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Abstract—Similarity computation is a core subroutine of many
mining tasks on multi-dimensional data, which are often massive
datasets at high dimensionality. In these mining tasks, the per-
formance bottleneck is caused by the ‘memory wall’ problem as
substantial amount of data needs to be transferred from memory
to processors. Recent advances in non-volatile memory (NVM)
enable processing-in-memory (PIM), which reduces data transfer
and thus alleviates the performance bottleneck. Nevertheless,
NVM PIM supports specific operations only (e.g., dot-product
on non-negative integer vectors) but not arbitrary operations.
In this paper, we tackle the above challenge and carefully
exploit NVM PIM to accelerate similarity-based mining tasks
on multi-dimensional data without compromising the accuracy
of results. Experimental results on real datasets show that our
proposed method achieves up to 10.5x and 8.5x speedup for
state-of-art kNN classification and k-means clustering algorithms,
respectively.

I. INTRODUCTION

Similarity computation is an essential building block for

many mining tasks on multi-dimensional data. Examples of

similarity-based mining tasks include kNN classification, k-

means clustering, motif discovery and anomaly detection.

These mining tasks often deal with massive datasets at high

dimensionality. In addition, we encounter the memory wall

issue due to the ever-growing gap between processor speed and

memory speed. This renders similarity computation in mining

tasks expensive due to the substantial amount of data transfer

between processors and memory.

Recently, emerging non-volatile memory (NVM) devices

like resistive RAM (ReRAM) [1], spin-transfer torque

RAM (STT-RAM) and phase-change memory (PCM) enable

processing-in-memory (PIM) [2], which is an efficient ap-

proach to diminish expensive data transfer (to processors) by

directly processing the data stored in such devices. Among

these candidates of NVM devices, ReRAM has superior char-

acteristics such as lower read latency, higher data density and

lower write energy. In the past decade, the industry (e.g.,

HP, Samsung, Toshiba [3]) has been developing ReRAM for

supporting PIM.

In this paper, we investigate how to accelerate similarity-

based mining tasks by using ReRAM PIM without compro-

mising the accuracy of results. Our challenges stem from the

following characteristics of ReRAM. First, ReRAM relies on

crossbars for processing data, and it only supports specific

operations (e.g., dot-product or vector-matrix multiplication)

but not arbitrary operations. Second, the operands in ReRAM

PIM can only be non-negative integers (with limited preci-

sion), due to the nature of analog computation in ReRAM

crossbars. Third, the write endurance of ReRAM is limited

compared to DRAM.

We are aware of prior works on utilizing ReRAM PIM in

several application domains, e.g., neural network [4], graph

computing [5], and DNA alignment [6]. However, they have

not studied how to accelerate similarity computation on multi-

dimensional data.

To tackle the aforementioned challenges, we propose a

framework that exploits ReRAM PIM to accelerate a given

similarity-based data mining algorithm, while preserving the

accuracy of results.

• First, we conduct performance profiling on the similarity-

based mining algorithm to identify its performance bottleneck

(Section IV).

• Second, we present our solution in Section V. Our idea is

to decompose a similarity (or its bound) function into different

parts so that: (i) most of the computation can be quickly

performed by using ReRAM PIM, and (ii) the remaining parts

can be executed in the host processor (e.g., CPU) with little

data transfer. We establish PIM-aware bound computation so

that the accuracy of results won’t be compromised.

Experimental results on real datasets show that our proposed

method achieves up to 10.5x and 8.5x speedup for state-

of-art kNN classification and k-means clustering algorithms,

respectively (Section VI).

In the following, we first introduce the background of

ReRAM PIM, and review similarity functions and similarity-

based mining algorithms (Section II), then present an overview

of our proposed framework (Section III).

II. BACKGROUND

A. ReRAM Processing-in-memory

ReRAM is a promising candidate for future memory sys-

tems. A ReRAM cell can switch its state among different

resistance levels, which can be used to represent a 1-7 bits

integer. Each cell is connected by two orthogonal nanowires

- wordline and bitline, and multiple wordlines and bitlines

compose a crossbar. This crossbar structure leads to efficient

computation in analog manner. By injecting voltages into

wordlines, the currents measured at end of bitlines become

the dot-product results of input voltages and conductance on

cells. Figure 1 shows an example on a 3x3 2-bit crossbar.
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Fig. 1. Example of PIM dot-product operation on ReRAM crossbar.

ReRAM PIM can deal with high-precision data (b > h),

where b denotes the bit size of data operand, and h denotes the

bit precision of a ReRAM cell. A b-bit operand (multiplier) is

segmented into multiple h-bit parts and then stored in adjacent

cells at the same row. Similarly, multiplicands are segmented

and converted to input voltages by every h bits. Dot-product

is decomposed into several sub-operations, and the final result

is obtained by shifting and adding the result of each sub-

operation with circuit S&A [5]. Figure 2 depicts an example

of processing 6-bit data on 2-bit cells. The decimal value ‘25’

(‘011001’ in binary), is segmented to ‘1’ (‘01’), ‘2’ (‘10’), ‘1’

(‘01’).
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Fig. 2. Example of pipeline of PIM dot-product operation on high-precision
(i.e., b>h) data, example crossbar contains 3x3 2-bit cells. S&H is sample

and hold circuit, S&A is shift and add circuit. DAC (ADC) is digital (analog)-

to-analog (digital) converter.

ReRAM PIM can also compute dot-product on high-

dimensional data, when the dimensionality exceeds the cross-

bar size. A crossbar is typically smaller than 1024×1024 [1].

Given a crossbar with the size of m×m, a d-dimensional

vector can be decomposed to a group of m-dimensional

vectors, each of which is mapped to a crossbar (denoted as

‘data crossbar’). Then each data crossbar provides an output

as partial results, and a crossbar (denoted as ‘gather crossbar’)

storing all-ones vector e=[1, ..., 1] is employed to sum up

partial results vertically. Figure 3 presents an example of

handling 6-dimensional vector on a 3x3 crossbar.

The high performance of ReRAM PIM relies on two fea-

tures: massive parallelism and reduction of data transfer. First,

massive crossbars compose ReRAM, and each crossbar serves

as a processing unit to concurrently compute multiple data in

a fashion similar to SIMD. Second, data is processed without
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Fig. 3. Example of PIM dot-product operation on high-dimensional (i.e.,
d>m) data, example crossbar contains 3x3 2-bit cells (omit peripheral circuits
for simplicity).

being moved to CPU. However, due to the analog computation

on crossbars, ReRAM supports only dot-product operation

on non-negative integer vectors but not arbitrary operations.

Prior works [4], [6], [7] proposed several approaches to tackle

the constrains, such as adding customized units to support

more computing functionalities, and using fixed-point num-

bers to approximate floating-point values. Nevertheless, these

approaches either can only be used for specific workloads, or

cause the precision loss of results, which cannot be directly

adopted to similarity-based mining tasks.

B. Similarity Measure

The similarity between high-dimensional objects is gen-

erally measured by distance. We focus on three distances:

squared Euclidean distance (ED), cosine similarity (CS), and

Pearson correlation coefficient (PCC) [8]. Let p denote a

d-dimensional vector in dataset D. pi is the value on i-th
dimension and takes b-bit. N is the number of vectors in D.

dist(p, q) is the distance between vector p and q, such as

ED(p, q). The computation of these distances relies on simple

arithmetic operations, yet triggers O(d) cost of data transfer,

which becomes the major bottleneck for many workloads.

C. Similarity-based Data Mining Algorithms

Similarity computation is an essential subroutine in many

mining tasks. Especially, kNN classification and k-means

clustering are two of the most widely used such tasks. Given

an object q, kNN identifies k objects nearest to q [8]. While

index structures suffer from “the curse of dimensionality”,

the distance bounds become an alternative to speedup kNN.

Unpromising candidates are pruned by the bounds, so as to

reduce calling expensive exact computation, which is known

as the filtering-and-refinement paradigm. Table 1 shows rep-

resentative distance bounds, where prefix LB denotes lower

bounds of exact distance that satisfies LB(p, q)≤dist(p, q).
The bounds adopt dimensionality reduction techniques, such

as dividing d-dimensional vector into l segments with equal

length d′ (e.g., l · d′ = d).

k-means groups the nearest objects into k clusters [9]. ED is

the most popular distance for k-means. Despite its age, Lloyd’s

algorithm [10] has shown efficiency of converging in a small

number of iterations to near-optimal solution. Elkan [11],



Drake [12], Yinyang [13] are the representative techniques

to optimize Lloyd’s algorithm. The common idea is to use

triangle inequality to reduce the distance computation between

data objects and cluster centers.

Table 1
REPRESENTATIVE BOUNDS FOR kNN CLASSIFICATION: LBOST [14],

LBSM [15], LBFNN [16], AND UBpart [17].

Symbol Equation Dis.

LBOST(p,q)
∑d′

i=1
(pi−qi)

2+(
√

∑

d
i=d′+1

p2
i
−
√

∑

d
i=d′+1

q2
i
)2 ED

LBSM (p, q) l ·
∑d′

i=1
(µ(p̂i) − µ(p̂i))

2 ED

LBFNN(p,q) l ·
∑d′

i=1
((µ(p̂i) − µ(q̂i))

2+(σ(p̂i) − σ(q̂i))
2) ED

UBpart(p, q)
∑d′

i=1
piqi+

√

∑

d
i=d′+1

p2
i

√

∑

d
i=d′+1

q2
i

PCC

CS

III. OVERVIEW

A. PIM Architecture

Figure 4 depicts an overview of heterogeneous architecture

with ReRAM PIM, functionalities of storage and processing

are integrated on main memory. Each memory bank contains

three parts: memory array, buffer array, and PIM array.

Memory array works for storage, playing the same role as in

traditional architecture to exchange data with host processor.

PIM array is composed of multiple crossbars that are capable

of processing the resided data. Next to PIM array, there

is buffer array used to cache PIM results, as the massive

parallelism of PIM produces abundant results concurrently.

This simple architecture is widely adopted in prior works [2].
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Fig. 4. Overview of conventional architecture (a) and ReRAM-based
processing-in-memory architecture (b).

B. Systematic Framework

ReRAM PIM offers an opportunity of reducing data transfer

from memory to processor. However, it does not support

arbitrary computation. We propose a framework to make a

similarity-based mining algorithm aware of characteristics of

ReRAM PIM. The limited functionality of PIM makes it

infeasible to run the entire algorithm. We use PIM for the

similarity computation, and host processor (e.g., CPU) to

coordinate the remaining steps. Given an algorithm, the first

step is to conduct performance profiling, through which we

identify the function causing the major bottleneck (Section

IV). If the function is a similarity or bound function feasible

to expose most computational task as dot-product, we define it

as PIM-aware function that can enjoy offloading computation

to PIM (Section V-A). We next present PIM-aware bound

function based on non-negative integers, which helps to prune

unpromising candidates and guarantee correct result (Section

V-B). PIM array typically has limited space, which might

be infeasible to accommodate the entire dataset. We then

compress the dataset based on given hardware to avoid re-

programming the crossbars (Section V-C).

IV. ALGORITHM PROFILING

Profiling an algorithm by functions helps us identify the

function causing performance bottleneck. The execution time

of an algorithm can be decomposed to components spent on

each function and time Tother caused by all other operations

such as condition check. Assume the algorithm contains t
functions f1, f2, ..., ft, and the time spent on each function is

Tf1 , Tf2 , ..., Tft respectively. Then total execution time Ttotal

of algorithm is Ttotal=
∑t

i=1 Tfi + Tother.

Figure 5 depicts the execution time breakdown of kNN and

k-means algorithms. ‘Standard’ denotes the linear scan method

for kNN, and Lloyd’s algorithm for k-means, respectively.

FNN [16], OST [14], and SM [15] are state-of-art kNN

algorithms, which employ the bounds shown in Table 1. Figure

5(a) shows that for kNN, calculation of ED dominates the

execution time for Standard, and bound functions such as

LBFNN incur the majority (72%-86%) of total time for other

algorithms. Figure 5(b) shows that the calculation of ED
takes 52-96% of the execution time for k-means algorithms.

Since the performance bottleneck is caused by either distance

computation or bound computation, we plan to accelerate these

functions by using PIM.
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Fig. 5. Execution time breakdown of representative kNN (a) and k-means
algorithms (b).

V. ACCELERATING ALGORITHM WITH PIM

In this section. we present how to compute the distance and

bound functions with PIM by addressing the limitations.

A. PIM-aware Function Decomposition

We identify a similarity or bound function as PIM-aware

function if it can be decomposed to expose most computation

as dot-product. Recall that ReRAM crossbars support specific

operations (e.g., dot-product) but not arbitrary operations.

Fortunately, it is possible to decompose a function into two

parts: (i) sub-operations that can be processed by PIM, and

(ii) sub-operations that can be pre-computed. PIM readily

processes the vector data at online stage, the results of which

are merged with pre-computed data in host processor for the

final result. In this way, we decompose similarity or bound

function F (p, q) into PIM-aware format as follows:

F (p, q) = G(Φ(p),Φ(q), p·q) (1)

• Φ(p) takes a vector p from a dataset D as input and

returns a fixed-size output. This function can be computed at



Table 2
PIM-AWARE DECOMPOSITION OF SIMILARITY FUNCTION AND BOUND FUNCTION.

Offline Online

Function Φ(p) Φ(q) p·q G

ED
∑d

i=1 p
2
i

∑d
i=1 q

2
i

∑d
i=1 piqi Φ(p) + Φ(q)− 2·p·q

CS

√

∑d
i=1 p

2
i

√

∑d
i=1 q

2
i

∑d
i=1 piqi

p·q

Φ(p)Φ(q)

PCC
Φa:

√

d
∑d

i=1 p
2
i −(

∑d
i=1 pi)

2 Φa:

√

d
∑d

i=1 q
2
i −(

∑d
i=1 qi)

2
∑d

i=1 piqi
d·p·q−Φb(p)Φb(q)

Φa(p)Φa(q)Φb:
∑d

i=1 pi Φb:
∑d

i=1 qi

LBFNN l ·
∑d′

i=1(µ(p̂i)
2 + σ(p̂i)

2) l ·
∑d′

i=1(µ(q̂i)
2 + σ(q̂i)

2)
µ(p̂)·µ(q̂):

∑d′

i=1 µ(p̂i)µ(q̂i) Φ(p)+Φ(q)−2l·µ(p̂)·µ(q̂)
−2l·σ(p̂)·σ(q̂)σ(p̂)·σ(q̂):

∑d′

i=1 σ(p̂i)σ(q̂i)

offline stage. The same function Φ(q) can be applied on a

given vector q involving applications, such as query object in

kNN. It suffices to evaluate Φ(q) once. This can be computed

in the host processor at the online stage.

• The dot-product operation p · q can be computed on PIM,

which requires only constant data transfer cost.

• The function G is used to combine Φ(p), Φ(q) and p · q
into the final result of F (p, q) at online stage. This function

can be calculated in host processor because of the constant

time complexity.

ED is a PIM-aware function as it can be rewritten as

follows:

ED(p, q)
︸ ︷︷ ︸

G

=

d∑

i=1

p2i

︸ ︷︷ ︸

Φ(p)

+

d∑

i=1

q2i

︸ ︷︷ ︸

Φ(q)

−2

d∑

i=1

pi · qi

︸ ︷︷ ︸

p·q

(2)

Indeed, CS, PCC, and the bound functions in Table 1 are

also PIM-aware functions, because they can be decomposed as

shown in Table 2. Note that Table 2 depicts some examples of

corresponding function G, and the others are omitted due to

space constraints. PIM-aware function can enjoy significant

reduction of data transfer. For example, ED(p, q) on d-

dimensional vectors demands transferring d·b bits between

memory and CPU on conventional architectures. In contrast,

computation on the vectors is done by pre-processing or PIM

in G, which reduces the data transfer to 3·b bits.

B. PIM-aware Bound Computation

PIM can exactly compute on non-negative integer data.

However, the similarity or bound functions such as ED
typically operate on floating-point vectors, PIM cannot di-

rectly compute the exact value of the functions. The correct

results of algorithm thus cannot be guaranteed. To tackle this,

we utilize PIM to compute lower/upper bounds of distance

functions, which still benefits from the significant reduction

on data transfer. The lower/upper bounds are used to prune

unpromising objects following filter-and-refinement strategy,

which can guarantee the correct results.

Given dataset D, we initially normalize the floating-point

values to be range of [0, 1]. Form here, scalar pi is non-

negative value within [0, 1]. We then enlarge pi by multiplying

constant α as scaling factor, and truncate the integer part ⌊p̄i⌋.

Then we have a vector ⌊p̄⌋ with only non-negative integers:

p̄i = pi · α (3)

⌊p̄⌋ = (⌊p̄1⌋ , ⌊p̄2⌋ , ..., ⌊p̄d⌋) (4)

We then propose PIM-aware bound function, which serves

as a bound of PIM-aware function. The involved dot-product

operations just need to deal with non-negative integer vectors.

As discussed in Section V-A, ED, CS, PCC, and bound

functions in Table 1 are PIM-aware functions, each of which

has the corresponding PIM-aware bound. We only present the

PIM-aware bound for ED - LBPIM−ED in Theorem 1, for lack

of space. The PIM-aware bounds for other (bound) functions

such as LBPIM−FNN for LBFNN are omitted.

Theorem 1. Squared Euclidean distance of two d-dimensional

vectors p and q has a lower bound:

LBPIM−ED(p, q)=
1

α2
(Φ(p̄)+Φ(q̄)−2·⌊p̄⌋·⌊q̄⌋−2d) (5)

where Φ(p̄)=
∑d

i=1 p̄i
2−2

∑d
i=1 ⌊p̄i⌋(resp. Φ(q̄)), and ⌊p̄⌋·⌊q̄⌋

=
∑d

i=1 ⌊p̄i⌋⌊q̄i⌋. Here, d is number of dimensions, and p̄i is

the non-negative floating-point value normalized from pi with

α, ⌊p̄i⌋ is integer part of p̄i.

At offline stage, the value of Φ(p̄) and vector ⌊p̄⌋ are pre-

computed, then stored on memory array and programmed on

PIM array, respectively. During online stage, after receiving

vector q, we calculate Φ(q̄) and ⌊q̄⌋ once. After PIM generates

⌊p̄⌋ · ⌊q̄⌋, only the pre-computed value of Φ(p̄) and value

of ⌊p̄⌋ · ⌊q̄⌋ are transferred into CPU. Finally, the result of

LBPIM−ED(p, q) is cheaply obtained after simple adding and

subtracting operations.

C. PIM Memory Management

PIM-aware bound computation enjoys slight data transfer,

but demands to store integer vectors such as ⌊p̄⌋ on crossbars,

occupying the space of N ·d·b bits. Whereas, the typical

capacity of contemporary PIM array is only 2GB [2], [7].

PIM array may not have sufficient capacity to accommodate

the entire dataset. The simple solution is to divide the dataset

into multiple small parts, and each time the crossbars are re-

programmed with one part for processing. However, due to

the limited write endurance of ReRAM, we should avoid re-

programming crossbars. Hence, we propose to compress the

dataset based on a given capacity.

The bound functions in Table 1 employ dimensionality

reduction to effectively reduce memory usage. Apparently, the

techniques can be adopted for PIM-aware bound functions to

decrease the dimensionality from d (d′) to s, by which the



space cost is adjusted to N ·s·b bits, where s is the reduced

dimensionality. Figure 6 depicts an example of computing

LBPIM−ED on the compressed s-dimensional vector by adopt-

ing the dimensionality reduction of LBFNN.
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Fig. 6. Example of reducing the dimension of vector from 8 to 4 (i.e., 2+2)
for computing PIM-aware bound.

Theorem 2 establishes the condition of the dimensionality

s so that the dataset can fit in PIM array and be processed in

the right manner. It suffices to find the maximum value of s
such that the approximation of PIM-aware bound obtains the

highest possible closeness to the exact value.

Theorem 2. Given hardware PIM array, and dataset having

N d-dimensional vectors, the dimensionality s of compressed

vectors is chosen as following conditions:

Maximize: s (6)

subject to:

{
ndata ≤ C s ≤ m

ndata + ngather ≤ C s > m

where ndata = N ·b·s
m2·h is the number of crossbars serving as

data crossbar, and ngather = N ·b
m·h

∑ m
√
s

i=2
s
mi is the number

of crossbars serving as gather crossbar. C is the number of

crossbars in PIM array. Each crossbar contains m×m cells

in h-bit precision, and b is the bit size of each operand.

We omit the detailed proof of Theorem 2 for lack of space.

At offline stage, given PIM hardware and a dataset, s, ndata

and ngather are tuned by using Theorem 2. Then vector such

as ⌊p̄⌋, and all-ones vector e are programmed to data crossbars

and gather crossbars respectively.

VI. EVALUATION

A. Experimental Setup

As commercial ReRAM PIM device is still not available,

like prior NVM PIM research [4], [18], we resort to sim-

ulation. Specifically, we combine two simulators, a highly-

flexible memory simulator NVSim [19] and a system-level

tool Quartz [20], for accurately modeling PIM architecture.

The configurations of ReRAM PIM and baseline architecture

are illustrated in Table 3. The ReRAM-based memory has the

same total size as DRAM in baseline platform, i.e., 16GB, in

which 2GB is used as PIM array.
Table 3

THE CONFIGURATION OF HARDWARE PLATFORM.

CPU
Broadwell 2.10 GHz Intel Xeon E5-2620;
Cache 1/2/3 : 32 KB/256KB/20MB;

DRAM 16GB DIMM DDR4

ReRAM-based
memory

Memory Array 14GB ReRAM
Buffer Array 16MB eDRAM
PIM Array 2GB ReRAM

Internal Bus 50GB/s

ReRAM crossbar
256×256 2-bit precision cells;
read/write latency: 29.31/50.88ns;

We measure the execution time of algorithms. The origi-

nal algorithms are executed on real hardware platform. The

execution time of our proposed PIM-optimized algorithms is

measured by using NVSim and Quartz. NVSim estimates the

time of PIM-involved processing executed on ReRAM-based

memory. Quartz is to estimate the time of remaining non-PIM

computation in CPU that requires data transfer from memory.

The total execution time of a PIM-optimized algorithm is taken

as the sum of execution time reported by NVSim and Quartz.

For kNN, we compare the algorithm Standard (i.e., linear

scan), OST [14], SM [15], and FNN [16], to respective PIM-

optimized algorithm (e.g., ‘Standard-PIM’). For k-means, we

compare the algorithm Standard [10], Elkan [11], Drake [12],

and Yinyang [13], to respective PIM-optimized algorithm. For

each algorithm, we identify the bottleneck function through

profiling, and follow the techniques in Section V to offload

computation of the function by processing its PIM-aware

(bound) function. Table 4 lists the used real datasets. Original

floating-point vectors are transformed to non-negative integer

vectors with α as 106.
Table 4

STATISTICS OF REAL DATASETS.

Dataset N d Size

kNN
classification

ImageNet 2340173 150 3.5GB
MSD 992272 420 2.9GB
GIST 1000000 960 6.6GB
Trevi 100000 4096 3.0GB

k-means
clustering

NUS-WIDE 269648 500 280MB
Enron 100000 1369 268MB

B. kNN Classification

We first evaluate kNN PIM-optimized algorithms with vary-

ing datasets, k and distance functions in Figure 7. We set

k = 10, distance ED as default setting, and MSD as default

dataset. When PIM array is insufficient to process the dataset,

we compute LBPIM−FNN serving as the bound of ED. Figure

7(a) shows that Standard-PIM achieves up to 453x speedup

compared to Standard. Speedup becomes higher as the increase

of data dimensionality d. Trevi occurs the highest speedup

due to the significant reduction of data transfer: from 4096·b
to 3·b bits for each distance computation. However, Standard-

PIM shows slight speedup on GIST. This is because the data

size of GIST exceeds PIM array capacity, and we compute

LBPIM−FNN instead of LBPIM−ED. LBPIM−FNN is based on

LBFNN , and LBFNN shows weak pruning efficiency on GIST.

For example, reducing the dimensionality to d/4 for LBFNN

provides average 71.3% approximation of exact distance on

GIST, yet 95.4% on MSD.

Figure 7(b) depicts the execution time respect to different

k. Standard-PIM yields 71.5x, 57.1x and 29.2x speedup com-

pared to Standard respectively. The time ascends slightly with

the increase of k due to more time spent on exact distance

calculation for refining objects. We then study the impact

of different distance functions. Figure 7(c) shows that the

performance gaps between Standard-PIM and Standard on

three distance functions are similar.

We proceed to compare OST, SM, and FNN, to their PIM-

optimized algorithms respectively. Figure 7(d) shows that PIM

contributes the significant improvement on all algorithms.

Though the algorithms alleviate the data transfer overhead
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Fig. 7. kNN classification execution time.

Table 5
EXECUTION TIME ON k-MEANS CLUSTERING.

Dataset
k-means execution time/iteration (ms)

k Standard Elkan Drake Yinyang Standard-PIM Elkan-PIM Drake-PIM Yinyang-PIM

NUS-
WIDE

4 153.6 39.8 61.1 56.5 95.0 37.3 52.0 54.4
64 1437.9 119.7 605.8 528.5 218.8 94.8 130.4 177.8
256 5636.9 351.1 2451.2 1778.4 463.9 253.7 305.1 364.9

1024 22273.1 1569.2 10545.3 5957.2 1274.7 1201.0 1240.8 1210.5

Enron

4 156.6 20.1 54.8 62.1 49.5 18.2 43.6 47.0
64 1259.6 96.9 447.4 382.5 141.7 82.8 85.5 86.9
256 4764.5 179.6 252.5 759.7 287.7 162.4 180.9 187.6

1024 18984.5 317.2 4102.9 879.6 566.9 282.6 486.5 507.3

by computing distance bounds, utilizing PIM to compute the

bounds further reduces the overhead effectively. On average,

these state-of-art algorithms are 3.9x faster than Standard, and

PIM further improves these algorithms by 10.5x speedup.

C. k-means Clustering

Table 5 shows the exeuction time of k-means algorithms and

PIM-optimized ones with varying datasets and the number of

centers. PIM is used to compute LBPIM−ED, which contributes

to filter most far apart centers. Note that though the overall

speedup for k-means is not significant as kNN, recall that the

goal of our work is to accelerate a given algorithm, rather than

a certain application. Leveraging PIM yields the acceleration

to each algorithm. Specifically, PIM gives consistent speedup

for Standard, up to 33.4x. Elkan-PIM slightly outperforms

Elkan. This is because ED calculation is not always the

dominating task of Elkan. Updating original bounds often

occupy up to 45% of total time. Besides, Drake-PIM achieves

up to 8.5x speedup. Yinyang also enjoys the improvement

caused by PIM. The significant speedup occurs on high-

dimensional datasets, up to 4.9x.

VII. CONCLUSION

PIM is an efficient approach to reduce the substantial data

transfer for similarity computation. We present a novel frame-

work to accelerate a given similarity-based mining algorithm

by using ReRAM PIM. We propose to identify PIM-aware

function in the algorithm, and then offload most computation

of the function into PIM. Our future work will design a space-

friendly PIM scheme to deal with very large datasets.
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