
Discovering Longest-lasting Correlation in Sequence
Databases

Yuhong Li #1, Leong Hou U #2, Man Lung Yiu ∗3, Zhiguo Gong #4

#Department of Computer and Information Science, University of Macau
Av. Padre Tomás Pereira Taipa, Macau

1yb27407@umac.mo 2ryanlhu@umac.mo 4fstzgg@umac.mo
∗Department of Computing, Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
3csmlyiu@comp.polyu.edu.hk

ABSTRACT
Most existing work on sequence databases use correlation (e.g., Eu-
clidean distance and Pearson correlation) as a main component
for various analytical tasks. Typically, it requires users to set a
length ` for the similarity queries. However, there is no steady
way to define the length ` on different application needs. In
this work we focus on discovering longest-lasting highly correlated
subsequences in sequence databases, which is particularly useful
in helping those analyses without prior knowledge about the query
length `. Surprisingly, there has been limited work on this prob-
lem. A baseline solution is to calculate the correlations for every
possible subsequence combination. Obviously, the brute force so-
lution is not scalable for large datasets. In this work we study an
index that gives a tight correlation bound for subsequences of sim-
ilar length and offset. To the best of our knowledge, this is the first
index to support normalized distance metric of arbitrary length sub-
sequences. Inspired by the correlation bound, a batch processing
is applied to discover the longest-lasting correlated result. Exten-
sive experimental evaluation on both real and synthetic sequence
datasets verifies the efficiency and effectiveness of our proposed
methods.

1. INTRODUCTION
Sequence data can be found in a variety of applications nowa-

days, such as network analysis, image processing, financial data
analysis, and sensor network monitoring. As a consequence, pro-
cessing and mining of the sequence data have been developed for
these applications in the last decade, such as similarity and corre-
lation1 analysis [7, 10, 11, 34], subsequence matching [3, 12, 30],
motif discovery [28], and shapelet mining [27]. One key aspect
among these works is to exploit the correlation in sequence data,
which enables data analysts with the ability to explore, digest, and
interpret the trends in the sequence data.

1In this work the terms ‘correlation’ and ‘similarity’ are inter-
changeable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

The problem in this paper is to discover longest-lasting corre-
lated subsequences (LCS). A subsequence pair (q, o) is longest-
lasting correlated if and only if the length of the subsequence ` is
maximized subject to ρ(q, o, τ, `) ≥ δ, where ρ(q, o, τ, `) is the
correlation of q and o in sequence segment [τ, τ + `− 1]. Surpris-
ingly, there has been limited work on this problem. In this work,
we focus on lock-step correlation measures (e.g., Euclidean dis-
tance that only compares i-th point of one sequence to the i-th point
of another) as the underlying distance measure, as suggested by a
pioneer time series research group [11].2

Longest-lasting correlated subsequences are particularly useful
in helping those analyses without prior knowledge of the query
length `. For instance, a stock analyst wants to find a stock whose
price variance is similar to Google, Inc. in some segment from 2008
to 2011. This question can be answered easily by subsequence
matching [12] if we have prior knowledge about the segment length
`. However, ` is not easy to be specified as the most appropriate
value of ` heavily depends on queries, time, data, and application
domains. Instead of finding fixed length results, our task is to re-
turn the longest-lasting segment whose correlation is larger than a
threshold δ. We claim that the correlation threshold δ is a more nat-
ural parameter than the segment length ` since analysts can evaluate
how the correlation score reflects the relevance of the result in their
application domain.

ρ=0.95

[28/2/2008,5/4/2010]

0

100

200

300

400

500

600

700

800

AAPL GOOG NFLX
ρ=0.95

[21/7/2011,12/9/2011]

ρ=0.923

[5/8/2009,5/11/2009]

ρ=0.985

[4/3/2009,4/6/2009]

Figure 1: Example of finance analysis

2As reported in [11], there is no statistically significant difference
in accuracy between the lock-step measures and the elastic mea-
sures (e.g., dynamic time warping that compares i-th point of one
sequence to j-th point of another) when the dataset contains more
than few hundred objects. More importantly, some application is
more applicable to the lock-step measures if the values are col-
lected periodically without error.

Applications. We demonstrate our longest-lasting correlated sub-
sequence queries using the stock data collected from Yahoo! Fi-
nance 3. Figure 1 illustrates the price variance of GOOG (Google,
Inc.), NFLX (Netflix, Inc.), and AAPL (Apple, Inc.) in 2008
- 2010. A typical analysis query is ‘find the most correlated stock
to GOOG for every 3 months data in 2008-2011’. This query re-
turns AAPL in [4/3/2009,4/6/2009] as the result where the cor-
relation ρ is 0.985. The query result may be more interesting to
analysts if it becomes ‘find the longest-lasting period of a stock
who performs similar to GOOG in 2008-2011’. Suppose that the
correlation threshold ρ is set to 0.95, this query returns AAPL
in [28/2/2008,5/4/2010] as the result. It is not surprising that
their prices change similarly over such long period as both of
them are the leading companies in IT sector. Besides, the sec-
ond type of queries can identify prominent periods more precisely
based on the correlations. For instance, the longest correlated
time span of GOOG and NFLX fulfilled the correlation thresh-
old is [21/7/2011,12/9/2011] while the fixed length query (`=3
months) returns a lower correlation (ρ = 0.923) in time span
[5/8/2009,5/11/2009].

ρ=0.95, [317,1008]

25.5

26

26.5

27

27.5

28

28.5

1 101 201 301 401 501 601 701 801 901 1001

9N 140W 2N 140W

Weekly data (per 10 minutes)

s
e

a
 s

u
rf

a
c

e
 t

e
m

p
e

ra
tu

re
 (

°C
)

ρ=0.71, [1,1008]

Figure 2: Example of climate analysis

Longest-lasting correlated subsequences is particularly helpful
in climatology. Figure 2 shows the configuration of Tropical At-
mosphere Ocean (TAO) array in Pacific Ocean 4. Given the sea
surface temperature of a specified sensor over a period of time (e.g.,
one week), one possible query is to find the most correlated sensor
during the same period. However, there may be no such pair where
their correlation can be viewed as correlated (e.g., ρ < 0.9 for all
pairs). In Figure 2, the correlation of the entire weekly data of sen-
sors ‘9N 140W’ and ‘2N 140W’ is 0.71. However, the correlation
of a segment in weekly data (from 317 to 1008) is much higher (i.e.,
0.95), where the meteorologists may be interested in this period and
further investigate the reason behind this.

Besides finance and climatology analysis, longest-lasting corre-
lated subsequences are also useful in hyperspectral imaging ex-
ploitation [9]. A hyperspectral image is captured by remote sen-
sors that collect image data simultaneously in dozens or hundreds
of narrow, adjacent spectral bands. These spectral bands make it
possible to derive a continuous spectrum for each image cell. One
research task of hyperspectral imaging is to discover the spectral
signature of materials. Typically, a spectral signature consists of a
subset of consecutive spectral bands. Two image cells may refer to
the same material if their spectral signatures are similar. Given an
image cell and a specified correlation threshold, the longest-lasting

3http://finance.yahoo.com/
4http://www.pmel.noaa.gov/tao/

correlated subsequence query returns a signature candidate that can
be used for further exploitation.
Problem Definition. In this paper we use Pearson correla-
tion, which is equivalent to Z-normalized Euclidean distance (see
Sec. 2.1 for the detail), to measure the closeness of sequences. The
definition of Pearson correlation between two subsequences on a
specific interval [τ, τ + `− 1] is defined as follows.

DEFINITION 1 (SUBSEQUENCE PEARSON CORRELATION).
Given a query q, an object sequence o, and a specific segment
[τ, τ+`−1], the Pearson correlation between (q[τ], ..., q[τ+`−1])
and (o[τ], ..., o[τ + `− 1]) is defined as

ρ(q, o, τ, `) =

`

τ+`−1∑
i=τ

q[i]o[i]−
τ+`−1∑
i=τ

q[i]

τ+`−1∑
i=τ

o[i]

√√√√√√`

τ+`−1∑
i=τ

q[i]2 − (

τ+`−1∑
i=τ

q[i])2

√√√√√√`

τ+`−1∑
i=τ

o[i]2 − (

τ+`−1∑
i=τ

o[i])2

(1)

Based on Def. 1, we formally define the Longest-lasting Corre-
lated Subsequence Query (LCS) as follows.

DEFINITION 2. (LONGEST-LASTING CORRELATED SUB-
SEQUENCE QUERY, LCS) Given a query q, a sequence
database O, and a threshold δ, a Longest-lasting Correlated
Subsequence Query (LCS) returns an object subsequence
olcs(τlcs, `lcs), olcs ∈ O such that ρ(q, olcs, τlcs, `lcs) > δ and
the length `lcs is the longest among all possible subsequences
oi(τi, `i), oi ∈ O having ρ(q, oi, τi, `i) > δ.

Fig. 3(a) illustrates a query sequence and a sequence database
having two objects, where their raw values can be found in
Fig. 3(b). For every subsequence combination (i.e., varying τ and
`), we can use Eq. 1 to calculate the corresponding correlation of
(q, o1) (shown in Fig. 3(c)) and (q, o2) (shown in Fig. 3(d)), re-
spectively. Given a threshold δ = 0.95, LCS(q, {o1, o2}, δ) re-
turns o2(1, 5) as the result since there is no subsequence having
length ` > 5 and correlation ρ > 0.95.

0.5

1.0

0.0
60

q o1 o2

time

v
a

lu
e

(a) Stock sequences

time 0 1 2 3 4 5 6
q 0.8 1.0 0.7 0.8 0.5 0.6 0.2
o1 0.6 0.5 0.9 1.0 0.8 0.3 0.2
o2 0.1 0.7 0.4 0.5 0.1 0.2 0.9

(b) Stock prices

` 7 6 5 4 3 2
τ=0 0.44 -0.07 -0.52 -0.72 -0.89 -1.00

1 - 0.46 -0.04 -0.52 -0.87 -1.00
2 - - 0.77 0.50 0.98 1.00
3 - - - 0.73 0.45 1.00
4 - - - - 0.42 -1.00
5 - - - - - 1.00

(c) ρ(q, o1, τ, `)

` 7 6 5 4 3 2
τ=0 -0.20 0.77 0.75 0.61 0.65 1.00

1 - -0.11 0.99 0.99 1.00 1.00
2 - - -0.51 0.99 1.00 1.00
3 - - - -0.53 1.00 1.00
4 - - - - -0.94 1.00
5 - - - - - -1.00

(d) ρ(q, o2, τ, `)

Figure 3: A concrete example of kLCS

A naı̈ve extension of LCS to kLCS is to return k subsequences
such that there is no other subsequence being longer than the result
subject to the correlation constraint ρ > δ. However, this sim-
ple definition may return a lot of contained subsequences 5. In
our running example, the first two results are o2(1, 5) and o2(1, 4)
5As reported by [31], a query is trivially correlated to two close
subsequences which may give meaningless result.

where o2(1, 4) is contained inside o2(1, 5). To address this, we
propose an alternative definition, denoted as k-longest-lasting cor-
related subsequence query, that eliminates all contained subse-
quences from the result. This is formally defined as follows.

DEFINITION 3. (k-LONGEST-LASTING CORRELATED SUB-
SEQUENCE QUERY, kLCS) Given a query q, a sequence database
O, a threshold δ, a k-Longest-lasting Correlated Subsequence
Query (kLCS) returns a set of k non self-contained subsequences,
R, such that each oi(τ, `) ∈ R satisfies (1) ρ(q, oi, τ, `) > δ and
(2) ∀oj(τ ′, `′) /∈ R, if ρ(q, oj , τ ′, `′) > δ, then `′ ≤ `.

The first condition is to secure the correlation threshold and the
second condition is to secure there is no other subsequence hav-
ing longer length than the subsequence of the result set R. In
the running example, 2LCS(q, {o1, o2}, 0.95) returns o2(1, 5) and
o1(2, 3) as the results according to Def. 3. Although both o2(1, 4)
and o2(2, 4) fulfill the correlation constraint and their length ` is
longer than the second result o1(2, 3), these subsequences are elim-
inated since they are contained inside the first result o2(1, 5).
Challenges. A brute force solution is to calculate the correlations
between query and objects for every possible subsequence combi-
nation. It is obvious that the computation complexity isO(Cnm2),
where C is the complexity of a correlation computation, n and m
are the cardinality and the maximum length of the sequence data,
respectively. The brute force solution is not scalable as both n and
m may be large in some applications. For instance, n may refer
to the number of signatures in hyperspectral image databases (e.g.,
100k) and m may refer to the hourly stock price variances (e.g.,
∼2500 per year).

To reduce the huge search space, we can compute the correla-
tions by various indexing techniques, such as k-gram indexing [14],
suffix trees [25], and vector space indexing [12, 13, 17, 36, 37].
Most of these index structures only support fixed-length correla-
tion queries (i.e., ` is fixed). A simple solution is to build an in-
dex for every possible subsequence combination (i.e., building an
index Iτ,` for one specific τ and ` combination). However, pre-
computing and storing these indices make this approach infeasible
as the total number of combinations is m(m+1)

2
.

Another category of solutions is to build a unified index that is
capable of computing arbitrary length correlations. Among all ex-
isting techniques, prefix search [12], multi-resolution [17], and ref-
erence net [37] fall into this category but they can only support
non-normalized correlation metrics. However, as we will discuss
in Sec. 2.1, the non-normalized correlation metrics do not reveal
the true similarity of the sequences. The necessity of normalizing
sequence values for similarity search is also justified by a recent
publication [33]. To the best of our knowledge, there is neither an
efficient nor a feasible solution to answer the longest-lasting cor-
related subsequence queries. Therefore, we study a novel index
structure that supports efficient similarity computation constrained
by a reasonable storage overhead.
Summary of Contributions and Outline.
1. We define a new query, longest-lasting correlated query, in se-
quence databases, which is useful in many real-world applications.
2. We propose an α-skipping technique to reduce the Pearson com-
putation from O(`) to O(α), which significantly shorten the com-
putation time of a similarity calculation.
3. We propose a size-tunable index, diamond cover index, to ef-
ficiently compute kLCS while the index size can be adjusted to a
given size S. To the best of our knowledge, this is the first in-
dex to support normalized distance metric of arbitrary length sub-
sequences.

The rest of this paper is organized as follows. In Sec. 2, we jus-
tify the definitions and challenges of the problem. Sec. 3 presents
two non-index methods, SOTA and SKIP, for answering kLCS.
Subsequently, we discuss our index techniques in Sec. 4. We thor-
oughly evaluate our proposed methods in Sec. 5. The related work
is summarized in Sec. 6 and we conclude our work in Sec. 7.

2. JUSTIFICATION

2.1 Sequence Normalization
To reasonably compare the correlation of different sequences,

the sequence values are necessarily normalized as discussed in [19,
33]. We use the following example to demonstrate the effect of
normalization in correlation measurements.

0

200

400

600

800

1 51 101 151 201 251 301 351 401 451 501

q o1 o2

(a) Raw sequences

-2.5

-0.5

1.5

3.5

1 51 101 151 201 251 301 351 401 451 501

q o1 o2

(b) Normalized sequences

d2(q, o1) d2(q, o2)

7118.29 1514.83
(c) L2 of q and o

d̂2(q, o1) d̂2(q, o2)

7.26 24.40
(d) L2 of q̂ and ô

Figure 4: The effect of normalization

Fig. 4(a) and 4(b) illustrate three sequences by their raw and
normalized values, respectively, where the Euclidean distances of
the query q and the objects o1 and o2 are shown in Fig. 4(c) and
Fig. 4(d). As clearly shown in Fig. 4(c), q is more similar to o2 if
the distances are computed based on their raw values. However,
in typical analysis tasks, we may concern more about the trend
(i.e., shape) of two sequences instead of their actual distance. The
distances reported in Fig. 4(c) are greatly overstates the subjective
dissimilarity. Normalizing the values reveals the true similarity of
the sequences as shown in Fig. 4(b) and Fig. 4(d). Formally, the
value of a subsequence o(τ, `) is normalized by standard score (Z-
normalization) as follows [33].

ô(τ, `)[i] =
o(τ, `)[i]− µo(τ,`)

σo(τ,`)
(2)

where µo(τ,`) and σo(τ,`) denote the mean and standard deviation
of o(τ, `), respectively and ô(τ, `) denotes the normalized form of
the subsequence o(τ, `). For the sake of presentation, we also de-
note d̂p(q, o, τ, `) as the p-norm distance of two Z-normalized se-
quences q̂(τ, `) and ô(τ, `).

BesidesZ-normalization, the p-norm distance is necessarily nor-
malized by their length in order to produce reasonable kLCS re-
sult. It is obviously unfair to compare the subsequence correlations
of different lengths. As an example, the p-norm distance of two
longer sequences is more likely larger than the p-norm distance of
two shorter sequences.

In this work, we focus on Pearson correlation since it not only
reveals the true similarity of the sequences by Z-normalization
but also makes the correlation comparison more fair by length

normalization. The Pearson correlation between two subse-
quences, q(τ, `) and o(τ, `), actually can be represented by the Z-
normalized Euclidean distance as follows [32, 38].

ρ(q, o, τ, `) = 1−
(d̂2(q, o, τ, `))2

2`
(3)

where d̂2(q, o, τ, `) is normalized by the length ` in the Pearson
correlation.

2.2 Indexing Arbitrary Length Queries?
If the length of correlation queries is decided ahead of time, then

the computation can be boosted dramatically by plenty of existing
indexing techniques [2, 7, 13, 18, 36, 35]. However, in kLCS, the
length of the correlation queries is varying during the execution.
There are two research groups which have suggested techniques to
index arbitrary length queries [17, 22]. Their methods require to
build multiple indices of various lengths, e.g., building 8 indices
of length 8, 16, ..., 1024. A correlation query of length ` searches
the multiple indices and interpolates the results to produce the re-
sult of `. For instance, a correlation query of length ` = 55 can
be calculated by searching two indices of length 16 and 32 by the
techniques proposed in [17].

However, such multi-indices approaches can only return proper
results for non-normalized distance metrics. Suppose that o(0, 32)
is the most correlated object to q(0, 32), the Z-normalized Eu-
clidean distance d̂2(q, o, 0, 32) is neither an upper bound nor a
lower bound of d̂2(q, o, 0, 33). This is because the subsequence
values must be re-normalized when the length is changed from 32
to 33, i.e., the values of µ and σ may be changed significantly at dif-
ferent length subsequences. To the best of our knowledge, there is
no existing indexing framework that can support correlation queries
of arbitrary lengths in feasible storage overhead. This is also con-
cluded in a recent publication [33].

2.3 Is Computing kLCS Time Consuming?

m
on(m-2, 1)

o1(m-2, 1)

on(m-1, 1)

o1(m-1, 1)

on(m-2, 2)

o1(m-2, 2)

...
...

...

...
...

oi(τ, l)

on(0, m)

on(1, m-1)

on(2, m-2)

m

on(0, l) on(m-l, l)

on(0, 1)

[0, m -1]

[0, m -2] [1, m -1]

[0, m]

[0, m -1] [1, m]

[0, m -2] [1, m -1] [2, m]

[0, 1]

[0, l] [m-l, m]

[0, m]

[0, m -1] [1, m]

[0, m -2] [1, m -1] [2, m]

[0, 1]

[0, l] [m-l, m]

o1(0, m)

o1(0, m-1) o1(1, m-1)

o1(0, m-2) o1(1, m-2) o1(2, m-2)

o1(0, 1)

o1(0, l) o1(m-l, l)

ρ(q,oi,τ,l)>δ

Entire search space

o1(τ, l)

...
...

...

n

...
...

Covering subsequences of

o1(m-2, 2)

Figure 5: Entire search space of kLCS(q,O, δ)

We claim that kLCS is a challenging problem due to (1) its po-
tentially huge search space and (2) no monotonic property held for
normalized distance measures. To find the longest-lasting corre-
lation subsequence, LCS searches every possible subsequence (by
varying τ and `) until it finds an object subsequence oi(τ, `) such
that ` is maximized subject to the correlation constraint δ. Fig. 5
illustrates the entire search space of LCS, where the number of

possible subsequence combinations is m(m+1)
2

and every combi-
nation has n objects to be verified. Thereby, the total search space
is O(nm2) and the time complexity is O(Cnm2), where C is the
complexity of a correlation computation.

DEFINITION 4 (COVERING SUBSEQUENCE, .). o(τ, `) is
covering o(τ ′, `′), denoted as o(τ, `) . o(τ ′, `′), if and only if
τ ′ ∈ [τ...τ + `− 1] and `′ ∈ [1..τ + `− τ ′].

For the sake of the following discussion, we first define the cov-
ering relationship between subsequences in Def. 4. Fig. 5 high-
lights three subsequences covered by o1(m− 2, 2).

LEMMA 1 (NON-MONOTONICITY). Given two sequences
q(τ, `) and o(τ, `), their normalized p-norm distance d̂p(q, o, τ, `)
is neither monotone increasing nor monotone decreasing for the
covering subsequence distance d̂p(q, o, τ

′, `′), where q(τ, `) .
q(τ ′, `′) and o(τ, `) . o(τ ′, `′).

To discover the longest subsequence that satisfies the correlation
threshold, a better execution paradigm is to apply binary search
if there is any monotone property held for subsequence length ` or
offset τ . Nevertheless, as Lemma 1 shown6, the normalized p-norm
distance of a pair sequences does not hold any monotonicity for
their covering subsequence distances. For instance, ρ(q, oi, τ, `)
can be either smaller or larger than ρ(q, oi, τ, `−1). Thereby, sim-
ple search techniques (e.g., binary search and branch-and-bound)
are not able to help kLCS processing. Thereby, the time complex-
ity remains O(Cnm2).

3. ANSWERING KLCS WITH NO-INDEX
In this section, we present two solutions of kLCS without using

any index structure. The first one is a baseline solution that adapts
the state-of-the-art techniques. In the second solution, we exploit
the properties of Pearson correlation and reduce the complexity of
each Pearson correlation from O(`) to O(α).

3.1 Adaption of State-of-the-art Techniques
According to the discussion in Sec. 2.3, neither binary search nor

branch-and-bound approach is applicable for discovering kLCS. To
support early termination, we need a top-down execution paradigm
which calculates the similarity of the subsequences for every τ and
` setting exhaustively from the longest length to the shortest length.
We can terminate the 1LCS search immediately once an object sub-
sequence oi(τ, `) fulfills the correlation threshold δ.

-2

-1.5

-1

-0.5

0

150 155 160 165 170 175 180 185 190 195 200

hat{q} hat{o}

1

3 5
6

early abandon at this point

calculation order

τ l

8
9

2

4 7

q o

(a) Z-normalization

-2

-1.5

-1

-0.5

0

150 155 160 165 170 175 180 185 190 195 200

hat{q} hat{o}

early abandon at this point

calculation order

τ l

1 2

4

3

q o

(b) Reordering

Figure 6: Early abandoning techniques

However, calculating the correlation of subsequences exhaus-
tively is a time-consuming task, where each Pearson correlation
6For the sake of presentation and space limitation, we put the proof
of all Lemmas in Appendix and omit the proof of all Corollaries.

takes O(`) time to compute. To the best of our knowledge, Rak-
thanmanon et al. [33] is the first work to consider optimizing the
normalization step of the normalized distance computation. In their
work, a new technique called Z-normalization early abandonment
is proposed for early abandoning the calculation of the normalized
Euclidean distance, d̂2. Suppose that we are discovering kLCS
result at ` length subsequences. To compute the normalized Eu-
clidean distance of q(τ, `) and oi(τ, `), we can incrementally sum
the individual distances to d̂2(q, oi, τ, `) until the Pearson correla-
tion becomes lower than the threshold δ [20, 33]. In Fig. 6(a), we
can abandon the calculation of d̂2(q, o, τ, `) at 9th position if the
summation of the individual distances from 1st to 9th position is
already larger than

√
2`(1− δ) (see Eq. 3).

To incrementally sum the individual distances to d̂2, we need to
prepare the mean µ and standard deviation σ of q(τ, `) and oi(τ, `)
as shown in Eq. 2, which takes O(`) time in total. Inspired by
[33], the preparation can be done in O(1) time by keeping two
running sums of the subsequence values with a lag of exactly `
subsequence values. The mathematical representations are given
below for clarity.

µX (τ,`) =
1

`
(

τ+`−1∑
i=0

X [i]−
τ∑
i=0

X [i] + X [τ]) (4)

σ2
X (τ,`) =

1

`
(

τ+`−1∑
i=0

X [i]2 −
τ∑
i=0

X [i]2 + X [τ]2)− µ2X (τ,`) (5)

where X ∈ {q, o}. For instance, suppose we have two running
sums

∑τ+`−1
i=0 X [i] and

∑τ
i=0 X [i], µX (τ+1,`) can be computed

by incrementally summing the value of X [τ + `] and X [τ + 1] to∑τ+`−1
i=0 X [i] and

∑τ
i=0 X [i], respectively.

To further boost up the performance, we apply another technique
called reordering early abandon [33], which reorders the calcula-
tions as shown in Fig. 6(b). According to [33], the sections of the
query q(τ, `) that are farthest from the mean will on average have
the largest contributions to the distance measure. In other words,
for each subsequence oi(τ, `) in kLCS computation, the calcula-
tion order is based on the mean of q(τ, `).

Algorithm 1 State-of-the-art (SOTA) algorithm
Algorithm SOTA(Query q, Database O, Threshold δ, Maximum se-
quence length m, Result size k)

1: for ` := m to 1 do
2: for τ := 0 to m− ` do
3: update

∑τ+`−1
i=0 q[i],

∑τ
i=0 q[i],

∑τ+`−1
i=0 q[i]2,

∑τ
i=0 q[i]

2

4: determine the calculation order of q(τ, `) based on µq(τ,`)
5: for each sequence o in O do
6: update

∑τ+`−1
i=0 o[i],

∑τ
i=0 o[i],

∑τ+`−1
i=0 o[i]2,

∑τ
i=0 o[i]

2

7: calculate d̂2(q, o, τ, `) . early abandon at
√

2`(1− δ)
8: if d̂2(q, o, τ, `) <

√
2`(1− δ) then . by Eq. 3

9: add oi(τ, `) into R if r 7 o(τ, `),∀r ∈ R
10: goto line 11 when |R| = k

11: return R

Alg. 1 (State-of-the-art, SOTA) applies all the techniques dis-
cussed above. SOTA exhaustively searches all τ and ` subse-
quences in a top-down manner. The normalized Euclidean distance
d̂2 is computed by Z-normalization and reordering early abandon-
ment techniques as discussed above. We add a subsequence object
o(τ, `) intoR if the Pearson correlation ρ(q, o, τ, `) fulfills the cor-
relation threshold δ and the object subsequence is not contained
by other results in R (at Line 9). The containment checking takes
O(log k) time if we maintainR by a segment tree. R is returned as
the result set when its size reaches k.

3.2 α-Skipping Cumulative Arrays
Even though Alg. 1 (lines 6-7) utilizes the state-of-the-art tech-

niques to calculate ρ(q, o, τ, `), it still takes O(`) time to calculate
one correlation in the worst case. Inspired by [27], the Pearson
correlation can be computed in O(1) time if we first compute five
cumulative arrays for q and o. More specifically, two of the ar-
rays store the cumulative sum of the subsequence values of q and
o. Another two store the cumulative sum of square values. The last
one stores the cumulative product sum of q and o. The arrays are
defined mathematically as follows.

Sq [u] =
u∑
i=0

q[i], Sq2 [u] =
u∑
i=0

q[i]2,
Sqo[u] =

u∑
i=0

q[i]o[i]

So[u] =

u∑
i=0

o[i], So2 [u] =

u∑
i=0

o[i]2,
(6)

where u ∈ [0..m−1]. Given these arrays {Sq, So, Sq2 , So2 , Sqo},
every component in Eq. 1 (including

∑
q[i],

∑
o[i],

∑
q[i]2,∑

o[i]2, and
∑
q[i]o[i]) of any (τ, `) setting can be computed in

O(1) time by the following equation.

τ+`−1∑
i=τ

X [i] = SX [τ + `− 1]− SX [τ] + X [τ] (7)

where X ∈ {q, o, q2, o2, qo} and qo[i] = q[i]o[i].
However, the space overhead of computing kLCS is infeasible

since every object oi is required to construct 3 extra arrays (e.g.,
Soi , So2i

, Sqoi). The total space overhead is 3mn that is three times
larger than the raw data.7 In the following, we present a technique
called α-skipping requires only 3mn

α
total space overhead (α can

be chosen based on memory size). It can compute every Pearson
correlation in O(α). We first define the α-skipping cumulative ar-
ray as follows.

DEFINITION 5 (α-SKIPPING CUMULATIVE ARRAY, SαX).
Let the skip factor be α. A cumulative value SX [u] is kept into SαX
if and only if u mod α = 0.

S
X [0

]

S
X [3

]

S
X [6

]

S
X [9

]

0

S
X [1

]
S

X [2
]

S
X [4

]
S

X [5
]

S
X [7

]
S

X [8
]

S
X [1

0
]

α=4

5
1

5

ρ(q,o,0,5)

ρ(q,o,1,5)

Figure 7: An α-skipping cumulative array

Fig. 7 shows a 4-skipping cumulative array (α = 4). Note that
only the cumulative values in bold color are kept in SαX , where
the size of SαX is 1/α to the original size. Suppose that τ = 1
and ` = 5, we need the value of SX [1] and SX [5] to compute∑5
i=1 X [i] according to Eq. 6; however, neither SX [1] nor SX [5]

is kept in SαX . In fact, these two values can be derived from SX [0]
and SX [4] in 1 step. Lemma 2 shows that computing ρ(q, o, τ, `)
takes O(α) time.

LEMMA 2. Given α-skipping cumulative arrays and raw data
of q and o, computing ρ(q, o, τ, `) takes O(α) time.

During the kLCS computation, we can further reduce the com-
putation time of ρ(q, o, τ, `) to O(1) if we keep the corresponding
7The space overhead (i.e., O(2m)) of Sq and Sq2 is negligible.

running sums of ρ(q, o, τ − 1, `). We illustrate this more clearly
by Fig. 7. After calculating ρ(q, o, 0, 5), we collect five running
sums, including

∑4
i=0 q[i],

∑4
i=0 q

2[i],
∑4
i=0 o[i],

∑4
i=0 o

2[i],
and

∑4
i=0 qo[i]. When calculating the next offset correlation,

ρ(q, o, 1, 5), we update the value of each running sum by just
subtracting X [0] from and adding X [5] into the running sum∑4
i=0 X [i]. Obviously, such incremental procedures can derive

ρ(q, o, τ, `) in O(1) time, which is faster than the α-skipping tech-
niques. Thereby, for every subsequence length setting `, we com-
pute the running sums by the α-skipping cumulative arrays at the
first offset (i.e., τ = 0); then incrementally update the running
sums for the remaining offsets.

Algorithm 2 SKIP algorithm
Algorithm SKIP(Query q, Database O, Threshold δ, Maximum se-
quence length m, Result size k, Skip factor α)

1: calculate S1
q and S1

q2
. O(m)

2: calculate Sαoi , Sα
o2i

, and Sαqoi for every oi ∈ O . O(nm)

3: for ` := m to 1 do
4: for τ := 0 to m− ` do
5: for X ∈ {qi, q2i } do
6: if τ = 0 then calculate

∑τ+`−1
i=τ X [i] by S1

X . O(1)

7: else update
∑τ+`−1
i=τ X [i] incrementally . O(1)

8: for each sequence o in O do
9: for X ∈ {o, o2, qo} do

10: if τ = 0 then compute
∑τ+`−1
i=τ X [i] by SαX . O(α)

11: else update
∑τ+`−1
i=τ X [i] incrementally . O(1)

12: if ρ(q, o, τ, `) > δ then . O(1)
13: add o(τ, `) into R if r 7 o(τ, `),∀r ∈ R
14: goto line 15 if |R| = k

15: return R

Alg. 2 (SKIP) shows the pseudo code to discover kLCS based
on the α-skipping techniques. First, we calculate five α-skipping
cumulative arrays which take O(nm) time in total.8 The SKIP al-
gorithm follows the same top-down execution paradigm of Alg. 1
but it calculates ρ(q, o, τ, `) by the Pearson equation (Eq. 1) based
on the cumulative arrays. The running sums required in Eq. 1 are
calculated by the α-skipping arrays if τ = 0 or calculated incre-
mentally otherwise.

In summary, the SKIP algorithm is superior to the SOTA algo-
rithm since it reduces the computation time for each Pearson corre-
lation from O(`) to O(α) with a reasonable space overhead 3mn

α
.

For instance, the overhead is just 6% of the object dataset when α
is set to 50 and m is 500.

4. ANSWERING KLCS WITH INDICES
Recall that no known index can support normalized distance

queries of arbitrary lengths (see Sec. 2.2). We have illustrated the
entire collection of elements that require indexing, as well as the
query processing challenges, in Sec. 2.3.

In this section, we introduce a novel space-constrained index
for boosting kLCS computation. Our index exploits an observa-
tion that subsequences of an object o having similar offsets τ and
lengths ` are likely to have similar correlation with q. For instance,
if ρ(q, o, τ, `) < δ, then ρ(q, o, τ, ` − 1) and ρ(q, o, τ + 1, ` − 1)
are likely to be smaller than δ. This suggests that we can group
similar subsequence together. Specifically, if the correlation upper
bound of a subsequence group is below δ, then such a group can be
safely pruned.
8For clarity, the time complexity of every single step is stated in
the pseudo codes.

In this section, we first discuss how to group subsequences of
o (with arbitrary lengths) by their Piecewise Aggregate Approx-
imation (PAA) representations into Minimum Bounding Rectan-
gles (MBRs), and derive their correlation upper bounds. Then, we
elaborate how to effectively group the subsequences into a space-
constrained index such that it offers good pruning power for query-
ing.

4.1 Piecewise Aggregate Approximation
PAA is intuitive and simple, yet competitive with other sophis-

ticated dimensionality reduction methods [23]. Specifically, a nor-
malized subsequence ô of offset τ and length ` can be represented
in a φ-dimensional PAA element eô, where the parameter φ is much
smaller than ` in practice. Given a normalized subsequence ô(τ, `),
the i-th element of the φ-dimensional PAA element is defined as:

eô(τ,`)[i] =
φ

`

`
φ
(i+1)−1∑
j= `

φ
·i

ô[τ + j] (8)

Unless explicitly stated, we write eô(τ,`)[i] as eô[i].
PAA upper bound. Zhu et al. [38] shows that the PAA distance
dPAA of two PAA representations eq̂ and eô is a lower bound of
their 2-norm distance 9. Formally, it is stated as:

d̂(q, o, τ, `) ≥ dPAA(eq̂, eô, φ) =
√
`/φ · d2(eq̂, eô, φ) (9)

where d2(eq̂, eô, φ) denotes the 2-norm distance between two ele-
ments.

COROLLARY 1. Given two subsequences q(τ, `) and o(τ, `)
and set UB(eq̂, eô, φ) = 1 − dPAA(eq̂, eô, φ)

2/(2`) = 1 −
d2(eq̂, eô, φ)

2/(2φ), we have

ρ(q, o, τ, `) ≤ UB(eq̂, eô, φ) (10)

Based on Eq. 3 and Eq. 9, the PAA distance dPAA provides an
upper bound of the Pearson correlation ρ (Corollary 1). In other
words, if the upper bound, UB(eq̂, eô, φ), is smaller than the cor-
relation threshold δ, we can say q(τ, `) is not longest-lasting corre-
lated to o(τ, `).
PAA MBR upper bound. In the following, we provide the upper
bound of the Pearson correlation ρ by two PAA MBRs (whose con-
tained subsequences can have different lengths). Let Mq̂ and Mô

be the PAA MBRs of a subsequence set of q̂ and ô, respectively.
Inspired by Eq. 9, the minimum distance between Mq̂ and Mô is
defined as:

dPAA(Mq̂ ,Mô, φ) =
√
`min/φ · dmin2 (Mq̂ ,Mô, φ) (11)

where `min is the minimum length of subsequences in Mq̂ and
Mô, and dmin2 (Mq̂,Mô, φ) denotes the minimum 2-norm distance
between two MBRs.

LEMMA 3. The PAA distance between two PAA MBRs,Mq̂ and
Mô, is a lower bound of the PAA distance between any eq̂(τ,`) ∈
Mq̂ and any eô(τ,`) ∈Mô.

dPAA(eq̂ , eô, φ) ≥
√
`/`min · dPAA(Mq̂ ,Mô, φ) (12)

where ` is the length of eq̂ and eô,

9Our techniques are also applicable to p-norm distance. The detail
is omitted for simplicity.

Suppose that eq̂(τ,`) and eô(τ,`) are the elements in Mq̂ and Mô,
respectively. We can derive the upper bound of the PAA distance
of eq̂(τ,`) and eô(τ,`) by the PAA distance of their MBRs, which is
shown in Lemma 3.

Let UB(Mq̂,Mô, φ) = 1 − dPAA(Mq̂,Mô, φ)
2/(2`min) =

1 − dmin2 (Mq̂,Mô, φ)
2/(2φ), we can derive the Pearson correla-

tion upper bound of q̂(τ, `) and ô(τ, `) based on Corollary 1 and
Lemma 3.

ρ(q, o, τ, `) ≤ UB(Mq̂,Mô, φ) (13)

The above discussion shows that the distance of PAA MBRs,
dPAA(Mq̂,Mô, φ), provides an upper bound of the Pearson cor-
relation, ρ(q, o, τ, `), where eq̂ ∈ Mq̂ and eô ∈ Mô. Thereby,
a straightforward indexing approach is to group the elements by
a multidimensional index I (e.g., R*-tree [4], k-d tree [5]). To
discover all subsequences that satisfy the correlation threshold δ,
we traverse I from root to leaves recursively. For every seen non-
leaf MBR Mô, if its upper bound UB(Mq̂,Mô, φ) is less than the
correlation threshold δ, then Mô cannot contribute any result with
respect to Mq̂ such that it is safely pruned; otherwise, the children
MBRs of Mô are further verified. For every seen leaf MBR M ′ô,
if UB(Mq̂,M

′
ô, φ) ≥ δ, then M ′ô is expanded and verified. We

report an element o in M ′ô as a result candidate if the length of eô
is ` and ρ(q, o, τ, `) ≥ δ.

As illustrated in Figure 5, the total number of elements to be
indexed is O(nm2). This huge storage space requirement renders
the above indexing approach infeasible.

4.2 Diamond Cover Index (DCI)
In this section, we proposed a novel index structure, Diamond

Cover Index (DCI) which can efficiently answer kLCS and reduce
the index size to a given storage budget S. DCI is based on two
grouping strategies, intra-object grouping and inter-object group-
ing, which are thoroughly discussed in this section.

4.2.1 Intra-Object Grouping
As discussed above, it takes O(m2) space for indexing the sub-

sequences of an object o. In this section, we aim to reduce the
index size to a manageable amount S. Our idea is to group the
subsequences of an object into a small number of MBRs.
Diamond Cover Grouping. A desirable grouping strategy should
assign, among the subsequences of o, those having similar off-
sets and lengths into the same group. This would lead to ‘tight’
groups and maximize their pruning power during query processing.
Specifically, we define the concept of diamond MBR as follows:

DEFINITION 6 (DIAMOND MBR, MD
ô(τ,`)). Given the dia-

mond side-length ω, we define the diamond MBR MD
ô(τ,`) as the

MBR of all PAA representations of eô(τ ′,`′), for all τ ′, `′ such that
τ ≤ τ ′ ≤ τ + ω and (τ + `)− (τ ′ + `′) ≤ ω.

Fig. 8(a) illustrates an example with ω = 1. The dia-
mond MBR MD

ô(0,m) is the MBR of four PAA representations:
eô(0,m), eô(0,m−1), eô(1,m−1), eô(1,m−2). As we will discuss later,
the parameter ω provides a trade-off between the pruning power
and the storage space.

Next, we present a technique called diamond cover grouping that
partitions the PAAs (of an object) into a set of diamond MBRs.
Fig. 8(b) illustrates an example of the diamond cover grouping. In
this grouping, for each diamond MBR MD

ô(τ,`), ` is either of the
form m − x · ω or 0, and τ is either of the form y · ω or m − `,
where x, y are integers. Lemma 4 shows that the diamond cover
grouping significantly reduces the storage overhead, from O(m2)
to O(m2/ω2) per object.

ô(0, m-3) ô(1, m-3) ô(2, m-3) ô(3, m-3)

convert

ô(0, m)

ô(0, m-2) ô(1, m-2) ô(2, m-2)

...

MD
ô(0,m)ô(0, m-1) ô(1, m-1)

merge

PAA representationsSubsequences Diamond MBR

Diamond ID

of MD
ô(0,m)

eô(0, m)

eô(0, m-1) eô(1, m-1)

eô(1, m-2)

(a) Diamond MBR example, with ω = 1

ô(0,m)

ô(0,m-ω) ô(ω,m-ω)
11

22 33

44 55 66

......

ô(0,m-2ω) ô(2ω,m-2ω)

(b) Diamond cover grouping

Figure 8: Illustration of ω-diamond cover grouping

LEMMA 4 (NUMBER OF ω-DIAMOND MBRS). The number
of ω-diamond MBRs of an object is O(m2/ω2).

To further save storage space, we encode the offset τ and the
length ` of a diamond MBR into a diamond ID. These IDs are as-
signed to diamonds from top to bottom (see Fig. 8(b)). During
query time, we can derive the values of τ and ` from a diamond ID
conveniently. 10

Padding Zero Alignment. We proceed to minimize the volume
of a diamond MBR, and thus improve its pruning power.

ô(2,6)

ô(0,8)

ω
=2

0

ô(0,10)

ô(2,6)

ô(0,8)

dim1 dim2 dim1 dim2

(a) Non-Aligned PAA (b) Aligned PAA

ô(0,10)

ô(2,6)

ô(0,8)

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

ô(0,10)

Figure 9: Example of Padding Zero alignment

Recall that a diamond MBRMD
ô(τ,`) is built from the PAA repre-

sentations eô(τ ′,`′) of normalized subsequences ô(τ ′, `′) of o(τ, `).
Assume that ω = 2 and φ = 2 in the example of Fig. 9. The nor-
malized subsequences for building MD

ô(0,10) are: ô(0, 10), ô(0, 8),
ô(2, 6), and ô(2, 10). To construct their PAA representations, each
subsequence is decomposed into φ = 2 segments as shown in
Fig. 9(a). For instance, eô(0,10) and eô(0,8) are built by two seg-
ments of 5 and 4 values of o(0, 10), respectively. However, these
elements may not have strong correlation since they are built from
subsequences of different lengths and offsets.

To improve the correlation, we propose to align the subse-
quences by padding zeroes such that every subsequence in MD

o(τ,`)

has the same length ` and the same offset τ in every PAA di-
mension. For instance, in Fig. 9(b), we pad zeroes to the sub-
sequences ô(0, 8) and ô(2, 6), respectively, such that the aligned
subsequences have the same length and offset as ô(0, 10). Note
that padding zeroes into sequences does not affect any equation we
discussed in Sec. 4.1. On the other hand, it improves the correlation

10We remove the detail of this simple conversion due to page limit.

of the elements, minimizes the volume of the diamond MBR, and
thus provides better pruning ability during query processing.
Construction Time. Constructing a ω-diamond MBR takes
O(φω2) time, where ω2 is the number of subsequences in a dia-
mond. For each dimension of an PAA element, it can be calculated
inO(1) time by using two cumulative arrays (i.e., So and So2). For
the sake of presentation, we put the detail in Appendix.

4.2.2 Inter-Object Grouping
In Section 4.2.1, we only group subsequences of the same ob-

ject into ω-diamond MBRs. This section focuses on grouping ω-
diamond MBRs of different objects into higher-level MBRs called
compact MBRs.

For ease of query processing, only diamond MBRs MD
ô(τ,`) (of

different objects) with the same diamond ID are grouped into com-
pact MBRs MC

(τ,`). In order to support efficient query processing,
we group similar diamond MBRs together into higher-level MBRs
(i.e., compact MBRs) by existing grouping techniques (e.g., R*-
tree [4], clustering [24, 15], Hilbert curve [26], k-d tree [5]), which
aim to minimize the volumes of MBRs.

In terms of storage representation, each compact MBR MC
(τ,`)

consists of (i) a MBR, (ii) a diamond ID, for deriving its τ and `
values, and (iii) references to the contained diamond MBRs and
object IDs. Fig. 10 illustrates an example of the compact MBRs.
These compact MBRs serve as filters during query processing. We
can still apply Eq. 13 to compute the PAA distance upper bound
between the query and a compact MBR, and prune those compact
MBRs that cannot contribute to any query result.

MC
ô(0,m)

MD
ô2(0,m)

M
D

ô1(0,m)

MD
ô9(0,m)MD

ô2(0,m)

MD
ô9(0,m)MD

ô1(0,m)

Diamond ID of MC
ô(0,m)

Figure 10: Inter-object grouping

4.2.3 Achieving S space
The diamond cover index (DCI) is the collection of the compact

MBRs (including containing diamond MBRs) described above. We
now elaborate how to build DCI such that its space is bounded by
a given space budget S. By using Lemma 4, the total number of
ω-diamond MBRs for all n objects is O(nm2/ω2). Thus, we can
tune ω such that the total number of ω-diamond MBRs is within
the budget S. By subtracting the above space from S, we obtain
the maximum number of compact MBRs to be created in DCI.

4.3 Answering kLCS by DCI
Alg. 3 is our proposed algorithm that utilizes the diamond cover

index ID to answer a kLCS query q. It follows the top-down exe-
cution paradigm like in Algorithm 2.

Given a query sequence q, we construct the query ω-diamond
MBR MD

q̂(τ,`) on-demand. For every compact MBR at (τ, `), we
calculate the upper bound of MD

q̂(τ,`) and MC
(τ,`) by Eq. 13. If the

upper bound is above threshold δ, then we refine every object in
MC

(τ,`) by the function ω-SKIP (see Line 9). ω-SKIP is a variant
of SKIP (Alg. 2) which searches only the ω-diamond covering area
starting at (τ, `). In addition, ω-SKIP terminates when it discovers

the first result or the search length is shorter than the kth element
in the seen result set R.

We add the result or into theR if it is not covered by any element
in R and is longer than the kth result in R. We terminate the entire
search process and return R as the result when there is no more
diamond having subsequences longer than the kth element in R.

Algorithm 3 SKIP+DCI algorithm
Algorithm SKIP+DCI(Query q, Database O, Threshold δ, Maximum
sequence length m, Result size k, Skip factor α, DCI index Bc)

1: calculate S1
q and S1

q2

2: calculate Sαoi , Sα
o2i

, and Sαqoi for every oi ∈ O
3: for all ` ∈ {m,m− ω,m− 2ω, ..., 0} do . from m to 0
4: for all τ ∈ {0, ω, 2ω, ..., (m− `)} do . pruning phase at level `
5: construct MD

q̂(τ,`)
by the method discussed in Sec. 4.2.1

6: for all MC
ô(τ,`)

∈ ID
(τ,`)

do
7: if UB(MD

q̂(τ,`)
,MC

ô(τ,`)
, φ) ≥ δ then . see Eq. 13

8: for all o ∈MC
ô(τ,`)

do . refinement phase at level `
9: or := ω-SKIP(q, o, δ, α, τ, `, R)

10: if r 7 or, ∀r ∈ R and r.` < or.`, ∃r ∈ R then
11: insert or into R or replace kth element by or
12: if ` ≤ kth result length in R then
13: return R as result

Discussion. Answering kLCS by DCI is efficient since it applies
diamond batch pruning to save subsequence distance calculations.
Whenever the pruning step works (i.e., UB(· · ·) < δ at line 7), it
saves |MC | · ω2 distance calculations.

4.4 Extensions of DCI
Subsequence similarity queries. Besides kLCS, DCI also
supports subsequence matching queries [12] of arbitrary lengths.
Given a sequence query q of length ` and a correlation thresh-
old, we verify and prune corresponding compact MBRs based on
Eq. 13. As a remark, only those elements in unpruned compact
MBRs need to be refined by typical distance calculations [33]. Our
index is effective to process this kind of queries since each query
diamond MBRMq̂ includes subsequences having the same length `
(instead of having different lengths) such that it gives a tight upper
bound to Eq. 13.
Parallel programming. Our framework easily supports parallel
programming. At index construction, we partition the objects into
a number of pieces based on the available processor cores of the
query execution machine. An diamond cover index (DCI) is con-
structed for each piece of objects. At query processing, we sim-
ply execute SKIP+DCI on these diamond cover indices in parallel.
Note that we can terminate the search of an index when the kth re-
sult (being checked by message passing or by shared memory) is
already longer than the search length.

5. EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of our proposed methods. All methods are imple-
mented in C++, and evaluated on a machine running Ubuntu 10.10
with Intel Xeon 4-Cores (8-Threads) E5620 2.4GHz, 4GBytes of
main memory, and 4TBytes hard drive. We use the following
datasets to evaluate our proposed methods.
RAND. This synthetic dataset is generated by a random walk tech-
nique as suggested in [1]. For each sequence o, we randomly gener-
ate the first value (i.e., o[0]) in [−1.0, 1.0]. Each subsequent value
of o is generated by o[i+1] = o[i]∗(1+N(µ, σ)), where N(µ, σ) is

a normal distribution function. By default, we set the mean µ = 0
and the standard deviation σ = 0.2.
STOCK. The stock dataset is collected from Yahoo Finance 11. We
extract daily closing prices for 2187 quoted companies in NYSE
from 2008 to 2012, where each sequence is of length 1,037.
TAO. The Tropocal Atmosphere Ocean (TAO) dataset is collected
from the international Tropical Ocean Global Atmosphere (TOGA)
program 12. It contains sea surface temperatures of 55 array sensors
over several years. We extract weekly subsequences of each array.
The dataset consists of 28,399 sequences in total, where each se-
quence contains 1,008 values.

Table 1 shows the ranges of the investigated parameters and their
default values (in bold). In each experiment, we vary a single pa-
rameter, while setting the others to their default values.

Table 1: Range of parameter values
Type Parameter Dataset Values

Index

Stop length ratio, `stop/m - 5%, 10%, 15%, 20%
PAA dimensionality, φ - 6, 8, 10, 12, 14
Diamond side length, ω - 45(∼5%), 33(∼10%), 23(∼20%),

(ID cost ratio) 19(∼30%), 17(∼40%)
Index size ratio, S/(mn) - 25%, 50%, 100%, 200%

Alignment - aligned, non-aligned

Data

Cardinality, n
RAND 25k, 50k, 100k, 200k
STOCK 2k, 4k, 6k, 8k, 10k

TAO 28399

Sequence length, m
RAND 250, 500, 750, 1000
STOCK 1037

TAO 1008

Query
Correlation threshold, δ - 0.91, 0.93, 0.95, 0.97

Skip ratio, α/m - 0.2%, 5%, 10%, 15%, 20%
k - 1, 2, 4, 8, 16

In all experiments, a workload of 100 queries is used to evalu-
ate the performance, where the queries are generated based on the
distribution of the (synthetic) dataset or randomly picked from the
(real) dataset. In this work, we focus on the average response time
of the query workload. The raw data and indices (if applicable) are
pre-loaded in main memory for handling plenty of queries in the
workload. To measure the exact response time, we assume only
one single core available in the system unless explicitly stated.

5.1 Robustness of Diamond Cover Index
Index Construction Performance. DCI construction includes
two steps: intra-object grouping (Sec. 4.2.1) and inter-object group-
ing (Sec. 4.2.2). Under the default setting, the diamond side length
ω is set to 33. It takes 1.5 hours to construct all diamond MBRs at
intra-object grouping. The construction speed can be easily boosted
up multiple times by using parallel programming (e.g., OpenMP).

We have evaluated different grouping methods for implementing
inter-object grouping. We pick Hilbert curve as our default group-
ing method since it offers fast computation and reasonable group-
ing performance. For instance, the inter-grouping just takes 66.9
seconds using Hilbert curve under the default settings.
Effect of Index Parameters. We proceed to study the effect of
various parameters on the response time of our index DCI. First,
we show the effect of index size constraint S in Fig. 11(a). Not
surprisingly, the response time reduces as S becomes larger. Here,
we set the space constraint to mn (i.e., S/(mn) = 100%) since
it offers a good tradeoff between the storage size and query per-
formance. When S = 50%, the response time of SOTA+DCI and
SKIP+DCI increases by only 26.3% and 37.3%, respectively. This
indicates that the index is still effective when the systems has lim-
ited resources.

11http://finance.yahoo.com/
12http://www.pmel.noaa.gov/tao/

25% 50% 100% 200%
Index size ratio, S/(mn)

0

50

100

150

200

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA+DCI SKIP+DCI

(a) Effect of index size ratio

5% 10% 20% 30% 40%
ID cost ratio

0

50

100

150

200

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA+DCI SKIP+DCI

(b) Effect of side length, ω

10-1

100

101

102

103

104

V
o
lu

m
e
 s

iz
e

0

50

100

150

200

R
e
sp

o
n
se

 t
im

e
 (

s)

6 8 10 12 14
PAA dimensionality, φ

SOTA+DCI SKIP+DCI

(c) Effect of PAA dim, φ

5% 10% 20%
Stop length ratio, `stop/m

0

50

100

150

200

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA+DCI SKIP+DCI

(d) Effect of stop length ratio

Figure 11: Index tuning experiments

Next, we study the effect of diamond side length ω that controls
the number of diamond MBRs being constructed. Obviously, the
more diamond MBRs are constructed, the higher storage space is
needed to store their IDs in compact MBRs. Fig. 11(b) shows the
effect of ω. When ω is set to 33, it constructs 105 diamond MBRs
for each object under default settings (`stop = 50). Given the space
constraint S = mn, the cost of storing the diamond MBR IDs (ID
Cost) is around 10% of S; in other words, it leaves 90% space for
constructing compact MBRs. We pick ω = 33 (ID cost ∼10%) as
our default setting since it gives the best overall performance.

Fig. 11(c) shows the response time (by lines) and average MBR
volume (by bars) of PAA dimensionality φ. The value of φ gives a
tradeoff between the number and the volume of the compact MBRs.
For instance, when φ is small, there are more compact MBRs being
constructed under the same index size constraint S. However, the
volume of each compact MBR becomes looser since every element
is represented by fewer dimensions. Typically, the range of φ is
from 8 to 12. According to our experiments, we pick φ = 10 as
our default setting as it achieved the best overall performance.

According to our study, only a few queries return short length
result. For instance, there is no result being shorter than 20% of
m under the default settings. In addition, analysts may not be
interested in those short result due to lack of representativeness.
Thereby, we omit those diamond MBRs whose subsequence length
is shorter than a stop length, `stop (an index parameter). Note that
this does not affect the correctness of our algorithms since they can
still execute non-index methods below the length `stop. Fig. 11(d)
shows the effect of `stop. We pick 10% of the total length as our
default setting since it gives a good tradeoff between the efficiency
and the applicability of the index.

In summary, while `stop is more likely specified by domain ap-
plication experts, S is set based on available resources, and the
value of φ can be tuned according to previous work [18, 35]. The
only tunable parameter is the diamond side length ω, which con-
trols between the intra and inter grouping. We recommend to use
10% of the space overhead to store IDs of diamond MBRs.
Effect of α. Fig. 12(a) shows the effect of α, where the response
time of both SKIP and SKIP+DCI grows slowly with α. This offers
room for tuning α under different resource available in the system.
Effectiveness of alignment. In Sec. 4.2.1, we discuss a padding

0.2% 5% 10% 15% 20%
Skip ratio, a/m

0

20

40

60

80

100

120

140
R

e
sp

o
n
se

 t
im

e
 (

s)
SKIP+DCI SKIP

(a) Effect of skip ratio, α/m

10-3

10-2

10-1

100

101

102

103

104

105

106

V
o
lu

m
e
 s

iz
e

434 368 302 236 170 104 38
Diamond element length

aligned non-aligned

(b) Aligned vs Non-aligned

Figure 12: The effect of proposed techniques

zero technique that aligns the elements in a ω-diamond MBR.
Fig. 12(b) demonstrates the effectiveness of the alignment. The
average volume size of non-aligned MBRs is 1 to 2 orders of mag-
nitude larger than the aligned MBRs at different element lengths.

5.2 Performance Studies

0

10

20

30

40

50

#
 o

f
q
u
e
ry

 s
e
q
u
e
n
ce

s

500460420380340300260220180140100
Result length

(a) Result distribution

480 440 400 360 320 280 240 200 160 120
Result length

100

101

102

103

104

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA
SOTA+DCI

SKIP
SKIP+DCI

(b) Average response time

Figure 13: Performance at different result lengths on RAND

Performance Overview. Before evaluating the effect of vari-
ous scalability parameters, we give a performance overview of four
proposed methods, SOTA (Sec. 3.1), SKIP (Sec. 3.2), SOTA+DCI
(Sec. 4.3), and SKIP+DCI (Sec. 4.3). Fig. 13 shows the distri-
bution of result lengths and the average response time for each
result length, under default parameter settings on RAND dataset.
In Fig. 13(a), the total sum of all bars equals 100 (query work-
load size), and the width of each bar is 40. SOTA and SKIP are
5.01 and 5.23 times on average slower than their index versions,
SOTA+DCI and SKIP+DCI, respectively. Especially for the most
difficult queries (i.e., shortest result lengths), SKIP+DCI is faster
than the state-of-the-art adaption (SOTA) by 19.58 times. As a re-
mark, the state-of-the-art techniques [33] (applied in SOTA) were
already 16.24 times faster than previous distance calculation on
ECG data [6].

Regarding the memory usage, SOTA and SKIP consume 417.65
MBytes (∼the raw data) and 451.54 MBytes (∼raw data plus α-
skipping arrays), respectively. All DCI methods require 381.47
MBytes (=the raw data) extra memory to store the index.
Scalability Experiments. Fig. 14(a) shows the response time of
the methods as a function of cardinality n, after setting all other
parameters to their default values. Cost grows linearly with n for
all methods. SKIP is 3.48 times faster than SOTA on average. The
index version of SKIP is 4.65 times faster than the non-index ver-
sion on average. Our best method, SKIP+DCI, remains superior to
other methods at difficult cases (largest cardinality).

Fig. 14(b) shows the response time of the methods versus se-
quence lengthm. Cost grows exponentially withm for all methods.
SKIP (SKIP+DCI) is at least 2.39 (1.75) times faster than SOTA
(SOTA+DCI). Note that SKIP is almost as efficient as the index

25k 50k 100k 200k
Number of sequences, n

102

103

104

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA
SOTA+DCI

SKIP
SKIP+DCI

(a) Effect of cardinality, n

250 500 750 1000
Sequence length, m

102

103

104

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA
SOTA+DCI

SKIP
SKIP+DCI

(b) Effect of sequence length,m

0.91 0.93 0.95 0.97
Correlation threshold, δ

102

103

104

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA
SOTA+DCI

SKIP
SKIP+DCI

(c) Effect of δ

1 2 4 8 16
k

102

103

104

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA
SOTA+DCI

SKIP
SKIP+DCI

(d) Effect of k

Figure 14: Scalability experiments on RAND

version of SOTA when m is large. The superiority of SKIP+DCI
becomes more obvious when m increases.

The response time of different correlation thresholds δ is shown
in Fig. 14(c). As we aim to find longest-lasting highly correlated
subsequences, some weak correlation thresholds are discarded such
as 0.8, 0.85. And one can expect to discover the longest-lasting cor-
related subsequences in its whole length using these weak correla-
tion thresholds among massive sequence database. All methods are
sensitive to δ since kLCS may search shorter subsequences as δ in-
creases. The performance gap between SOTA+DCI and SKIP+DCI
becomes closer at δ = 0.97 since the reordering early abandon
technique may work well when δ is high. As a remark, increasing
δ does not necessarily reveal better result as it may return a set of
short and non-representative LCS result.

Fig. 14(d) shows the response time versus k. The response time
increases linearly with k, as more results are discovered. Our
SKIP+DCI still performs the best, followed by SKIP/SOTA+DCI,
and SOTA.

70%

75%

80%

85%

90%

95%

100%

P
ru

n
in

g
 a

b
ili

ty

400 350 300 250 200 150 100
Query length

(a) Sequence matching queries

1 2 4 8
of processor cores

0

5

10

15

20

25

R
e
sp

o
n
se

 t
im

e
 (

s)

SKIP+DCI

(b) kLCS in parallel

Figure 15: Additional experiments on RAND

Additional Experiments. Fig. 15(a) demonstrates the prun-
ing ability of subsequence matching queries on DCI (discussed in
Sec. 4.4), where it reports the ratio of pruned objects at threshold
0.95. The result is very impressive since DCI can prune 88.9% of
objects on average among different query lengths. This also reveals
the potential of applying DCI for various similarity queries.

Fig. 15(b) shows the response time of SKIP+DCI versus the
number of processor cores. Based on the number of cores avail-

able in the system, we partition the data into the same number of
pieces and build an DCI for each piece of data. The result shows
that the response time is boosted up proportional to the number of
cores used. When we process kLCS by 8 cores, the response time
is reduced to 3.23 seconds.
Real dataset experiments. To evaluate the stock data in a more

2k 4k 6k 8k 10k
Number of sequences, n

101

102

103

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA
SOTA+DCI

SKIP
SKIP+DCI

(a) Effect of n on STOCK

0.91 0.93 0.95 0.97
Correlation threshold, δ

102

103

104

R
e
sp

o
n
se

 t
im

e
 (

s)

SOTA
SOTA+DCI

SKIP
SKIP+DCI

(b) Effect of δ on TAO

Figure 16: Real data experiments

meaningful way, we simulate more stocks by merging several real
stock segments together. In Fig. 16(a), it shows the response time
of the methods as a function of the stock data in different cardinal-
ities. Cost grows linearly with n for all methods when n ≥ 4k.
Regarding the case of n = 2k, the index methods are slower than
the cases, n = 4k and n = 6k, since the inter-object grouping is
not effective at very low cardinalities.

Fig. 16(b) shows the response time of the methods as a function
of threshold, δ, on TAO dataset. The trend is similar to that of
Fig. 14(c). SOTA+DCI is faster at δ = 0.97 than δ = 0.95 since
the reordering early abandon technique works well. However, it is
still 2.93 times slower than SKIP+DCI. We add a note that the effect
of different scalability parameters on the real datasets is similar to
those of Fig. 14 in our internal testings. We omit the experiments
due to the space limitation.

6. RELATED WORK
Indexing and mining sequence data has received plenty of atten-

tion in database and data mining community in the last two decades,
such as similarity search and subsequence matching [2, 3, 4, 7, 12,
13, 17, 30, 33, 35], classification and clustering [21, 27], motif
discovery [28], prominent streak and anomaly detection [8, 16],
etc. However, to the best of our knowledge, there is no existing
technique on efficiently discovering the longest-lasting correlated
subsequence (LCS) in sequence databases.

In order to discover kLCS efficiently, our method requires
a multi-length index to support batch pruning for subsequence
queries of different lengths. A related work called Multi-Resolution
Index (MRI) [17] deals with arbitrary length queries more effi-
ciently than I-adaptive [12] which employs prefix search to support
longer query. MRI is a collection of I-adaptive indexes at differ-
ent based-2 resolutions. At query time, hierarchical prefix search
can be applied on MRI. However, as we mentioned in Section 2.2,
prefix search can only work for non-normalized distance measures.
Rakthanmannon et al. [33] proposed an non-index method to boost
up the normalized arbitrary length subsequence search for both Eu-
clidean distance and Dynamic Time Warping (DTW) using the Z-
normalization early abandonment and reordering early abandon.
A main drawback of the non-index solutions is that they do not
support batch pruning. If a query q is not similar to a subsequence,
then q is unlikely similar to its neighbor subsequences.

Other related works include StatStream [38], Mueen et al. [29]
and BRAID [34]. StatStream focuses on efficiently finding high-
est correlated sequence pairs within a finite window by using DFT
to maintain a grid data structure. Mueen et al. consider a simi-
lar problem to StatStream, but solve it by approximation. It used
the graph partitioning to optimize I/O cost and the DFT approxi-
mation to optimize the CPU cost while providing error guarantees.
BRAID solved the problem of finding lag correlation among mul-
tiple streams. Given k co-evolving sequences, at any point of time,
BRAID attempts to report all sequence pairs with a lag correlation
as well as their lags.

Most of the above methods either only support fixed length query
or only work under non-normalized distance metrics. In summary,
there is no known technique to support longest-lasting correlated
queries efficiently.

7. CONCLUSION
In this paper, we propose a novel technique which can ef-

ficiently discover longest-lasting correlated subsequences in se-
quence database. Our basic idea is to derive a tight correlation
bound for subsequences of similar length and offset. The corre-
lation upper bound can be calculated prior to accessing the actual
subsequence, thus achieving significant reduction of the candidate
subsequences. Two core techniques, α-skipping technique and dia-
mond cover index, are proposed for this purpose and they are eval-
uated thoroughly in this paper. Given reasonable space overhead,
our best approach is up to one order of magnitude faster than the
state-of-the-art adaption. As future work, we plan to extend our
methods to support different kinds of correlation queries.

Acknowledgement
This project was supported by grant MYRG109(Y1-L3)-FST12-
ULH from University of Macau Research Committee and grant
PolyU 5302/12E from Hong Kong RGC.

8. REFERENCES
[1] Monte Carlo simulated stock price generator.

http://25yearsofprogramming.com/blog/20070412
c-montecarlostockprices.htm.

[2] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: efficient
time series search and retrieval. In EDBT, pages 252–263, 2008.

[3] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and
D. Gunopulos. Approximate embedding-based subsequence
matching of time series. In SIGMOD, pages 365–378, 2008.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles. In SIGMOD, pages 322–331. ACM Press, 1990.

[5] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, 1975.

[6] T. Bragge, M. Tarvainen, and P. A. Karjalainen. High-resolution qrs
detection algorithm for sparsely sampled ecg recordings. univ. of
kuopio, dept. of applied physics report., 2004.

[7] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh. isax 2.0: Indexing
and mining one billion time series. In ICDM, pages 58–67, 2010.

[8] V. Chandola, V. Mithal, and V. Kumar. Comparative evaluation of
anomaly detection techniques for sequence data. In ICDM, pages
743–748, 2008.

[9] C.-I. Chang. Hyperspectral Imaging: Techniques for Spectral
Detection and Classification. Plenum Publishing Co., 2003.

[10] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over
uncooperative time series. In KDD, pages 743–749, 2005.

[11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh.
Querying and mining of time series data: experimental comparison
of representations and distance measures. PVLDB, 1(2):1542–1552,
2008.

[12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In SIGMOD, pages
419–429, 1994.

[13] R. F. S. Filho, A. J. M. Traina, C. T. Jr., and C. Faloutsos. Similarity
search without tears: The omni family of all-purpose access methods.
In ICDE, pages 623–630, 2001.

[14] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins in a
database (almost) for free. In VLDB, pages 491–500, 2001.

[15] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.
ACM Comput. Surv., 31(3):264–323, 1999.

[16] X. Jiang, C. Li, P. Luo, M. Wang, and Y. Yu. Prominent streak
discovery in sequence data. In KDD, pages 1280–1288, 2011.

[17] T. Kahveci and A. K. Singh. Optimizing similarity search for
arbitrary length time series queries. IEEE TKDE, 16(4):418–433,
2004.

[18] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large time
series databases. Knowl. Inf. Syst., 3(3):263–286, 2001.

[19] E. J. Keogh and S. Kasetty. On the need for time series data mining
benchmarks: A survey and empirical demonstration. Data Min.
Knowl. Discov., 7(4):349–371, 2003.

[20] E. J. Keogh, L. Wei, X. Xi, M. Vlachos, S.-H. Lee, and
P. Protopapas. Supporting exact indexing of arbitrarily rotated shapes
and periodic time series under euclidean and warping distance
measures. VLDB J., 18(3):611–630, 2009.

[21] T. W. Liao. Clustering of time series data - a survey. Pattern
Recognition, 38(11):1857–1874, 2005.

[22] S.-H. Lim, H. Park, and S.-W. Kim. Using multiple indexes for
efficient subsequence matching in time-series databases. Inf. Sci.,
177(24):5691–5706, 2007.

[23] J. Lin, E. J. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a
novel symbolic representation of time series. Data Min. Knowl.
Discov., 15(2):107–144, 2007.

[24] J. MacQueen. Some methods for classification and analysis of
multivariate observations. In Proc. Fifth Berkeley Symp. on Math.
Statist. and Prob., volume 1, pages 281–297. U. of Calif. Press, 1967.

[25] C. Meek, J. M. Patel, and S. Kasetty. Oasis: An online and accurate
technique for local-alignment searches on biological sequences. In
VLDB, pages 910–921, 2003.

[26] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of
the clustering properties of the hilbert space-filling curve. IEEE
TKDE, 13(1):124–141, 2001.

[27] A. Mueen, E. J. Keogh, and N. Young. Logical-shapelets: an
expressive primitive for time series classification. In KDD, pages
1154–1162, 2011.

[28] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, and M. B. Westover. Exact
discovery of time series motifs. In SDM, pages 473–484, 2009.

[29] A. Mueen, S. Nath, and J. Liu. Fast approximate correlation for
massive time-series data. In SIGMOD, pages 171–182, 2010.

[30] P. Papapetrou, V. Athitsos, M. Potamias, G. Kollios, and
D. Gunopulos. Embedding-based subsequence matching in
time-series databases. ACM TODS, 36(3):17, 2011.

[31] P. Patel, E. J. Keogh, J. Lin, and S. Lonardi. Mining motifs in
massive time series databases. In ICDM, pages 370–377, 2002.

[32] D. Rafiei. On similarity-based queries for time series data. In ICDE,
pages 410–417, 1999.

[33] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A.
Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh.
Searching and mining trillions of time series subsequences under
dynamic time warping. In KDD, pages 262–270, 2012.

[34] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining
through group lag correlations. In SIGMOD, pages 599–610, 2005.

[35] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary
lp norms. In VLDB, pages 385–394. Morgan Kaufmann, 2000.

[36] P. N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA, pages 311–321, 1993.

[37] H. Zhu, G. Kollios, and V. Athitsos. A generic framework for
efficient and effective subsequence retrieval. PVLDB,
5(11):1579–1590, 2012.

[38] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of

thousands of data streams in real time. In VLDB, pages 358–369,
2002.

APPENDIX
Lemma 1. Proof. For the sake of brevity, we only prove that
the normalized p-norm subsequence distance d̂p(q, o, τ, `) is not
monotone decreasing for `. The other cases (including monotone
increasing for ` or τ and monotone decreasing for τ) can be proved
similarly. Suppose the normalized p-norm subsequence distance is
monotone decreasing for `, then it must hold

(
∑̀
i=1

|q̂(τ, `)[i]−ô(τ, `)[i]|p)1/p ≥ (

`′∑
i=1

|q̂(τ, `′)[i]−ô(τ, `′)[i]|p)1/p

where ` > `′. Suppose that q(τ, `-1) is a strict monotone increasing
sequence, i.e., ∀i, q(τ, `)[i−1] < q(τ, `)[i], and o(τ, `-1) is a strict
monotone decreasing sequence, i.e., ∀i, o(τ, `)[i− 1] > o(τ, `)[i].
We must have

(

`−1∑
i=1

|q̂(τ, `− 1)[i]− ô(τ, `− 1)[i]|p)1/p > 0 (14)

Next, we set the `-th value of two subsequence, q(τ, `)[`] and
o(τ, `)[`], to infinite. This makes the difference of their normalized
form at every position be close to the limit of 0.

lim
q(τ,`)[`]=o(τ,`)[`]=∞

q̂(τ, `)[i]− ô(τ, `)[i] = 0

where 1 ≤ i ≤ `. Accordingly, we have

lim
q(τ,`)[`]=o(τ,`)[`]=∞

(
∑̀
i=1

|q̂(τ, `)[i]− ô(τ, `)[i]|p)1/p = 0 (15)

This is in clear contradiction to our assumption (i.e., Eq. 15�
Eq. 14). Therefore, the normalized p-norm subsequence distance is
not monotone decreasing for `.
Lemma 2. Proof. First, we prove that computing SX [u + i]

or SX [u− i] takes O(i) time by giving SX [u] and the raw data of
X . According to Eq. 6, SX [u + i] = SX [u] +

∑u+i
j=u+1 X [j] and

SX [u − i] = SX [u] −
∑u−1
j=u−i X [j]. It is clear that computing∑u+i

j=u+1 X [j] or
∑u−1
j=u−i X [j] takes O(i) time. Thereby, we can

compute SX [u+i] or SX [u−i] inO(i) time. In α-skipping arrays,
the maximum value of i is α. Accordingly, computing ρ(q, o, τ, `)
can be done in O(α) time by Eq. 1.
Lemma 3. Proof. Based on Eq. 9, we have

dPAA(eq̂, eô, φ) =
√
`/φ · d2(eq̂, eô, φ)

≥
√
`/`min

√
`min/φ · dmin2 (Mq̂,Mô, φ)

≥
√
`/`min · dPAA(Mq̂,Mô, φ) (by Eq. 11)

Lemma 4. Proof. The number of diamond MBRs per object
sequence o is

1 + 2 + ...+m/ω =
(m/ω)(m/ω + 1)

2
=

1

ω2

m(m+ 1/ω)

2

≤ 1

ω2

m(m+ 1)

2
(assuming ω ≥ 1)

ω-Diamond Construction. Given two cumulative arrays (i.e., So
and So2), eô(τ,`)[i] can be computed in O(1) time by combining
Eq. 2 and the following equation.

eô(τ,`)[i] =
φ

`

(So[
`
φ
(i+ 1)− 1]− So[`φ · i] + o[`

φ
· i])− `

φ
µo(τ,`)

σo(τ,`)

where σX (τ,`) is calculated by Eq. 5 and µX (τ,`) is calculated by
Eq. 4 in O(1) time.

