
Determining the Impact Regions of Competing
Options in Preference Space

Bo Tang
Hong Kong Polytechnic Uni.
csbtang@comp.polyu.edu.hk

Kyriakos Mouratidis
Singapore Management Uni.

kyriakos@smu.edu.sg

Man Lung Yiu
Hong Kong Polytechnic Uni.
csmlyiu@comp.polyu.edu.hk

ABSTRACT
In rank-aware processing, user preferences are typically repre-
sented by a numeric weight per data attribute, collectively forming
a weight vector. The score of an option (data record) is defined as
the weighted sum of its individual attributes. The highest-scoring
options across a set of alternatives (dataset) are shortlisted for the
user as the recommended ones. In that setting, the user input is a
vector (equivalently, a point) in a d-dimensional preference space,
where d is the number of data attributes. In this paper we study the
problem of determining in which regions of the preference space
the weight vector should lie so that a given option (focal record) is
among the top-k score-wise. In effect, these regions capture all pos-
sible user profiles for which the focal record is highly preferable,
and are therefore essential in market impact analysis, potential cus-
tomer identification, profile-based marketing, targeted advertising,
etc. We refer to our problem as k-Shortlist Preference Region iden-
tification (kSPR), and exploit its computational geometric nature to
develop a framework for its efficient (and exact) processing. Using
real and synthetic benchmarks, we show that our most optimized
algorithm outperforms by three orders of magnitude a competitor
we constructed from previous work on a different problem.

1. INTRODUCTION
Recommendation systems, multi-criteria decision making and

ranking queries have been widely explored in the past few years.
In the most common preference model, recommendations are pro-
duced by top-k queries with linear scoring functions [9, 19, 20].
Consider a user who visits an online portal, such as Yelp or Zagat,
to choose a restaurant based on its value, service and ambiance rat-
ings. The user may specify a numeric weight wi for each criterion,
where the higher the value of wi, the higher the relative signifi-
cance of that criterion in her decision. Essentially, the user specifies
a weight vector w = (w1, w2, w3) in a 3-dimensional preference
space. That vector associates each restaurant with a numeric score,
equal to the weighted sum of its ratings. The k (say, the 10) highest-
scoring restaurants are reported by the portal as recommended.

Different vectors in preference space produce different restaurant
rankings and, thus, different recommendations to the user. From

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064044

Restaurant Record Value Service Amb.
L’Entrecôte r1 3 8 8
Beirut Grill r2 9 4 4
El Coyote r3 8 3 4

La Braceria r4 4 3 6
Kyma p 5 5 7 S5

S6

0

0

Ý

1

1

Û Ü

Ü

(a) Data records (b) Preference space

Figure 1: Restaurant records and kSPR result for k = 3

the perspective of a restaurant owner, it is essential to know in
which regions of the preference space her restaurant p is among
the recommended, i.e., among the top-10. First, these regions in-
dicate the profiles of users that would be most interested in p. For
example, if the regions concentrate in the area where w3 is larger
than w1 and w2, it means that p is most appealing to customers
that care primarily about the ambiance, rather than value and ser-
vice. This fact could help the restaurant owner anticipate the type
of her clientele (e.g., people planning for a romantic dinner or a
fancy business meal) and/or target her advertisement efforts to the
right crowd (e.g., users of dating sites, managerial employees, etc).
Furthermore, using these regions we can compute the probability
that restaurant p belongs to the top-k list for a random user, which
in turn is a direct measure of market impact. If the weight vector w
is equally likely to be anywhere in the preference space, that prob-
ability is equal to the summed volume of the regions divided by the
total volume of the preference space. Even more practically, if the
probability density function (PDF) of w is known (e.g., extracted
from past user queries [27, 12, 6]), the probability is computed by
integrating the PDF across the extent of the regions.

We refer to the problem of finding all regions in preference space
where a focal record p belongs to the top-k recommendation as
k-Shortlist Preference Region identification (kSPR). To exemplify,
we use the dataset in Figure 1(a), where each record corresponds
to a restaurant and contains its ratings (on a scale of 1 to 10) in
terms of value, service, and ambiance. For ease of visualization, we
consider only value and service; the ambiance ratings will be used
in a subsequent example. Suppose that the focal record is Kyma
and that k = 3. Figure 1(b) shows the rank of Kyma in different
regions of the preference space. The kSPR query reports the part of
the preference space shown in gray, i.e., Kyma is among the top-3
restaurants for any weight vector in the gray area. Observe that in
general there are multiple, disconnected kSPR regions. Also, in
different settings there may be more than just two dimensions.

The kSPR query finds application in rank-aware scenarios that
instead of restaurants may involve hotels, properties for rent/sale,
or even players of competitive sports. For example, in Section 7.2

we present a case study based on actual NBA statistics for the
2014-2015 and 2015-2016 seasons. The kSPR regions for Dwight
Howard reveal that he is among the top-3 NBA players for a broad
spectrum of preferences in both seasons. The most interesting in-
sight, however, is that what makes him stand out in 2014-2015 is
his point-scoring prowess while, conversely, in 2015-2016 it is his
defensive skills. This type of information could help a manager to
effectively market the player in each season.

Previous work includes reverse top-k processing and related
queries [31, 32, 36], where a finite set of specific weight vectors
is given, and the objective is to identify those of the vectors that
rank a focal record the highest. These methods are tailored to fixed,
discrete weight vectors, and are unable to consider the entire, con-
tinuous preference space. That said, [31] includes a technique ap-
plicable to a degenerate case of kSPR where the dimensionality of
the preference space is effectively 1, but it does not extend to more
dimensions. Some recent studies do consider the (continuous) pref-
erence space, but none suits our problem. E.g., they identify the
most representative top-k results when the weight vector is uncer-
tain/unknown [28, 26], compute a region around a given weight
vector where the top-k result remains the same [22, 35], or derive
the highest rank attainable by a specific record for any possible
weight vector [23]. While in theory an incremental version of [23]
could solve the kSPR problem, it is particularly ineffective, scaling
only to small kSPR instances and being three orders of magnitude
slower than our approach.

In this paper we propose a general kSPR methodology, which
produces exact answers and is designed for high efficiency and
scalability. We model kSPR as a computational geometric prob-
lem in an arrangement of hyperplanes, and develop a data structure
(CellTree) to maintain that arrangement. A key principle in our
approach is that the exact geometry of cells in the arrangement is
not computed, unless they are guaranteed to be in the kSPR re-
sult. Instead, each cell is implicitly represented as a set of linear
inequalities or, equivalently, halfspaces. As opposed to consid-
ering all competing options to p at once, we follow a particular
processing order that allows pruning a large fraction of them. To
further enhance pruning effectiveness, we show how this order can
be virtually individualized per cell, so that local, stricter pruning
criteria can be imposed for each of them. We additionally devise
look-ahead techniques that work in the data space (and exploit the
index on the data records) to disqualify parts of the CellTree from
consideration. As we demonstrate with experiments on standard
(real and synthetic) benchmarks, the above components render our
approach three orders of magnitude faster than a baseline we con-
structed from previous work.

2. RELATED WORK
The term preference-based querying refers to the shortlisting of a

number of options (data records) from a set of available alternatives
(dataset) based on their attributes (dimensions). The most com-
mon preference-based operators are the skyline [7] and the top-k
query [9, 19, 15]. The former requires no user input, while the lat-
ter provides personalized results based on stated user preferences.
In particular, the skyline of a dataset includes those records that
are dominated by no other; we say that a record dominates another
if it is no less preferable in all dimensions and better in at least
one. Many algorithms have been proposed for skyline processing
with and without indices [29, 21, 25]. On the other hand, the top-k
query requires the user to specify a scoring function and reports
the k records with the highest scores in the dataset. The most in-
tuitive and common type of scoring functions are linear, i.e., the
user specifies a weight per dimension and the score of a record

is defined as the weighted sum of its attributes. Ilyas et al. [20]
review a flurry of top-k processing techniques. Between the two
standard preference-based operators, the top-k query, and gener-
ally the rank-aware processing model it defines, is closest related
to our work. In the following we describe variants and auxiliary
features to rank-aware querying.

In [13] Das et al. consider the processing of ad-hoc top-k queries
in a dynamic buffer of data records, e.g., a sliding window over a
data stream. Their objective is to maintain and process only a sub-
set of the valid records. To achieve that, they exploit a transfor-
mation (applicable exclusively to two dimensions) where records
are represented by lines and top-k queries by vertical rays. In that
transformed space, only records whose lines are among the closest
to the horizontal axis could appear in the top-k result of an ad-hoc
query. Yu et al. [34] exploit a similar transformation to facilitate
the processing of continuous top-k queries. At the heart of their ap-
proach lies a piecewise linear surface that codifies the score of the
k-th record for all top-k queries, very similar in spirit to the k-level
construct in computational geometry [11, 5]. They also propose
a method for approximate top-k processing based on a carefully
chosen subset of the data records.

Vlachou et al. [30, 31] introduce the reverse top-k query. Starting
with a set of different weight vectors (i.e., user preferences), this
query identifies those of the weight vectors that rank a specific data
record p among their top-k. In follow-up work, the same authors
improve the performance of their operator [33] and consider related
formulations, such as [32], where they identify the records that rank
among the top-k for most of the input weight vectors. Observe that
these problems are discrete by nature, in the sense that a finite set
of specific weight vectors is given (as opposed to considering any
possible weight vector in the preference space).

That said, [30, 31] also discuss a 2-dimensional version of the
problem, which they call monochromatic, that is not bound to a
given set of weight vectors. Specifically, in two dimensions the
scoring function can be expressed in the form a · r1 + (1− a) · r2,
where r1, r2 are the data attributes and a represents the user’s
preference (a ∈ [0, 1]). Here the preference space is the (1-
dimensional) line segment from 0 to 1. The authors compute the in-
tervals of a values for which p ranks among the top-k records. That
is essentially a kSPR problem for the special case of 2-dimensional
records. Their solution relies on the fact that for any two records
that do not dominate each other, there is exactly one value of a
where their relative order (score-wise) changes. Thus, by compar-
ing p with every other data record, an equal number of such switch-
ing values are derived. These values impose a partitioning of the
preference space (line segment) into disjoint intervals. By scanning
the intervals from a = 0 to a = 1, it is easy to incrementally main-
tain how many records score higher than p in each of them, and
therefore report those where p ranks among the top-k. This algo-
rithm capitalizes on the 1-dimensional preference space and does
not extend to higher dimensions. The authors recognize this and
indicate the challenges involved in more dimensions. Our method-
ology, in addition to applying to higher dimensions, is faster even
for this special case of d = 2, as we show in the experiments.

Similar to the standard reverse top-k query, Zhang et al. [36]
also consider a finite set of specific weight vectors. Among them,
they identify the m vectors that rank a given record p the highest.
They refer to this query as reverse k-ranks. They also consider the
reverse k-scores variant, where they identify the m weight vectors
for which the score of p is the highest. To efficiently disqualify (i.e.,
prune) some of the weight vectors, they index them with a regular
grid. Their solutions work purely in the data space and have little to
do with the geometry of the problem, since they consider specific

weight vectors for which exact scores can be derived readily and
inexpensively.

Relevant to our problem is also the work on immutable re-
gions [22, 35]. These regions define an area around the user’s
weight vector w where the top-k result remains the same. The
crux of these methods is to determine a small fraction of non-result
records that bound the immutable regions, be them 1-dimensional
(i.e., defined locally for each of the d weights) or d-dimensional
(i.e., defined as a region around w in the preference space). In the
latter case, each retained non-result record corresponds to a half-
space in preference space, and the immutable region is derived as
the intersection of these halfspaces.

Geometric observations in preference space have also been uti-
lized in the context of uncertain weight vectors. [28] proposes
methods to identify the most representative top-k result when the
weight vector is unknown. Several formulations are considered, but
its main focus is on deriving the most probable top-k result when
the weight vector is equally likely to be anywhere in the prefer-
ence space. [26] assumes that the distribution of the weight vectors
is known and describes a technique to select a specific number of
records from the dataset, such that the top-1 answer for a random
weight vector has the highest probability to be in the chosen sub-
set. Faced with the high complexity of the geometric operations
involved, the authors employ sampling and provide approximate
results with probabilistic guarantees.

A recent study on the maximum rank query [23] is also related
to our work. That query computes the best rank, k∗, that a certain
record p could achieve under any possible weight vector, and it also
identifies the regions of the preference space which correspond to
that rank. Every record r in the dataset is mapped to a halfspace
(in preference space) where it scores higher than p. The produced
halfspaces partition the preference space into cells, and each cell is
associated with the count of halfspaces that include it. The mini-
mum of all counts is reported as k∗, together with the cells that have
that count. The proposed technique partitions the preference space
with a Quad-tree, and processes its leaves one by one, in increasing
order of the number of halfspaces they lie in. That allows the prun-
ing of some leaves, i.e., regions of the preference space, which are
guaranteed to have counts greater than k∗. The processing within
each leaf solves multiple halfspace intersection problems in order
to derive the most promising cells that are in the leaf.

The method in [23] extends easily to incremental reporting. That
is, if k∗ is the best p could rank, processing can continue in the
same fashion for ranks k∗ + 1, k∗ + 2, etc, to produce the cor-
responding regions in preference space. The computation cost,
however, grows exponentially for any increase by 1. Although not
suited to our problem, this incremental method could in theory an-
swer a kSPR instance by computing k∗, incrementing it up to k,
and reporting the cells produced for each rank between k∗ and k to
form the kSPR regions. We use this as a baseline competitor in the
experiments for some small kSPR instances, as it fails to terminate
for our full-scale settings.

Related is also the work on why-not queries, both for top-k [18]
and for reverse top-k formulations [16]. A why-not top-k query
seeks to amend the weight vector w and the k value of a given
top-k query so that a certain non-result record becomes part of the
top-k result, by incurring the minimum penalty. The penalty func-
tion takes into account the Euclidean distance between the original
and the amended weight vector, and the required increase in k. A
why-not reverse top-k query, on the other hand, determines how
to modify a weight vector w or the focal record p or the value of
k, so that w is included in the reverse top-k result of p. Although
both [18] and [16] exploit geometric properties in preference space,

these why-not problems (and the techniques proposed for their pro-
cessing) are fundamentally different from ours.

Cai et al. [8] develop greedy algorithms to compute a
d-dimensional box around a data record p, such that the box in-
cludes at least a certain number of other records, and p ranks the
highest possible among the records in the box. This work defines
rank in terms of a stored data attribute (instead of the value of an
aggregate scoring function), it computes a region in data space (as
opposed to regions in preference space), and reports heuristically
derived (i.e., inexact) answers.

3. PRELIMINARIES

3.1 Problem Definition
Each record r in the dataset D is represented as a vector r =

(r1, r2, · · · , rd). The user’s preferences are captured by a weight
vector w = (w1, w2, · · · , wd). The score of record r is defined as:

S(r) = r · w =

d∑
i=1

riwi (1)

Given a dataset D, a weight vector w, and an integer k, the top-k
result includes the k records with the highest scores in D. For
ease of presentation, we ignore ties. Without loss of generality, we
assume that (i) wi > 0 for every dimension, and (ii)

∑d
i=1 wi = 1.

Note that the normalization of w does not restrict the semantics of
the ranking function in any way [20]. Our problem is defined as:

PROBLEM 1. The k-Shortlist Preference Region problem
(kSPR) takes as input a dataset D, a focal record p =
(p1, p2, · · · , pd), and an integer k. It reports all the regions in
preference space where if the weight vector lies, p ranks among the
top-k records.

Consider a record r that dominates p, i.e., in every dimension
the value of r is no smaller than that of p, and there is at least one
dimension where the value of r is greater. It holds that r scores
higher than p for any weight vector [7]. Therefore, the kSPR solu-
tion onD is the same as the kSPR solution if we ignore the records
that dominate p and reduce k by their number. On the other hand,
any record that is dominated by p always scores lower than p, and
does not affect kSPR processing at all. Records in both aforemen-
tioned categories can be easily identified and disregarded using an
index on D. To keep presentation simple, the following discussion
assumes that the records that dominate or are dominated by p have
already been removed from D.

We assume that D is indexed by a spatial access method, such
as an R-tree [4], and that data and index are kept in main memory.
However, in an extra set of experiments (in Appendix A) we also
consider the scenario where they reside in secondary storage.

3.2 Problem Reduction
The normalization of the weight vectors as described in Sec-

tion 3.1 allows us to reduce the dimensionality of the preference
space by 1. Specifically, since

∑d
i=1 wi = 1, the d-th weight is de-

fined as wd = 1−
∑d−1

i=1 wi. Thus, we may work in a transformed
preference space, with axes w1, w2, · · · , wd−1. This reduction of
the dimensionality to d′ = (d − 1) is important, since the running
time of the costliest operations in our methodology depends on the
dimensionality; in Appendix C we assess the gains from the reduc-
tion. In the following, unless otherwise specified, we refer to the
transformed preference space.

Consider a record r and the focal record p. Equation S(r) =
S(p) corresponds to a hyperplane h in the preference space. Every

weight vector that falls on this hyperplane renders r and p equally
preferable. Specifically, h is defined as:

S(r) = S(p)⇐⇒
∑d

i=1 riwi =
∑d

i=1 piwi

⇐⇒ rd +
∑d−1

i=1 (ri − rd)wi = pd +
∑d−1

i=1 (pi − pd)wi

⇐⇒
∑d−1

i=1 (ri − rd − pi + pd)wi = pd − rd

Hyperplane h partitions the transformed preference space into two
complementary halfspaces:

• positive halfspace h+ where r scores higher than p, i.e.,
S(r) > S(p), and
• negative halfspace h− where r scores lower than p, i.e.,
S(r) < S(p).

Assuming the restaurant records in Figure 1(a), and consider-
ing all three data attributes (value, service, ambiance), the trans-
formed preference space has (d − 1) = 2 dimensions as shown1

in Figure 2(a). Record r1 (i.e., restaurant L’Entrecôte), when com-
pared to the focal record p (i.e., Kyma), corresponds to hyperplane
h1 with equation S(r1) = S(p) that divides the preference space
into two halfspaces, i.e., h+

1 where S(r1) > S(p), and h−1 where
S(r1) < S(p). The black arrow points to the positive halfspace.

S5

S6

0 1

0

1

D5
>
ã � �5 P �:�;

D5
?
ã � �5 O �:�;

S5

S6

0 1

0

1

D5
?áD6

>

D5
?áD6

?
D5
>áD6

>

D5
>áD6

?

D6

D5

�6

�5

�7

�8

(a) Hyperplane h1 (b) Arrangement

Figure 2: Hyperplanes, halfspaces, and cells in d′ = 2

Let n be the cardinality of D. If every data record ri ∈ D is
mapped into a hyperplane hi, the n produced hyperplanes define
an arrangement Γ that partitions the preference space into O(nd′)
cells [3]. Each of the cells falls inside a total of n positive and neg-
ative halfspaces. The number of positive halfspaces (incremented
by 1) defines the rank of the focal record for any weight vector that
falls inside the cell.

Formally, we say that a halfspace, say h+, covers a cell c if h+∩
c = c and denote this as h+ � c. Lemma 1 follows directly from
the definition of positive and negative halfspaces.

LEMMA 1. Let c be a cell in Γ. If the weight vector falls in
c, the records that score higher than p correspond to the positive
halfspaces that cover c. The rank of p in c is equal to their number
plus 1, i.e.,

Rank(c) = 1 + COUNT{hi ∈ Γ : h+
i � c}

To exemplify, Figure 2(b) demonstrates the arrangement pro-
duced by two data records, r1, r2, and their respective hyperplanes,
h1, h2. The arrangement includes four cells. Cell c3, for instance,
is the intersection of h−1 ∩ h

+
2 . The only positive halfspace that

covers c3 is h+
2 , thus, only r2 scores higher than p in that cell, and

1Although the transformed preference space is visualized for sim-
plicity as a unit hyper-cube, it is actually just part of that cube,
because for any weight vector it must be that

∑d−1
i=1 wi < 1. E.g.,

in Figure 2(a) it is the part below (diagonal) line w1 + w2 = 1.

the rank of p in c3 is Rank(c3) = 1 + 1 = 2. In summary, the
rank of p in cells c1, c2, c3, c4 is 2, 1, 2, 3, respectively.

Based on Lemma 1, we could solve the kSPR problem by map-
ping each data record into a hyperplane and reporting the cells of
the arrangement where the rank of p is no greater than k. This ap-
proach, however, is impractical because the best known algorithms
for arrangement computation takeO(nd′) time, which furthermore
involves large hidden constants [3].

4. CELL TREE APPROACH
In this section we present our first kSPR method, termed Cell

Tree Approach (CTA), that constitutes the backbone on which we
build our methodology. The main idea in CTA is to map each record
ri ∈ D into a hyperplane hi and to insert the hyperplanes one
by one into CellTree. The role of CellTree is to incrementally
maintain the arrangement Γ as new hyperplanes are inserted. When
the mapping is complete, the cells in Γ with Rank(c) ≤ k form
the kSPR result.

The CellTree is a binary tree with as many levels as hyper-
planes inserted so far. The root of the tree corresponds to the
entire (transformed) preference space. Assuming that the first in-
serted hyperplane is h1, it divides the preference space into two
cells. Accordingly, the root is split2 into two children, correspond-
ing to halfspaces h−1 and h+

1 respectively. When the second hy-
perplane, say h2, is inserted, the existing cells are further divided.
That is, the existing leaves of the tree are split and new leaves are
formed. Essentially, each inserted hyperplane introduces a new
level to CellTree. After insertion of the i-th hyperplane, each leaf
of CellTree corresponds to a cell in the arrangement induced by
the i hyperplanes.

A general principle in our methodology is to push back as
far as possible the expensive computational geometric operations,
and to reduce their number to the minimum. Specifically, on
the one hand, we concisely and efficiently represent the nodes of
CellTree, without computing and storing their exact geometry (in
Section 4.1). On the other hand, we eliminate infeasible cells, i.e.,
cells with zero extent, still without computing their geometry (in
Section 4.2). Additionally, we eliminate unpromising cells, i.e.,
cells c with non-zero extent but Rank(c) greater than k.

Furthermore, in Section 4.3 we make crucial observations on
the hyperplane insertion operation, and propose optimizations that
vastly improve the performance of CTA.

4.1 Cell Representation
Consider the arrangement of i hyperplanes. As described in Sec-

tion 3.2, each cell is the intersection of i positive and negative halfs-
paces, and is thus a convex polytope in the (transformed) preference
space. Take for example the arrangement of i = 6 hyperplanes in
Figure 3(a). Cell c is defined as h−1 ∩ h

−
2 ∩ h

−
3 ∩ h

+
4 ∩ h

−
5 ∩ h

+
6 .

If the exact geometry of c were to be computed and stored (as
a convex polygon with vertices v1, v2, v3, v4), we would need
O(ibd

′/2c) = O(nbd
′/2c) time [10], which is impractical given

the large number of cells in CellTree.
To avoid expensive halfspace intersection, we represent a cell c

implicitly by its set of defining halfspaces c.Ψ. For example, in Fig-
ure 3(a), we represent cell c by c.Ψ = {h−1 , h

−
2 , h

−
3 , h

+
4 , h

−
5 , h

+
6 }.

The main challenge with this implicit representation is that we need
a means to detect and eliminate infeasible cells, i.e., cells with zero
extent. We address this challenge in Section 4.2.

2In our context, to split a node means to create two leaves as its
children.

D5

D6

D8

D7

D9

D:

�

S5

S6

0 1

0

1

R5

R6

R7R8

D;

D<

D=

�

S5

S6

0 1

0

1

D6

D:

(a) Arrangement of 6 hyperplanes (b) Hyperplane insertion

Figure 3: Cell representation and hyperplane insertion

Before we proceed to it, we stress that previous studies that work
on the preference space for different problems, like [34] and [23],
index the preference domain using a space partitioning method (a
Quad-tree, specifically). That approach requires deriving the exact
geometry of indexed cells, and may furthermore divide their extent
into multiple leaves of the tree, thus replicating their information
and wasting computations when re-encountering the same cell in
different leaves.

4.2 Detecting Infeasible Cells Efficiently
An infeasible cell is one where the intersection of its defining

halfspaces is empty, and it therefore does not appear in the arrange-
ment and should be disregarded. Instead of performing actual half-
space intersection to detect infeasible cells, we use a much faster
process. Specifically, we express the defining halfspaces of c as a
system of inequalities. In the example of Figure 3(a), cell c involves
the following constraints:



h−1 : S(r1) = r1 · w < S(p) = p · w
h−2 : S(r2) = r2 · w < S(p) = p · w
h−3 : S(r3) = r3 · w < S(p) = p · w
h+
4 : S(r4) = r4 · w > S(p) = p · w

h−5 : S(r5) = r5 · w < S(p) = p · w
h+
6 : S(r6) = r6 · w > S(p) = p · w
∀j ∈ [1, d− 1], wj ∈ (0, 1);

∑d−1
j=1 wj ≤ 1

(2)

We frame these inequalities as a linear programming (LP) prob-
lem with an arbitrary (linear) objective function that involves all
weights w1, w2, · · · , wd−1, e.g., function

∑d−1
j=1 wj . We solve the

problem with an LP solver, such as lp_solve [1], and if it returns
no result we infer that the cell is infeasible.

The time complexity of this feasibility test is linear to the num-
ber of hyperplanes i. Specifically, it takes O(α · i) time, where
α = βd′ · d′! and β is a constant [5]. This is a major improvement
compared to O(ibd

′/2c) time required for halfspace intersection.
However, we do not stop here. We further optimize the perfor-
mance of the feasibility test based on a crucial observation.

The cost of the test depends on the number of halfspaces in
c.Ψ. We reduce that cost by ignoring inconsequential halfspaces
and removing their corresponding inequalities from the LP for-
mulation. Consider again cell c in Figure 3(a), where c.Ψ =
{h−1 , h

−
2 , h

−
3 , h

+
4 , h

−
5 , h

+
6 }. Although there are 6 defining half-

spaces, only 2 of them determine its extent, i.e., h−2 and h+
6 . We

refer to these halfspaces as the bounding halfspaces. We may there-
fore ignore the inequalities for all the remaining (i.e., inconsequen-
tial) halfspaces and simplify the LP formulation to reflect only the
bounding ones. The equivalent, but easier to solve, LP problem

involves only the following inequalities:
h−2 : S(r2) = r2 · w < S(p) = p · w
h+
6 : S(r6) = r6 · w > S(p) = p · w
∀j ∈ [1, d− 1], wj ∈ (0, 1);

∑d−1
j=1 wj ≤ 1

(3)

To determine the bounding halfspaces is a tough problem, whose
solution easily outweighs the gains of reducing the number of in-
equalities. Instead of computing the bounding halfspaces at the
time of the feasibility test, we identify and rule out inconsequential
halfspaces within our hyperplane insertion algorithm without any
additional computational cost, as we discuss in Section 4.3.1.

An important remark is that all our kSPR algorithms, after iden-
tifying the cells that belong to the result, perform a finalization step
to derive the exact geometry of each result cell by intersecting its
defining halfspaces (ignoring the inconsequential ones). This is the
only stage where we compute exact geometries. The derived kSPR
regions are in the transformed preference space. If they are required
in the original space, we may perform halfspace intersection in the
original space instead; each halfspace corresponds to a record r,
and inequality S(r) > S(p) (or S(r) < S(p)) can be mapped to a
halfspace in either the original or the transformed space.

4.3 Hyperplane Insertion
TheCellTree is updated incrementally by inserting hyperplanes

one by one. The efficiency of the insertion algorithm is essential
to the performance of CTA. Thus, we elaborate on the insertion
process and propose enhancements.

There are two alternatives in inserting a new hyperplane hi. One
is to directly insert hi into the leaves of CellTree. Another is to
perform insertion top-down. We choose the latter because (i) the
number of leaves is very large (i.e., O(id

′
) [3]), (ii) determining

containment at an internal node implies containment of the entire
subtree rooted at it, and (iii) if an internal node has already a rank of
k, we may already prune its entire subtree3. Therefore, the insertion
process starts from the root of CellTree and proceeds recursively
to its children.

Each node corresponds to a region in the preference space. How-
ever, we do not explicitly compute or store that region. Instead, we
use the representation technique in Section 4.1. At every node N
of the tree (be it internal or leaf) we maintain a cover set that is ini-
tialized to be empty when the node is first created. Its purpose will
become clear shortly. Consider the insertion algorithm for hi when
it runs on an internal node N of the tree. We check the following
conditions, using the feasibility test in Section 4.2:

I. IF N ∩ h−i = ∅: The node lies completely inside halfspace
h+
i . Add h+

i to the cover set of N .
II. ELSE IF N ∩ h+

i = ∅: The node is completely inside halfs-
pace h−i . Add h−i to the cover set of N .

III. ELSE: Hyperplane hi cuts through node N . Recursively run
the insertion algorithm on the children of N .

To exemplify, assume that node N corresponds to the gray re-
gion in Figure 3(b). The insertions of h7, h8, and h9 fall under
cases I, II, and III, respectively. Note that our feasibility test allows
to determine each case without deriving the exact geometry of N .

Returning to the insertion process, in cases I and II there is no
need to invoke the insertion algorithm on the children of N , be-
cause its entire subtree is guaranteed to fall in h+

i and h−i respec-
tively. We simply add the corresponding halfspace into the cover
set of N to record that fact.
3The rank of a CellTree node is defined similarly to that of a cell.

The insertion algorithm runs similarly on a leaf node c. The only
difference is that in case III we split c, because hyperplane hi cuts
through it. That is, we create two children for c, and label the edges
that point to them by h−i and h+

i respectively. Note that they are
both guaranteed to be non-empty, so no feasibility test is required.
Their cover sets are initialized as empty sets.

We highlight that the cover set of a node N (be it an internal
or leaf node) does not include all the halfspaces that cover it, but
a subset of them, i.e., those that were inserted after the node was
created. The full set of halfspaces that coverN is the union of (i) its
cover set, (ii) the cover sets of all its ancestor nodes, and (iii) all the
halfspaces that label the edges ofCellTree along the path from the
root to node N . By Lemma 1, if the number of positive halfspaces
in that full set plus 1 exceeds k, we may safely eliminate N and its
entire subtree (if any) because every cell under it is guaranteed to
have a rank greater than k. Another situation where we eliminate
N is when all the leaves in its subtree have been eliminated.

We provide an example in Figure 4, illustrating the arrangement
in preference space and the structure of the tree. Assume that k =
2. Insertion of h1 splits the root into two leaves, c0 and c1, for
h−1 and h+

1 respectively. Next, consider the insertion of h2. The
insertion algorithm is invoked for the root’s children, c0 and c1.
For c0, we determine that h2 cuts through it (case III), thus, the
leaf is split into two new ones, c2 and c3. For c1, since h−2 ∩
c1 = ∅ (case I), h+

2 is included into c1’s cover set (the cover set
is shown right below the node in Figure 4(b)). The rank of c1 is
3 (i.e., greater than k), as it is already covered by h+

1 (edge label)
and h+

2 (in its cover set), thus we eliminate it; we draw eliminated
(i.e., pruned) nodes in gray. Consider now the insertion of h3. The
insertion algorithm is invoked for the root’s only child c0 (since
c1 was pruned), it determines that h3 cuts through c0 (case III),
and is thus recursively invoked for its children c2 and c3. For c2,
h+
3 ∩ c2 = ∅ (case II), hence h−3 is included into its cover set. For
c3, the leaf is split into two new ones, c4 and c5 (case III). The rank
of c5 is already 3 (as it is covered by h+

2 and h+
3) and it is pruned.

D6

D5D7

S5

S6

0 1

0

1

?8

?6

?9

?5

?5?4

?

?7?6

D5
?

D5
>

D6
?

D6
>

<D7
?=

<D6
>=

?8

D7
?

?9

D7
>

(a) Arrangement (b) CellT ree

Figure 4: CellTree example

CTA terminates when either all leaves of CellTree are elimi-
nated or when all n hyperplanes have been inserted. In the first
scenario, CTA reports an empty set as the kSPR result. In the lat-
ter, it reports each leaf (i.e., arrangement cell) whose rank is no
larger than k. In Figure 4, assuming that all records inD have been
mapped, the kSPR result comprises cells c2, c4 with rank 1 and 2,
respectively. Algorithm 1 in Appendix E presents the pseudocode
of CTA. Below we describe two important optimizations.

4.3.1 Eliminating Inconsequential Halfspaces
In Section 4.2 we explained that the feasibility check for a node

can be accelerated by removing inconsequential halfspaces. Such
halfspaces can be identified without any extra computations during
the hyperplane insertion process. Specifically:

LEMMA 2. Any halfspace that belongs to the cover set of a
node or to the cover set of any of the node’s ancestors is incon-
sequential.

PROOF. Consider the insertion process for a hyperplane h on
a node N (be it an internal or leaf node). In both cases I and II
the hyperplane does not alter the existing shape/extent of N and
therefore none of h+ and h− are bounding halfspaces for N or for
any node in its subtree.

In other words, the only halfspaces that could be bounding for
a node N should appear as labels along the path from the root of
CellTree to N . These are the only record-induced halfspaces we
include in the LP formulation for N . In Figure 4, for instance,
only halfspaces h−1 , h

−
2 could be bounding for cell c2, although it

is covered by h−3 too. Note that we have no guarantee that all the
halfspaces that label the path are indeed bounding. E.g., in real-
ity c2 is only bounded by h−2 , even though label h−1 also appears
along the path from the root. Even as such, i.e., by using a superset
of the actual bounding halfspaces, our technique eliminates more
than 96.5% of the defining halfspaces as inconsequential, thus of-
fering one to two orders of magnitude speed-up to the feasibility
test routine, as we show in the experiments.

4.3.2 Reducing the Number of Feasibility Tests
We employ a technique that utilizes the results of past feasibility

tests in order to reduce the number of subsequent ones. Assume
that during the insertion of a hyperplane, we perform a feasibility
test on node N in order to check the conditions in case I or II, and
that the LP solver reports that (the problem is feasible and that) the
objective function is maximized at vector w∗. Clearly, w∗ falls in
N . We record w∗ for the very first feasible LP problem that was
run on node N .

Consider now the subsequent insertion of another hyperplane hi

where the insertion algorithm needs to check conditions in cases I
and II forN . In justO(d) time we may determine whether w∗ falls
in h−i or h+

i . If it falls in h−i , the condition in case I is guaranteed to
be false (thus, saving the cost for the feasibility test N ∩ h−i = ∅).
Similarly, if w∗ is in h+

i , the condition in case II is surely false.

4.4 Complexity Analysis

LEMMA 3. The time complexity of CTA is O(α · nd), where α
is a constant depending only on the dimensionality d.

PROOF. The majority of CellTree nodes are in the leaf level,
and the computational cost of CTA is dominated by execution of
the insertion algorithm on the leaves. Consider the insertion of the
i-th hyperplane. On the assumption that cells (leaves) which are
not divided by hi have already been dealt with by inclusion of h−i
or h+

i in the cover set of an ancestor node, the cost is determined
by the feasibility tests required for leaves in case III, i.e., those that
hi cuts through. By the zone theorem [14], the number of case III
leaves is O(id

′−1). For each of them, the cost of feasibility test is
O(α · i). Thus, the total cost for the insertion of hi is O(α · id

′
).

Since CTA inserts up to n hyperplanes, the overall time complexity
is
∑n

i=1O(α · id
′
) ≤ O(n · α · nd′) = O(α · nd).

5. PROGRESSIVE CTA
In this section we describe the Progressive Cell Tree Approach

(P-CTA). This algorithm saves computations by (i) controlling the
processing order of the records in D, i.e., the order in which their
hyperplanes are inserted into CellTree, (ii) ignoring records that

cannot affect the kSPR result, and (iii) accelerating the insertion
algorithm based on crucial observations.

The basic CTA iteratively inserts hyperplanes into CellTree.
During this process, it eliminates nodes (i.e., parts of the preference
space) whose rank exceeds k. To achieve earlier pruning of un-
promising nodes, and thus avoid unnecessary hyperplane insertions
into them, P-CTA prioritizes the processing order of records so that
those with higher pruning potential are processed first. Specifi-
cally, if the positive halfspace of record ri covers that of rj (i.e.,
h+
i � h

+
j), then ri will increase the rank of more nodes, and should

therefore be processed before rj . Determining containment among
the different positive halfspaces, however, is too expensive to be
practical. To avoid that cost but still effectively prioritize the pro-
cessing order of the records, we use Lemma 4.

LEMMA 4. If record ri dominates record rj , then h+
i � h+

j .
Equivalently, it holds that h−j � h

−
i .

PROOF. For any weight vector w in h+
j it holds that S(rj) >

S(p). Since ri dominates rj , it also holds that S(ri) > S(rj).
Hence, S(ri) > S(p), i.e., w must also be inside h+

i , which proves
that h+

i � h
+
j . In turn, h+

i � h
+
j ⇔ h−j � h

−
i

Consider Figure 5(a) and assume that r4 dominates r6. Lemma 4
implies that h+

4 covers h+
6 . If we needed to decide which one be-

tween r4 and r6 to process next, it should be r4. To exemplify,
processing r4 would increase the rank of cell c in the figure (and
thus it would expedite its possible pruning), whereas processing r6
would split the cell (i.e., it would prematurely grow the tree and,
hence, increase the cost of subsequent operations on it). Based on
Lemma 4, P-CTA establishes the following invariant.

INVARIANT 1. A record will only be processed if all the records
that dominate it have already been processed.

S5

S6

0 1

0

1

D:

D:
>

D8
>

D8

?6

?5

?

S5

S6

0 1

0

1

D7 D5

D6

D8

?

(a) Dominance and containment (b) Defining the pivots of c

Figure 5: Ideas behind P-CTA (d′ = 2, k = 3)

To uphold the invariant, P-CTA processes in a first batch (yet,
still one by one) the records that belong to the skyline of D. The
question now is which records should be processed next. Consider
Figure 5(b) where the skyline records {r1, r2, r3, r4} have already
been processed, and c is a promising cell in the resultingCellTree,
i.e., it has Rank(c) ≤ k. The set of defining/covering halfspaces
for c is c.Ψ = {h−1 , h

+
2 , h

−
3 , h

+
4 }. We call pivots of c those pro-

cessed records that contribute negative halfspaces to c.Ψ. In our
example, the pivots of c are r1 and r3.

LEMMA 5. Any unprocessed record r that is dominated by a
pivot of c has no effect on the rank or extent of c.

PROOF. Let rj be a pivot of c that dominates r. Lemma 4 sug-
gests that h− � h−j . Since rj is pivot to c, it also holds that

h−j � c. Thus, h− � c, i.e., h does not cut through c and r
does not affect the rank or the extent of c.

To illustrate, Figure 6 continues the example of Figure 5(b)
(where d = 3) but for ease of illustration it assumes 2-dimensional
data. Figure 6(a) shows the skyline of D in data space. Figure 6(b)
shows as striped the area dominated by the pivots of c, i.e., by r1
and r3. Lemma 5 suggests that records in the striped area have no
effect on c. Hence, the only unprocessed records that could affect
the rank and extent of c lie inside the gray regions. If these re-
gions are empty, we can directly report c as part of the kSPR result.
This is an important finding, because it enables major computation
savings. Also, it renders P-CTA progressive, i.e., it allows the re-
porting of result regions before the algorithm terminates. That is a
highly desirable property in preference-based querying [29].

r1

r2

r3

r4

r12

r14
r13

r11

r10

r20

r19
r9r18

r17

r16

r15 r8

r7
r6

r5
r2

r1

pivots

r1

r2

r3

r4

r12

r14
r13

r11

r10

r20

r19
r9r18

r17

r16

r15 r8

r7
r6

r5
r2

r1
(a) First batch (b) Second batch

Figure 6: Determining records to process next (d = 2, k = 3)

If the gray regions are not empty, and in order to uphold Invari-
ant 1, we process next those among the gray region records that are
not dominated by any unprocessed record, i.e., the second batch in-
cludes r7, r8, r12. Formally, these are the unprocessed records that
belong to the skyline of D if we ignore non-pivot records (r2, r4).

In general, there are multiple promising cells. It is imprac-
tical to process individual batches of records for each of them.
To determine a universal next batch to process, we compute the
union of the non-pivot records for all promising cells, and re-
compute the skyline of D by ignoring the records that belong to
that union. The unprocessed records in the new skyline form the
next batch. In the example of Figure 6, assume that, in addi-
tion to c, there is another promising cell with pivots r2 and r3.
In this case, the union of non-pivot records for the two cells is
{r2, r4} ∪ {r1, r4} = {r1, r2, r4}. The recomputed skyline ig-
nores that union, and comprises r5, r6, r7, r8, r3, r12. The unpro-
cessed among them (i.e., all except r3) form the second batch. New
batches of records are processed until all cells in CellTree are ei-
ther eliminated or reported.

The original skyline computation (for the first batch) as well
as skyline recomputation (required for subsequent batches) can
be performed using the index on D and the incremental branch-
and-bound skyline (BBS) technique in [25]. Importantly, as new
records are fetched and processed, we maintain in a dominance
graph all the dominance relationships between processed records.
This graph serves as a look-up structure, used to accelerate the in-
sertion algorithm in Section 4.3. Specifically, when we insert hy-
perplane hi into a node N (be it internal or leaf), we first look into
the dominance graph to get the set of already processed records
that dominate ri. If any of them contributes a negative halfspace
to the cover set of N , we determine that h−i covers N (i.e., it is
case II) and add h−i directly to the cover set of N , without any fur-
ther checking. The reasoning behind this optimization is similar to

Lemma 5. Algorithm 2 in Appendix E summarizes the complete
P-CTA algorithm. Lemma 6 is key for its complexity analysis.

LEMMA 6. P-CTA will never process a record that is domi-
nated by k or more other records in D.

PROOF. Consider a record r that is dominated by a set Dr of
other records, where |Dr| ≥ k (| · | denotes cardinality). For r to be
processed, there must be at least one promising cell c such that r is
not dominated by any of the cell’s pivots. By Invariant 1, all records
in Dr must have already been processed before r. Therefore, each
Dr record contributes a halfspace (positive or negative) in the c.Ψ
set. For r to be processed on behalf of c, none of theDr records can
be pivots, thus their contributing halfspaces are all positive. That
is, c.Ψ includes at least k positive halfspaces, i.e., Rank(c) > k,
which contradicts the assumption that c is promising.

COROLLARY 1. The time complexity of P-CTA is O(α ·
(k logd−1 n

d!
)d), where α is a constant depending only on the di-

mensionality d.

PROOF. Assuming independent and uniformly distributed data
records, the number of those that are dominated by none or fewer
than k others is O(k logd−1 n

d!
) [17]. Since P-CTA processes a sub-

set of these records, we derive its complexity by plugging that num-
ber into Lemma 3 instead of n.

On a different note, Lemma 6 (with small modifications) sug-
gests that a plausible kSPR solution is to compute all records in
D that are dominated by none or fewer than k others, i.e., to com-
pute what is commonly referred to as the k-skyband [25] of D, and
feed them to CTA. As we show in Appendix B, the k-skyband is a
large superset of the records processed by P-CTA, resulting in 4 to
9 times slower processing than P-CTA.

6. LOOK-AHEAD P-CTA
To further boost the performance of P-CTA, in this section we

propose look-ahead techniques that enable (i) the early pruning of
unpromising cells and (ii) the early detection of cells that belong to
the kSPR result. We term the produced method Look-ahead Pro-
gressive Cell Tree Approach (LP-CTA).

6.1 Fundamental Idea
A cell c corresponds to a collection of weight vectors, which can

produce a range of scores for the focal record p. We denote the
minimum and maximum possible score of p for any weight vector
in c as S(p, c) and S(p, c), respectively. We can accurately com-
pute S(p, c) by solving an LP problem for minimizing S(p) subject
to the constraints that define cell c. To accelerate LP solving, we
use Lemma 2 to remove inconsequential halfspaces (constraints),
exactly as described in Section 4.3.1. Recall that c is in the trans-
formed preference space (with axes w1, w2, · · · , wd−1), thus, the
objective function S(p) is expressed as pd +

∑d−1
i=1 (pi − pd)wi.

To demonstrate, if the cell at hand is cell c2 in Figure 4, it is
represented by halfspaces h−1 and h−2 , i.e., only those that appear
as labels along the path from the root of CellTree to leaf c2. By
combining the corresponding constraints and those that define the
boundaries of the preference space, S(p, c) is derived as the opti-
mal value of the objective in the following LP problem:

Minimize: pd +
∑d−1

i=1 (pi − pd)wi

subject to: h−1 : S(r1) = r1 · w < S(p) = p · w
h−2 : S(r2) = r2 · w < S(p) = p · w
∀j ∈ [1, d− 1], wj ∈ (0, 1);

∑d−1
j=1 wj ≤ 1

(4)

S(p, c) is derived by solving an LP problem with the same con-
straints, but where the objective function S(p) is maximized.

Similarly, we could compute the minimum and maximum score
of any record r ∈ D for weight vectors in c (as S(r, c) and S(r, c)),
and derive a lower and upper bound for the rank of p in c as:

Rank(c) = 1 + COUNT{r ∈ D : S(r, c) > S(p, c)}
Rank(c) = 1 + COUNT{r ∈ D : S(r, c) > S(p, c)} (5)

To avoid confusion about the role of the lower and upper bound, we
stress that the lower bound Rank(c) is the best rank that p could
achieve in c, andRank(c) is the worst, i.e.,Rank(c) ≤ Rank(c).
Note that the bounds are defined over all records inD and are, thus,
irrelevant to which or how many records have been processed so far
(i.e., mapped into hyperplanes and reflected in the CellTree).

Consider cell c in Figure 7(a) and assume that D =
{r1, · · · , r4}. In Figure 7(b) each data record r is mapped to
a score interval [S(r, c), S(r, c)] corresponding to the possible
scores r could achieve in c. Focal record p is similarly mapped to
[S(p, c), S(p, c)]. Based on these intervals, the best rank achiev-
able by p in c is Rank(c) = 2 and the worst is Rank(c) = 4.

S5

S6

?

0 15:�á ?;5:�á ?;

5:�5á ?;5:�5á ?;

5:�7á ?;5:�7á ?;

5:�6á ?;5:�6á ?;

5:�8á ?;5:�8á ?;

(a) Candidate cell (b) Score intervals

Figure 7: Deriving rank bounds for a cell

The rank bounds enable the early detection (i) of unpromising
cells and (ii) of cells that definitely belong to the kSPR result. First,
ifRank(c) > k, we may safely prune c. Second, ifRank(c) ≤ k,
we directly include c in the kSPR result4. In either scenario, c is
ignored by subsequent traversals/operations in CellTree.

Clearly, for large datasets it is impractical to compute S(r, c) and
S(r, c) for every r ∈ D. In Section 6.2 we utilize the index on D
to derive score bounds for entire groups of records, which in turn
accelerate the computation of Rank(c) and Rank(c).

6.2 Group Bounds
Suppose that we organize D with an aggregate spatial index,

such as the aggregate R-tree [24]. This is a regular R-tree where,
in the internal nodes, each entry represents a group G of records
and stores (i) the minimum bounding rectangle (G.mbr) and (ii)
the number of data records in its subtree (G.num). Figure 8(a)
illustrates an aggregate R-tree. Figure 8(b) shows the entry of
group G5 in the data space (d = 3). The entry has G5.mbr =
([0.1, 0.2], [0.2, 0.4], [0.1, 0.2]) and G5.num = 8.

We call min-corner of G.mbr its corner with the minimum coor-
dinates and denote it as GL. Symmetrically, the max-corner GU is
the corner with the maximum coordinates. In the case of G5 above,
GL

5 = (0.1, 0.2, 0.1) and GU
5 = (0.2, 0.4, 0.2). The min-corner

and max-corner of an R-tree entry G can be used to derive score
bounds for any record under it. Specifically, due to the increas-
ing monotonicity of the scoring function S(·) (Equation 1), for any

4Note that in CTA and P-CTA, cell c could be split during the inser-
tion of new hyperplanes, only to eventually include all the produced
parts (as separate cells) into the kSPR result.

s9 s: s; s<
Y���Y

N� N�
Y��Y��Y���Y���Y��Y

s5; s5< s5= s64

s5 s6 s7 s8

8 data records

32 32 32 32

8 8 Y�����Y� Y�����Y������Y�8 8 8 8 8 8

sÞ
Å
L <räsá rätá räs=

sÞ
�
L <rätá rävá rät=

(a) Aggregate R-tree (b) MBR of entry G5

Figure 8: Computing group bounds

record r in the subtree of G, and for any weight vector, it holds
that S(GL) ≤ S(r) ≤ S(GU). Thus, for weight vectors in a spe-
cific cell c, it holds that S(GL, c) ≤ S(r) ≤ S(GU , c); the group
bounds S(GL, c) and S(GU , c) are derived by solving an LP prob-
lem for each, as in Section 6.1. In particular, for the former we min-
imize the objective function S(GL) and for the latter we maximize
objective function S(GU), both subject to the constraints imposed
by cell c and the boundaries of the preference space.

Having defined the group bounds, we can now utilize the ag-
gregate R-tree on D to derive the rank bounds for a cell c. We
initialize Rank(c) = Rank(c) = 1, and traverse the index in a
top-down fashion, starting from the root. When we examine a non-
leaf entry G, we compare the group bounds of G with the score
bounds of the focal record p. If S(GU , c) < S(p, c), we ignore
the subtree of G. If S(GL, c) > S(p, c), we increment Rank(c)
and Rank(c) by G.num and ignore the subtree of G. If interval
[S(p, c), S(p, c)] completely covers interval [S(GL, c), S(GU , c)],
we increment Rank(c) by G.num and ignore the subtree of G, be-
cause even if we go deeper in that subtree, the score intervals of
all underlying records are guaranteed to be completely covered by
the score interval of p. In all other cases, we visit the node pointed
by G and perform the same process on its own entries recursively.
When the traversal encounters records, we apply the same reason-
ing, but we use S(r, c) and S(r, c) instead of the group bounds.

While effective (in the early pruning and reporting of cells), the
above process computes S(·, c) and S(·, c) bounds for many entries
and records in the aggregate R-tree, each requiring an expensive
call to the LP solver. This is a major issue, especially considering
that we need to compute rank bounds for a large number of different
cells. In Section 6.3 we reduce the number of calls to the LP solver,
without sacrificing effectiveness.

6.3 Fast Bounds
We propose bounds that are faster to compute than S(·, c) and

S(·, c) presented previously. These bounds are looser, and hence
applied in tandem with, yet before we resort to expensive S(·, c)
and S(·, c) computation, in a filter-and-refine fashion.

For a cell c, we can compute its min-vector wL as a weight vector
(in the original, d-dimensional preference space) such that the score
of any record r according to wL is no larger than the score of r
according to any weight vector in c. The max-vector wU of c plays
the symmetric role of awarding to any record r a score no smaller
than any weight vector in c.

We derive the min-vector of c as follows. First, we compute the
minimum possible value for each of w1, w2, · · · , wd−1 by solving
an LP problem for each of them, subject to the constraints that de-
fine c. Then, we compute the minimum value for wd by solving a
similar LP problem with objective wd = 1−

∑d−1
i=1 wi. The mini-

mum wi values derived by these (d in total) LP problems comprise
the min-vector wL. The score of any record in a group G is lower
bounded by the score of the min-corner GL according to wL. We
call the latter the fast lower bound and denote it as Sfast(G, c).

The max-vector wU of c is computed by solving the same LP
problems as for wL, but here the objectives are maximized. For a
group G, the fast upper bound S

fast
(G, c) is derived as the score

of GU according to wU . Fast bounds can be similarly computed for
data records, using the same vectors wL and wU .

With the fast bounds, we can accelerate the rank bound compu-
tation in Section 6.2 as follows. For any entry G considered during
the traversal of the data index, we first apply the fast bounds to ob-
tain the score interval [Sfast(G, c), Sfast

(G, c)]. If this score in-
terval does not overlap with (or is completely covered by) the score
interval of p, we avoid computing the expensive group bounds
S(GL, c) and S(GU , c). When we encounter data records, we use
the fast bounds similarly as filtering step, and only resort to the ex-
pensive S(r, c) and S(r, c) if the fast filtering step is inconclusive.

Importantly, we call the new bounds fast, because vectors wL

and wU are computed once per cell c, and are reused to derive
score intervals for any entry or record encountered in the data in-
dex during the rank bound computation for c. With wL and wU at
hand, each Sfast(·, c) and S

fast
(·, c) value can be derived inO(d)

time. Juxtapose this to the need for two LP calls for each and every
encountered entry or record in Section 6.2, at the cost of O(α · i)
per LP call (where i is the number of constraints that define c). Our
evaluation in Section 7 demonstrates that the use of fast bounds as
filters reduces the running time of LP-CTA by up to 64%.

6.4 Putting it All Together
We have described and optimized a process to derive rank

bounds for a given cell c. The question now is which cells to
compute these bounds for. A possible strategy is to apply them
to both created cells whenever a leaf of CellTree is split. An al-
ternative is to compute the rank bounds of newly created cells, i.e.,
new leaves inCellTree, after processing an entire batch of records
(recall that LP-CTA, just like P-CTA, fetches the new records to
process in batches). We found empirically that the second strategy
leads consistently to faster processing. Algorithm 3 in Appendix E
summarizes LP-CTA.

The time complexity of LP-CTA is the same as P-CTA in Corol-
lary 1. The reason is that, in the worst case, the look-ahead tech-
niques will fail to quickly prune or report any cells inCellTree. At
the same time, the overall time complexity is dominated by the op-
erations required within the CellTree (as opposed to look-ahead
computations). Despite the common asymptotic complexity of the
two algorithms, in practice LP-CTA is two times to an order of
magnitude faster than P-CTA, as we show in the experiments.

7. EXPERIMENTAL EVALUATION
In this section we present our empirical findings. In Section 7.1

we describe the experimental setting. In Section 7.2 we conduct a
case study on a real dataset to demonstrate the applicability of the
kSPR problem. In Section 7.3 we evaluate the performance of our
solutions on real and synthetic datasets. Finally, in Section 7.4 we
investigate the effectiveness of independent optimizations.

7.1 Experimental Setting
We use the standard synthetic benchmarks for preference-based

queries [7], namely Independent (IND), Correlated (COR), and
Anti-correlated (ANTI), which represent typical data distributions
in multi-criteria decision making applications. We also experi-
ment with real datasets HOTEL, HOUSE, and NBA, which are
commonly used in the rank-aware processing literature. HOTEL
includes 418K 4-dimensional records that correspond to hotels.
HOUSE comprises 315K 6-dimensional records, each correspond-

ing to an American family and its spendings in 6 types of expenses.
NBA contains 22K records of statistics for NBA players, where 8
attributes are suitable for rank-aware processing [18]. Table 1 pro-
vides details on the size, attributes, and source of the real datasets.

Dataset d n Attributes Source
No. of stars, Price,

HOTEL 4 418,843 No. of rooms, hotels-base.com
No. of facilities
Gas, Electricity,

HOUSE 6 315,265 Water, Heating, ipums.org
Insurance, Property tax

NBA 8 21,960

Games, Rebounds,

basketball-reference.comAssists, Steals,
Blocks, Turnovers,

Personal fouls, Points

Table 1: Real dataset information

We index each dataset with an aggregate R-tree5. Data and in-
dex are kept in memory, although in Appendix A we also present
results for the scenario where they are stored on the disk. The main
performance factor is execution time, but for most experiments we
also include side metrics that offer insight into the problem and
methods. Table 2 provides the value ranges for each tested param-
eter, indicating their default values in bold. To isolate the effect of
a parameter, we vary it while keeping the remaining ones to their
defaults. Each plotted value corresponds to the average of mea-
surements observed across 1000 queries (focal records) randomly
selected from the corresponding dataset. The response times re-
ported for our algorithms include the finalization step of deriving
the exact geometry of each result cell by halfspace intersection (us-
ing the standard qhull library [2]).

Parameter Tested and default values
Dataset cardinality (n) 100K, 500K, 1M, 5M, 10M

Dimensionality (d) 2, 3, 4 , 5, 6, 7
Value k 10, 30, 50, 70, 90

Table 2: Experiment parameters, tested values, and defaults

By default, CTA, P-CTA, and LP-CTA are equipped with all
applicable optimizations. All methods were implemented in C++,
using lp_solve [1] as LP solver. The experiments run on a PC with
Intel i7-4770 3.40GHz CPU, 8GB DDR3 RAM, and 256GB SSD.

7.2 Case Study
To demonstrate the usefulness of kSPR, we conduct a case study

in the context of competitive sports. We use two fractions of the
NBA dataset, namely the 2014-2015 and the 2015-2016 season
statistics, and three attributes (points, rebounds, and assists). Imag-
ine that a manager is looking to market a player whose contract has
expired. Our query could help the manager figure how to frame the
player’s characteristics to make him appear the most competitive.

In this case study, we set k = 3 and use as focal record p player
Dwight Howard, who plays the ‘Center’ position. Figures 9(a)
and 9(b) visualize the kSPR regions of p in the 2014-2015 and
2015-2016 seasons, respectively. Note that the (transformed) pref-
erence space is triangular, as indicated by the dashed diagonal line6.
5We present the index construction cost in Appendix D.
6In the original preference space there is a third dimension, w3

(weight for assists). The values of w3 for the kSPR regions in Fig-
ure 9 are average, meaning that assists are not as decisive a factor
as points and rebounds in Dwight Howard’s case. Recall that we
can produce the kSPR regions either in the transformed or in the
original preference space, as explained at the end of Section 4.2.

Weight w1 corresponds to the points dimension, representing the
significance of the attack capabilities of the players. Weightw2 per-
tains to the rebounds dimension, reflecting the significance of their
defense abilities. In the 2014-2015 season (Figure 9(a)) Dwight
Howard is most competitive, i.e., ranks among the top-3 players,
when w1 is high and w2 is low. Hence, to make him stand out from
the competition, it is advisable for his manager to stress his solid
attack capabilities. In 2015-2016 (Figure 9(b)) the kSPR region
corresponds to preferences with low w1 and high w2 values. This
suggests that in order to effectively market Dwight Howard this
year, his manager should put more emphasis on his defense skills.

0 1

0

1

S5: points

S6: rebounds S6: rebounds

0 1

0

1

S5: points

(a) 2014-2015 season (b) 2015-2016 season

Figure 9: kSPR result for Dwight Howard (NBA, k = 3)

7.3 Performance Evaluation
In Section 2 we mentioned that Vlachou et al. [31] describe

a monochromatic reverse top-k method for 2-dimensional data,
which essentially solves the kSPR problem for d = 2. We de-
note that method as RTOPK. We implemented it in C++, since
in the original paper Java was used. RTOPK only considers data
records that are neither dominated by nor dominate the focal record
p (the same reasoning as in Section 3.1 applies). In Figure 10(a)
we compare it with LP-CTA in the special case of 2-dimensional
records, using IND data and varying k. LP-CTA is an order of
magnitude faster than RTOPK. The reason is that the latter needs
to compare p with every data record that does not dominate nor is
dominated by p, and compute a switching value for each of them.
In contrast, LP-CTA only considers a small subset of the dataset.
E.g., for k = 30, RTOPK considers around 600 times more records
than LP-CTA. Since RTOPK does not extend to higher dimensions
(d > 2), we ignore it in the following experiments.

10
0

10
1

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

LP-CTA RTOPK

10
0

10
1

10
2

10
3

10
4

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

CTA
P-CTA

LP-CTA
iMaxRank

(a) RTOPK [31] (IND, d = 2) (b) iMaxRank [23] (IND, d = 4)

Figure 10: Comparison with adaptations of previous work

In Section 2 we also mentioned that the incremental version of
the maximum rank query [23] can be adapted to solve the kSPR
problem. That is, after computing the best rank k∗ achievable
by p (and the corresponding regions in preference space), to in-

crementally probe the algorithm and report the regions for ranks
k∗ + 1, k∗ + 2, etc. until k. We denote this method as iMaxRank.
We used directly the implementation of [23], which relies on the
same data indices and key libraries (e.g., qhull) as our kSPR meth-
ods. We compare them in Figure 10(b), where we use IND data and
vary k, while setting the remaining parameters to their defaults.
iMaxRank is three orders of magnitude slower than P-CTA and
LP-CTA, and 6 times slower than our basic approach, CTA. It takes
almost 2 hours for k = 30 and fails to terminate in reasonable time
for k > 30. The primary reason for its poor performance is that
it executes numerous computational geometric operations, and in
particular expensive halfspace intersections. Moreover, it indexes
the preference space with a Quad-tree, which leads to a clumsy
partitioning, and results in each halfspace cutting through (and thus
being intersected with the contents of) many Quad-tree leaves. Due
to its unsuitability for the kSPR problem and its inability to scale,
we exclude it from subsequent experiments.

Turning to the performance of our kSPR methods, Figure 10(b)
offers an indicative comparison. CTA exceeds 2 hours for k > 50.
On the contrary, P-CTA and LP-CTA scale well, with LP-CTA ter-
minating in a few seconds. Between them, LP-CTA is the clear
winner, being from 2 to 10 times faster. To investigate further,
for the same experiment, in Figure 11 we plot the number of pro-
cessed records (equivalently, the number of hyperplanes inserted
into CellTree) and the number of nodes in CellTree upon ter-
mination. The prioritized processing and quick cell reporting in
P-CTA leads to 13 to 32 times fewer processed records than CTA,
and to 8 times smallerCellTree structure. On top of that, the look-
ahead techniques in LP-CTA achieve an additional reduction of up
to 3 times in the number of processed records, and up to 9 times
in CellTree nodes. We note that the strong point of LP-CTA lies
in the early pruning and reporting of cells, which is only indirectly
reflected in the numbers of processed records andCellTree nodes.

10
1

10
2

10
3

 10 30 50 70 90

P
ro

c
e

s
s
e

d
 r

e
c
o

rd
s

k

CTA

P-CTA

LP-CTA

(a) Processed records

10
3

10
4

10
5

10
6

10
7

 10 30 50 70 90

N
o

d
e

s
 i
n

 C
e
ll
T
re
e

k

CTA

P-CTA

LP-CTA

(b) Nodes in CellTree

Figure 11: Effect of k (IND)

In Figure 12 we compare our methods when varying the dataset
cardinality n from 100K to 10M. In Figure 12(a) we plot the run-
ning time. LP-CTA is clearly ahead of competition, and its gap
from the runner-up (P-CTA) widens with n (e.g., it is 9 times faster
for n = 10M), demonstrating its superior scalability. Figure 12(b)
presents the space requirements for the same experiment. These
are dominated by the size of CellTree (discussed in the previous
experiment in the context of Figure 11(b)), thus, LP-CTA has the
smallest overhead, while CTA the largest. Importantly, even for
n = 10M, LP-CTA requires just 403MB, which is well within the
capacity of commodity computers (and it is also the largest space
requirement we observed for LP-CTA across all experiments).

In Figure 13 we vary d from 2 to 7, and present the response
time of our two best methods (in Figure 13(a)), and the number of
regions in the kSPR result (in Figure 13(b)). The number of kSPR
regions, which has to do with the nature of the problem, increases

10
0

10
1

10
2

10
3

10
4

100K 500K 1M 5M 10M

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset cardinality

CTA
P-CTA

LP-CTA

(a) Response time

10
-1

10
0

10
1

10
2

10
3

100K 500K 1M 5M 10M

S
p

a
c
e

 c
o

n
s
u

m
p

ti
o

n
 (

M
B

)

Dataset cardinality

CTA
P-CTA

LP-CTA

(b) Space consumption

Figure 12: Effect of n (IND)

quickly with d, hence leading to a similar increase in response time.
The rising number of regions is because as dimensionality grows,
the records become score-wise less distinguishable [23], thus mak-
ing it more likely for the focal record to be among the top-k records
in more parts of the preference space.

10
0

10
1

10
2

10
3

 2 3 4 5 6 7
R

e
s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset dimensionality

P-CTA
LP-CTA

Dimensionality Result size
2 18.67
3 432.69
4 879.36
5 3205.74
6 5181.21
7 8326.42

(a) Response time (b) Result size

Figure 13: Effect of d (IND)

Next, we focus on our best method, LP-CTA, and study the ef-
fect of data distribution. In Figure 14 we show the response time of
LP-CTA and the result size for IND, COR, and ANTI, while vary-
ing k. Performance is best for COR and worst for ANTI. This is
expected, since in COR records have the highest likelihood to dom-
inate one another [7], thus producing fewer possible top-k results
and, in turn, fewer kSPR regions. In contrast, in ANTI records tend
to not dominate one another, hence allowing for a multitude of pos-
sible top-k results, and therefore more regions in preference space
where p may enter the top-k list.

10
-1

10
0

10
1

10
2

10
3

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

ANTI
IND

COR

(a) Response time of LP-CTA

10
1

10
2

10
3

10
4

 10 30 50 70 90

R
e

s
u

lt
 s

iz
e

k

ANTI

IND

COR

(b) Result size

Figure 14: Effect of data distribution

In Figure 15 we try real datasets. Figures 15(a), (b), (c) compare
P-CTA and LP-CTA for HOTEL, HOUSE, and NBA, when vary-
ing k. Figure 15(d) shows the respective numbers of kSPR regions
for all three datasets. The relative performance of our methods is
the same as in previous experiments. Comparing across datasets,
the response times in NBA are similar to those in HOUSE. On the
one hand, NBA contains 14 times fewer records than HOUSE, but
on the other, its kSPR result includes an order of magnitude more

regions. These factors are canceling out each other’s effect, lead-
ing to similar running times in the two datasets. The algorithms
perform the slowest for HOTEL, which is the largest real dataset
and where the number of result regions is significantly higher.

10
2

10
3

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

P-CTA
LP-CTA

(a) Response time (HOTEL)

10
2

10
3

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

P-CTA
LP-CTA

(b) Response time (HOUSE)

10
2

10
3

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

P-CTA
LP-CTA

(c) Response time (NBA)

10
1

10
2

10
3

10
4

10 30 50 70 90

R
e

s
u

lt
 s

iz
e

k

HOTEL

HOUSE

NBA

(d) Result size

Figure 15: Experiments on real datasets

7.4 Effectiveness of Optimizations
Here we evaluate individual optimizations within our methods.

First, we compare our LP-based feasibility test with straightforward
halfspace intersection. Then, we assess the benefits derived from
the elimination of inconsequential halfspaces. Finally, we compare
the efficacy of the different look-ahead bounds.

In Figure 16 we pick a number m of IND records that are not
dominated nor dominate p, and insert them into CellTree. We
do not prune any node based on its rank, so as to derive the full
arrangement of the m hyperplanes. We then randomly pick 100
leaves of CellTree and perform two different feasibility tests to
them: (i) our LP-based test from Section 4.2 (using lp_solve) and
(ii) computing the exact geometry of the respective cells via half-
space intersection (using the qhull library). In Figures 16(a) and
16(b) we report the techniques’ total response time (for all 100
leaves) by varying the dimensionality d and the number of hyper-
planes m. Our LP-based test is 10 to 68 times faster than halfspace
intersection. The gap widens with d, because the cost of geometric
operations involved in halfspace intersection explodes with d.

10
1

10
2

10
3

 3 4 5 6 7

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset dimensionality

lp_solve
qhull

(a) Effect of d

10
1

10
2

10
3

10
4

500 1K 5K 10K 50K

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of inserted hyperplanes

lp_solve
qhull

(b) Effect of m

Figure 16: Effectiveness of LP-based feasibility test

In Figure 17 we investigate the effectiveness of eliminating
inconsequential halfspaces by the technique described in Sec-
tion 4.3.1. As in the previous experiment, we insert m halfspaces

into CellTree and perform feasibility tests on 100 randomly cho-
sen leaves by calling the LP solver (i) on the entire set of defining
halfspaces (represented as lp_solve in the charts) and (ii) only on
the halfspaces that are not deemed inconsequential by Lemma 2
(represented as lp_solve+lemma_2). We plot the average num-
ber of constraints and the total running time of the two approaches
while varying m. On the average, lp_solve+lemma_2 processes
only 17 constraints for m = 500, and 98 for m = 50K, corre-
sponding to 3.5% and 0.2% of the total number of defining halfs-
paces. This results in 32 to 517 times faster feasibility testing, and
confirms the effectiveness of our halfspace elimination technique.

10
2

10
3

10
4

500 1K 5K 10K 50K

N
o

.
o

f
c
o

n
s
tr

a
in

ts

No. of inserted hyperplanes

lp_solve
lp_solve+lemma_2

(a) No. of constraints

10
-1

10
0

10
1

10
2

10
3

500 1K 5K 10K 50K

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of inserted hyperplanes

lp_solve
lp_solve+lemma_2

(b) Response time

Figure 17: Effectiveness of Lemma 2

Finally, in Figure 18 we compare three versions of LP-CTA. The
first (record_bounds) derives the rank bounds of considered cells
based on per-record bounds, as presented in Section 6.1. The sec-
ond (group_bounds) utilizes the data index and employs group
bounds, as in Section 6.2. The third (fast_bounds) additionally
utilizes the fast bounds in Section 6.3 for quick filtering, as in our
full-fledged LP-CTA implementation. In Figures 18(a) and 18(b)
we vary k and d, respectively, in our default setting. Our group
bounds offer savings of 19% to 56% (compared to plain record
bounds). On top of that, the fast bounds offer additional 16% to
64% savings (compared to the group bounds version).

10
0

10
1

10
2

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

fast_bounds
group_bounds
record_bounds

(a) Effect of k

10
0

10
1

10
2

 2 3 4 5 6 7

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset dimensionality

fast_bounds
group_bounds
record_bounds

(b) Effect of d

Figure 18: Effectiveness of group and fast bounds in LP-CTA

8. CONCLUSION
In this paper we introduce the k-Shortlist Preference Region

problem (kSPR), which identifies all the regions in preference
space where a given option (focal record) ranks among the top-k
available alternatives. The problem finds application in market im-
pact analysis and targeted advertising, among others. We develop a
suite of techniques and data structures (e.g., CellTree, LP-based
testing, look-ahead techniques) for efficiently solving this problem.
We present a case study on the NBA dataset to demonstrate the use-
fulness of kSPR, and we verify the efficiency and practicality of our
methodology with experiments on benchmark datasets. An inter-
esting direction for future work is approximate kSPR algorithms,
with accuracy guarantees, for the purpose of faster processing.

9. ACKNOWLEDGEMENTS
Man Lung Yiu and Bo Tang were supported by grant GRF

152196/16E from the Hong Kong RGC. Kyriakos Mouratidis was
supported by the Singapore Ministry of Education (MOE) Aca-
demic Research Fund (AcRF) Tier 1 grant.

10. REFERENCES
[1] lp_solve. http://lpsolve.sourceforge.net/5.5/.
[2] qhull. http://www.qhull.org.
[3] P. K. Agarwal and M. Sharir. Arrangements and their applications.

Handbook of computational geometry, pages 49–119, 2000.
[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The

R*-tree: An efficient and robust access method for points and
rectangles. In SIGMOD, pages 322–331, 1990.

[5] M. D. Berg, O. Cheong, M. V. Kreveld, and M. Overmars.
Computational geometry: algorithms and applications. Springer,
2008.

[6] A. Blum, J. C. Jackson, T. Sandholm, and M. Zinkevich. Preference
elicitation and query learning. Journal of Machine Learning
Research, 5:649–667, 2004.

[7] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, pages 421–430, 2001.

[8] Y. Cai, Y. Tang, and N. Mamoulis. Maximizing a record’s standing in
a relation. IEEE Trans. Knowl. Data Eng., 27(9):2401–2414, 2015.

[9] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R.
Smith. The onion technique: Indexing for linear optimization
queries. In SIGMOD, pages 391–402, 2000.

[10] B. Chazelle. An optimal convex hull algorithm in any fixed
dimension. Discrete & Computational Geometry, 10:377–409, 1993.

[11] M. A. Cheema, Z. Shen, X. Lin, and W. Zhang. A unified framework
for efficiently processing ranking related queries. In EDBT, pages
427–438, 2014.

[12] W. Chu and Z. Ghahramani. Preference learning with gaussian
processes. In ICML, pages 137–144, 2005.

[13] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas. Ad-hoc top-k
query answering for data streams. In VLDB, pages 183–194, 2007.

[14] H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for
hyperplane arrangements. SIAM J. Comput., 22(2):418–429, 1993.

[15] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, 2001.

[16] Y. Gao, Q. Liu, G. Chen, B. Zheng, and L. Zhou. Answering why-not
questions on reverse top-k queries. PVLDB, 8(7):738–749, 2015.

[17] P. Godfrey. Skyline cardinality for relational processing. In
International Symposium on Foundations of Information and
Knowledge Systems, pages 78–97. Springer, 2004.

[18] Z. He and E. Lo. Answering why-not questions on top-k queries.
IEEE Trans. Knowl. Data Eng., 26(6):1300–1315, 2014.

[19] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A
system for the efficient execution of multi-parametric ranked queries.
In SIGMOD, pages 259–270, 2001.

[20] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comp.
Surveys, 40(4), 2008.

[21] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An
online algorithm for skyline queries. In VLDB, pages 275–286, 2002.

[22] K. Mouratidis and H. Pang. Computing immutable regions for
subspace top-k queries. In PVLDB, pages 73–84, 2013.

[23] K. Mouratidis, J. Zhang, and H. Pang. Maximum rank query.
PVLDB, 8(12):1554–1565, 2015.

[24] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
operations in spatial data warehouses. In SSTD, pages 443–459,
2001.

[25] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. ACM Trans. Database Syst.,
30(1):41–82, 2005.

[26] P. Peng and R. C. Wong. k-hit query: Top-k query with probabilistic
utility function. In SIGMOD, pages 577–592, 2015.

[27] A. M. Rashid, G. Karypis, and J. Riedl. Learning preferences of new
users in recommender systems: an information theoretic approach.
SIGKDD Explorations, 10(2):90–100, 2008.

[28] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and M. Tagliasacchi.
Ranking with uncertain scoring functions: semantics and sensitivity
measures. In SIGMOD, pages 805–816, 2011.

[29] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. In VLDB, pages 301–310, 2001.

[30] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse
top-k queries. In ICDE, pages 365–376, 2010.

[31] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg.
Monochromatic and bichromatic reverse top-k queries. IEEE Trans.
Knowl. Data Eng., 23(8):1215–1229, 2011.

[32] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Identifying
the most influential data objects with reverse top-k queries. PVLDB,
3(1):364–372, 2010.

[33] A. Vlachou, C. Doulkeridis, K. Norvag, and Y. Kotidis.
Branch-and-bound algorithm for reverse top-k queries. In SIGMOD,
pages 481–492, 2013.

[34] A. Yu, P. K. Agarwal, and J. Yang. Processing a large number of
continuous preference top-k queries. In SIGMOD, pages 397–408,
2012.

[35] J. Zhang, K. Mouratidis, and H. Pang. Global immutable region
computation. In SIGMOD, pages 1151–1162, 2014.

[36] Z. Zhang, C. Jin, and Q. Kang. Reverse k-ranks query. PVLDB,
7(10):785–796, 2014.

APPENDIX
A. DISK-BASED SCENARIO

The experiments in Section 7 focus on the setting where data
and index are kept in primary storage, because their combined size
easily fits in the memory of commodity computers. Here we pro-
vide representative results for the scenario where data and index
are stored on the disk, thus introducing I/O cost to the algorithms’
overall response time. Our methods extend directly to that setting,
because they utilize data indices (R-trees) that are readily applica-
ble to disk-resident data.

We focus on our two best methods, P-CTA and LP-CTA. Fig-
ures 19(a), 19(b), and 19(c) present the total response time, ac-
counting for both CPU and I/O time, using IND data and varying
k, n, and d, respectively. Figure 19(d) shows the total response time
for the real datasets using the default values for all parameters. The
white part in each bar corresponds to the I/O time, and the patterned
part to CPU time. The overall length of the bar (i.e., total response
time) is in logarithmic scale, but its white and patterned parts are
proportional to their contribution to the total response time. Note
that in our system a random page read (on SSD) takes 0.2ms.

Although LP-CTA processes fewer records than P-CTA (as we
demonstrated in Section 7), its look-ahead techniques rely on
bounds derived by accessing the data index for every CellTree
leaf it considers. As a result, its I/O cost is larger than P-CTA.
However, its superior CPU time (see Figures 10(b), 12(a), 13(a),
and 15 for reference to the respective subfigures in Figure 19) ren-
ders LP-CTA several times faster in terms of total time, especially
when scale is at its largest. For instance, for k = 90, its total re-
sponse time is 9.8 times shorter than P-CTA. For n = 10M its total
response time is 8.4 times shorter, and for d = 7 it is 12.4 times
shorter. We conclude that LP-CTA is far superior to P-CTA in the
disk-based scenario too.

B. P-CTA VS. K-SKYBAND APPROACH
At the end of Section 5, we mentioned that Lemma 6 implies

that we could solve the kSPR problem if we run CTA on the k-
skyband ofD. At that point we stated that the resulting approach is
impractical because the k-skyband includes numerous records, and
that P-CTA processes a small subset of them. Here we substantiate

10
-1

10
0

10
1

10
2

10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

I/O cost

P-CTA
LP-CTA

(a) Effect of k (IND)

10
0

10
1

10
2

100K 500K 1M 5M 10M

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset cardinality

I/O cost

P-CTA
LP-CTA

(b) Effect of n (IND)

10
0

10
1

10
2

2 3 4 5 6 7

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Data dimensionality

I/O cost

P-CTA
LP-CTA

(c) Effect of d (IND)

10
0

10
1

10
2

HOTEL HOUSE NBA

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Real dataset

I/O cost P-CTA
LP-CTA

(d) Real datasets (k = 30)

Figure 19: Performance in disk-based scenario

that fact by means of an experiment.
In Figure 20 we compare the two approaches on IND data by

varying k and keeping the remaining parameters to their defaults
(note that the setup is the same as in Figures 10(b) and 11, so ref-
erence to those charts is possible too). Figure 20(a) presents the
number of processed records in the two methods, and Figure 20(b)
presents their running time. The size of the k-skyband is an or-
der of magnitude larger than the number of records processed by
P-CTA. The difference in the number of processed records renders
P-CTA 4 to 9 times faster. These results illustrate the solid pruning
ability of P-CTA. They also demonstrate that Lemma 6 is not the
only reason behind P-CTA’s efficiency, but optimizations like the
pivot-based pruning and the direct cell reporting, which are enabled
by Lemma 5, are particularly effective.

We stress that the purpose of this experiment is to offer insight
into the strengths of P-CTA in particular, and to bring out its dif-
ferences from the k-skyband approach, which is why our best ap-
proach, LP-CTA, is omitted from Figure 20. Its number of pro-
cessed records and running time were already presented in Fig-
ures 11(a) and 10(b), respectively. For completeness, we mention
that it is 16 to 131 times faster than the k-skyband approach.

10
1

10
2

10
3

 10 30 50 70 90

P
ro

c
e

s
s
e

d
 r

e
c
o

rd
s

k

P-CTA
k-skyband

(a) Processed records

10
0

10
1

10
2

10
3

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

P-CTA
k-skyband

(b) Response time

Figure 20: P-CTA vs. k-skyband approach (IND)

C. TRANSFORMED VS. ORIGINAL SPACE
In Section 3.2 we explained that in our approach processing takes

place in the transformed preference space, with dimensionality re-
duced by 1 compared to the original preference space. We men-
tioned that this lowers the cost of key operations, such as LP solv-
ing, because it depends on d. Here, we investigate this deeper, ap-

ply our methodology to the original space, and compare its versions
for the two spaces.

In the original space, equality S(r) = S(p) for any r ∈ D
corresponds to a hyperplane that passes through the origin. This
means that the cells of arrangement Γ (and thus the kSPR regions
too) are polyhedral cones. In two dimensions, the cells look like the
wedges in Figure 1(b). In three dimensions, they look like the cone
shown in Figure 21. In terms of algorithm design, the techniques
in Sections 4 and 5 apply directly to the original space. The look-
ahead techniques in Section 6, however, require redesign (while
some of them do not apply at all, as we explain shortly).

Figure 21: Cell in original preference space for d = 3

Take Section 6.1 as an example. Since every cell includes the ori-
gin, S(p, c) is always 0. Similarly, for any record r ∈ D, S(r, c) is
0 too. Visually, this means that all the score intervals in Figure 7(b),
including that of p, start from 0. That fact yields7 Rank(c) = 1
andRank(c) = 1+n, i.e., renders the rank bounds useless. To cir-
cumvent this problem, our LP formulations for each r ∈ D should
use S(r)− S(p) as the optimization function. Specifically, for ev-
ery r ∈ D, we solve an LP problem where we minimize optimiza-
tion function S(r) − S(p) within the cell at hand. If the minimal
value of the function is positive, it means that S(r) > S(p) any-
where in the cell, hence, we increment bothRank(c) andRank(c)
by 1. Else, we solve another LP to maximize the same function. If
the maximal value is positive, it means that S(r) > S(p) in a part
of the cell, thus, we only increment Rank(c). Following the same
lines, we can adapt (to the original space) the group bounds in Sec-
tion 6.2 too.

The aforementioned trick, however, does not apply to the fast
bounds in Section 6.3. Specifically, the fact that every cell includes
the origin means that the min-vector wL will always be the ori-
gin, yielding Sfast(G, c) = 0 for every group G and every cell c.
Therefore, the fast bounds cannot be used in the original space.

In Figure 22 we compare P-CTA and LP-CTA with their
original-space counterparts, denoted as OP-CTA and OLP-CTA,
respectively. We vary k, n, d using IND data, and also present
results using the real datasets in the default setting. In all cases,
OP-CTA and OLP-CTA are slower than their transformed-space
versions. In particular, OP-CTA is 30% to 3.5 times slower than
P-CTA. Similarly, OLP-CTA is 30% to 5 times slower than
LP-CTA. The reason why the difference between the versions
of LP-CTA is larger (than the difference between the versions of
P-CTA), is because some look-ahead techniques in LP-CTA do not
apply to the original space at all (namely, the fast bounds).

7From the definition of the rank bounds, we have Rank(c) = 1 +

COUNT{r ∈ D : S(r, c) > S(p, c)} = 1, since S(r, c) = 0

for every r. Also, Rank(c) = 1 + COUNT{r ∈ D : S(r, c) >
S(p, c)} = 1 + n, since S(p, c) = 0.

10
0

10
1

10
2

10
3

 10 30 50 70 90

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k

P-CTA
OP-CTA
LP-CTA

OLP-CTA

(a) Effect of k

10
0

10
1

10
2

10
3

100K 500K 1M 5M 10M

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset cardinality

P-CTA
OP-CTA
LP-CTA

OLP-CTA

(b) Effect of n

10
0

10
1

10
2

10
3

 2 3 4 5 6 7

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset dimensionality

P-CTA
OP-CTA
LP-CTA

OLP-CTA

(c) Effect of d

 0

 100

 200

 300

 400

HOTEL HOUSE NBA

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Real dataset

LP-CTA
OLP-CTA

P-CTA
OP-CTA

(d) Real datasets

Figure 22: Processing in transformed vs. original space

D. INDEX CONSTRUCTION COST
The (aggregate) R-tree index on D is a “build-once, use-many”

general purpose structure, to be used for multiple kSPR queries,
possibly also for different query types. For completeness, we
present the one-off index construction cost, as well as the response
time for P-CTA and LP-CTA when that cost is amortized over the
1000-query workloads we use in our experiments.

In Figure 23 we show the index construction cost when we vary
n and d in the default IND dataset. Although in our implementation
we use the same index for all methods (aggregate R-tree), we also
present results for the plain R-tree (since CTA and P-CTA do not
require an aggregate index). Note that the indices are built and kept
in main memory. In Figure 24 we amortize the index construction
cost over the 1000 queries executed in each experiment, and present
the resulting response time of P-CTA and LP-CTA for different n
and d, using IND data and the default k = 30. The performance of
the algorithms does not differ much from the respective figures in
Section 7, i.e., Figures 12(a) and 13(a). For instance, in the default
setting, the amortization increases the response time of P-CTA by
0.29% and that of LP-CTA by 0.9%.

10
0

10
1

10
2

10
3

100K 500K 1M 5M 10M

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
s
e

c
)

Dataset cardinality

R-tree
aR-tree

 0

 20

 40

 60

2 3 4 5 6 7

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
s
e

c
)

Dataset dimensionality

R-tree
aR-tree

(a) Effect of n (b) Effect of d

Figure 23: Index construction time (IND)

E. PSEUDOCODES
Algorithm 1 summarizes CTA, as described in Section 4. The

various halfspace sets involved are the following:

• N.C denotes the cover set of a node N .
• ΨB is the set of halfspaces that label edges along the path

from the root of CellTree to node N .

10
0

10
1

10
2

10
3

100K 500K 1M 5M 10M

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset cardinality

LP-CTA
P-CTA

10
0

10
1

10
2

10
3

 2 3 4 5 6 7

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Dataset dimensionality

LP-CTA
P-CTA

(a) Effect of n (b) Effect of d

Figure 24: Amortized response time (IND)

• ΨS includes the halfspaces that define the boundaries of the
preference space, i.e., it corresponds to constraints
∀j ∈ [1, d′], wj ∈ (0, 1);

∑d′

j=1 wj ≤ 1.
• ΨC is the union of the cover sets of all the ancestors of N in
CellTree.

Algorithm 1 CTA(dataset D, focal record p, value k)
1: Initialize CellT ree root N with cover set N.C ← ∅
2: for each ri ∈ D do
3: Map ri to hyperplane hi

4: N ← root of CellT ree
5: Insert(N,hi)
6: if the root N is eliminated then
7: Return empty set
8: Return each CellT ree leaf c with Rank(c) ≤ k

Routine Insert(node N , hyperplane hi):
9: if N is eliminated then

10: Return
11: Nl, Nr ← left and right child of N
12: if Rank(N) > k or both Nr and Nl are eliminated then
13: Eliminate N , eliminate its subtree (if any), and return
14: ΨB ← halfspaces that label edges along the path from root to N

15: ΨS ← space boundaries: ∀j ∈ [1, d′], wj ∈ (0, 1);
∑d′

j=1 wj ≤ 1

16: if h−i ∩ΨB ∩ΨS = ∅ then . Case I
17: N.C ← N.C ∪ h+

i

18: else if h+
i ∩ΨB ∩ΨS = ∅ then . Case II

19: N.C ← N.C ∪ h−i
20: else . Case III
21: if N is a leaf then
22: Split N into two children with empty cover sets
23: Label edge to left / right child with h−i / h+

i respectively
24: else
25: Insert(Nl, hi)
26: Insert(Nr, hi)

Routine Rank(node N):
27: ΨC ← union of cover sets of all ancestors of N
28: ΨB ← halfspaces that label edges along the path from root to N
29: Return no. of positive halfspaces in N.C ∪ΨC ∪ΨB plus 1

By Lemma 2, sets N.C and ΨC are inconsequential, i.e., sets
ΨB and ΨS alone suffice to determine the extent of nodeN . There-
fore, the conditions in lines 16 and 18 only consider ΨB ,ΨS to de-
fine the extent ofN (thus applying the optimization in Section 4.3.1
to accelerate feasibility tests).

The full set of halfspaces that define/cover node N is the union
N.C∪ΨC ∪ΨB . Hence, by Lemma 1 the rank ofN is equal to the
number of positive halfspaces in that union, plus 1 (see line 29).

A final note about Algorithm 1 concerns lines 12–13. Node N
and its entire subtree are pruned when Rank(N) exceeds k. N is
also pruned when both its children (if any) have been eliminated.
The later case propagates bottom-up the elimination of children to

their parents, so that no explicit check for un-pruned leaves is re-
quired in the subtree of N in order to prune it. For instance, if the
condition in line 6 is true, it means that all leaves inCellTree have
been eliminated.

Algorithm 2 summarizes P-CTA. Set PR holds the already pro-
cessed records, i.e., those whose corresponding hyperplanes have
already been inserted into CellTree. Set S holds the next batch
of records to process. As explained in Section 5, Lemma 5 guar-
antees that if the condition in line 16 is false, the rank and extent
of c cannot be altered by any unprocessed record, and since it is a
promising cell, i.e.,Rank(c) ≤ k, it can already be included in the
kSPR result T and be ignored in subsequent processing (line 19).
Promising cells that cannot be reported directly, have their non-
pivot records collected into set NP (line 17). The records in NP
are removed from the current skyline SL in line 20, and the re-
maining part of SL is updated by unprocessed records using the
incremental BBS algorithm.

Algorithm 2 P-CTA(dataset D, focal record p, value k)
1: Initialize CellT ree root N with cover set N.C ← ∅; result set T ← ∅
2: Initialize processed record set PR ← ∅; skyline set SL ← ∅
3: Incremental-BBS(SL, D)
4: DG← initialize dominance graph with a node for each record in SL
5: Initialize S ← SL . First batch to process
6: while TRUE do
7: for each ri ∈ S do
8: Map ri to hyperplane hi

9: Dr ← ri’s ancestors in DG . Records that dominate ri
10: optInsert(N,hi, Dr)
11: if the root N is eliminated then return T
12: PR ← PR∪ S
13: Initialize union of non-pivotsNP ← ∅
14: for each leaf c in CellT ree with Rank(c) ≤ k do
15: NPc ← non-pivot records of c
16: if ∃r ∈ D − PR such that r is not dominated by any pivot

of c and r is dominated by a record inNPc then
17: NP ← NP ∪NPc

18: else
19: T ← T ∪ c; remove c from CellT ree

20: Update SL by Incremental-BBS(SL −NP , D − PR)
21: Set next batch to process S ← the unprocessed records in SL
22: Update DG with S and with their dominance relationships
23: Return T

Routine optInsert(node N , hyperplane hi, dominating records Dr):
24: if N is eliminated then
25: Return
26: Nl, Nr ← left and right child of N
27: if Rank(N) > k or both Nr and Nl are eliminated then
28: Eliminate N , eliminate its subtree (if any), and return
29: Ψ← the full halfspace set of N
30: if ∃ h−j ∈ Ψ where rj ∈ Dr then
31: N.C ← N.C ∪ h−i
32: else
33: Same as lines 14–24 in Routine Insert in Algorithm 1
34: optInsert(Nl, hi, Dr)
35: optInsert(Nr, hi, Dr)

Algorithm 3 summarizes LP-CTA. Its main part relies on Al-
gorithm 2, with the addition of the rank bound computation and
the subsequent quick pruning or reporting of cells in lines 8 and
10. The key procedure is UpdateRank that utilizes the aggregate
R-tree on D to derive the rank bounds for the cell at hand. Dur-
ing the traversal of the R-tree, we first apply fast bounds to the
encountered entries G and only if comparison to the score inter-
val of p is inconclusive, do we compute the tighter group bounds
S(GL, c), S(GU , c) in line 23. If the comparison is again inconclu-
sive, we execute procedure UpdateRank recursively on the child
entries of node G in lines 25–26. Similarly, for every encountered
record r, if the fast bounds fail to determine the relative score order
between r and p, we compute the more accurate S(r, c), S(r, c) in
line 30. Recall that each S(·, c) or S(·, c) computation (be it for a
group or individual record) requires the solution of an LP problem.

Algorithm 3 LP-CTA(dataset D, focal record p, value k)
1: Same as lines 1–16 in Algorithm 2
2: Rank(c)← 1; Rank(c)← 1
3: wL,wU ← min-vector and max-vector of cell c
4: S(p, c), S(p, c)← p’s score bound in cell c
5: for each entry G in the R-tree root with Rank(c) ≤ k do
6: UpdateRank(G, c)

7: if Rank(c) > k then
8: Remove c from CellT ree
9: else if Rank(c) ≤ k then

10: T ← T ∪ c; remove c from CellT ree
11: else
12: Same as lines 17–23 in Algorithm 2

Routine UpdateRank(R-tree entry G, cell c):
13: if G is an internal node then
14: Sfast(G, c)← wL · GL; Sfast

(G, c)← wU · GU

15: if Sfast(G, c) > S(p, c) then
16: Rank(c)← Rank(c) + G.num

17: Rank(c)← Rank(c) + G.num

18: else if S(p, c) ≤ Sfast(G, c) and S
fast

(G, c) ≤ S(p, c) then
19: Rank(c)← Rank(c) + G.num

20: else if Sfast
(G, c) < S(p, c) then

21: Return
22: else
23: S(GL, c), S(GU , c)← tight group bounds for G in cell c
24: Same as lines 15–22 by replacing the fast with the tight bounds
25: for each child entry Gi inside node G with Rank(c) ≤ k do
26: UpdateRank(Gi, c)

27: else . G is an R-tree leaf containing records
28: for each record r in G do
29: Same as lines 15–22 by using fast bounds for r
30: S(r, c), S(r, c)← tight bounds for r in cell c
31: if S(r, c) > S(p, c) then
32: Rank(c)← Rank(c) + 1

33: Rank(c)← Rank(c) + 1

34: else if S(r, c) < S(p, c) then
35: Continue
36: else
37: Rank(c)← Rank(c) + 1

