
The Impact of Solid State Drive on
Search Engine Cache Management

Jianguo Wang Eric Lo Man Lung Yiu
Department of Computing

The Hong Kong Polytechnic University
{csjgwang, ericlo, csmlyiu}@comp.polyu.edu.hk

Jiancong Tong Gang Wang Xiaoguang Liu
Nankai-Baidu Joint Lab

Nankai University
{lingfenghx, wgzwpzy, liuxguang}@gmail.com

ABSTRACT
Caching is an important optimization in search engine architec-
tures. Existing caching techniques for search engine optimization
are mostly biased towards the reduction of random accesses to disks,
because random accesses are known to be much more expensive
than sequential accesses in traditional magnetic hard disk drive
(HDD). Recently, solid state drive (SSD) has emerged as a new
kind of secondary storage medium, and some search engines like
Baidu have already used SSD to completely replace HDD in their
infrastructure. One notable property of SSD is that its random ac-
cess latency is comparable to its sequential access latency. There-
fore, the use of SSDs to replace HDDs in a search engine infrastruc-
ture may void the cache management of existing search engines. In
this paper, we carry out a series of empirical experiments to study
the impact of SSD on search engine cache management. The re-
sults give insights to practitioners and researchers on how to adapt
the infrastructure and how to redesign the caching policies for SSD-
based search engines.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Process

General Terms
Experimentation, Measurement, Performance

Keywords
Search Engine, Solid State Drive, Cache, Query Processing

1. INTRODUCTION
Caching is an important optimization in search engine architec-

tures. Over the years, many caching techniques have been devel-
oped and used in search engines [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’13, July 28–August 1, 2013, Dublin, Ireland.
Copyright 2013 ACM 978-1-4503-2034-4/13/07 ...$15.00.

 0.01

 0.1

 1

 10

HDD1 HDD2 SSD1 SSD2

la
te

nc
y

of
 a

 r
ea

d
(m

s)
 (

lo
g-

sc
al

e)

100x 130x

2.4x 2.3x

Random read
Sequential read

Figure 1: Read latency on two HDDs and two SSDs (for com-
mercial reasons, we do not disclose their brands). Each read
fetches 4KB. The OS buffer is by-passed.

The primary goal of caching is to improve query latency (reduce
the query response time). To that end, search engines commonly
dedicate portions of servers’ memory to cache certain query results
[1, 5, 7], posting lists [2, 3, 6], documents [4] and snippets [12] in
order to avoid excessive disk access and computation.

Recently, solid state drive (SSD) has emerged as a new kind of
secondary storage medium. SSD offers a number of benefits over
magnetic hard disk drive (HDD). For example, random reads in
SSD are one to two orders of magnitude faster than in HDD [13,
14, 15, 16]. In addition, SSD is much more energy efficient than
HDD (around 2.5% of HDD energy consumption [17, 18]). Now,
SSD is getting cheaper and cheaper (e.g., it dropped from $40/GB
in 2007 to $1/GB in 2012 [19]). Therefore, SSD has been em-
ployed in many industrial settings including MySpace [20], Face-
book [21], and Microsoft Azure [22]. Baidu, the largest search
engine in China, has used SSD to completely replace HDD as its
main storage since 2011 [23].

The growing trend of using SSD to replace HDD has raised an
interesting research question specific to our community: “what is
the impact of SSD on the cache management of a search engine?”
Figure 1 shows the average cost (latency) of a random read and a
sequential read on two brands of SSD and two brands of HDD. It
shows that the cost of a random read is 100 to 130 times of a se-
quential read in HDD. Due to the wide speed gap between random
read and sequential read in HDD, the benefit of a cache hit, in tra-
ditional, has been largely attributed to the saving of the expensive
random read operations. In other words, although a cache hit of a

data item could save the random read of seeking the item and the
subsequent sequential reads of the data when the item spans more
than one block, the saving of those sequential reads has been tra-
ditionally regarded as less noticeable — because the random seek
operation usually dominates the data retrieval time.

Since a random read is much more expensive than a sequential
read in HDD, most traditional caching techniques have been de-
signed to minimize random reads. The technology landscape, how-
ever, has changed if SSD is used to replace HDD. Specifically, Fig-
ure 1 shows that the cost of a random read is only about two times
of a sequential read in SSD. As such, in an SSD-based search en-
gine infrastructure, the benefit of a cache hit should now attribute
to both the saving of the random read and the saving of the subse-
quent sequential reads for data items that are larger than one block.
Furthermore, since both random reads and sequential reads are fast
on SSD while query processing in modern search engines involves
several CPU-intensive steps (e.g., query result ranking [24, 25] and
snippet generations [26, 27]), we expect that SSD would yield the
following impacts on the cache management of search engines:

1. Caching techniques should now target to minimize both ran-
dom reads and sequential reads.

2. The size of the data item and the CPU cost of the other com-
putational components (e.g., snippet generation) play a more
important role in the effectiveness of various types of caching
policies.

In this paper, we carry out a large-scale experimental study to
evaluate the impact of SSD on the effectiveness of various caching
policies, on all types of cache found in a typical search engine ar-
chitecture. We note that the traditional metric cache hit ratio for
evaluating caching effectiveness is inadequate in this study — in
the past the effectiveness of a caching policy can be measured by
the cache hit ratio because it is a reliable reflection of the actual
query latency: a cache hit can save the retrieval of a data item
from disk, and the latency improvement is roughly the same for a
large data item and a small data item because both require one ran-
dom read, which dominates the time of retrieving the whole data
item from disk. With SSD replacing HDD, the cache hit ratio is
no longer a reliable reflection of the actual query latency because
a larger data item being found in the cache yields a higher query
latency improvement over a smaller data item (a cache hit for a
larger item can save a number of time-significant sequential reads).
In our study, therefore, one caching policy may be more effective
than another even though they achieve the same cache hit ratio if
one generally caches some larger data items. To complement the
inadequacy of cache hit ratio as the metric, our study is based on
real replays of a million of queries on an SSD-enabled search en-
gine architecture and our findings are reported based on actual
query latency.

To the best of our knowledge, this is the first study to evaluate
the impact of SSD on search engine cache management. The ex-
perimental results here can bring the message “it is time to rethink
about your caching management” to practitioners who have used
or are planning to use SSD to replace HDD in their infrastructures.
Furthermore, the results can give the research community insights
into the redesign of caching policies for SSD-based search engine
infrastructures.

The rest of this paper is organized as follows. Section 2 provides
an overview of contemporary search engine architecture and the
various types of cache involved. Section 3 presents the set of eval-
uation experiments carried out and the evaluation results. Section 4
discusses some related studies of this paper. Section 5 summarizes
the main findings of this study.

2. BACKGROUND
In this section, we first give an overview of the architecture of the

state-of-the-art Web search engines and the cache types involved
(Section 2.1). Then we give a review of the various types of caching
policies used in Web search engine cache management (Section
2.2).

2.1 Search Engine Architecture
The architecture of a typical large-scale search engine [28, 29,

30] is shown in Figure 2. A search engine is typically composed
by three sets of servers: Web Servers (WS), Index Servers (IS), and
Document Servers (DS).

Web Servers The web servers are the front-end for interacting with
end users and coordinating the whole process of query evaluation.
Upon receiving a user’s query q with n terms t1, t2, ..., tn [STEP
1©], the web server that is in charge of q checks whether q is in

its in-memory Query Result Cache (QRC) [1, 11, 31, 3, 5, 7, 9,
10]. The QRC maintains query results of some past queries. If
the results of q are found in the QRC (i.e., a cache hit), the server
returns the cached results of q to the user directly. Generally, query
results are roughly the same size and a query result consists of (i)
the title, (ii) the URL, and (iii) the snippet [26, 27] (i.e., an extract
of the document with terms in q being highlighted) of the top-k
ranked results related to q (where k is a system parameter, e.g., 10
[31, 32, 12, 10]). If the result of q is not found in the QRC (i.e., a
cache miss), the query is forwarded to an index server [STEP 2©].

Index Servers The index servers are responsible for the compu-
tation of the top-k ranked result related to a query q. An index
server works by: [STEP IS1] retrieving the corresponding posting
list PLi = [d1, d2, ...] of each term ti in q, [STEP IS2] intersecting
all the retrieved posting lists PL1, PL2, ..., PLn to obtain the list
of document identifiers (ids) that contain all terms in q, and [STEP
IS3] ranking the documents for q according to a ranking model.
After that, the index server sends the ordered list of document ids
d1, d2, ..., dk of the top-k most relevant documents of query q back
to the web server [STEP 3©]. In an index server, an in-memory Post-
ing List Cache (PLC) [11, 3, 33] is employed to cache the posting
lists of some terms. Upon receiving a query q(t1, t2, ..., tn) from a
web server, an index server skips STEP IS1 if a posting list is found
in the PLC.

Document Servers Upon receiving the ordered list of document
ids d1, d2, ..., dk from the index server, the web server forwards
the list and the query q to a document server for further processing
[STEP 4©]. The document server is responsible for the generating
the final result. The final result is a Web page that includes the
title, URL, and a snippet for each of the top-k documents. The
snippet si of a document di is query-specific — it is the portion of
a document which can best match the terms in q. The generation
process is as follows: [STEP DS1] First, the original documents that
the list of document ids referred to are retrieved. [STEP DS2] Then,
the snippet of each document for query q is generated. There are
two levels of caches in the document servers: Snippet Cache (SC)
[12] and Document Cache (DC) [4]. The in-memory Snippet Cache
(SC) stores some snippets that have been previously generated for
some query-document pairs. If a particular query-document pair
is found in the SC, STEP DS1 and STEP DS2 for that pair can be
skipped. The in-memory Document Cache (DC) stores some docu-
ments that have been previously retrieved. If a particular requested
document is in the DC, STEP DS1 can be skipped. As the output,
the document server returns the final result (in the form of a Web
page with a ranked list of snippets of the k most relevant docu-
ments of query q) to the web server [STEP 5©] and the web server

Web Servers

② ④

⑤

① ⑥

③

query: q (t1, t2, ..., tn) results: title, url, snippet

if cache miss, then forward q

Query Result Cache (RAM)

Index Servers Document Servers

Posting List Cache (RAM)

IS1: fetch posting list

miss

t1 t2 t3 t4 tn

t3 t4 tn

hit

t1 (PL1)

PL3 , PL4, ..., PLn

t2(PL2)

IS2: list intersection

d1, d2, ... ← PL1 ∩ PL2 ∩ PL3 ∩ PL4 ∩ ... ∩ PLn

IS3: d1, d2, ..., dk ← ranking (k, d1, d2, ...)

Snippet Cache

Document Cache

DS1: fetch document

hit d2

(RAM)

(RAM)

q,d1 q,d2 q,d3 q,dk

q, d1, ..., dk

d2 d3 dk

d3 dk

miss

miss

d3,...,dk

DS2: snippet generation s2, ..., sk

form results: r1, r2, ..., rk

hit

...

...
s1 (q,d1)

...

...

...

Figure 2: Web search engine architecture

may cache the result in the QRC and then pass the result back to
the end user [STEP 6©].

2.2 Caching Policy
Caching is a widely-used optimization technique to improve sys-

tem performance [1, 34, 35, 36]. Web search engines use caches in
different types of servers to reduce the query response time [11].
There are two types of caching policies being used in search en-
gines: (1) Dynamic Caching and (2) Static Caching. Dynamic
caching is the classic. If the cache memory is full, dynamic caching
follows a replacement policy (a.k.a. eviction policy) to evict some
items in order to admit the new items [37, 38, 39]. Static caching is
less common but does exist in search engines [1, 5, 3, 6, 8, 9, 10].
Initially when the cache is empty, a static cache follows an admis-
sion policy to select data items to fill the cache. Once the cache has
been filled, it does not admit any new items at run-time. The same
cache content continuously serves the requests and its entire con-
tent is refreshed in a periodic manner [1]. Static caching can avoid
the situations of having long-lasting popular items being evicted by
the admission of many momentarily popular items as in dynamic
caching.

2.2.1 Cache in Web Servers
Query Result Cache (QRC) is the cache used in the web servers.

It caches the query results such that the whole stack of query pro-
cessing can be entirely skipped if the result of query q is found in
the QRC. Both dynamic and static query result caches exist in the
literature.

Dynamic Query Result Cache Markatos [1] was the first to dis-
cuss about the use of dynamic query result cache (D-QRC) in search
engines. By analyzing the query logs of Excite search engine,
the authors observed a significant temporal locality in the queries.
Therefore, they proposed the use of query result cache. Two classic
replacement policies were used there: least-recently-used (LRU)
and the least-frequently-used (LFU). In this paper, we refer them
as D-QRC-LRU and D-QRC-LFU, respectively.

Recently, Gan and Suel [7] have developed a feature-based re-
placement policy for D-QRC. In this paper, we refer this policy as
D-QRC-FB. That policy applies machine learning techniques of-
fline to learn the values of a set of query features from the query
log. The cache replacement is then tuned using those values.

Static Query Result Cache Markatos [1] also discussed about
the potential use of static caching in search engines. In that work,
a static query result cache with an admission policy that analyzes
the query logs and fills the cache with the most frequently posed
queries was proposed. In this paper, we refer this policy as S-QRC-
Freq.

Ozcan et al. [5] reported that some query results cached by
S-QRC-Freq policy are not useful because there is a significant
number of frequent queries quickly lose their popularities but still
reside in the static cache before the next periodic cache refresh.
Consequently, they proposed another admission policy that selects
queries with high frequency stability. Queries with high frequency
stability are those frequent queries and the logs show that they re-
main frequent over a time period. In this paper, we refer to this
as S-QRC-FreqStab. Later on, Ismail et al. [8, 9, 10] developed a
cost-aware replacement policy for S-QRC. In addition to traditional
factors such as the popularity of terms, it also takes into account the
latency of a query, as different queries may have different process-
ing time. Nonetheless, its policy has not considered the cost of
other expensive steps (e.g., snippet generation) in the whole query
processing stack. In this paper, we refer that as S-QRC-CA.

Remark: According to [7], D-QRC-FB has the highest effective-
ness among all D-QRC policies. Nonetheless, it requires a lot of
empirical tuning on the various parameters used by the machine
learning techniques. According to [8, 9, 10], S-QRC-CA is the
most stable and effective policy in static query result cache. D-
QRC and S-QRC can co-exist and share the main memory of a
web server. In [31], the empirically suggested ratios for D-QRC to
S-QRC are 6:4, 2:8, and 7:3 for Tiscali, AltaVista, and Excite data,
respectively.

2.2.2 Cache in Index Servers
Posting List Cache (PLC) is the cache used in the index servers.

It caches some posting lists in the memory so that the disk read of
a posting list PL of a term t in query q can possibly be skipped.
Both dynamic and static posting list caches exist in the literature.

Dynamic Posting List Cache Saraiva et al. [11] were the first
to discuss the effectiveness of dynamic posting list caching in in-
dex servers. In that work, the simple LRU policy was used. In
this paper, we refer this as D-PLC-LRU. In [3, 6], the authors also
evaluated another common used policy, LFU, in dynamic PLC, in
which we refer this as D-PLC-LFU in this paper. In addition, the
authors observed that a popular term tends to have a longer post-
ing list. Therefore, to balance the tradeoff between term popularity
and the effective use of the cache (to cache more items), the au-
thors developed a replacement policy that favors terms with a high
frequency to posting list length ratio. In this paper, we refer this
policy as D-PLC-FreqSize.

Static Posting List Cache Static posting list caching was first
studied in [2] and the admission policy was based on selecting post-
ing lists with high access frequency. In this paper, we refer to this as
S-PLC-Freq. In [3, 6], the static cache version of D-PLC-FreqSize
was also discussed. We refer that as S-PLC-FreqSize here.

Remark: According to [3, 6], S-PLC-FreqSize is the winner over
all static and dynamic posting list caching policies.

2.2.3 Cache in Document Servers
Two types of caches could be used in the document servers: Doc-

ument Cache (DC) and Snippet Cache (SC). These caches store
some documents and snippets in the memory of the document servers.
So far, only dynamic document cache and dynamic snippet cache
have been discussed and there is no corresponding static caching
technique yet.

Document Cache In [4], the authors observed that the time of
reading a document from disk dominates the snippet generation
process. So, they proposed to cache some documents in the docu-
ment servers’s memory so as to reduce the snippet generation time.
In that work, the simple LRU replacement policy was used and here
we refer it as DC-LRU. According to [4], document caching is able
to significantly reduce the time for generating snippets.

Snippet Cache In [12], the authors pointed out that the snippet
generation process is very expensive in terms of both CPU compu-
tation and disk access in the document servers. Therefore, the au-
thors proposed to cache some generated snippets in the document
server’s main memory. In this paper, we refer this as SC-LRU be-
cause it uses the LRU policy as replacement policy.

3. THE IMPACT OF SSD
In this study, we use the typical search engine architecture (Fig-

ure 2) to evaluate the impact of SSD on the cache management of
the index servers (Section 3.1), document servers (Section 3.2), and
the web servers (Section 3.3). We focus on a pure SSD-based ar-
chitecture like Baidu [23]. Many studies predict that SSD will soon
completely replace HDD in all layers [40, 41, 42]. The study of us-
ing SSD as a layer between main memory and HDD in a search
engine architecture before SSD completely replaces HDD has been
studied elsewhere in [43].

Experimental Setting We deploy a Lucene1 based search engine
implementation on a sandbox infrastructure consisting of one in-

1http://lucene.apache.org

dex server, one document server, and one web server. All servers
are Intel commodity machines (2.5GHz CPU, 8GB RAM), with
Windows 7 installed. We have carried out our experiments on two
SSDs and two HDDs (evaluated in Figure 1). The experimental
results are largely similar and thus we only present the results of
using SSD1 and HDD1. In the experiments, the OS buffer is dis-
abled.

We use a real collection of 5.3 million Web pages2 crawled in
the middle of 2008, by Sogou (sogou.com), a famous commer-
cial search engine in China. The entire data set takes over 5TB. To
accommodate our experimental setup, we draw a random sample
of 100GB data. It is a reasonable setting because large-scale Web
search engines shard their indexes and data across clusters of ma-
chines [23]. As a reference, the sampled data sets in some recent
works are 15GB [6], 37GB in [10], and 2.78 million Web pages in
[3]. Table 1 shows the characteristics of our sampled data.

Number of documents 11,970,265
Average document size 8KB
Total data size 100GB
Inverted index size 10GB

Table 1: Statistics of Web data

As mentioned in the introduction, the cache hit ratio alone is in-
adequate to evaluate the effectiveness of caching techniques. So,
the experiments are done by a replay of real queries found in So-
gou search engine in June 20083, and the average end-to-end query
latency is reported in tandem with cache hit ratio. The log contains
51.5 million queries. To ensure the replay can be done in a manage-
able time, we draw a random sample of 1 million queries for our
experiments (as a reference, 0.7 million queries were used in [10]).
The query frequency and term frequency of our sampled query set
follow power-law distribution with skew-factor α = 0.85 and 1.48,
respectively (see Figure 3). As a reference, the query frequencies
in some related work like [11], [7], and [6] follow power-law dis-
tribution with α equals 0.59, 0.82, and 0.83, respectively; and the
term frequencies in some recent work like [6] follow power-law
distribution with α = 1.06.

(a) Query frequency distribution (b) Term frequency distribution

Figure 3: Frequency distribution of our query set

In addition, our sampled query set also exhibits the property that
the temporal locality of terms is higher than that of queries [11, 3, 6]
by observing that the skew-factor α of the query frequency is lower
than that of the term frequency. Table 2 shows the characteristics
of our query set.

We divide the real query log into two parts: 50% of queries are
used for warming the cache and the other 50% are for the replay,
following the usual settings [1, 8, 10, 32, 9].
2http://www.sogou.com/labs/dl/t-e.html
3http://www.sogou.com/labs/dl/q-e.html

Number of queries 1,000,000
Number of distinct queries 200,444
Number of terms 1,940,671
Number of distinct terms 82,503
Total size of the posting lists of the
distinct terms 3.89GB

Power-law skew-factor α for query frequency 0.85
Power-law skew-factor α for term frequency 1.48

Table 2: Statistics of query log data

In the experiments, we follow some standard settings found in
recent work. Specifically, we follow [31, 32, 12, 10] to retrieve
the top-10 most relevant documents. We follow [11] to configure
the snippet generator to generate snippets with at most 250 char-
acters. Posting list compression is enabled. To improve the exper-
imental repeatability, we use the standard variable-byte compres-
sion method [44] in the experiments. The page (block) size in the
system is 4KB [45, 46, 47]. When evaluating the caching policy on
one type of cache, we disable all other caches in the sandbox. For
example, when evaluating the query result cache on the web server,
the posting list cache, snippet cache, and document cache are all
disabled.

3.1 The Impact of SSD on Index Servers
We first evaluate the impact of SSD on the posting list cache

management in an index server. As mentioned, on SSD, a long
posting list being found in the cache should have a larger query
latency improvement than a short posting list being found because
(i) a cache hit can save more sequential read accesses if the list is a
long one and (ii) the cost of a sequential read is now comparable to
the cost of a random read (see Figure 1).

To verify our claim, Figure 4 shows the access latency of fetching
from disk the posting lists of terms found in our query log. We see
that the latency of reading a list from HDD increases mildly with
the list length because the random seek operation dominates the
access time. In contrast, we see the latency of reading a list from
SSD increases with the list length at a faster rate.

(a) on HDD (b) on SSD

Figure 4: Read access latency of posting lists of varying lengths

Based on that observation, we believe that the effectiveness of
some existing posting list caching policies would change when they
are applied to an SSD-based search engine infrastructure. For ex-
ample, according to [3, 6], S-PLC-FreqSize has the best caching
effectiveness on HDD-based search engines because it favors pop-
ular terms with short posting lists (i.e., a high frequency to length
ratio) for the purpose of caching more popular terms. However, on
SSD, a short list being in the cache has a smaller query latency
improvement than a long list. As such, we believe that design
principle is void in an SSD-based search engine infrastructure.

To verify our claim, we carried out experiments to re-evaluate

the static and dynamic posting list caching policies on our SSD
sandbox. In the evaluation, we focus on the effectiveness of indi-
vidual caching policy type. The empirical evaluation of the optimal
ratio between static cache and dynamic cache on SSD-based search
engine architecture is beyond the scope of this paper.

 30

 40

 50

 60

 70

 80

 90

 100

512 1024 2048 4096

hi
t r

at
io

 (
%

)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

(a) Hit ratio

 60

 65

 70

 75

 80

 85

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(m

s)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

(b) Query latency on SSD

 230

 235

 240

 245

 250

 255

 260

 265

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(m

s)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

(c) Query latency on HDD

Figure 5: [Index Server] Effectiveness of static posting list
caching policies

Reevaluation of static posting list caching policy on SSD We
begin with presenting the evaluation results of the two existing
static query result caching policies, (1) S-PLC-Freq and (2) S-PLC-
FreqSize, mentioned in Section 2.2.2. Figure 5 shows the cache
hit ratio and the average query latency of S-PLC-Freq and S-PLC-
FreqSize under different cache memory sizes.

Echoing the result in [3, 6], Figure 5(a) shows that S-PLC-FreqSize,
which tends to cache popular terms with short posting lists, has a
higher cache hit ratio than S-PLC-Freq. The two policies have the
same 98% cache hit ratio when the cache size is 4GB because the
cache is large enough to accommodate all the posting lists of the

query terms (3.89GB; Table 2) in the cache warming phase. The
2% cache miss is attributed to the difference between the terms
found in the training queries and the terms found in the replay
queries.

Although having a higher cache hit ratio, Figure 5(b) shows that
the average query latency of S-PLC-FreqSize is actually longer
than S-PLC-Freq in an SSD-based search engine architecture. As
the caching policy S-PLC-FreqSize tends to cache terms with short
posting lists, the benefit brought by the higher cache hit ratio is wa-
tered down by the fewer sequential read savings caused by short
posting lists. This explains why S-PLC-FreqSize becomes poor in
terms of query latency. Apart from the above, the experimental re-
sults above are real examples that illustrate cache hit ratio is not a
reliable metric for caching management in SSD-based search en-
gine architectures.

Figure 5(c) shows the average query latency on HDD. We see
a surprising result: even on HDD cache hit ratio is not always re-
liable! Specifically, we see that S-PLC-FreqSize’s average query
latency is slightly worse than S-PLC-Freq at 512MB cache mem-
ory even though the former has a much higher cache hit ratio than
the latter. To explain, Figure 6 shows the average size of the post-
ing lists participated in all cache hits (i.e., whenever there is a hit in
the PLC, we record its size and report the average).

 200

 250

 300

 350

 400

 450

 500

 512 1024 2048 4096

av
er

ag
e

li
st

 s
iz

e
pe

r
hi

t (
in

 b
lo

ck
s)

cache size (MB)

S-PLC-Freq
S-PLC-FreqSize

Figure 6: Average list size (in blocks) of all hits in static posting
list cache

We see that when the cache memory is small (512MB), S-PLC-
Freq keeps the longest (most frequent) posting lists in the cache.
In contrast, S-PLC-FreqSize consistently keeps short lists in the
cache. At 512MB cache memory, a cache hit under S-PLC-Freq
policy can save 470 − 250 = 220 more sequential reads than S-
PLC-FreqSize. Even though sequential reads are cheap on HDD, a
total of 220 sequential reads are actually as expensive as two ran-
dom seeks (Figure 1). In other words, although Figure 5(a) shows
that the cache hit ratio of S-PLC-Freq is 20% lower than S-PLC-
FreqSize at 512MB cache, that is outweighed by the two extra ran-
dom seeks saving between the two policies. That explains why S-
PLC-Freq slightly outperforms S-PLC-FreqSize at 512MB cache.
Of course, when the cache memory increases, S-PLC-Freq starts
to admit more short lists into the cache memory, which reduces its
benefit per cache hit, and that causes S-PLC-FreqSize to outper-
form S-PLC-Freq again through the better cache hit ratio.

Reevaluation of dynamic posting list caching policy on SSD We
next present the evaluation results of the three existing dynamic
query result caching policies, (1) D-PLC-LRU, (2) D-PLC-LFU,
and (3) D-PLC-FreqSize, mentioned in Section 2.2.2. Figure 7
shows the cache hit ratio and the average query latency of the three
policies under different cache memory sizes.

 30

 40

 50

 60

 70

 80

 90

 100

512 1024 2048 4096

hi
t r

at
io

 (
%

)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

(a) Hit ratio

 60

 65

 70

 75

 80

 85

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(m

s)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

(b) Query latency on SSD

 200

 210

 220

 230

 240

 250

 260

512 1024 2048 4096

av
er

ag
e

qu
er

y
la

te
nc

y
(m

s)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

(c) Query latency on HDD

Figure 7: [Index Server] Effectiveness of dynamic posting list
cache policies

First, we also see that while D-PLC-FreqSize has a better cache
hit ratio than D-PLC-LFU (Figure 7(a)), its query latency is actu-
ally longer than D-PLC-LFU (Figure 7(b)) in SSD-based architec-
ture. This further supports that the claim of favoring terms with
high frequency over length ratio no longer sustains in SSD-based
search engine architecture. Also, this gives yet another example of
the fact that cache hit ratio is not a reliable measure in SSD caching
management.

Second, comparing D-PLC-LRU and D-PLC-LFU, we see that
while D-PLC-LFU has a poorer cache hit ratio than D-PLC-LRU,
their query latencies are quite close in SSD-based architecture. As
is shown in [3, 6], the posting list length generally increases with
the term frequency, therefore D-PLC-LFU, which favors terms with
high frequency, also favors terms with long posting lists. As men-
tioned, on SSD, the benefit of finding a term with a longer list in
cache is higher than that of finding a term with shorter list. This ex-

plains why D-PLC-LFU has a query latency close to D-PLC-LRU,
which has a higher cache hit ratio.

Figure 7(c) shows the average query latency on HDD. First, we
once again see that cache hit ratio is not reliable even on HDD-
based architecture. For example, while D-PLC-FreqSize has a higher
cache hit ratio than D-PLC-LFU (except when the cache is large
enough to hold all posting lists), their query latencies are quite close
to each other in an HDD-based architecture. That is due to the same
reason that we explained in static caching — Figure 8 shows that
D-PLC-LFU can save hundreds of sequential reads more than D-
PLC-FreqSize per cache hit when the cache memory is less than
1GB. That outweighs the cache hit ratio difference between the
two. In contrast, while D-PLC-LRU has a better cache hit ratio
than D-PLC-LFU, they follow the tradition that the former outper-
forms the latter in latency because Figure 8 shows the size differ-
ence of the posting lists that participated in the cache hits (i.e., the
benefit gap in terms of query latency) between D-PLC-LRU and
D-PLC-LFU is not as significant as the time of one random seek
operation. Therefore, D-PLC-LRU yields a shorter query latency
than D-PLC-LFU based on its higher cache hit ratio.

 200

 250

 300

 350

 400

 450

 512 1024 2048 4096

av
er

ag
e

li
st

 s
iz

e
pe

r
hi

t (
in

 b
lo

ck
s)

cache size (MB)

D-PLC-LFU
D-PLC-FreqSize

D-PLC-LRU

Figure 8: Average list size (in blocks) of all hits in dynamic
posting list cache

3.2 The Impact of SSD on Document Servers
We next evaluate the impact of SSD on the cache management

of document servers. A document server is responsible for stor-
ing part of the whole document collection and generating the final
query result. It receives a query q and an ordered list of docu-
ment ids {d1, d2, . . . , dk} of the k most relevant documents of q
from a web server, retrieves the corresponding documents from the
disk, and generates the query-specific snippet for each document
and consolidates them as a result page. In the process, k query-
specific snippets have to be generated. If a query-specific snippet
〈q, di〉 is found in the snippet cache, the retrieval of di from the
disk and the generation of that snippet are skipped. If a query-
specific snippet is not found in the snippet cache, but the document
di is in found the document cache, the retrieval of di from the disk
is skipped. In our Web data (Table 1), a document is about 8KB
on average. With a 4KB page size, retrieving a document from
the disk thus requires one random seek (read) and a few more se-
quential reads. In traditional search engine architecture using HDD
in the document servers, the latency from receiving the query and
document list from the web server to the return of the query result
is dominated by the k random read operations that seek the k doc-
uments from the HDD (see Figure 9(a)). These motivated the use
of document cache to improve the latency. As the random reads
are much faster on SSD, we now believe that the time bottleneck
in the document servers will shift from document retrieval (disk

Document Retrieval (I/O Time)

87.3%

Snippet Generation (CPU Time)

12.7%

Document Retrieval (I/O Time)

33.1%

Snippet Generation (CPU Time)

66.9%

(a) on HDD (b) on SSD

Figure 9: Document retrieval time vs. snippet generation in a
document server

access) to snippet generation (CPU computation). More specif-
ically, the snippet generation process that finds every occurrence
of q in di and identifies the best text synopsis [26, 27] according
to a specific ranking function [27] is indeed CPU-intensive. Fig-
ure 9(b) shows that the CPU time spent on snippet generation be-
comes two times the document retrieval time if SSD is used in a
document server. Therefore, contrary to the significant time reduc-
tion brought by document cache in traditional HDD-based search
engine architectures [26], we believe the importance of document
cache in SSD-based search engine architectures is largely dimin-
ished. In contrast, we believe the snippet cache is far more power-
ful in an SSD-based search engine architecture for two reasons: (1)
a cache hit in a snippet cache can reduce both the time of snippet
generation and document retrieval; and (2) the memory footprint of
a snippet (e.g., 250 characters) is much smaller than the memory
footprint of a document (e.g., an average 8KB in our Web data).
That implies a double-benefit of the use of snippet cache over doc-
ument cache: the same amount of cache memory in a web server
can cache many more snippets than documents, and the benefit of
a snippet cache hit is much more significant than the benefit of a
document cache hit.

To verify our claims, we carried out experiments to vary the
memory ratio between the snippet cache and the document cache
in our SSD-based sandbox infrastructure. The caching policies
in document cache and snippet cache are DC-LRU [4] and SC-
LRU [12], respectively. Figure 10 shows the query latency and the
hit ratios of the snippet cache and document cache when varying
the memory allocation ratio between snippet cache and document
cache of 2GB cache memory. Figure 10(a) shows the cache hit
ratio of snippet cache increases when we allocate more memory
to the snippet cache, but when we continue to allocate more than
2GB× 40% = 800MB of memory to the snippet cache, the snippet
cache hit ratio stays flat because the memory footprint of a snip-
pet is so small that all snippets generated in the warming phase can
be resided in the cache. When we go on allocating more memory
to the snippet cache even after all snippets could be cached in the
memory, it only gives less memory to the document cache. There-
fore, the document cache hit ratio in Figure 10(a) continues to drop
even when the snippet cache hit ratio has plateaued out. Figure
10(b) shows that when we allocate more memory to the snippet
cache (i.e., the document cache has less memory allocated), the
query latency drops monotonically before all snippets are in the
cache. Furthermore, after all snippets are in the cache and we allo-
cate less memory to the document cache, the query latency almost
stays flat. The results indicate that snippet caching is far more ef-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0:100 20:80 40:60 60:40 80:20 100:0

hi
t r

at
io

 (
%

)

snippet cache percentage : document cache percentage

Snippet cache
Document cache

(a) Hit ratio

 86

 88

 90

 92

 94

 96

 98

 100

0:100 20:80 40:60 60:40 80:20 100:0

av
er

ag
e

qu
er

y
la

te
nc

y
(m

s)

snippet cache percentage : document cache percentage

(b) Query latency

Figure 10: [Document Server] Effectiveness of snippet cache
and document cache on SSD

fective than document caching. The observations above persist for
cache memory of size 512MB, 1GB, and 4GB (figures are omitted
for space reasons).

3.3 The Impact of SSD on Web Servers
We believe the use of SSD has no impact on the cache manage-

ment in the web servers because the storage media does not play a
major role in web servers (see Figure 2). Therefore, we believe that
the use of SSD has no impact on the effectiveness of the caching
policies either. Figure 11 shows the cache hit ratio and query la-
tency of four selected query result caching policies: (1) D-QRC-
LRU, (2) D-QRC-LFU, and (3) S-QRC-Freq, (4) S-QRC-CA. We
see that the tradition holds here: when one policy has a higher cache
hit ratio than the others, its query latency is also shorter than the
others.4

4. RELATED STUDIES
SSD is expected to gradually replace HDD as the primary per-

manent storage media in both consumer computing and enterprise
computing [41, 42, 14, 47, 40] because of its outstanding perfor-
mance, small energy footprint, and increasing capacity. This has
led to a number of studies that aim to better understand the impacts
of SSD on different computer systems.

4In Figure 11(a), the cache hit ratio does not further increase with more
than 1024MB of cache memory simply because all query results generated
in the warming phase can reside in the cache. Although we claim that SSD
has no impact on the cache management in the web servers, Figure 11(b)
and Figure 11(c) still show differences in query latency — that is merely
due to the other steps (e.g., the posting list retrieval step) in the index server
and document server are also sped up by the use of SSD in this experiment.

 40

 50

 60

 70

 80

 90

256 512 1024 2048

hi
t r

at
io

 (
%

)

cache size (MB)

S-QRC-Freq
S-QRC-CA

D-QRC-LRU
D-QRC-LFU

(a) Hit ratio

 20

 25

 30

 35

 40

 45

 50

 55

 60

256 512 1024 2048

av
er

ag
e

qu
er

y
la

te
nc

y
(m

s)

cache size (MB)

S-QRC-Freq
S-QRC-CA

D-QRC-LRU
D-QRC-LFU

(b) Query latency (using SSD in Web Server)

 20

 40

 60

 80

 100

 120

 140

 160

 180

256 512 1024 2048

av
er

ag
e

qu
er

y
la

te
nc

y
(m

s)

cache size (MB)

S-QRC-Freq
S-QRC-CA

D-QRC-LRU
D-QRC-LFU

(c) Query latency (using HDD in Web Server)

Figure 11: [Web Server] Effectiveness of query result caching
policies on SSD and HDD

The discussion of the impacts of SSD on computer systems had
started as early as in 1995 [48], in which an SSD-aware file system
was proposed. Later on, more SSD-aware file systems have been
designed, e.g., JFFS [49], YAFFS [50]. After that, the discussion
has extended to other components in computer systems, e.g., virtual
machine [51, 52], buffer manager [53, 54], I/O scheduler [55], and
RAID [56, 57].

The discussion of the impacts of SSD on database systems, our
sister field, had started as early as in 2007 [58]. Since then, SSD has
become an active topic in database research. The discussions cover
the impacts of SSD on database architecture [58, 14, 59], query
processing [47, 60], index structures [61, 62, 63] and algorithms
[45], data placement and migration [64, 65], transaction manage-
ment [14, 66, 67] and buffer management [68, 69]. Most concern
about the asymmetric performance between slow random write and
fast sequential write on SSD [70, 61, 62, 63, 58, 14, 59, 45, 64, 67],
some concern about the asymmetric fast read and slow write [68,

14, 69, 45, 66], and some concern about the comparable perfor-
mance between fast random reads and fast sequential reads [47, 60,
45] like what we do in this paper. The recent trend is to exploit
the energy efficiency of SSD [71, 72] and its parallelism [73, 74]
to fully leverage the power of SSD in large-scale data processing
systems.

Baidu first announced their SSD-based search engine infrastruc-
ture in 2010 [23], but they did not investigate the impact of SSD on
their cache management. The issue of allocating indexes on SSD
was recently studied in 2011 [75]. Last year, the issue of main-
taining inverted index resided on SSD was also discussed [76]. In
[43], the use of SSD as a layer between the RAM and HDD was
discussed. Our work focuses on the possibly the next generation
of search engine architecture in which SSD completely replaces
HDD.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present the results of a large-scale experimental

study that evaluates the impact of SSD on the effectiveness of vari-
ous caching policies, on all types of cache found in a typical search
engine architecture. This study contributes the following messages
to our community:

1. Traditional cache hit ratio is no longer a reliable measure of
the effectiveness of caching policies and we shall use query
latency as the major evaluation metric in SSD-based search
engine cache management.

2. The previous known best caching policy in index servers,
S-PLC-FreqSize [3, 6], has the worst effectiveness in terms
of query latency in our SSD-based search engine evaluation
platform. Instead, all the other policies are better than S-
PLC-FreqSize in terms of query latency but no clear winner
is found.

3. While previous work claims that document caching is very
effective and the technique is able to significantly reduce
the time of the snippet generation process in the document
servers [4], we show that snippet caching is even more ef-
fective than document caching in SSD-based search engines.
Therefore, snippet caching should have a higher priority of
using the cache memory of the document servers in an SSD-
based search engine deployment.

4. While SSD can improve the disk access latency of all servers
in Web search engines, it has no significant impact on the
cache management in web servers. Thus, during the tran-
sition from an HDD-based architecture to an SSD-based ar-
chitecture, there is no need to revise the corresponding query
result caching policies in the web servers.

As future work, we will next focus on the new bottleneck of
query processing in SSD-based web search engine architecture and
consider the potential of other cache types (e.g., intersection cache
[77]) in the study.

6. ACKNOWLEDGMENTS
This work is partially supported by the Research Grants Council

of Hong Kong (GRF PolyU 525009, 521012, 5302/12E), NSFC of
China (60903028, 61070014), Key Projects in the Tianjin Science
& Technology Pillar Program (11ZCKFGX01100).

7. REFERENCES
[1] Evangelos P. Markatos. On caching search engine query results.

Computer Communications, 24(2):137–143, 2001.

[2] Ricardo Baeza-Yates and Felipe Saint-Jean. A three level search
engine index based in query log distribution. In SPIRE, pages 56–65,
2003.

[3] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa
Murdock, Vassilis Plachouras, and Fabrizio Silvestri. The impact of
caching on search engines. In SIGIR, pages 183–190, 2007.

[4] Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E.
Williams. Fast generation of result snippets in web search. In SIGIR,
pages 127–134, 2007.

[5] Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. Static
query result caching revisited. In WWW, pages 1169–1170, 2008.

[6] Ricardo Baeza-Yates, Aristides Gionis, Flavio P. Junqueira, Vanessa
Murdock, Vassilis Plachouras, and Fabrizio Silvestri. Design
trade-offs for search engine caching. ACM Trans. Web, 2:1–28, 2008.

[7] Qingqing Gan and Torsten Suel. Improved techniques for result
caching in web search engines. In WWW, pages 431–440, 2009.

[8] Ismail Sengor Altingovde, Rifat Ozcan, and Özgür Ulusoy. A
cost-aware strategy for query result caching in web search engines. In
ECIR, pages 628–636, 2009.

[9] Rifat Ozcan, I. Sengor Altingovde, B. Barla Cambazoglu, Flavio P.
Junqueira, and Özgür Ulusoy. A five-level static cache architecture
for web search engines. IPM, 48(5):828–840, 2011.

[10] Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy.
Cost-aware strategies for query result caching in web search engines.
ACM Trans. Web, 5:1–25, 2011.

[11] Paricia Correia Saraiva, Edleno Silva de Moura, Novio Ziviani,
Wagner Meira, Rodrigo Fonseca, and Berthier Riberio-Neto.
Rank-preserving two-level caching for scalable search engines. In
SIGIR, pages 51–58, 2001.

[12] Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele
Perego, and Fabrizio Silvestri. Caching query-biased snippets for
efficient retrieval. In EDBT, pages 93–104, 2011.

[13] Goetz Graefe. The five-minute rule 20 years later (and how flash
memory changes the rules). CACM, 52:48–59, 2009.

[14] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and
Sang-Woo Kim. A case for flash memory SSD in enterprise database
applications. In SIGMOD, pages 1075–1086, 2008.

[15] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding
intrinsic characteristics and system implications of flash memory
based solid state drives. In SIGMETRICS, pages 181–192, 2009.

[16] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh
Elnikety, and Antony Rowstron. Migrating server storage to SSDs:
analysis of tradeoffs. In EuroSys, pages 145–158, 2009.

[17] Euiseong Seo, Seon Yeong Park, and Bhuvan Urgaonkar. Empirical
analysis on energy efficiency of flash-based SSDs. In HotPower,
2008.

[18] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking
database algorithms for phase change memory. In CIDR, pages
21–31, 2011.

[19] Flexstar SSD test market analysis.
http://info.flexstar.com/Portals/161365/docs/
SSD_Testing_Market_Analysis.pdf.

[20] MySpace uses fusion powered I/O to drive greener and better data
centers. http://www.fusionio.com/case-studies/
myspace-case-study.pdf.

[21] Releasing flashcache. http://www.facebook.com/note.
php?note_id=388112370932, 2010.

[22] Microsoft azure to use OCZ SSDs. http://www.
storagelook.com/microsoft-azure-ocz-ssds/, 2012.

[23] Ruyue Ma. Baidu distributed database. In SACC, 2010.
[24] Howard Turtle and James Flood. Query evaluation: strategies and

optimizations. IPM, 31(6):831–850, 1995.
[25] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer,

and Jason Zien. Efficient query evaluation using a two-level retrieval
process. In CIKM, pages 426–434, 2003.

[26] Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E.
Williams. Fast generation of result snippets in web search. In SIGIR,
pages 127–134, 2007.

[27] Anastasios Tombros and Mark Sanderson. Advantages of query
biased summaries in information retrieval. In SIGIR, pages 2–10,
1998.

[28] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a
planet: The google cluster architecture. IEEE Micro, 23(2):22–28,
2003.

[29] Jeffrey Dean. Challenges in building large-scale information retrieval
systems: invited talk. In WSDM, 2009.

[30] Ricardo Baeza-yates, Carlos Castillo, Flavio Junqueira, Vassilis
Plachouras, and Fabrizio Silvestri. Challenges on distributed web
retrieval. In ICDE, pages 6–20, 2007.

[31] Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore
Orlando. Boosting the performance of web search engines: Caching
and prefetching query results by exploiting historical usage data.
TOIS, 24:51–78, 2006.

[32] I. Sengor Altingovde, Rifat Ozcan, B. Barla Cambazoglu, and Özgür
Ulusoy. Second chance: a hybrid approach for dynamic result
caching in search engines. In ECIR, pages 510–516, 2011.

[33] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of
compressed inverted list caching in search engines. In WWW, pages
387–396, 2008.

[34] Enric Herrero, José González, and Ramon Canal. Distributed
cooperative caching. In PACT, pages 134–143, 2008.

[35] Memcached – a distributed memory object caching system.
http://memcached.org/.

[36] Klaus Elhardt and Rudolf Bayer. A database cache for high
performance and fast restart in database systems. TODS,
9(4):503–525, 1984.

[37] Laszlo A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[38] Song Jiang and Xiaodong Zhang. LIRS: an efficient low
inter-reference recency set replacement policy to improve buffer
cache performance. In SIGMETRICS, pages 31–42, 2002.

[39] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache
replacement strategies. CUSR, 35(4):374–398, 2003.

[40] Storage market outlook to 2015.
http://www.storagesearch.com/5year-2009.html.

[41] Jim Gray. Tape is dead, disk is tape, flash is disk, ram locality is king.
http://research.microsoft.com/en-us/um/people/
gray/talks/Flash_is_Good.ppt, 2006.

[42] Ari Geir Hauksson and Sverrir ĺćsmundsson. Data storage
technologies. http:
//olafurandri.com/nyti/papers2007/DST.pdf, 2007.

[43] Ruixuan Li, Chengzhou Li, Weijun Xiao, Hai Jin, Heng He, Xiwu
Gu, Kunmei Wen, and Zhiyong Xu. An efficient SSD-based hybrid
storage architecture for large-scale search engines. In ICPP, pages
450–459, 2012.

[44] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel.
Compression of inverted indexes for fast query evaluation. In SIGIR,
pages 222–229, 2002.

[45] Eran Gal and Sivan Toledo. Algorithms and data structures for flash
memories. CSUR, 37:138–163, 2005.

[46] Biplob Debnath, Sudipta Sengupta, and Jin Li. FlashStore: High
throughput persistent key-value store. In VLDB, pages 1414–1425,
2010.

[47] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah,
Janet L. Wiener, and Goetz Graefe. Query processing techniques for
solid state drives. In SIGMOD, pages 59–72, 2009.

[48] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A
flash-memory based file system. In ATC, pages 155–164, 1995.

[49] Red Hat Corporation. JFFS2: The journalling flash file system.
http://sources.redhat.com/jffs2/jffs2.pdf.

[50] Charles Manning. YAFFS: Yet another flash file system.
http://www.aleph1.co.uk/yaffs.

[51] Han-Lin Li, Chia-Lin Yang, and Hung-Wei Tseng. Energy-aware
flash memory management in virtual memory system. TVLSI,
16(8):952–964, 2008.

[52] Mohit Saxena and Michael M. Swift. FlashVM: revisiting the virtual
memory hierarchy. In HotOS, 2009.

[53] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and
Joonwon Lee. CFLRU: a replacement algorithm for flash memory. In
CASES, pages 234–241, 2006.

[54] Hyojun Kim and Seongjun Ahn. BPLRU: a buffer management
scheme for improving random writes in flash storage. In FAST, pages
1–14, 2008.

[55] Stan Park and Kai Shen. FIOS: a fair, efficient flash I/O scheduler. In
FAST, 2012.

[56] Cagdas Dirik and Bruce Jacob. The performance of pc solid-state
disks (SSDs) as a function of bandwidth, concurrency, device
architecture, and system organization. In ISCA, pages 279–289, 2009.

[57] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and
Dahlia Malkhi. Differential RAID: Rethinking RAID for SSD
reliability. TOS, 6(2):1–22, 2010.

[58] Sang-Won Lee and Bongki Moon. Design of flash-based DBMS: an
in-page logging approach. In SIGMOD, pages 55–66, 2007.

[59] Sang-Won Lee, Bongki Moon, and Chanik Park. Advances in flash
memory SSD technology for enterprise database applications. In
SIGMOD, pages 863–870, 2009.

[60] Mehul A. Shah, Stavros Harizopoulos, Janet L. Wiener, and Goetz
Graefe. Fast scans and joins using flash drives. In DaMoN, pages
17–24, 2008.

[61] Devesh Agrawal, Deepak Ganesan, Ramesh Sitaraman, Yanlei Diao,
and Shashi Singh. Lazy-adaptive tree: an optimized index structure
for flash devices. PVLDB, 2(1):361–372, 2009.

[62] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo, and Ke Yi.
Tree indexing on solid state drives. PVLDB, 3(1-2):1195–1206,
September 2010.

[63] Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo. An efficient R-tree
implementation over flash-memory storage systems. In GIS, pages
17–24, 2003.

[64] Ioannis Koltsidas and Stratis D. Viglas. Flashing up the storage layer.
PVLDB, 1:514–525, 2008.

[65] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee,
Kenneth A. Ross, and Christian A. Lang. An object placement
advisor for DB2 using solid state storage. PVLDB, 2(2):1318–1329,
August 2009.

[66] Sai Tung On, Jianliang Xu, Byron Choi, Haibo Hu, and Bingsheng
He. Flag commit: Supporting efficient transaction recovery in
flash-based dbmss. TKDE, 24(9):1624–1639, 2012.

[67] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder – a
transactional record manager for shared flash. In CIDR, pages 9–20,
2011.

[68] Sai Tung On, Yinan Li, Bingsheng He, Ming Wu, Qiong Luo, and
Jianliang Xu. FD-buffer: a buffer manager for databases on flash
disks. In CIKM, pages 1297–1300, 2010.

[69] Yanfei Lv, Bin Cui, Bingsheng He, and Xuexuan Chen.
Operation-aware buffer management in flash-based systems. In
SIGMOD, pages 13–24, 2011.

[70] Chin hsien Wu, Li pin Chang, and Tei wei Kuo. An efficient B-tree
layer for flash-memory storage systems. In RTCSA, pages 17–24,
2003.

[71] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah.
Analyzing the energy efficiency of a database server. In SIGMOD,
pages 231–242, 2010.

[72] Theo Härder, Volker Hudlet, Yi Ou, and Daniel Schall. Energy
efficiency is not enough, energy proportionality is needed! In
DASFAA, pages 226–239, 2011.

[73] Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol Shin, and
Sang-Won Lee. B+-tree index optimization by exploiting internal
parallelism of flash-based solid state drives. PVLDB, 5(4):286–297,
2011.

[74] Risi Thonangi, Shivnath Babu, and Jun Yang. A practical concurrent
index for solid-state drives. In CIKM, pages 1332–1341, 2012.

[75] Bojun Huang and Zenglin Xia. Allocating inverted index into flash
memory for search engines. In WWW, pages 61–62, 2011.

[76] Ruixuan Li, Xuefan Chen, Chengzhou Li, Xiwu Gu, and Kunmei
Wen. Efficient online index maintenance for SSD-based information
retrieval systems. In HPCC, pages 262–269, 2012.

[77] Xiaohui Long and Torsten Suel. Three-level caching for efficient
query processing in large web search engines. In WWW, pages
257–266, 2005.

