually, the worker moves to d. In summary, the
actual route traveled by the worker is: 〈s, p1, p2, p3, p8, d〉. It covers more tasks than
other heuristics (cf. Figure 4b).

Since it is expensive to solve SnapshotRR by enumerating all possible routes, we
will present optimizations to solve SnapshotRR efficiently in Section 4.

4 Optimization for SnapshotRR

We adapt the bi-directional search algorithm for the Orienteering Problem with Time
Windows (OPTW) problem [19] to solve our problem. For brevity in discussion, we use
q = (s, d, [t−q , t

+
q ]) instead of q = (snow, d, [tnow, t

+
q ]). We will conduct bi-directional

search for SnapshotRR in three steps:

Step 1: Search sub-routes in the forward direction (from s) and store them in
−→
IR

Step 2: Search sub-routes in the backward direction (from d) and store them in
←−
IR

Step 3: Join sub-routes between
−→
IR and

←−
IR

According to Pruning Rule 1, the bi-directional search can reduce the search space.
However, the method in [19] does not exploit spatial properties in our problem. In this
section, we develop more effective pruning rules to accelerate bi-directional search on
SnapshotRR.

Pruning Rule 1 (Half travel time bound property proved in [19]) In the forward
(or backward) route searching from vertex s (or d), only routes R with τ(R) ≤ τmax/2
are maintained and extended, where τmax = t+q − t−q .

4.1 Forward Search and Backward Search

In this section, we elaborate the forward search (Step 1) and discuss adaptations for the
backward search (Step 2) at the end. In the following discussion, we use R instead of
−→
R to represent a sub-route found in forward search (which will be stored in

−→
IR ) for

simplicity.
We first introduce the sub-route concept and its extension operation. Then, we pro-

pose a pruning rule and a search strategy to speedup the computation. In the following,
we denote the set of vertices as V = P ∪ {s, d}, where P is the set of available tasks.
Sub-route Extension.

We denote a path from s to v ∈ V as a sub-route Rv , which contains four attributes
Rv = (τ(Rv), BRv

, CRv
, v).

– τ(Rv) represents the travel time along Rv (i.e., from s to v).
– BRv stores a sequence of tasks visited before on the sub-route Rv . We denote the

profit of Rv as |BRv
| because all tasks have the same reward.

– CRv
is a set of candidate vertices (that are feasible for visiting in future), and its

calculation is discussed in Equation 5.



During route search, for each vertex v, we store all sub-routes of the form Rv into a
set IRv . In addition, we only consider feasible routes. Recall that τ(Rv) represents the
travel time (along Rv) from s to v. According to Equation 2, a sub-route Rv is said to
be feasible if:

τ(Rv) ≤ t+v − t−q and τ(Rv) ≤ t+q − t−q (3)

where t+v is the deadline for vertex v when v is a task, or∞ when v ∈ {s, d}.
For each vertex u ∈ CRv

, we can extend Rv with an arc (v, u) to form a new
sub-route Ru. The component of Ru = (τ(Ru), BRu

, CRu
, u) is calculated as follows:

BRu ← 〈BRv , v〉 and τ(Ru)← τ(Rv) + τe(v, u) (4)

The set CRu contains each candidate vertex p that satisfies:

p ∈ CRv
(♥) and p /∈ BRu

(♦)
τ(u, p) ≤ t+p − t−q − τ(Ru) and τ(u, p) ≤ (t+q − t−q )/2− τ(Ru)(♣,♠,♦)

τ(u, p) + τ(p, d) ≤ t+q − t−q − τ(Ru)(♣,♥) (5)

which involve the constraints in Equation 4 (♣), Equation 3 (♠), triangle inequality
(♥), the constraint that each task can be visited only once (♦), the worker’s arrival time
t+q (♥) and Pruning Rule 1 (♦).

We illustrate sub-route extension in Figure 6. Assume that q = (s, d, [0, 10]) and
P = {p1, p2, · · · , p7}. We consider Manhattan distance in this example. First, we com-
pute the candidate set of s. By Pruning Rule 1, we only consider tasks within 10/2 = 5
units from s (i.e., tasks in the dotted diamond in Figure 6). Thus, tasks p3, p7 are not
feasible. The tasks p4 and p5 are not feasible as they violate constraints on the task’s
deadline and the worker’s arrival time, respectively. Thus, we obtain the candidate set
of s as Cs = {p1, p2, p6}, and compute the sub-route for s as Rs = (0, ∅, Cs, s).
Next, we append arcs (s, p1), (s, p2), (s, p6) into Rs to generate three new sub-routes:
R1 = (1, 〈p1〉, {p2, p6}, p1), R2 = (3, 〈p2〉, {p6}, p2), R6 = (5, 〈p6〉, ∅, p6).
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Fig. 6. Example query q = (s, d, [0, 10]) for SnapshotRR problem (using Manhattan distance)

Dominate Test Pruning.
We develop the following pruning rule to further reduce the search space.



Pruning Rule 2 (Dominating Pruning) Let Rv = (τ(R), BRv
, CRv

, v) and R′v =
(τ(R′v), BR′

v
, CR′

v
, v) be two feasible routes associated with v. We can prune R′v if:

τ(Rv) ≤ τ(R′v) and |CR′
v
∩BRv

| ≤ |BRv
| − |BR′

v
|

Proof. Among all full routes with R′v as the prefix, let R′opt = 〈s,BR′
v
, R′tail, d〉 be

the maximum reward route. With the given condition τ(Rv) ≤ τ(R′v), after traveling
alongRv , we can still follow all tasks inR′tail and arrive at d by t+q . There exists a route
Rexist = 〈s,BRv , Rtail, d〉 where Rtail = R′tail−BRv . Rexist ensures that the reward
of each task is gained at most once as BRv

and Rtail have no common tasks.
Since R′tail ⊆ CR′

v
, we have |R′tail| = |Rtail|+ |R′tail ∩BRv

| ≤ |Rtail|+ |CR′
v
∩

BRv
|.

By combining the above with the given condition |CR′
v
∩ BRv

| ≤ |BRv
| − |BR′

v
|,

we derive: |BRv |+ |Rtail| ≥ |BR′
v
|+ |CR′

v
∩BRv |+ |Rtail| ≥ |BR′

v
|+ |R′tail|. As the

reward of Rexist (extended from Rv) is greater than or equal to that of R′opt (extended
from R′v), we can prune the subroute R′v .

Search Strategy.
Our strategy is to identify sub-routes with better reward values in order to utilize

pruning rule 2. To do so, we introduce the concept of upper bound reward:

Definition 5 (Vertex upper bound reward $+v ). Given a sub-route Rv =
(τ(Rv), BRv , CRv , v), we define its upper bound reward as $+Rv

= |BRv |+ |CRv |.
The upper bound reward of vertex v ∈ V is defined as: $+v = max{$+Rv

| Rv ∈
−→
IRv}.

Initially, we begin the search from a sub-route at s. We iteratively extend sub-routes
found so far and apply pruning rule 2 to discard unpromising sub-routes. During the
search, we employ a heap H to process vertices in descending order of $+v .

We illustrate this method on the example in Figure 6 and show the running steps
in Table 1. Iteration 1 corresponds to the extension of the sub-route Rs at s, which we
have discussed before. We obtain three new subroutes R1, R2, R6, insert them in their
corresponding route sets

−→
IRp, and also enheap p1, p2, p6 into H . In each subsequent

iteration, we deheap the vertex v ∈ H with the largest $+v , and extend its sub-routes Rv

in the descending order of |BRv
|.

In iteration 2, we generate a new sub-route (3, 〈p1, p2〉, {p6}, p2) and apply Pruning
Rule 2 to discard the previous subroute at p2, i.e., (3, 〈p2〉, {p6}, p2). Similarly, the pre-
vious sub-routes for p6: (5, 〈p6〉, ∅, p6) and (5, 〈p1, p6〉, ∅, p6) are pruned in iterations 2
and 3, respectively.

Table 1. Forward space search
Iteration Selected Vertex Extended Route R Modified IR Heap H

1 s (0, ∅, {p1, p2, p6}, s)
−−→
IRp1 = {(1, 〈p1〉, {p2, p6}, p1)} (p1, 3)
−−→
IRp2

= {(3, 〈p2〉, {p6}, p2)} (p2, 2)
−−→
IRp6

= {(5, 〈p6〉, ∅, p6)} (p6, 1)
2 p1 (1, 〈p1〉, {p2, p6}, p1)

−−→
IRp2

= {(3, 〈p1, p2〉, {p6}, p2)} (p2, 3)
−−→
IRp6 = {(5, 〈p1, p6〉, ∅, p6)} (p6, 2)

3 p2 (3, 〈p1, p2〉, {p6}, p2)
−−→
IRp6

= {(5, 〈p1, p2, p6〉, ∅, p6)} (p6, 3)
4 p6 ∅ ∅ ∅
−→
IR (5, 〈p1, p2, p6〉, ∅, p6), (3, 〈p1, p2〉, {p6}, p2), (1, 〈p1〉, {p2, p6}, p1), (0, ∅, {p1, p2, p6}, s)



Algorithm 3 Forward search
function RouteSearchFW(Query q = (s, d, [t−q , t

+
q ]), Vertex set V = P ∪ {s, d})

. Initialization
1: Create an empty set

−→
IRv for each vertex v ∈ V to store sub-routes associated with v

2: Calculate the candidate vertex set Cs of s . Equation 5
3:
−→
IRs ← {(0, ∅, Cs, s)}

4: Create a max-heap H ← {(s, |Cs|)} to store vertices whose routes will be extended
. Repeatedly generate feasible sub-routes

5: while H 6= ∅ do
6: (v, v.ub)← Extract-Max(H) . Searching strategy
7: Sort routes R ∈

−→
IRv in the descending order of |BR| . Searching strategy

8: for all Rv ∈
−→
IRv do

9: for all u ∈ CRv do
10: Ru ← Extend(Rv, q, u) . Equation 4, 5, Pruning Rule 1
11: RemoveDominate(

−→
IRu, Ru) . Pruning Rule 2

12: if Ru ∈
−→
IRu then . Ru not pruned

13: if (u, u.ub) /∈ H then
14: Insert (u, $+Ru

) into H
15: else
16: u.ub← max{u.ub, $+Ru

}
17: Return

−→
IR ← all routes in each nonempty

−→
IRv

The forward search terminates when H becomes empty, i.e., no sub-routes can be
extended. It returns the set

−→
IR of all surviving sub-routes.

Algorithm 3 illustrates the pseudo code of route search in forward direction. It is
self-explanatory and summarizes what we have discussed above.

Backward Search. Route space search in backward direction is similar to that in
forward direction. The pruning rules, searching strategies, and dominating testing dis-
cussed for forward search can be modified for backward search directly.

4.2 Route Join

In this section, we elaborate on how to join sub-routes obtained in the forward
search and the backward search. Let

−→
Rv = (τ(

−→
Rv), B−→Rv

, C−→
Rv
, v) and

←−
Ru =

(τ(
←−
Ru), B←−Ru

, C←−
Ru
, u) be two sub-routes in the forward and the backward directions,

respectively. They are feasible to be joined if:

τ(
−→
Rv) + τ(v, u) ≤ u.t+p and τ(

−→
Rv) + τ(

←−
Ru) + τ(v, u) ≤ t+q − t−q

B−→
Rv
∩B←−

Ru
= ∅ (6)

We denote the joined route as Rjoin = 〈s,B−→
Rv
, rev(B←−

Ru
), d〉, where rev(B←−

Ru
) refers

to a list of vertices in B←−
Ru

but in the reversed order. Its reward is: |B−→
Rv
|+ |B←−

Ru
|.

We develop two optimization techniques to accelerate the join procedure. First, we
apply pruning rule 3 to skip the feasible checking (cf. Equation 6) for pairs of sub-



Table 2. Route join
sub-routes sorted in the descending order of |BR|

−→
IR (5, 〈p1, p2, p6〉, ∅, p6), (3, 〈p1, p2〉, {p6}, p2), (1, 〈p1〉, {p2, p6}, p1), (0, ∅, {p1, p2, p6}, s)←−
IR (5, 〈p7, p3, p6〉, ∅, p6), (2, 〈p7, p3〉, {p6}, p3), (1, 〈p7〉, {p3, p6}, p7), (0, ∅, {p3, p6, p7}, d)

route join iterations
iteration candidate join pairs join result $best

−→
R

←−
R Rjoin

1 (5, 〈p1, p2, p6〉, ∅, p6) (5, 〈p7, p3, p6〉, ∅, p6) not feasible (Equation 6) 0
2 (5, 〈p1, p2, p6〉, ∅, p6) (2, 〈p7, p3〉, {p6}, p3) R = 〈s, p1, p2, p6, p3, p7, d〉 5
· · · · · · · · · skipped (Pruning Rule 3) 5

optimal route for this snapshot R = 〈s, p1, p2, p6, p3, p7, d〉

routes. Second, we sort sub-routes in the descending order of their |BR|. This helps us
find a tigher $best earlier, and in turn boosts the power of Pruning Rule 3.

Pruning Rule 3 (Reward bound pruning) Let $best be the maximum reward on all
joined routes found so far. If |B−→

R
|+ |B←−

R
| ≤ $best, then we need not join

−→
R and

←−
R .

Continuing with the example in Figure 6, we illustrate the join procedure in Table 2.
First, we sort forward sub-routes

−→
R ∈

−→
IR and backward sub-routes

←−
R ∈

←−
IR in descend-

ing order of |BR|. For each pair of
−→
R and

←−
R , if it survives Pruning Rule 3, then we

conduct feasible checking and then join the pair. After joining the forward sub-route
−→
R = (5, 〈p1, p2, p6〉, ∅, p6) with the backward sub-route

←−
R =(2, 〈p7, p3〉, {p6}, p3),

we update $best to 5. All remaining pairs are pruned according to Pruning Rule 3. The
best route (known at this snapshot) is 〈s, p1, p2, p6, p3, p7, d〉.

5 Experiment

This section studies the effectiveness and efficiency of our proposed methods on both
real and synthetic datasets.

5.1 Experimental Setting

We first introduce the datasets used in experiments, and then describe the performance
measures for algorithms.

Datasets.
Real datasets. Similar to [10], we obtain real check-in data in Foursquare7 and con-

vert them to crowdsourcing tasks in our problem. Specifically, we collect check-in data
for New York city (NYC) and Los Angeles County (LA) in a month (September 2012).
For each day in that month, we use all check-in items within a 90-minute duration. We
take check-in items at the same location as a single task, set its release time and dead-
line to the earliest and the latest check-in time respectively8. We measure the travel time
τ(v, u) as the Euclidean distance between two locations divided by the average speed.

7 https://foursquare.com/
8 For each location with only one check-in item (say, at time t), we choose its deadline randomly

in [t, t+q ], where t+q refers to the query’s deadline.



Table 3. Experiment parameters

Parameter Default Range

total number of tasks 100 20, 50, 100, 200, 500

t+q − t−q [minutes] 90 30, 60, 90, 120, 150

Gaussian x 0.1 0.05, 0.1, 0.25, 0.5

We use a walking speed 6 km/h for NYC (whose map size 789 km2 is small), and use a
driving speed 60 km/h for LA (whose map size 10,570 km2 is large).

Synthetic datasets. As NYC and LA have similar result trends (see Figure 7), we
use the map domain of LA to generate synthetic datasets. For each synthetic task, we
randomly choose its release time t−p randomly in [t−q , t

+
q ] and then choose its deadline

t+p in range [t−p , t
+
q ], as we consider queries of the form q = (s, d, [t−q , t

+
q ]) in our

experiments. We generate two types of datasets. In each uniform dataset (UNI), task
locations are randomly chosen within the map domain. In each Gaussian dataset (GAU),
task locations are generated based on four Gaussian bells, with the standard deviation
of Gaussian bell as x times of the map domain length. The parameter values for the
number of tasks and Gaussian standard deviation x are shown in Table 3.

Platform and Performance Measures. We implemented our methods (G-NN, G-
MCS, G-ED, Re-Route) in C++, and conducted experiments on an Ubuntu 11.10
machine with a 3.4 GHz Intel Core i7-3770 processor and 16 GB RAM.

We use queries of the form q = (s, d, [t−q , t
+
q ]), where t+q − t−q = 90 minutes by

default. We randomly choose s, d in the map domain such that τ(s, d) = 45 minutes.
The parameter values for t+q − t−q are given in Table 3.

In each experiment, we run a set Q of 50 queries and report (i) the quality ratio for
Q, and (ii) the average response time per call of a method. Specifically, we define the
quality ratio of a method as:

quality ratio =
1

|Q|
·
∑
q∈Q

count(Rmethod(q))

count(Ropt(q))

where q is a query in Q, Rmethod(q) is the route for q found by our method, Ropt(q) is
the optimal route for q found by an offline method that knows all tasks in advance9.

We have tested the effects of policies Pstay and Pgo (cf. Section 3.2) on our meth-
ods. For the same method, the quality ratios between Pstay and Pgo differ only by
0.01− 0.02. Thus, we take the default policy in our methods as Pstay .

5.2 An Experiment on Real Datasets

We plot the performance of methods on real datasets (LA and NYC) on each day from
Sep/21/2012 to Sep/30/2012 in Figure 7. Within the query period, LA and NYC contain
60 and 40 tasks on average, respectively. The optimal routes Ropt in LA and NYC

9 As mentioned in Definition 4, Ropt(q) is obtained with assumption that all tasks’ informa-
tion are known in advance at time t−q . With this assumption, OnlineRR becomes a special
case of SnapshotRR where tasks can have release time larger than t−q and the approach for
SnapshotRR can be used to find Ropt(q) then.
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Fig. 7. Performance on real datasets

cover 10 and 5 tasks on average, respectively. Figures 7a,c show the quality ratio of
the methods on NYC and LA, respectively. Re-Route outperforms other methods and
achieves 0.82–0.91 quality. G-MCS is the second best and obtains 0.70–0.84 quality.
Although Re-Route incurs higher response time, it takes less than 1 second per call, as
depicted in Figure 7b,d. We consider such time acceptable for crowdsourcing workers.
For example, for the LA dataset, Re-Route is called for 10 times (on average) during
the query period (90 minutes). Observe that the time per call (1 second) is negligible
compared to the average travel time between two tasks (90/10 = 9 minutes).

5.3 Scalability Experiments on Synthetic Datasets

Effect of task distribution. Figure 8 depicts the performance of methods on GAU
datasets with standard deviation x and on a UNI dataset. As illustrated in Table 4a, a
more skewed dataset (i.e., with smaller x) leads to an optimal route with higher reward
because tasks in the same cluster are close together. Since our methods can also find
routes with higher reward on a more skewed dataset, the quality ratio does not vary
much (See Figure 8a). Re-Route again outperforms other methods on the quality ratio.
On the other hand, a more skewed dataset induces more feasible candidate tasks in Re-
Route, and thus it incurs higher response time. Nevertheless, Re-Route takes at most
around 1 second per call in Figure 8b, which is acceptable for crowdsourcing workers.

Since the trend on quality is consistent across different task distributions, we only
use UNI datasets in the remaining experiments.
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Table 4. Reward on the optimal route

Task distribution Gaussian Uniform
Parameter values (a) standard deviation x (b) total number of tasks (c) query period t+q − t−q

0.05, 0.1, 0.25, 0.5 20, 50, 100, 200, 500 30, 60, 90, 120, 150

Reward of Ropt 12.57, 9.39, 6.84, 4.72 1.7, 3.14, 5.26, 7.94, 13.2 1.62, 3.26, 5.26, 6.92, 8.92

Effect of total number of tasks. When the total number of tasks increases, both the
optimal route (cf. Table 4b) and our methods’ routes would cover more tasks. Thus,
the quality ratio is independent of the total number of tasks, as shown in Figure 9a.
The response time of Re-Route increases slightly with the total number of tasks (see
Figure 9b), but it is still within 0.1 seconds per call.

Effect of the query period t+q − t−q . As the query period t+q − t−q widens, more tasks
become feasible and thus the optimal route contains more tasks, as shown in Table 4c.
We plot the performance of the methods with respect to t+q − t−q in Figure 10. The
quality ratio is independent of t+q − t−q as our methods are also able to find routes with
more tasks. The response time per call in Re-Route remains acceptable.
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Effect of Pruning Rules on Re-Route. We proceed to test the effect of optimization
techniques (cf. Section 4) on the response time per call of Re-Route. We consider two
variations of Re-Route: (i) DISABLE applies only pruning rule 1 (in Ref. [19]), and
(ii) ENABLE applies all three pruning rules in Section 4.

As DISABLE is very slow, we scale down the total number of tasks in this experi-
ment, and terminate it if it takes more than 300 seconds per call. We show the response
time per call of DISABLE and ENABLE on both UNI and GAU datasets in Figure 11.
Observe that ENABLE runs much faster than DISABLE, implying that our pruning
rules are able to shrink the search space significantly.

6 Related Work

Spatial crowdsourcing is an emerging topic in crowdsourcing research. Existing re-
searches are divided into the server-centric mode [9, 15, 16, 18, 22] and the worker-
centric mode [3, 7, 10]. We focus on the latter one as discussed in the introduction.
However, [3, 7] do not consider the influence of the worker’s travel time, which is crit-
ical in our OnlineRR problem. The closest work to ours is [10], which selects a route



with the maximum number of tasks for a worker. However, [10] does not discuss how
to update a route with respect to online task arrivals. Also, it does not consider the
worker’s destination and deadline.

Our OnlineRR problem is related to the orienteering problem [13, 23]. The orien-
teering problem is a variant of the selective traveling salesman problem [11], where (i)
not all requests need to be completed, and (ii) the cost is the sum of the total travel time
and the penalty of rejected requests. The orienteering problem is well studied [13, 23],
but only several works [5, 8, 12, 19] consider the Orienteering Problems with each
request having a Time Window (OPTW). Those works focus on the offline scenario
but not the online scenario. While there exist approximation algorithms for OPTW of-
fline [5,8,12], OnlineRR is an online problem and does not permit any online algorithm
to achieve a non-zero competitive ratio.

Righini et al. [19] propose an exact bi-directional search algorithm for OPTW,
which can be adapted to solve our SnapshotRR problem. Unlike our solution, this
algorithm does not exploit spatial properties to prune unpromising sub-routes. In Sec-
tion 4, we have developed two pruning rules and a search strategy that are specific for
SnapshotRR.

Other related route planning problems include the trip planning problem [17] and
the optimal sequenced route problem [21]. They require finding the shortest route that
passes through specific types of points-of-interests. On the other hand, our problem
needs to maximize the number of tasks on a route subject to the tasks’ deadlines and
the worker’s deadline.

OnlineRR problem is also related to online traveling salesman problem (OL-
TSP) [4, 14]. Few works have studied OL-TSP with each request having a dead-
line [6, 24]. While OL-TSP aims to minimize the travel distance, our OnlineRR prob-
lem aims to maximize the number of tasks on a route. Moreover, the above works on
OL-TSP do not consider the worker’s destination and deadline. Finally, our problem is
similar to an online job-scheduling problem whose tasks have dependent setup costs [1].
However, this problem does not exploit the spatial properties as in OnlineRR.

7 Conclusion

In this paper, we study the oriented online route recommendation (OnlineRR) problem
for spatial crowdsourcing task workers. We prove that no online algorithm can achieve
a non-zero competitive ratio for OnlineRR. Then we propose several heuristics for On-
lineRR and optimizations to speedup the computation. According to our experimental
findings, Re-Route produces routes with the highest quality (0.82–0.91) in acceptable
response time per call (0.1–1 s), whereas G-MCS returns routes with the second highest
quality (0.70–0.84) at real-time (below 1 ms). Workers preferring to save smartphone
battery power may choose G-MCS as it has less computation cost. OnlineRR will be
extended to consider the task diversity and task novelty in the future.
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