
A Location Privacy Aware Friend Locator

Laurynas Šikšnys, Jeppe R. Thomsen, Simonas Šaltenis, Man Lung Yiu, and
Ove Andersen

Department of Computer Science, Aalborg University
DK-9220 Aalborg, Denmark

Abstract. A location-based service called friend-locator notifies a user if the
user is geographically close to any of the user’s friends. Services of this kind
are getting increasingly popular due to the penetration of GPS in mobile phones,
but existing commercial friend-locator services require users to trade their lo-
cation privacy for quality of service, limiting the attractiveness of the services.
The challenge is to develop a communication-efficient solution such that (i) it
detects proximity between a user and the user’s friends, (ii) any other party is
not allowed to infer the location of the user, and (iii) users have flexible choices
of their proximity detection distances. To address this challenge, we develop a
client-server solution for proximity detection based on an encrypted, grid-based
mapping of locations. Experimental results show that our solution is indeed effi-
cient and scalable to a large number of users.

1 Introduction

Mobile devices with geo-positioning capabilities are becoming cheaper and more popu-
lar. Consequently users start using friend-locator services (e.g., Google Latitude, FireEa-
gle) for seeing their friends’ locations on a map and identifying nearby friends.

In existing services, the detection of nearby friends is performed manually by the
user, e.g., by periodically examining a map on the mobile device. This works only if the
user’s friends agree to share either exact or obfuscated location. However, LBS users
usually demand certain level of privacy and may even feel insecure if it is not provided
[5]. Due to the poor support for location privacy in existing friend-locator products, it
is sometimes not possible to detect nearby friends if location privacy is desired. The
challenge is to design a communication-efficient friend-locator LBS that preserves the
user’s location privacy and yet enables automatic detection of nearby friends.

To address the challenge, we develop a client-server, location-privacy aware friend-
locator LBS, called the FriendLocator. It first employs a grid structure for cloaking
the user’s location into a grid cell and then converts it into an encrypted tuple before
it is sent to the server. Having received the encrypted tuples from the users, the server
can only detect proximity among them, but it is unable to deduce their actual locations.
In addition, users are prevented from knowing the exact locations of their friends. To
optimize the communication cost, the FriendLocator employs a flexible region-
based location-update policy where regions shrink or expand depending on the distance
of a user from his or her closest friend.

The rest of the paper is organized as follows. We briefly review related work in
Section 2 and then define our problem setting in Section 3. The FriendLocator

is presented in Section 4. Section 5 presents experimental results of our proposal and
Section 6 concludes the paper.

2 Related Work

In this section, we review relevant work on location privacy and proximity detection.

Location privacy. Most of the existing location privacy solutions employ the spatial
cloaking technique, which generalizes the user’s exact location q into a region Q′ used
for querying the server [4]. Alternative approaches [6, 11, 3] have also been studied
recently. However, all these solutions focus on range/kNN queries and assume that the
dataset is public (e.g., shops, cinemas). In contrast, in the proximity detection problem,
the users’ locations are both queries and data points that must be kept secret.

Proximity detection. Given a set of mobile users and a distance threshold ε, the prob-
lem of proximity detection is to continuously report all events of mobile users being
within the distance ε of each other. Most existing solutions (e.g., [1]) focus on optimiz-
ing the communication and computation costs, rather than location privacy.

Recent solutions were proposed [10, 8] to address location privacy in proximity
detection. Ruppel et al. [10] develop a centralized solution that applies a distance-
preserving mapping (i.e., a rotation followed by a translation) to convert the user’s
location q into a transformed location q′. Unfortunately, Liu et al. [7] point out that
distance-preserving mapping can be easily attacked. Mascetti et al. [8] employ a server
and apply the filter-and-refine paradigm in their secure two-party computation solution.
However, it lacks distance guarantees for the proximity events detected by the server,
and leads to low accuracy when strong privacy is required. Unlike our approach, the
central server in their proposal knows that a user is always located within his or her
cloaked region.

Our solution is fundamentally different from the previous solutions [10, 8] because
we employ encrypted coordinates to achieve strong privacy and yet the server can
blindly detect proximity among the encrypted coordinates.

3 Problem Definition

In this section we introduce relevant notations and formally define the problems of
proximity detection and its privacy-aware version.

In our setting, a large number of mobile-device users form a social network. These
mobile devices (MD) have positioning capabilities and they can communicate with a
central location server (LS). We use the terms mobile devices and users interchangeably
and denote the set of all MDs (and their users) in the system by M ⊂ N.

The friend-locator LBS notifies two users u, v ∈ M|u 6= v if u and v are friends
and the proximity between u and v is detected. Given the distance thresholds ε and λ,
the proximity and separation of two users u and v are defined as follows [1]:

1. If dist(u, v) ≤ ε, then the users u and v are in proximity;
2. If dist(u, v) ≥ ε+ λ, then the users u and v are in separation;

2

3. If ε < dist(u, v) < ε+λ, then the service can freely choose to classify users u and
v as being either in proximity or in separation.

Here, dist(u, v) denotes the Euclidean distance between the users u and v. The
parameter ε is called the proximity distance, and it is agreed/selected by u and v. The
parameter λ ≥ 0 is a service precision parameter and it introduces a degree of freedom
in the service. As different pairs of friends may want to choose different proximity
distances, we use ε(u, v) to denote the proximity distance for the pair of users u, v ∈M.
For simplicity we assume mutual friendships, i.e., if v is a friend of u, then u is a friend
of v, and we let the proximity distance to be symmetric, i.e., ε(u, v) = ε(v, u) for all
friends u, v ∈M.

A proximity notification must be delivered to MDs when proximity is detected. Any
subsequent proximity notification is only sent after separation have been detected.

The friend-locator LBS must be efficient in terms of mobile client communication
and provide the following privacy guarantees for each user u ∈M: (i) The exact loca-
tion of u is never disclosed to other users or the central server. (ii) User u only permits
friends to detect proximity with him.

4 Proposed Solution

In this section we propose a novel, incremental proximity detection solution based on
encrypted grids. It is designed for the client-server architecture, it is efficient in terms
of communication, and it satisfies user location-privacy requirements (see Sec. 3).

Grid-based encryption. Let us consider three parties: two friends, u1 and u2 ∈ M,
and the location server (LS). Both users can send and receive messages to and from LS.
User u1 is interested in being informed by LS when user u2 is within proximity and
vice versa.

Assume that users u1 and u2 share a list of grids, where a grid index within the
list is termed level. Grids at all levels are coordinate-axis aligned and their cell sizes,
i.e., width and height, at levels l = 0, 1, 2, ... are fixed and equal to L(l). We let L(l) =
g ·2−l, where g is some level zero cell size. Then sizes of cells gradually decrease going
from lower to higher levels, level zero cells being the largest.

Each column (row) of each of these grids is assigned a unique encryption number. A
grid within the list, together with encryption numbers, constitutes a Location Mapping
Grid (LMG). Each user generates such a list of LMGs utilizing two shared private
functions L and ψ, where Ψ : N 7→ N is a one-to-one encryption function (e.g., AES)
mapping a column/row number to an encryption number.

Incremental proximity detection. Assume that users u1 and u2 use an LMG of some
level l. Whenever a user moves into a new cell of LMG, the following steps are taken:
(i) The user maps the current location (x, y) into an LMG cell (k,m)=(bx/L(l)c,
by/L(l)c).
(ii)The user computes an encrypted tuple e = (l,α−,α+,β−,β+) by applyingEΨ (l, k,m)
= (l, Ψ(k), Ψ(k + 1), Ψ(m), Ψ(m + 1)), where (α−,α+) and (β−,β+) are encrypted
values of adjacent columns k and k + 1 and adjacent rows m and m+ 1 respectively.
(iii) The user sends the encrypted tuple e to LS.

3

Since u1 and u2 use the same list of LMG, with the same encryption-number assign-
ments for each column and row, the LS can detect proximity between them by checking
if the following function is true:

Γ (e1, e2) = (e1.l = e2.l)∧((e1.α− = e2.α
−) ∨ (e1.α− = e2.α

+) ∨ (e1.α+ = e2.α
−))

∧ ((e1.β− = e2.β
−) ∨ (e1.β− = e2.β

+) ∨ (e1.β+ = e2.β
−)).

Parameters e1 and e2 are encrypted tuples delivered from users u1 and u2 respec-
tively. Note that since Ψ is a one-to-one mapping, Γ is evaluated to true if and only if
ku1 or ku1 + 1 matches ku2 or ku2 + 1 and mu1 or mu1 + 1 matches mu2 or mu2 + 1,
where (ku1 , mu1) and (ku2 , mu2) are LMG cells of users u1 and u2 respectively.

In the extended version of this paper we prove that an LMG at level l can be used
to detect proximity with the following settings ε = L(l), λ = L(l) · (2

√
2 − 1), i.e.,

Γ is always true when dist(u1, u2) ≤ L(l) and always false when dist(u1, u2) ≥
L(l) · 2

√
2. Every two friends u1, u2 ∈ M choose an LMG level, called proximity

level Lε(u1, u2) that corresponds best to their proximity detection settings. Then our
approach forces every user to stay at the lowest-possible level such that few grid-cell
updates are necessary. Only when proximity between friends u1, u2 ∈M is detected at
a low level, are they asked to switch to a higher level. This repeats until required level
Lε(u1, u2) is reached or it is determined that users are not in proximity.

Figure 1 illustrates the approach. It shows the geographical locations of two friends
u1 and u2, and their mappings into LMGs at 4 snapshots in time. Note that lower level
grids are on top in the figure. Assume that u1 and u2 have agreed on Lε(u1, u2) =
2 and have already sent their encrypted tuples, for levels 0 and 1 to LS. Figure 1a
visualizes when LS detects a proximity at level 0, but not at level 1. As Lε(u1, u2) > 0,
nothing happens until a location change. In Figure 1b both users have changed their
geographical location. User u2 did not go from one cell to another at his current level
1, thus he did not report a new encrypted tuple. User u1 however, changed cells at
both level 1 and level 0, he therefore sends a new encrypted tuple for level 0. The LS
detects a proximity between u1 and u2 at level 0 and asks u1 to switch to level 1,
because Lε(u1, u2) > 0. Figure 1c shows user LMG mapping when u1 has delivered
new encrypted tuple for level 1. Again, LS detects proximity at level 1 and commands
both users u1 and u2 to switch to level 2. When both encrypted tuples for level 2 are
delivered to LS, it detects the proximity at this level (see Figure 1d) and, because 2 =
Lε, proximity notifications are sent to u1 and u2.

L e v e l 0

L e v e l 1

L e v e l 2

(a) (b) (c) (d)

u 1

u 1

u 2 u 2
u 1

u 1 u 2 u 2

Fig. 1. Two-user proximity detection in the FriendLocator

4

Note that the presented algorithms implement an adaptive region-based update pol-
icy. If a user is far away from his friends, then he stays at a low-level grid with large
cells, resulting in few updates for the user’s future movement. Only when the user ap-
proaches one of his friends, he is asked to switch to higher levels with smaller grid cells.
Thus, at a given time moment, the user’s current communication cost is not affected by
the total number of his friends, but by the distance to his closest friend.

5 Experimental Study

The proposed FriendLocator and a competitor solution, called Baseline, were
implemented in C#. In this section, we study their communication cost in terms of
messages received by the clients and the server. The network-based generator [2] is
used to generate a workload of users moving on the road network of the German city
Oldenburg. A location record is generated for each user at each timestamp.

Competitor Solution. The Baseline employs the filter-and-refine paradigm for
proximity detection among friend pairs. Each user cloaks its location by using a uniform
grid, and sends its cell to the server. Filtering is performed at the LS, which calculates
the min and max distances [9] between the cells ci and cj of the users ui and uj . The
LS then checks the following conditions:

1. If maxdist(ci, cj) ≤ ε, then LS detects a proximity.
2. If mindist(ci, cj) > ε, then LS detects no proximity.
3. If mindist(ci, cj) ≤ ε < maxdist(ci, cj), then users ui and uj invoke the peer-

to-peer Strips algorithm [1] for the refinement step.

The resulting communication cost is lower than Strips due to the use of a centralized
(untrusted) server. Observe that, the Baseline does not use encrypted tuples as in our
FriendLocator solution, so it offers a weaker notion of privacy.

Experiments. We first study the impact of the proximity detection distance ε on the cost
per user per timestamp (Fig. 2a). Both Baseline and FriendLocator have similar
performance at small ε (below 10). As ε increases, Baseline invokes the refinement
step frequently so its cost rises rapidly. At extreme ε values (above 10000), most of the
pairs are within proximity so the frequency and cost of executing the refinement step
in Baseline are reduced. Observe that the cost of FriendLocator is robust to
different values of ε, and its cost rises slowly when ε increases. Figure 2b shows the
total number of messages during 40 timestamps as a function of the total number of
users in the system. Clearly, FriendLocator incurs substantially lower total cost
than Baseline. In Fig. 2b the distributed messages represent peer-to-peer messages.

6 Conclusion

In this paper we develop the FriendLocator, a client-server solution for detecting
proximity among friend pairs while offering them location privacy. The client maps a
user’s location into a grid cell, converts it into an encrypted tuple, and sends it to the

5

 0

 5

 10

 15

 20

100 101 102 103 104

M
es

sa
ge

s

Proximity detection distance

Messages for one user and one timestamp

FriendLocator
Baseline

 0

 3000

 6000

 9000

FL BL FL BL FL BL FL BL

M
es

sa
ge

s

Number of Users

Server
Destributed

100000750005000025000

(a) Client message cost vs. ε (b) System message cost for each timestamp

Fig. 2. Effect of various parameters on the communication cost

server. Based on the encrypted tuples received from the users, the server determines the
proximity between them blindly, without knowing their actual locations. Experimental
results suggest that FriendLocator incurs low communication cost and it is scalable
to a large number of users.

In the future, we plan to extend the proposed solution for privacy-aware proximity
detection among moving users on a road network, in which the distance between two
users is constrained by the shortest path distance between them.

References

1. A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and K. Wampler. Buddy Tracking - Effi-
cient Proximity Detection Among Mobile Friends. In INFOCOM, 2004.

2. T. Brinkhoff. A Framework for Generating Network-Based Moving Objects. GeoInformat-
ica, 6(2):153–180, 2002.

3. G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private Queries in
Location Based Services: Anonymizers are not Necessary. In SIGMOD, 2008.

4. M. Gruteser and D. Grunwald. Anonymous Usage of Location-Based Services Through
Spatial and Temporal Cloaking. In USENIX MobiSys, 2003.

5. A. Heining. Stalk your friends with google, February 2009.
6. A. Khoshgozaran and C. Shahabi. Blind Evaluation of Nearest Neighbor Queries Using

Space Transformation to Preserve Location Privacy. In SSTD, 2007.
7. K. Liu, C. Giannella, and H. Kargupta. An Attacker’s View of Distance Preserving Maps for

Privacy Preserving Data Mining. In PKDD, 2006.
8. S. Mascetti, C. Bettini, D. Freni, X. Wang, and S. Jajodia. Privacy-Aware Proximity Based

Services. In MDM, 2009, to appear.
9. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries. In SIGMOD, 1995.

10. P. Ruppel, G. Treu, A. Küpper, and C. Linnhoff-Popien. Anonymous User Tracking for
Location-Based Community Services. In LoCA, 2006.

11. M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. SpaceTwist: Managing the Trade-Offs Among
Location Privacy, Query Performance, and Query Accuracy in Mobile Services. In ICDE,
2008.

6

