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ABSTRACT
Top-𝑘 related queries in continuous preference space (e.g., k-shortlist

preference query kSPR, uncertain top-𝑘 query UTK, output-size
specified utility-based queryORU) have numerous applications but

are expensive to process. Existing algorithms process each query via

specialized optimizations, which are difficult to generalize. In this

work, we propose a novel and general index structure 𝜏-LevelIndex,
which can be used to process various queries in continuous pref-

erence space efficiently. We devise efficient approaches to build

the 𝜏-LevelIndex by fully exploiting the properties of continuous

preference space. We conduct extensive experimental studies on

both real- and synthetic- benchmarks. The results show that (i)

our proposed index building approaches have low costs in terms

of both space and time, and (ii) 𝜏-LevelIndex significantly outper-

forms specialized solutions for processing a spectrum of queries in

continuous preference space, and the speedup can be two to three

orders of magnitude.
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1 INTRODUCTION
The preference model is widely used in many applications, e.g.,

recommender system, multi-criteria decision making, and prod-

uct ranking. Specifically, each option in the market has several
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attributes and the value of each attribute models the competitive-

ness of the option. For example, each hotel in the online portals

(e.g, Booking [1] and TripAdvisor [6]) includes value, facility, and
cleanliness attributes. The attribute values of Crowne Plaza Hotel
in Booking are 0.83, 0.86, 0.89, respectively. We denote an option

with 𝑑 attributes as r = (𝑟 [1], 𝑟 [2], · · · , 𝑟 [𝑑]) and all options form

the dataset D. A user chooses options based on her preference

weight vector w = (𝑤 [1],𝑤 [2], · · · ,𝑤 [𝑑]), which specifies a nu-

meric weight for each attribute. To compute the score of each option

for the user, a linear scoring function (i.e., Sw (r) =
∑𝑑
𝑖=1 𝑟 [𝑖]𝑤 [𝑖])

is used and the top-𝑘 products with the highest scores are appeal-

ing to the user. In the past decades, the database community has

conducted extensive studies on shortlisting product options for

users, i.e., top-𝑘 query [22, 39], skyline query [11, 32], and hybrids

of top-𝑘 and skyline queries [14, 28]. Rtree and its variants [10, 19]

are widely used to accelerate the above query processing.

Besides finding top-𝑘 options for users, it is also important to

consider user preferences from the perspective of product providers.

For instance, a hotel manager may want to identify potential cus-

tomers who rank his hotel as top-𝑘 , which should be targeted in

advertising campaigns. Recently, many queries (e.g.,Monochromatic
reverse top-𝑘 [42], MaxRank [31], kSPR [37], restricted skyline [14],
UTK [30], and ORU [28]) are proposed to explore the entire user

preference space (i.e., the continuous space defined by preference

weight w) instead of discrete user preference weights in traditional

top-𝑘 ranking queries (i.e., points in the preference space). These

queries can help product providers analyze the competitiveness of

their products in the market, identify target users, adjust the design

of products to attract more users, etc. For example, theMaxRank
query [31] reports the maximum rank a product can have among

all possible users’ preferences, which tells the product provider the

market status of his product.

Many algorithms have been proposed to accelerate the query

processing in continuous preference space, but they are still inade-

quate in two aspects. First, the query processing complexity is high

even with state-of-the-art solutions as many expensive geometric

operations are involved. For example, our experiments show that

an ORU query can take more than 1000 seconds. Second, Existing

algorithms develop specialized techniques for each query and there

lacks a general index structure that accelerates a wide range of

queries in continuous preference space, i.e., an analogue of Rtree
for top-𝑘 ranking queries.

In this work, we devise a general index (𝜏-LevelIndex) for queries
in continuous preference space, where 𝜏 is a user-specified param-

eter. A general index is favorable as it not only reduces query
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processing complexity by avoiding expensive geometric operations

but also amortizes the index construction and storage costs among

queries (either of the same or different types).

Specifically, each option r in the dataset corresponds to a hy-

perplane Sw (r) in continuous preference space, and the cell in

𝜏-LevelIndex is defined by a set of halfspaces, which is formed

by option hyperplanes. As we will elaborate in Section 4, many

queries in continuous preference space can be processed by find-

ing some cells in 𝜏-LevelIndex or the options associated with cer-

tain cells. Constructing 𝜏-LevelIndex can be converted to the fa-

mous 𝜏-𝑙𝑒𝑣𝑒𝑙 problem [8] in computational geometry. However, the

𝜏-𝑙𝑒𝑣𝑒𝑙 problem is only solved theoretically with time complexity

𝑂 (𝑛 ⌊
𝑑
2
⌋𝜏 ⌈

𝑑
2
⌉ ) [9], where 𝑛 is the number of options in the dataset

D, and 𝑑 is the dimensionality of each option. The challenges of de-

signing an effective index structure and efficient building procedure

for 𝜏-LevelIndex are:

• Generality and query efficiency. There are many types of

queries in continuous preference space, e.g., kSPR, UTK, ORU.
How to design the structure of 𝜏-LevelIndex such that it can support
all these queries and process them efficiently?

• Index size.As proved in [9], the total number of cells at level ℓ ∈
[1, 𝜏] of 𝜏-LevelIndex is 𝑂 (𝑛 ⌊

𝑑
2
⌋ℓ ⌈

𝑑
2
⌉ ), and each cell is defined

by the intersection of a set of halfspaces. Thus, 𝜏-LevelIndexwill
be overwhelmingly large if cells are expressed explicitly. How to
define cells and arrange them in 𝜏-LevelIndex to make the index
size practical?

• Index building time. Using [9] to build 𝜏-LevelIndex has time

complexity 𝑂 (𝑛 ⌊
𝑑
2
⌋𝜏 ⌈

𝑑
2
⌉ ). Moreover, computing the cells in 𝜏-

LevelIndex requires expensive computational geometric opera-

tions (e.g., Intersect andContainment).How to build𝜏-LevelIndex
efficiently with a reasonable time cost?

To overcome the above challenges, we first define the basic unit

of 𝜏-LevelIndex (i.e., cell) in a compact manner by implicitly ex-

ploiting its geometric properties, and connect two cells in adjacent

levels of 𝜏-LevelIndex if they have a parent-child relation. This struc-
ture not only reduces the index size but also enables 𝜏-LevelIndex
to process many queries (if not all) efficiently, as usually only a

small number of cells need to be visited. We then propose three

approaches (i.e., the UTK2-adapted approach BSL, the insertion-
based approach IBA and the partition-based approach PBA) to build
𝜏-LevelIndex. BSL and IBA are simple but inefficient. However, they

provide insights (i.e., avoid redundant halfspaces in cells and reduce

unnecessary cell insertion checking) to devise novel and efficient

PBA. We further utilize the dominance relations among options to

improve the performance of PBA.
To the best of our knowledge, this is the first work in the database

community that proposes a general index for a spectrum of queries

in continuous preference space. Moreover, this work also proposes

the first practical solution to the well-known 𝜏-𝑙𝑒𝑣𝑒𝑙 problem (i.e.,

building 𝜏-LevelIndex) in the computational geometry community.

In addition to answering continuous preference space queries in

database community, 𝜏-LevelIndex may also find applications in

computational geometry, e.g., simplex range searching [7], Voronoi
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Figure 1: Discrete and continuous space

diagram computing [23], graph drawing [15]. To sum up, the tech-

nical contributions of our work are as follows:

• We design a succinct structure for 𝜏-LevelIndex with a novel

implicit cell representation and formally define the 𝜏-LevelIndex
building problem in Section 3.

• For three representative queries (i.e., kSPR, UTK, and ORU) in
continuous preference space, we show how to use 𝜏-LevelIndex
to process them efficiently in Section 4.

• We propose three building approaches for 𝜏-LevelIndex with a

suite of optimization techniques, which have low costs in both

space and time, in Sections 5 and 6.

• We conduct extensive experiments on both synthetic- and real-

datasets to validate the efficiency of our proposals for𝜏-LevelIndex
building problem. Moreover, for three representative queries, we

demonstrate the advantage of 𝜏-LevelIndex in query processing

efficiency over their state-of-the-art solutions in Section 7.

The remainder of this paper is organized as follows. Section 2

presents the preliminary and reviews the related work. Section 3

illustrates the 𝜏-LevelIndex building problem. Section 4 shows how

to process three representative queries via 𝜏-LevelIndex. Sections 5
and 6 present our devised approaches for 𝜏-LevelIndex building.

Section 7 evaluates the effectiveness of our proposals by extensive

experiments, and Section 8 concludes this work.

2 PRELIMINARY AND RELATEDWORK
In this part, we introduce the preliminary of ranking queries in

Section 2.1, then discuss the related work in Section 2.2.

2.1 Preliminary
Ranking queries have been extensively studied in the database

community. Usually, it ranks products in the market by the users’

preferences. Consider the option dataset D = {r1, r2, · · · , r𝑛} in
product space, it contains 𝑛 options, which correspond to prod-

ucts such as hotels, laptops or phones in the market. Each product

option r = (𝑟 [1], 𝑟 [2], · · · , 𝑟 [𝑑]) ∈ D is a discrete point in the 𝑑-

dimensional option spaceR𝑑 , see discrete black points in Figure 1(a),
in which each dimension models an attribute of the product. The

hotel dataset in Figure 1(a) has 5 hotels, each has two attributes

value (𝑟 [1]) and service (𝑟 [2]). For example, the attributes value and
service of Artezen are 0.90 and 0.48, respectively. The gray area in

Figure 1(a) shows a continuous region 𝑜𝑅 in product space, we will

elaborate it shortly. A user’s preference for the attributes is captured



Table 1: Classification of ranking queries
Query Product Preference Relevant

type space space work

DC Discrete Continuous [12, 14, 20, 29–31, 37, 40, 42, 49]

DD Discrete Discrete [12, 18, 21, 26, 39–41, 43, 44]

CD Continuous Discrete [36, 45–47]

CC Continuous Continuous [17, 25, 38]

by weight vector w = (𝑤 [1],𝑤 [2], · · · ,𝑤 [𝑑]) in preference space.

Without loss of generality [22], we assume the space of preference

vector is {w ∈R𝑑 | ∀𝑖 ∈ [1, 𝑑] 0≤𝑤 [𝑖] ≤ 1, and ∑𝑑
𝑖=1𝑤 [𝑖] = 1}1. For

example, Figure 1(b) illustrates the entire user preference space of

𝑤 [1] (i.e., the weight to the attribute value), which ranges from

0 to 1. Specifically, 𝑤 [1] = 0.18 shows a user with weight vector

(𝑤 [1]=0.18,𝑤 [2]=1−𝑤 [1]=0.82), it is a discrete point in prefer-

ence space.

The score of each product option r ∈ D is calculated by the

widely-used linear scoring functionSw (r) = r·w =
∑𝑑
𝑖=1 𝑟 [𝑖] ·𝑤 [𝑖] .

For each user weight vector w, the 𝑘 highest scores of products are

returned as the top-𝑘 result, e.g., the top-2 hotels of the user with

w = (0.18, 0.82) are {VibesInn, Yotel}. The continuous preference

region [0.40, 0.60] shows a spectrum of users in preference space,

i.e., these users who care value almost the same as service.

2.2 Related work
According to the properties of the product space and preference

space (i.e., discrete versus continuous) in ranking queries, we cat-

egorize them into four types in Table 1, and briefly discuss each

type of queries as follows.

Query type DC. In this work, we focus on the queries in this type.

Specifically, it considers a set of discrete option points in product

space, as 5 discrete hotels in Figure 1(a), and processes option-

related queries in continuous user preference space, as the prefer-

ence region [0.40, 0.60] shown in Figure 1(b). The monochromatic

reverse top-𝑘 query in [42] and why-not top-𝑘 query [20] are two

classical problems in type DC. Skyline query [40] and onion-layer

query [12] also belong to this type as they find qualified options in

the entire preference space. Recently, many DC type queries (e.g.,

MaxRank [31], kSPR [37], and UTK [30]) are proposed, which we

will discuss in more details in Section 4.

Query type DD. Queries in type DD work on a set of product

option vectors (i.e., 5 discrete points in Figure 1(a)) and a set of user

preference vectors (i.e., discrete point 𝑤 [1] = 0.18 in preference

space, see Figure 1(b)). Besides the traditional top-𝑘 query, reverse

top-𝑘 query [41, 44] and top-𝑚 influential query [43] also belong to

this type. Several techniques (e.g., indexing [39, 40], batching [18]

and pre-computation [12, 21, 26]) have been proposed to accel-

erate these queries. Query type DD is inherently different from

query type DC as the preference vectors are discrete. However,

our 𝜏-LevelIndex can also accelerate queries in type DD, as we will
elaborate in Section 4.

Query type CD. Queries in this type are usually used for influence

maximization applications, e.g., designing a new product such that it

1
Note that as

∑𝑑
𝑖=1 𝑤 [𝑖 ]=1, we can determine a weightw using only𝑑−1 parameters.

influences many users. Specifically, Tang et al. [36] proposed the𝑚-

impact regionmIR problem, which identifies areas in product space,

i.e., the continuous gray area 𝑜𝑅 in product space in Figure 1(a),

such that the hotels lied in them attract at least 𝑚 users in the

market. The solution formIR in [36] can be used to solve two other

queries in type CD, i.e., influence-based cost optimization [46, 47]

and improvement strategy making problem [45]. They are different

from ours as we focus on discrete instead of continuous product

space.

Query type CC. A representative of type CC is why-not reverse

top-𝑘 query [17, 25], which explains why an option is not in the

top-𝑘 result of a user. The query also suggests how to modify the

option in continuous option space or the user preference vector

in continuous preference space. E.g., how to modify Yotel or the
preference region [0.4, 0.6] in Figure 1(b) such that the option Yotel
ranks top-2. Given a region in continuous preference space, the

top-ranking region query (TopRR [38]) computes the region in

continuous option space in which every option r belongs to the

top-𝑘 set for every weight vector in the given preference region.

For example, the gray region 𝑜𝑅 in Figure 1(a) includes all the top-

𝑘 options for every weight w that lies in continuous preference

region [0.4, 0.6] in Figure 1(b). However, we work with discrete

points instead of continuous areas in product space in this paper.

Other relevant queries. The k-hit query [33] models user pref-

erence vectors using a probability density function. Soliman et

al. [35] find the most probable top-𝑘 result when user preference

vectors are uniformly distributed in preference space. These works

are different from type DC queries as they assume that the user

preference follows a specific distribution while type DC queries

assume that the user preference weight vector can locate in any

position in continuous preference space.

3 LEVELINDEX BUILDING PROBLEM
Before we formulate our research problem, we first define a funda-

mental concept halfspace in continuous preference space.

Definition 1 (Halfspace). Given two different options r𝑖 and r𝑗
in the option dataset D, hyperplane H𝑖, 𝑗 : Sw (r𝑖 ) = Sw (r𝑗 ) splits
the whole continuous preference space into two halfspaces. The positive
and negative halfspaces of r𝑖 w.r.t. r𝑗 are:H+𝑖, 𝑗 = {w∈R

𝑑−1 | Sw (r𝑖 ) ≥
Sw (r𝑗 )} andH−𝑖, 𝑗 = {w∈R

𝑑−1 | Sw (r𝑖 ) ≤Sw (r𝑗 )}, respectively.

Example.Consider VibesInn(r1) andArtezen(r2) in the hotel dataset
in Figure 2(a). HyerplaneH1,2 : Sw (r1) = Sw (r2) splits the prefer-
ence space [0,1] into two halfspaces, i.e.,H+

1,2
andH−

1,2
, as illustrated

in Figure 2(b)
2
. The users in halfspaceH+

1,2
prefer VibesInn(r1) to

Artezen(r2) as the score of VibesInn Sw (r1) is larger than or equal

to the score of Artezen Sw (r2). H+
1,2

is the same as H−
2,1

due to

symmetry.

We then define rank-ℓ-th cell in preference space, which is the

basic element in 𝜏-LevelIndex.

Definition 2 (Rank-ℓ-th Cell C). Given an option dataset D,
we say a region C in preference space is a rank-ℓ-th cell iff every
preference weight vector w in C satisfies (i) the top-ℓ option set is R,
2
For ease of presentation, we allow both halfspaces include the hyperplane H1,2 .
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Figure 2: LevelIndex example

and (ii) the top-ℓ-th option is r𝑖 . With R and r𝑖 , the geometric region
of the rank-ℓ-th cell C, denoted as G(C), can be expressed as

G(C) =
( ⋂
r𝑗 ∈R−{r𝑖 }

H−𝑖, 𝑗
)
∩
( ⋂
r𝑗 ∈D−R

H+𝑖, 𝑗
)
. (1)

Example. Consider the rank-2nd cell C4 in Figure 2(b). For every

user whose preference weight vector w lies in C4, it holds that (i)
her top-2 hotels are R = {VibesInn(r1),Artezen(r2)}, and (ii) the

top-2nd hotel isArtezen(r2). The geometric region of C4 (i.e.,𝑤 [1] ∈
[0.2, 0.5]) in preference space isG(C4) = H−

2,1
∩
(
H+

2,3
∩H+

2,4
∩H+

2,5

)
.

We next define level-ℓ arrangement in preference space.

Definition 3 (Level-ℓ Arrangement). All rank-ℓ-th cells form
the level-ℓ arrangement. It holds that the union of all rank-ℓ-th cells
is the entire preference space.

Example. Consider the example in Figure 2(b), level-2 arrange-

ment consists of all rank-2nd cells, i.e., 4 red cells C3, C4, C5 and
C6. The union of all rank-2nd cells’ region is the entire prefer-

ence space, i.e., [0, 0.2] ∪ [0.2, 0.5] ∪ [0.5, 0.8] ∪ [0.8, 1] = [0, 1].
Interestingly, the union set of the rank-2nd options of these cells,

i.e., {Yotel(r4),Artezen(r2),VibesInn(r1), citizenM(r3)}, contains all
options that can rank top-2nd for any user preference vector. It

means that hotels not in the union set cannot rank the 2nd for any

customer, e.g., Royalton(r5) in Figure 2.

We formally specify the structure of 𝜏-LevelIndex in Definition 4.

Definition 4. (𝜏-LevelIndex) Given an integer 𝜏 ≤ |D|, the 𝜏-
LevelIndex is a directed acyclic graph (DAG), where the vertex set
contains all rank-ℓ-th cells for ℓ ∈ [1, 𝜏]. A rank-ℓ-th cell C𝑖 stores its
top-ℓ-th option rℓ , and it has a directed edge to a rank-(ℓ+1)-th cell
C𝑗 iff the geometric region of C𝑖 intersects with the geometric region
of C𝑗 , i.e., G(C𝑖 ) ∩ G(C𝑗 ) ≠ ∅.

Example. Consider the 2-dimensional product dataset D in Fig-

ure 2(a). Its 𝜏 =3-LevelIndex is shown in Figure 2(c). We add a rank-0

cell C0 that corresponds to the entire preference space (called the

entry cell). For each cell C𝑖 in 𝜏-LevelIndex, the path length from

C0 to C𝑖 is its level ℓ . As shown in Figure 2(c), the top-ℓ-th option

is stored in each rank-ℓ-th cell C𝑖 . We outline level-1, 2, 3 cells in

blue, red, green, respectively. For any rank-ℓ-th cell C𝑖 , its top-ℓ
option set R can be obtained by traversing any path from the entry

cell to C𝑖 . Take rank-3rd cell C9 for example, its top-3 hotel set is

R = {VibesInn(r1),Artezen(r2), citizenM(r3)} (i.e., traversing the

path C0→C1→C4→C9 or C0→C2→C5→C9). With the top-ℓ

option set R of each cell C𝑖 , we can obtain its geometric region

using Definition 2. For the 𝜏-LevelIndex example in Figure 2(c), we

explicitly list the preference region of each cell, e.g., the preference

region of C4 is [0.2, 0.5]. All cells with the same rank ℓ cover the

entire preference space and form the level-ℓ arrangement. The 𝜏-

LevelIndex can be utilized to answer many ranking queries in both

type DD and DC (see Table 1) as we will show in Section 4. Thus,

we define the 𝜏-LevelIndex building problem in Problem 1.

Problem 1 (𝜏-LevelIndex building). Given a product dataset D
and an integer 𝜏 , the 𝜏-LevelIndex building problem is to build the
𝜏-LevelIndex efficiently in terms of both space and time consumption.

4 QUERY PROCESSINGWITH 𝜏-LevelIndex
Before we present our solutions for the 𝜏-LevelIndex building prob-
lem, we illustrate its usability in this section. Specifically, we first

classify the type DC queries in Table 1 into three categories and

show how to use 𝜏-LevelIndex to process the representative query

in each category. Then, we briefly discuss the generality and limi-

tations of 𝜏-LevelIndex.

I. Option analytical query in DC. The monochromatic reverse

top-𝑘 query [42] returns the line segments in [0,1], in which the

given option r (e.g., VibesInn(r1) in Figure 2(a)) can be the top-𝑘

result. The maximum rankMaxRank query [31] returns the highest
rank of an option r in the entire preference space. For example, the

highest rank of Yotel(r4) in the market. Tang et al. [37] solved a gen-

eralization of monochromatic reverse top-𝑘 query, i.e., 𝑘-shortlist

preference region problem kSPR. We use kSPR query (see Prob-

lem 2) as an example to show how to process option analytical

queries with 𝜏-LevelIndex.
Problem 2 (kSPRqery [37]). Given a datasetD, a focal option

r and an integer 𝑘 , kSPR query returns all regions in preference space
in which r ranks top-𝑘 among D.

Using 𝜏-LevelIndex, kSPR(𝑘, r) can be solved by traversing all

paths from the entry cell C0 until reaching the 𝑘-th level or the

queried option r, whichever sooner. Take kSPR(2,VibesInn(r1))
for example, it finds the preference regions where VibesInn(r1) is
always one of the top-2 hotels. As shown in Figure 3(a), it returns

C1 and C5 as the kSPR result regions. The search process only

visits 5 cells (in gray) on 𝜏-LevelIndex, i.e., C0, C1, C2, C5, and C6.
Compared to the specialized solution in [37], processing kSPR using

𝜏-LevelIndex avoids (i) building the 𝐶𝑒𝑙𝑙𝑇𝑟𝑒𝑒 from scratch, which

has extremely high time complexity
3
, and (ii) incurring expensive

3
The time complexity is𝑂 (𝛼 · (𝑘 𝑙𝑜𝑔𝑑−1𝑛

𝑑 !
)𝑑 ) , where 𝛼 is a constant that depends on

the dimensionality 𝑑 [37].
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Figure 3: Representative queries on LevelIndex

function calls for feasibility test (in lp_solve library), which is a core
subroutine in the optimized solution (i.e., LP-CTA) for kSPR [37].

II. Preference region query in DC. Ciaccia and Martinenghi [14]

proposed the restricted skyline query. Specifically, given a family

of scoring functions (e.g., 𝐿𝑝 norms) and a set of linear conditions

on the weights (i.e., a continuous region in preference space), the

restricted skyline query returns all options in the dataset which could
rank top-1st for everyweight that satisfies the linear conditions. The

uncertain top-𝑘 UTK query [30] generalizes the restricted skyline
query, i.e., 𝑘 can be an arbitrary value. We useUTK query (including

its two variants) as an example to show how 𝜏-LevelIndex processes
preference region queries.

Problem 3 (UTKqery [30]). Given a datasetD, a query region
𝑐 in preference space and an integer𝑘 ,UTK query reports (i) all options
that can rank top-𝑘 amongD for any possible preference weightw in
𝑐 , and (ii) a partitioning of 𝑐 where each partition is associated with
its top-𝑘 result set.

Using the 𝜏-LevelIndex, UTK(𝑘, 𝑐) can be solved by identifying

all level-𝑘 cells which intersect with 𝑐 , and then collecting the top-𝑘

result set of these cells. Suppose data analysts want to find the

top-3 hotels when the users’ weight on value ranges from 0.35 to

0.45. It can be answered by UTK query, i.e., UTK(3, 𝑐 = [0.35, 0.45])
in Figure 3(b), the search process checks C1 and C2 on level-1,

and skips C2 as it does not intersect with 𝑐 . Similarly, 𝑐 inter-

sects with C4 on level-2, and terminates after checking C8 and

C9 on level-3. All the gray cells in Figure 3(b) are visited when

processing UTK. The top option set of a cell C can be obtained

by collecting the top-ℓ-th products of the visited qualified cells

in 𝜏-LevelIndex. For example, the result of UTK(3, 𝑐 = [0.35, 0.45])
is {VibesInn(r1),Artezen(r2), citizenM(r3), Yotel(r4)}, as the hotels
shown in the deep gray cells of Figure 3(b). The partitioning of C
isG(C8)∩𝑐 andG(C9)∩𝑐 , which top-3 result sets are {VibesInn(r1),
Artezen(r2), Yotel(r4)} and {VibesInn(r1),Artezen(r2), citizenM(r3)},
respectively.

III. Option and preference region hybrid query in DC. Given
a user preference vector w, the immutable queries [29, 49] return

a preference region around w where the top-𝑘 result is the same.

Specifically, [29] returns the area which only varies in one dimen-

sion, but [49] returns the area which varies in all 𝑑 dimensions.

The ORU [28] solved a generalized version of both local [29] and

global [49] immutable region queries. Thus, we use ORU query

to show how 𝜏-LevelIndex can be applied to process option and

preference region hybrid queries.

Table 2: ORU illustration for Figure 3(c)

Iteration Min-heap Result set R
1st ⟨(C0, 0) ⟩ {∅}
2nd ⟨(C1, 0), (C2, 0.2) ⟩ {VibesInn(r1) }
3rd ⟨(C4, 0), (C3, 0.1), (C2, 0.2) ⟩ {VibesInn(r1),Artezen(r2) }
4th ⟨(C3, 0.1), (C2, 0.2) ⟩ {VibesInn(r1),Artezen(r2), Yotel(r4) }

Problem 4 (ORU qery). Given a dataset D, an integer 𝑘 , a
query weight w and the requested result size𝑚, ORU reports a sized-
𝑚 result set, in which each option belongs to the top-𝑘 result for at
least one reference vector w′ within the minimum expansion distance
𝜌 from w, i.e., ∥w′ −w∥ ≤ 𝜌 .

Using 𝜏-LevelIndex, ORU(𝑘,w,𝑚) can be solved by collecting

the top option sets of level-ℓ cells in ascending order of their dis-

tances
4
to w until the number of products reaches𝑚. In particular,

we first push the root cell C0 into a min-heap such that the head

of the heap has the minimum distance to w. In each iteration, we

merge the top-ℓ-th option of the cell at heap head into the result

set if ℓ ≤ 𝑘 , then pop the head and push all its connecting cells

in level-(ℓ+1) iff (ℓ+1) ≤ 𝑘 . The procedure terminates when the

size of result set reaches𝑚. Suppose data analysts want to find 3

hotels, each of which can be the top-2 result for at least one user

around w[1]=0.3, as ORU(𝑘 = 2,𝑤 [1] = 0.3,𝑚 = 3) shown in Fig-

ure 3(c). Table 2 shows the heap and result set during the search

process, where the value associated with each cell is its minimum

distance to w. Compared to the solution in [28], processing ORU
query with 𝜏-LevelIndex significantly reduces time complexity as

it avoids expensive geometric computations.

Discussion of 𝜏-LevelIndex. For the above examples, we can see

that 𝜏-LevelIndex is a general index for many queries in contin-

uous preference space. This is because these queries usually are

finding a specified preference cell or a set of options which are

associated with specified preference cells in 𝜏-LevelIndex, and 𝜏-
LevelIndex readily stores all cells and top option sets. Thus, answers
to the queries can be obtained by simply looking up the required

cells and top option sets in 𝜏-LevelIndex. For example, the why-

not top-𝑘 query [20] and skyline query [40] also can be processed

efficiently with 𝜏-LevelIndex. In particular, the option set in each

level arrangement in 𝜏-LevelIndex is tighter than the result set of

the corresponding skyline or onion-layer queries. For the why-not

top-𝑘 query with input option r and user weight w, we can find the

4
In general cases, a cell C is a convex set in R𝑑−1 and a weight is a point in R𝑑−1 .
Thus, the distance between a weight w and a cell C is defined as ∥w −w′ ∥, where w′
is the projection of w in C.



cells in 𝜏-LevelIndex where r is in the top-𝑘 result at first, and then

explain why r is not in the top-𝑘 result of user w by checking these

cells. In addition to the queries in typeDC, other queries also can be
processed on 𝜏-LevelIndex. For example, the top-𝑘 query can be di-

rectly answered by checking the cells which contain the user weight

vector w from level 1 to 𝑘 in 𝜏-LevelIndex, we will investigate its
performance in Section 7.3. Besides processing preference space

queries, 𝜏-LevelIndex has many applications in computational ge-

ometry problems, e.g., solving 𝜏-𝑙𝑒𝑣𝑒𝑙 [34] and 𝜏-𝑠𝑒𝑡 [13] problems,

and the vertices of cells can be used to assist graph drawing [15, 27].

As we stated in Section 2, 𝜏-LevelIndex cannot be used to answer
the queries in types CC and CD. The reason is the queries (e.g.,

mIR query in [36] and why-not reverse top-𝑘 query in [17, 25]) in

both types require the continuous product space either as input or

as output, but 𝜏-level index is a partition of continuous preference

space by discrete options in product space, see Figures 2(b) and (c).

5 OUR BASIC APPROACHES
Even though 𝜏-LevelIndex can be used to answer a spectrum of

queries in continuous preference space, it is only solved theoret-

ically with expensive time complexity [9]. In this section, we de-

vise two basic approaches to build 𝜏-LevelIndex (see Problem 1) in

practical. In particular, we propose the first basic approach (i.e.,

UTK2-adapted approach BSL) for 𝜏-LevelIndex building problem in

Section 5.1, then devise the second basic approach (i.e., the insertion-

based approach IBA) in Section 5.2.

5.1 UTK2-adapted Approach: BSL
For a given region 𝑐 in preference space, Mouratidis and Tang [30]

devised an algorithm (called UTK2) that partitions 𝑐 into (smaller)

sub-regions in which preference vectors have the same top-ℓ option

set. UTK2 can be adapted to build 𝜏-LevelIndex using the following
procedures: (i) for each ℓ ∈ [1, 𝜏], use the entire preference space as
the query region 𝑐 and incur UTK2 to obtain its partitioning, which

returns all cells in level-ℓ arrangement; (ii) for each cell in level

ℓ , conduct intersection checking for every cell in level-(ℓ +1) to
add the directed edges. The UTK2-adapted approach BSL is correct

but it incurs high complexity, we will verify it in Section 7. The

reasons are (i) the cost of UTK2 is high (see Lemma 5 in [30]), and

(ii) numerous intersection testings are required to connect cells.

Even though the UTK2-adapted approach BSL is expected to be

inefficient, to the best of our knowledge, it is the first implemented

solution for the 𝜏-LevelIndex building problem in both database

and computational geometric communities.

5.2 Insertion-based Approach: IBA
The insertion-based approach IBA builds 𝜏-LevelIndex by inserting

options one by one. To insert an option r𝑗 , we check cells in the

current 𝜏-LevelIndex in a top-down manner. For a rank-ℓ-th cell

C, we only store its top-ℓ-th option, say rℓ . Its top-ℓ result set R
could be derived by visiting the nodes on the path from C0 to C.
When checking cell C for the inserted option r𝑗 , IBA tests whether

r𝑗 ranks higher than or equal to rℓ for any preference vector w
in C. This is equivalent to determining the relation between the

geometric region of cell C (i.e., G(C)) and halfspaces ofHℓ, 𝑗 (i.e.,

H+
ℓ, 𝑗

andH−
ℓ, 𝑗
), which boils down to the following three cases.
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Figure 4: Option insertion for 3-LevelIndex example

• Case I If (H+
ℓ, 𝑗
⊇ G(C)): it means that rℓ always ranks higher

than r𝑗 in cell C. For example, as shown in Figure 4(b),H+
1,3

=

{w|Sw (r1) ≥ Sw (r3)} ⊇ G(C1), it means VibesInn(r1) always
has higher scores than citizenM(r3) for every user in preference

region C1. Thus, it checks r𝑗 with the children of cell C in 𝜏-

LevelIndex recursively if C is an internal node. Otherwise, i.e, C
is a leaf node, a new rank-(ℓ+1)-th cell C′ (with top-(ℓ+1)-th
option being r𝑗 ) is created and set as a child of cell C when

ℓ+ 1≤𝜏 .
• Case II Else if (H−

ℓ, 𝑗
⊇ G(C)): it means that for every weight

vector w ∈ C, the score of r𝑗 is always larger than rℓ . Thus, the
rank-ℓ-th option in cell C should be updated to r𝑗 . It inserts a
new node C′ (with the rank-ℓ-th option being r𝑗 ) and sets cell

C as a child of the newly inserted cell C′ (which makes C as a

rank-(ℓ+1)-th cell). It is symmetric to Case I.

• Case III Else: it means that the hyperplaneHℓ, 𝑗 splits cell C into

two parts. For example, H1,3 (i.e., 𝑤 [1] = 0.8) splits cell C4 in
Figure 4(b). For the part where the rank of rℓ is higher than r𝑗 ,
it checks r𝑗 with the children of cell C recursively as Case I. For

the other part, where rℓ ranks lower than r𝑗 , it creates a new
rank-ℓ-th node C′ (with the rank-ℓ-th option being r𝑗 ), and sets

cell C as a child of the newly inserted cell C′ as Case II.
Take Figure 4 as an example, Figure 4(a) shows the two level

arrangements with two hotels VibesInn(r1) and Artezen(r2). After
inserting citizenM(r3), the three level arrangements are shown in

Figure 4(b). We will elaborate the details of inserting citizenM(r3)
to build a 3-LevelIndex in Figure 5, which corresponds to the level

arrangements in Figure 4(b). The cells in 3-LevelIndex before in-
serting citizenM(r3) are shown in Figure 5(a) in gray color, i.e., C0
to C4. Consider the insertion of citizenM(r3), it first checks citi-
zenM(r3) with cell C1 (with top-1st option VibesInn(r1)). Since the
score of VibesInn(r1) is always larger than citizenM(r3) in C1, see
Sw (r1) and Sw (r3) in Figure 4(b), Case I holds. It then checks cit-
izenM(r3) with the child cell of C1, i.e., C3 with top-2nd option

Artezen(r2), citizenM(r3) ranks lower than Artezen(r2) for every
preference weight vector w in cell C3, thus, a new node C5 with
top-3rd option citizenM(r3) is created and set as a child of cell C3
in 3-LevelIndex.

Now we consider inserting citizenM(r3) into cell C2. As Case I
holds for cell C2, its checks citizenM(r3) with C2’s child cell C4. For
cell C4 with top-2nd option VibesInn(r1), hyperplaneH1,3 splits it

into two parts, i.e., C6 and C7. It shows the insertion procedure of

Case III. For the part in C4 where the rank of VibesInn(r1) is higher
than citizenM(r3), i.e., C6 with top-2nd option VibesInn(r1), a new
node C8 with top-3rd option citizenM(r3) is added as the child of

cell C6. For the other part in C4 where the rank of VibesInn(r1) is
lower than citizenM(r3), i.e., C7 with top-2nd option citizenM(r3),
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Figure 5: Insertion-based approach example

it creates a new cell C9 with top-3rd option VibesInn(r1) and sets

C9 as the child of cell C7.
The pseudocode in Algorithm 1 summarizes the insertion-based

approach IBA. At the beginning, it initializes the entry cell C0 of
𝜏-LevelIndex by setting its rank-ℓ-th option rℓ as 𝑛𝑖𝑙 . It inserts each
option r𝑗 ∈ D into 𝜏-LevelIndex one by one, as shown in Line 2

to 5 in Aglorithm 1. The key subroutine in the insertion-based

approach IBA is Insert, its inputs are cell C, inserting option r𝑗
and the top-ℓ result set R of cell C. Given a cell C, with the top-ℓ

result set R and its rank-ℓ-th option rℓ , the exact preference region
of cell C, i.e., G(C), can be obtained by Definition 2. Then, we

employ lp_Solve5 to check the relationship between cell C and

hyperplaneHℓ, 𝑗 , which is formed by C’s rank-ℓ-th option rℓ and
inserting option r𝑗 . Line 8 to 23 corresponds to the three cases we

have elaborated.

After inserting each option r𝑗 , it incurs a Merge function to

improve the efficiency of subsequent insertions. Specifically, the

Merge function merges rank-ℓ-th cells that share the same top-ℓ

result set and top-ℓ-th option. For example, consider rank-3-th cells

C5 and C8 in Figure 5(a), the top-3 result sets and top-3rd option

of both cells are R = {VibesInn(r1),Artezen(r2), citizenM(r3)} and
citizenM(r3), respectively. Thus, C5 and C8 are merged into a cell

C10, as shown in Figure 5(b). During the insertion process, cells

with higher rank than 𝜏 will be eliminated, as it will not be a part

of the result 𝜏-LevelIndex. This can be achieved by checking the

cardinality of top-ℓ result set R when incurring the Insert function
on cell C. We omit it in Algorithm 1 for the ease of presentation.

Before analyzing the time complexity of IBA, we introduce two

optimizations to improve its efficiency.

Option filtering.Given a datasetD, the 𝜏-LevelIndex construction
problem only needs to consider options in the first 𝜏 layers of

skylines. The reason is that the other options cannot rank top-𝜏 for

any user weight vector in preference space, and thus can be omitted

when building 𝜏-LevelIndex. For example, option Royalton(r5) in
Figure 2(a) will not contribute to the 3-LevelIndex in Figure 2(c) and

can be ignored. Thus, we compute the 𝜏-skyband [32] option set of

the dataset D, and use it as the input dataset to build 𝜏-LevelIndex.

Insertion ordering. An intuitive solution is to randomly assign

an insertion order for options. However, insertion ordering can

have a significant influence on the performance of IBA. The reason
is obvious—with a poor insertion ordering, many redundant cells

(which will not appear in the result 𝜏-LevelIndex) will be created.
Our second optimization for IBA is to insert options according

5
http://lpsolve.sourceforge.net/5.5/

Algorithm 1 IBA(Dataset D,value 𝜏)

1: Initialize 𝜏-LevelIndex entry cell C0 with rℓ ← 𝑛𝑖𝑙

2: for each option r𝑗 ∈ D do
3: Result set R ← ∅
4: Insert(C0, r𝑗 ,R)
5: Merge and Eliminate cells in 𝜏-LevelIndex

6: Return 𝜏-LevelIndex

Routine Insert(cell C, option r𝑗 , result set R):
7: C.IsVisited← True
8: if H+

ℓ, 𝑗
⊇ G(C) then ⊲ Case I

9: if C is an internal node then
10: for each child 𝑐 of C and 𝑐.IsVisited is False do
11: Insert(𝑐, r𝑗 ,R∪{rℓ })
12: else
13: Initialize cell C′ by setting rℓ ← r𝑗
14: Set C′ as the child of C
15: else if H−

ℓ, 𝑗
⊇ G(C) then ⊲ Case II

16: Clone C to C′, and set rℓ of C′ as r𝑗
17: Set C as the child of C′
18: else ⊲ Case III

// the part Sw (rℓ ) ≤ Sw (r𝑗 ) in cell C
19: Clone C to C′ and set rℓ of C′ as r𝑗
20: Clone C to a new cell C′′
21: Set C′′ as the child of C′

// the part Sw (rℓ ) ≥ Sw (r𝑗 ) in cell C
22: for each child 𝑐 of C and 𝑐.IsVisited is False do
23: Insert(𝑐, r𝑗 ,R∪{rℓ })

to their skyline layers, i.e., options at lower (e.g., the first) skyline

layers are inserted before options at higher (e.g., the second) skyline

layers. We investigate the effect of the insertion ordering by the

experiments shown in Figure 11, Section 7.

Complexity analysis.We analyze the time complexity of IBA in

Algorithm 1 in Lemma 1.

Lemma 1. Given a 𝑑-dimensional dataset D, the time complexity
of using the insertion-based approach IBA to construct 𝜏-LevelIndex
is 𝑂 (𝑚𝑑−1), where𝑚 is the cardinality of the 𝜏-skyband set of D.

Proof. The computational cost of IBA is roughly equal to the

total number of cells in 𝜏-LevelIndex. Algorithm 1 inserts all prod-

ucts in the 𝜏-skyband of dataset D, i.e., 𝑚 options in total, into

a 𝑑-1 dimensional preference space. Thus, the number of cells in

𝜏-LevelIndex is𝑂 (𝑚𝑑−1) according to the zone theorem in [16]. □

6 PARTITION-BASED APPROACH: PBA
In this section, we devise a partition-based approach (PBA) to build
𝜏-LevelIndex incrementally (i.e., level by level). PBA outperforms

IBA by (i) employing a partition-based method to compute the cells

in 𝜏-LevelIndex, instead of inserting options one by one as in IBA,
and (ii) ignoring the unqualified options when partitioning each

cell in 𝜏-LevelIndex.



6.1 Observations from IBA
We elaborate two observations from IBA, which inspire us to design
PBA to reduce the index building time.

Observation I: Redundant cell representation. For each cell

C in 𝜏-LevelIndex, its exact geometric region G(C) is defined by

the top-ℓ result set R implicitly. For example, consider the rank-1st

cell C1 (with top-1 result set R = {VibesInn(r1)}) in Figure 4(b).

According to Definition 2, the geometric region of C1 is G(C1) =
H+

1,2
∩H+

1,3
. However, the representation of C1 can be simplified to:

G(C1) = H+
1,2
. The reason is that the score of Artezen(r2) is larger

than the score of citizenM(r3) in the entire preference space, i.e.,

∀𝑤 [1] ∈ [0, 1],Sw (r2) ≥ Sw (r3), as shown in Figure 4(b). Thus, it

holds Sw (r1) ≥ Sw (r2) ≥ Sw (r3) for any weight vector w ∈ H+
1,2

(i.e.,𝑤 [1] ∈ [0, 0.5]). Thus,H+
1,3

can be safely omitted in G(C1).
Given a rank-ℓ-th cell C and the inserted option r𝑗 , IBA tests the

relationship between cell C and hyperplaneHℓ, 𝑗 , then classifies the

situation into three cases (see Lines 8, 15, and 18 inAlgorithm 1). The

number of halfspaces in C determines the cost of the relationship

test. Specifically, the halfspace intersection cost is 𝑂 (𝑛 ⌊𝑑/2⌋ ) when
there are 𝑛 halfspaces. Therefore, our first question is how to define
a cell C concisely?

Observation II: Unnecessary cell checking. Consider the 𝜏 =2-
LevelIndex in Figure 4(a) with citizenM(r3) being the inserted op-

tion. In IBA, citizenM(r3) checks every cell in 2-LevelIndex, i.e., the
gray cells (C1, C2, C3 and C4) in Figure 5(a). However, citizenM(r3)
does not change the level-1 arrangement in 3-LevelIndex, i.e., the
two rank-1st cells C1 and C2 are not affected, as shown in Fig-

ure 5(b). But IBA needs to check citizenM(r3) with cells C1 and C2
by conducting geometric relationship tests, which obviously wastes

computation cost. Therefore, our second question is how to avoid
unnecessary cell checking?

In addition to the above inefficiencies, IBA processes each option

in the dataset D one by one. After each iteration, it returns 𝜏-

LevelIndex with the options that have been inserted so far. Thus,

it cannot build the 𝜏-LevelIndex incrementally, i.e., building the

𝜏-LevelIndex upon the (𝜏−1)-LevelIndex of the input dataset D.

6.2 PBA Algorithm
Our partition-based approach PBA is designed to solve the two in-

efficiencies of IBA. In particular, PBA avoids redundant halfspaces

in each rank-ℓ-th cell C by observing a crucial property among the

halfspaces, which we will present shortly. Moreover, to resolve the

unnecessary checking issue in IBA and build 𝜏-LevelIndex incre-
mentally, PBA only processes the options that can rank top-(ℓ+1)-th
for any possible weight vector w in each rank-ℓ-th cell C.
Simplified cell representation. Before presenting the partition-
based approach PBA, we show an alternative method to define the

geometric region of each cell C in 𝜏-LevelIndex in Definition 5.

Definition 5. Given a dataset D, suppose that cell set Γ includes
all rank-(ℓ−1)-th cells with the same top-(ℓ−1) option set RΓ6. Let
P be the top-ℓ-th option set for any possible weight vector w that
lies in the geometric region of Γ. For the rank-ℓ-th cell C in level-ℓ
arrangement of 𝜏-LevelIndex, whose top-ℓ-th option is r𝑖 ∈ P and

6
The result set RΓ is order insensitive.
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Figure 6: Partition-based approach PBA example

top-ℓ result set is R = RΓ ∪ {r𝑖 }, we define C’s geometric region in
preference space as follows:

G′(C) =
( ⋂
r𝑗 ∈R−{r𝑖 }

H−𝑖, 𝑗
)
∩
( ⋂
r𝑗 ∈P−{r𝑖 }

H+𝑖, 𝑗
)
. (2)

Lemma 2 serves as a basic building brick of the partition-based

approach PBA.

Lemma 2. The geometric region of rank-ℓ-th cell C in Definition 2 is
equivalent to the geometric region in Definition 5, i.e.,G(C) = G′(C).

Proof. According to Definition 2, the geometric region of cell

C is: G(C) =
(
∩∀r𝑗 ∈R−{r𝑖 } H−𝑖, 𝑗

)
∩

(
∩∀r𝑗 ∈D−R H+𝑖, 𝑗

)
. We first

define the geometric region of Γ via Definition 2 as follows: G(Γ) =⋃
∀C𝑗 ∈Γ G(C𝑗 ). Since P includes all possible top-ℓ-th options for

any weight w in G(Γ), we have ∀r𝑖 ∈ P and ∀r𝑗 ∈ D − {R ∪
P},Sw (r𝑖 ) > Sw (r𝑗 ) . It means that H+

𝑖, 𝑗
holds for any weight w

in G(Γ). Next, it holds that G(Γ) ⊇ G(C) as the top-ℓ result set of
rank-ℓ-th cell C is R = RΓ ∪ {r𝑖 }. Then, we conclude that ∀r𝑗 ∈
D − {R ∪ P},H+

𝑖, 𝑗
⊇ G(Γ) ⊇ G(C) . It means that ∀r𝑗 ∈ D − {R ∪

P}, halfspaceH+
𝑖, 𝑗

covers G(C). Thus,H+
𝑖, 𝑗

can be removed from

G(C) as it does not bound the geometric region of C in preference

space. After removing all these halfspaces, it holds that G(C) =(
∩∀r𝑗 ∈R−{r𝑖 } H−𝑖, 𝑗

)
∩
(
∩∀r𝑗 ∈P−{r𝑖 } H+𝑖, 𝑗

)
= G′(C) . □

Example. Given the hotel dataset in Figure 2(a), suppose we want

to build its 3-LevelIndex. Consider the entry cell C0 with its top-1st

hotel set P = {VibesInn(r1),Artezen(r2)}. According to Lemma 2,

the geometric region of C1 (with top-1st option VibesInn(r1)) is
G′(C1) = H+

1,2
(in Definition 5), as shown in Figure 6, which is

equivalent to G(C1) = H+
1,2
∩ H+

1,3
∩ H+

1,4
∩ H+

1,5
in Definition 2

because citizenM(r3), Yotel(r4) and Royalton(r5) cannot rank top-1st
for any weight w in the entire preference space C0, as their scores
shown in Figure 2(b).

Corollary 1. Given a rank-ℓ-th cell C, let P be the rank top-
(ℓ+1)-th option set for any weight w that lies inside C. It holds that
for every child cell of C, its top-(ℓ+1)-th option is in P.

Proof. The proof is trivial asP includes all possible top-(ℓ+1)-th
options for any weight w in the geometric region of cell C. □

Partition-based approach.With Lemma 2 and Corollary 1, the

main idea of the partition-based approach PBA is as follows. Given

a rank-ℓ-th cell C, we first compute the set of possible top-(ℓ+1)-th
options P for any weight w in the geometric region of C, then
create C’s rank-(ℓ+1)-th child cells by verifying the feasibility of



each option in P. Finally, we obtain the geometry region of all

rank-(ℓ +1)-th cells in level-(ℓ + 1) arrangement of 𝜏-LevelIndex
with Equation (2) and Lemma 2.

Take the rank-1st cell C1 in Figure 6 as an example, its possible

top-2nd option set P = {Artezen(r2), Yotel(r4)}, and each option

leads to a rank-2nd cell. Applying Equation (2), the rank-2nd cells of

C1 areC3 andC4 with geometric regionsH−
4,1
∩H+

4,2
, andH−

2,1
∩H+

2,4
,

respectively, as shown in Figure 6.

Algorithm 2 PBA(Dataset D,value 𝜏)

1: Initialize 𝜏-LevelIndex entry cell C0 with C0 .rℓ ← 𝑛𝑖𝑙

2: Initialize top-ℓ set C0 .R←∅, bounding option set C0 .B←∅
3: for each ℓ from 0 to 𝜏 − 1 do
4: for each rank-ℓ-th cell C in 𝜏-LevelIndex do
5: P ← ComputeP(C,D) ⊲ Section 6.3

6: Partition(C,P)
7: Merge cells at level-(ℓ+1) arrangement in 𝜏-LevelIndex

8: Return 𝜏-LevelIndex

Routine Partition(cell C, top-(ℓ+1)-th set P):
9: for each r𝑖 ∈ P do

// Verify whether r𝑖 can rank top-(ℓ+1)-th in C
10: if

(
∩r𝑗 ∈P−{r𝑖 }H+𝑖, 𝑗

)
∩ G′(C) ≠ ∅ then

11: Clone C to C′, C′.rℓ←r𝑖
12: C′.R←C.R ∪ {r𝑖 }, C′.B←P−{r𝑖 }
13: Set C′ as the child of C

Algorithm 2 shows the pseudocode of the partition-based ap-

proach PBA. For each cell C, C.R and C.rℓ store its top-ℓ result
set and top-ℓ-th option, respectively. Moreover, it employs C.B to

store the options that bound the geometric region of C. Consid-
ering level ℓ in 𝜏-LevelIndex, PBA processes each rank-ℓ-th cell C
individually (see Line 4). At Line 5, it computes the top-(ℓ+1) op-
tion set P for any weight vector in C. Then it incurs the Partition
function to compute C’s rank-(ℓ+1)-th child cells in Line 6. The

Merge function is called to merge the rank-(ℓ+1)-th cells that share

the same top-(ℓ+1) result set and top-(ℓ+1)-th option, which is

the same asMerge in the insertion-based approach (see Line 5 in

Algorithm 1). In addition, for each rank-(ℓ +1)-th cell C, its C.B
unions all bounding options of each merged cells.

For each cell C at level ℓ , it includes two key functions (i.e.,

ComputeP and Partition) to compute its child cells at level (ℓ+1).
The routineComputeP (in Line 5) computes the top-(ℓ+1)-th option
set P for every user preference weight in cell C, we will elaborate
it in Section 6.3. The routine Partition (in Line 6) shows the details

to compute the rank-(ℓ+1)-th child cells of C with the top-(ℓ+1)-th
option set P. For each candidate top-(ℓ+1)-th option r𝑖 , PBA tests

its corresponding exact preference region by applying Equation (2)

at Line 10. If it is feasible, PBA creates C’s rank-(ℓ+1)-th child cell

C′, sets its top-(ℓ+1)-th option as r𝑖 , includes r𝑖 into the top-(ℓ+1)
result set, and let the options in P (except r𝑖 ) be the bounding

option set in C′.B.
Example. Consider the example in Figure 6, the entry cell C0 is
divided into the rank-1st cells C1 and C2 when ℓ = 0 in Algo-

rithm 2. For each rank-1st cell, we first compute its corresponding

top-2nd option set P via the ComputeP function, and then ob-

tain its rank-2nd cells by the Partition function. Thus, we have

that C1’s rank-2nd child cells are C3 and C4, and C2’s rank-2nd
child cells are C5 and C6, which form the level-2 arrangement in

3-LevelIndex. With the same partition procedure, PBA computes

the cells in level-3 arrangement. After applying theMerge function,
the rank-3rd cell C9 in 3-LevelIndex is merged from the rank-3rd

child cells of C4 and C5, as both cells have the same top-3 result set

R = {VibesInn(r1),Artezen(r2), citizenM(r3)} and the same top-3rd

option citizenM(r3).

Complexity Analysis. In Lemma 3, we analyze the time cost of

PBA, which outperforms IBA since 𝜏 is much smaller than𝑚.

Lemma 3. Given a 𝑑-dimensional dataset D, the time complex-
ity of the partition-based approach PBA in Algorithm 2 to build
𝜏-LevelIndex is 𝑂 (𝑚 ⌊𝑑/2⌋𝜏 ⌈𝑑/2⌉+1), where 𝑚 is the size of the 𝜏-
skyband set of D.

Proof. The main time cost of PBA is computing the cells in

each level of 𝜏-LevelIndex. For ∀ℓ ∈ [1, 𝜏], use 𝑚ℓ to denote the

number of options that could be the top-ℓ-th option in the pref-

erence space, it holds𝑚ℓ ≤ 𝑚. The number of cells in each level

is 𝑂 (𝑚 ⌊𝑑/2⌋
ℓ

ℓ ⌈𝑑/2⌉ ) [8], and thus the total number of cells in 𝜏-

LevelIndex is: 𝑂 (∑𝜏
ℓ=1𝑚

⌊𝑑/2⌋
ℓ

ℓ ⌈𝑑/2⌉ ) ≤ 𝑂 (𝑚 ⌊𝑑/2⌋ · 𝜏 · 𝜏 ⌈𝑑/2⌉ ) =
𝑂 (𝑚 ⌊𝑑/2⌋𝜏 ⌈𝑑/2⌉+1) . □

Index updating. For a new arriving option r, IBA inserts it into the

𝜏-LevelIndex accordingly. For other updates (e.g., option deletion,

adding/removing option attributes), we suggest users construct-

ing 𝜏-LevelIndex via PBA approach from scratch as PBA is very

efficient.

6.3 Fast Candidate Set Computation
As we discussed in Section 6.2, computing the top-(ℓ+1)-th option

set P of rank-ℓ-th cell C is a key subroutine in the partition-based

approach PBA. In this section, we improve the performance of PBA
by utilizing the dominance relation among the options to compute

the top-(ℓ+1)-th option set P for each cell C in Algorithm 2.

Given the hotel dataset in Figure 2(a) and 𝜏 = 3, we elaborate

the core idea to accelerate P computation in PBA by a running

example in Figure 7. Inspired by [24, 30, 50], we employ a directed

acyclic graph (DAG) to maintain the pair-wise dominance rela-

tionship among options. We first construct the DAG of the option

dataset by testing the dominance relationship among every pair of

options. For example, VibesInn(r1) dominates Yotel(r4), thus, there
is an arrow from VibesInn(r1) to Yotel(r4) in the DAG, as shown in

Figure 7(a). For each option in DAG, we attach the number of its

dominating options with it. For example, the number of dominators

of Royalton(r5) in Figure 7(a) is 3, i.e., VibesInn(r1),Artezen(r2) and
citizenM(r3) dominate it.

Observation 1. Given the entry cell C0 with its dominance graph
DG0, option r is in the top-1st option set P for any weight w in C0 iff
the in-degree of r is 0 in DG0.

Take the hotel dataset in Figure 7(a) as an example, the top-1st

option set is P = {VibesInn(r1),Artezen(r2)} for any weight w in

the entry cell C0. Obviously, the above observation also holds for
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each rank-ℓ-th cell C𝑖 and its corresponding dominance graph DG𝑖 .

The reason is that the other options inDG𝑖 cannot be the top-(ℓ+1)-
th option for any weight w in C𝑖 as each of them is dominated by

at least one option whose in-degree is 0.

Maintain dominance graph for cell partition. Lemma 4 sum-

marizes the dominance relationship among the options in cell C
and its child cell C′.

Lemma 4. Suppose the dominance graph of cell C is DG, the dom-
inance relationship among the options in DG also holds for every
weight w in C’s child cell C′.

Proof. The proof is straight forward as any weight w in C′ is
also in C. □

Returning to the running example, cell C1 in Figure 6 is a rank-

1st child cell of C0 with top-1st option VibesInn(r1). With Lemma 4,

the dominance relationship in DG0 in Figure 7(a) also holds in the

dominance graphDG1 in Figure 7(b). VibesInn(r1) and its edges are
removed from DG1 as it is the top-1st option in C1, as the circle and
dotted arrows shown in Figure 7(b). Although Yotel(r4) does not
dominate Royalton(r5) in cell C0, Yotel(r4) dominates Royalton(r5)
in C0’s child cell C1. Thus, we update the dominance relationship

among the options for C1, as the added blue edge shown in Fig-

ure 7(c). The number of dominators of each option in DG1 can be

also updated accordingly. Since C1 is in level-1 arrangement, it only

needs to obtain the cells in next 𝜏−1 = 2 levels. Thus, options whose

number of dominators exceeds 2 can be pruned as they cannot be

top-𝜏 options for any weight w in C1. For example, Royalton(r5) is
pruned as the number of dominating options is 3 in C1, see the gray
cell in Figure 7(d). Next, the rank-1st cell C1 will partition into rank-

2nd cell with its top-2nd option set P = {Yotel(r4),Artezen(r2)}, as
the in-degrees of Yotel(r4) and Artezen(r2) are 0 in its dominance

graph DG1, see the red points in Figure 7(d).

Maintain dominance graph for cell merge. To guarantee the

correctness of PBA, we also need to merge the dominance graphs

when PBA incursMerge function to merge cells at the same level.

For example, rank-3rd cell C9 in Figure 6 is merged from two

cells C𝑖 and C𝑗 , which are split from C4 and C5, respectively. We

illustrate the dominance graph merging procedure by building

𝜏 = 5-LevelIndex in Figure 8. Suppose the dominance graphs of

C𝑖 and C𝑗 are shown in Figures 8(a) and (b), respectively. We

include two extra hotels Warwick(r6) and Arlo(r7) in this exam-

ple for clear presentation. To compute the dominance graph of

the merged new cell C9, we union the node set and intersect the

edge set of DG𝑖 and DG𝑗 . For example, the union node set is

{Yotel(r4), Royalton(r5),Warwick(r6),Arlo(r7)} and the intersec-

tion edge set is the black arrow shown in Figure 8(c). Next, we

test the pair-wise dominance relationship among the options w.r.t.

the merged cell C9, the blue arrows shown in Figure 8(c) are added.

The unqualified option in C9 is pruned by verifying the number of

its dominators in DG9. For example, the gray optionWarwick(r6)
in Figure 8(d) is pruned as it has more than two dominators, thus it

cannot be the top-5-th result for any weight w in rank-3rd cell C9.
In summary, we utilize the dominance graph to maintain the

domination relationship among the options in each cell, which

avoids expensive r-skyband function call for each cell by exploit-

ing the inheritance of the dominance graphs among parent-child

cells. It improves the performance of ComputeP function in PBA
significantly as (i) the top-(ℓ+1)-th option set P for each cell can be

obtained by collecting all options with in-degree 0 in its dominance

graph directly; and (ii) the unqualified candidate options in each cell

can be pruned via the number of its dominators in the dominance

graph efficiently.

7 EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments for performance

evaluation. We introduce the experimental settings in Section 7.1,

evaluate different approaches to build 𝜏-LevelIndex in Section 7.2. In
Section 7.3, we investigate the performance of processing three rep-

resentative queries (i.e., kSPR,UTK andORU) by using𝜏-LevelIndex.

7.1 Experimental Settings

Datasets. We use both synthetic- and real- datasets for the experi-

ments. The synthetic datasets are generated following a standard

benchmark for preference-based queries [11]. In particular, the

attributes of an option can be configured to follow different distri-

butions, i.e., independent (IND), positively correlated (COR), nega-
tively correlated (or anti-correlated, ANTI). We use the synthetic

datasets to explore the influence of different factors (e.g., dataset

cardinality, data dimensionality, and data distribution). We also

include 3 real datasets that are widely used by related work [36, 38].

Specifically, HOTEL includes 419K options, and each option is a

hotel with 4 attributes, i.e., no. of stars, no. of rooms, no. of facilities

and price [2]. Each house in HOUSE has 6 attributes including gas,

electricity, water, heating, insurance and property tax [3], and there

are a total of 315K options. NBA includes statistics of 21.9K NBA

players, and models an NBA player with 8 professional metrics, i.e.,

games, rebounds, assists, steals, blocks, turnovers, personal fouls

and points [4].

Approaches for index construction. We compare the following

approaches for the 𝜏-LevelIndex building problem.We implemented

all our approaches by C++ and posted the source code at [5] for

reproducibility.

• BSL, UTK2-adapted baseline approach in Section 5.1.
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Figure 9: 𝜏-LevelIndex construction time evaluation, data distribution: IND
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Table 3: Parameter settings for experiments

Parameter Value
Cardinality 𝑛 100K, 200K, 400K, 800K, 1600K

Dimensionality 𝑑 2, 3, 4, 5, 6
Value 𝜏 1, 5, 10, 15, 20, 30, 40

Distribution COR, IND, ANTI

• IBA, the insertion-based approach in Algorithm 1.

• PBA, basic partition-based approach which employs r-skyband
to compute the candidate option set P, see Algorithm 2.

• PBA+, advanced partition-based approach using the fast candi-

date set computation techniques in Section 6.3.

Query processing. For processing kSPR, UTK and ORU queries,

we compare 𝜏-LevelIndex with their state-of-the-art solutions, i.e.,

look-ahead progressive cell tree approach LP-CTA [37] for kSPR
query, joint arrangement approach JAA [30] for UTK query and the

state-of-the-art approach, denoted asORU [36], forORU query. For

these solutions, we used the C++ source code obtained from the

authors of the original papers. Please note that all state-of-the-art

solutions for the above queries employed Rtree or its variants (e.g.,
aggregate Rtree) as index to shortlist the candidate options.

All experiments are conducted in single thread mode on a ma-

chine equipped with Intel Gold-5122 3.60 GHZ CPU and 128 GB

RAM, running on Ubuntu 18.04. For the index building approaches,

we compare their memory consumption and running time. Table 3

lists the tested parameters and the default settings are marked in

bold. Before building 𝜏-LevelIndex, we adopt 𝑘-skyband [32] and

𝑘-onionlayer [12] to filter the dataset D. For query processing,

we compare the query processing time. The filtered datasets and

indices are stored in RAM for both index building and query pro-

cessing. To conduct the evaluation in reasonable time, we terminate

an experiment if it cannot finish in 10
5
seconds (about 28 hours)

and omit its result.

7.2 𝜏-LevelIndex Building Evaluation
Figure 9 reports the influence of dataset cardinality 𝑛, data dimen-

sionality 𝑑 , and the number of levels in 𝜏-LevelIndex on the index

building time of the 4 index building approaches. The results show

that for all solutions, index building time increases slowly with

dataset cardinality but much faster with dimensionality and index

levels. This is because different factors have different effects on the

number of cells in 𝜏-LevelIndex as illustrated in Figure 10, and the

time cost of all solutions are roughly proportional to the number

of cells. Figure 9 also shows that PBA+ runs significantly faster

than BSL, IBA and PBA across all cases, and the speedup can be 2-3

orders of magnitude. Moreover, there is a trend that the speedup of

PBA+ increases when the problem is more difficult (i.e., when 𝑛, 𝜏 ,

𝑑 increase). We omit the UTK2-adapted approach BSL for the rest

of the paper as it is unacceptably slow.

Next, we report the size of 𝜏-LevelIndex and the number of cells

in 𝜏-LevelIndex in Figure 10 on IND, by varying dataset cardinality

𝑛, data dimensionality 𝑑 , and the number of levels 𝜏 for PBA+.
The results show that the index size is affordable in all cases. In

particular, the index size is only 142.26MB under the default setting

(i.e., 𝑛 = 400𝐾 , 𝑑 = 4 and 𝜏 = 10). This is because we represent

each cell in 𝜏-LevelIndex implicitly, which reduces the space cost

significantly compared with explicit representation, e.g., halfspace-

based method, vertex-based method in the literature [31, 37, 48].

As illustrated in Figure 10(a), increasing dataset cardinality only

causes a sub-linear increase in the number of cells. This is because

only some of the options can rank top-𝜏 and are used to define

cells. In contrast, as shown in Figures 10(b) and (c), the number of

cells grows super-linearly with dimensionality 𝑑 and the number

of levels 𝜏 . This explains why the index building time grows faster

with 𝑑 and 𝜏 than with 𝑛 in Figure 9.

We then experimented the index building approaches on differ-

ent data distributions and real datasets in Figure 11. Additionally,
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Figure 11: Index construction time for different datasets

Table 4: Effectiveness analysis on PBA+ (IND, 𝜏 =10)

Level

Post-filter Actual Hyperplanes Hyperplanes

candidates candidates for IBA for PBA+

3 7.33 5.93 3.68K 37.9

6 4.57 4.10 3.68K 17.2

9 4.04 3.71 3.68K 13.9

we also evaluate the performance of IBA-R, which inserts options

randomly. Figures 11(a) and (b) show that PBA+ consistently out-

performs PBA, IBA and IBA-R. First, index building time increases

from COR to IND and is the largest for ANTI as ANTI produces
more cells in 𝜏-LevelIndex than COR and IND. Second, the building
time cost is longer for NBA than for HOTEL and HOUSE because

the dimensionality of NBA (i.e, 8d) is larger than HOTEL (with 4d)

andHOUSE (with 6d), which also leads to more cells and more com-

plex intersection of halfspaces. The broken bars denote that index

building procedures are terminated after reaching the time limit,

i.e., 10
5
seconds. Last but not least, since IBA used the suggested

insertion order we proposed in Section 5.2, which avoids creating

many unnecessary cells in 𝜏-LevelIndex, IBA always outperforms

IBA-R in all cases, as illustrated in Figure 11.

The advantage of the partition-based approaches (i.e., PBA and

PBA+) over the insertion-based approach (IBA) is due to candidate

set filtering as reported in Table 4. Post-filter candidates is the av-
erage number of candidate options for each cell after ComputeP
while Actual candidates is the average number of options actually

used to partition each cell. The results show that most of the post-

filter candidates are useful, which means that PBA and PBA+ can
avoid checking many unnecessary options for cell partitioning. In

contrast, IBA needs to check all options that pass the initial filter-

ing with 𝜏-skyband. The last two columns of Table 4 report the

average number of hyperplanes in the representation of each cell in

different levels for IBA and PBA+ (same as PBA). The results show
that PBA+ uses significantly fewer hyperplanes to represent each

cell than IBA. The number of hyperplanes is constant for different

levels in IBA because every option in the 𝜏-skyband will contribute

a halfspace in each cell in 𝜏-LevelIndex according to Definition 2.

In contrast, the number of hyperplanes decreases with levels for

PBA+ because fewer options can enter the top-ℓ option set for a
specific cell as the cells become smaller when the level increases.

Thus, compared with IBA, PBA+ significantly reduces the number

of hyperplanes in each cell , e.g., from 3.68K to 13.9.

7.3 Query Processing on 𝜏-LevelIndex
In this section, we compare the response time of the queries when

processed with 𝜏-LevelIndex and when using their state-of-the-art
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Table 5: Average visited cells for each query (IND)

𝑛 100K 200K 400K 800K 1600K

kSPR 4.22K 4.59K 4.73K 5.09K 5.36K

UTK 491 570 453 481 501

ORU 8.66K 8.98K 7.59K 7.03K 6.91K

𝑑 2 3 4 5 6

kSPR 62 656 5.36K 42.4K 328K

UTK 40 132 453 7.28K 75.5K

ORU 511 2.47K 7.59K 22.7K 62.6K

solutions in the literature. For all experiments, we build 𝜏 = 20-

LevelIndex for the given dataset using PBA+. Figures 12 and 13

illustrate the response time of three representative queries by vary-

ing dataset cardinality 𝑛 and dimensionality 𝑑 , respectively. The

results show that LevelIndex consistently outperforms the state-of-

the-art solutions by a large margin for all three queries (i.e., kSPR,
UTK and ORU) and under different configurations. In particular,

with 𝑘 = 10 and 𝑛 = 1600𝐾 , 𝜏-LevelIndex speeds up state-of-the-

art solutions by 2,361x, 366x and 71x for kSPR, UTK and ORU,
respectively. The superior performance of 𝜏-LevelIndex can be ex-

plained by the fact that it pre-computes cells on level-1 to level-𝜏

and can answer queries with simple lookup. For 𝜏-LevelIndex, the
response time is longer for ORU than for kSPR and UTK because

ORU computes the distances from the point to convex sets during

lookup while kSPR and UTK compute simpler set containment and

intersection tests.

Figure 12 and Figure 13 also show that the query processing time

of 𝜏-LevelIndex stays stable when increasing 𝑛 but grows quickly

when increasing 𝑑 . This can be explained by the different effects of

𝑛 and 𝑑 on the number of visited cells during query processing as

the query processing cost is proportional to the number of visited

cells for 𝜏-LevelIndex. The first four rows of Table 5 show that the

number of visited cells does not change much with 𝑛 for all three
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queries while the number of visited cells increases super-linearly

with 𝑑 as reported in the last four rows of Table 5. In particular,

for kSPR, visited cells increase with 𝑛 because a larger 𝑛 results in

more cells and consequently there are more cells that contain the

query option in their top option set. For ORU, visited cells decrease
with 𝑛 because the cells have more diverse top option sets under a

larger 𝑛, and thus fewer cells are required to collect𝑚 options.

In Figure 14, we report the response time when changing 𝑘 . Note

that we use a LevelIndexwith 𝜏 =20, which means that when 𝑘 >20,

in addition to looking up the index, 𝜏-LevelIndex also needs to

conduct computation to obtain the query results. Figure 14 shows

that 𝜏-LevelIndex consistently outperforms the state-of-the-art so-

lutions no matter the index has sufficient levels or not. The reason

is that 𝜏-LevelIndex already computes the level-𝜏 cells, on which

basis computing the level-𝑘 cells (with 𝑘 ≥ 𝜏) is cheaper than from

scratch as in the existing solution. Besides, we can also observe a

quick increase in response time when 𝜏-LevelIndex switches from
pure lookup to lookup-based computation, i.e., for the 𝑘 values

larger than 20, as marked by the dotted lines in Figure 14.

To evaluate the query processing time by varying the values

of 𝜏 in LevelIndex, we process kSPR and UTK queries with 𝑘 =20

with different 𝜏 values in Figures 15(a) and (b), respectively. As

expected, the processing time of both queries drops with the rising

of 𝜏 value, i.e., from 1 to 20. As a guideline, we recommend to

set the parameter 𝜏 as the maximum value of 𝑘 in users’ queries.

Alternatively, PBA+ can be used to build the 𝜏-LevelIndex index
incrementally (see Section 6.2), until users are satisfied with the

response time. Thus, users could set a smaller 𝜏 first, then expand

it on demand.

In Figures 16(a) and (b), we test the performance of processing

UTK andORU queries with 10-LevelIndex on the real and synthetic

datasets, respectively. The results show that 𝜏-LevelIndex consis-
tently outperforms the state-of-the-art solutions under different

data distributions, i.e., using 𝜏-LevelIndex to process UTK query is

2-3 orders of magnitude faster than the state-of-the-art solution

JAA on the three real datasets. For ORU query, the speedup of

Table 6: No. of queries to amortize index construction cost

Levels (𝜏 ) 10 (𝑘 =10 in queries) 20 (𝑘 =20 in queries)

Dataset HOTEL HOUSE NBA HOTEL HOUSE NBA

kSPR 5 19 167 8 40 288

UTK 4 114 1.12K 3 2.26K 2.51K

ORU 1 11 117 1 29 44

𝜏-LevelIndex over state-of-the-art solution are 39.5, 35.9, and 67.1

times on COR, IND and ANTI, respectively.
To justify the benefits of using 𝜏-LevelIndex, we consider two

frameworks, i.e., one that processes queries with the state-of-the-

art solutions, and one that builds 𝜏-LevelIndex before query pro-

cessing. The total time cost of the state-of-the-art solutions con-

sists of only query response time, but the cumulative time cost

of 𝜏-LevelIndex includes both index construction time and query

processing time. We keep feeding queries and report the minimal

number of queries such that 𝜏-LevelIndex solution achieves smaller

time cost than state-of-the-art solutions on the real datasets. Specif-

ically, queries with 𝑘 = 10 and 20 are processed on 𝜏 = 10 and

20-LevelIndex, respectively. As shown in Table 6, the cost of con-

structing 𝜏-LevelIndex can be amortized with a moderate number

of queries, especially for the more expensive ORU query. However,

for UTK query on NBA dataset, it requires running almost 1K to 2K

queries to amortize the construction cost as (i) the default query

region 𝜎 = 1% is very small so that the baselines run faster for UTK
queries (i.e., only 13.7s for 𝑘 =10) than for kSPR/ORU queries (e.g.,

105.7s for kSPR queries with the same 𝑘), and (ii) index building

takes a longer time for NBA with 𝑑 =8 than for HOTEL (𝑑 =4) and

HOUSE (𝑑 =6).

Finally, to demonstrate the generality of 𝜏-LevelIndex, we in-

vestigate the performance of top-𝑘 query in DD-type with our

𝜏-LevelIndex based approach. We compare it with the branch-and-

bound approach BRS [39]. Both approaches are very fast (e.g., less

than 80mswhen𝑘 = 20). But, it is worth pointing out that the perfor-

mance gain of our LevelIndex-based approach becomes significant

when 𝑘 becomes large. For example, LevelIndex-based approach

outperforms BRS by 26.31% when 𝑘 is 20.

8 CONCLUSION
In this work, we proposed 𝜏-LevelIndex, which can be used to pro-

cess a spectrum of queries in continuous preference space. We

proposed three approaches with several optimization techniques to

build 𝜏-LevelIndex efficiently. In particular, we represent each cell

in an implicit manner to reduce index size, and devise a fast candi-

date set computation method to partition the geometric region of

each cell. We first conducted extensive experiments to demonstrate

the superiority of our proposals in terms of index building time and

index size. We then investigated the performance of three queries

with 𝜏-LevelIndex. Our solution is faster than their state-of-the-art

solutions in the literature by 2 to 3 orders of magnitude. For future

work, we plan to enhance 𝜏-LevelIndex to handle dynamic updates

of the options for online applications.
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