
Diversified Caching for Replicated Web
Search Engines

Chuanfei Xu, Bo Tang, Man Lung Yiu

Department of Computing
The Hong Kong Polytechnic University

{csxchuanfei, csbtang, csmlyiu}@comp.polyu.edu.hk

Abstract— Commercial web search engines adopt parallel
and replicated architecture in order to support high query
throughput. In this paper, we investigate the effect of caching
on the throughput in such a setting. A simple scheme, called
uniform caching, would replicate the cache content to all servers.
Unfortunately, it does not exploit the variations among queries,
thus wasting memory space on caching the same cache content
redundantly on multiple servers. To tackle this limitation, we
propose a diversified caching problem, which aims to diversify
the types of queries served by different servers, and maximize
the sharing of terms among queries assigned to the same server.
We show that it is NP-hard to find the optimal diversified
caching scheme, and identify intuitive properties to seek good
solutions. Then we present a framework with a suite of techniques
and heuristics for diversified caching. Finally, we evaluate the
proposed solution with competitors by using a real dataset and
a real query log.

I. INTRODUCTION

Commercial web search engines [7], [21], [35] adopt the
parallel architecture in order to support high query throughput.
In this architecture, the broker receives queries from users,
and then assigns those queries to servers for processing (cf.
Figure 2). In addition, such parallel search engines apply
replication [22], [23] to further enhance the query throughput.
For example, the Google search engine adopts a parallel and
replicated architecture [7].

In the replicated architecture [10], both the document collec-
tion and the inverted index are replicated on multiple servers,
where each server can be a single machine or a sub-cluster.
We note that commercial web search engines like Google [7]
and Baidu [21] replicate the entire inverted index on each
server. This architecture scales well with the query throughput
because it enables each server to process queries locally (by
using its replicated data and index), without heavy communi-
cation across multiple servers. An experimental evaluation [10]
has shown that this architecture is better than distributed
architectures (that do not use replication). In addition, it offers
high availability to cope with server failures.

Although full replication (i.e., the entire inverted index)
leads to higher storage space, it is still acceptable in practice.
Figure 1(a) shows the storage space for replicating only top-
X (most frequent terms’) posting lists, for a 75 GB real
ClueWeb dataset1. The storage space of full replication is
only slightly higher than the storage space of top-10000

1http://lemurproject.org/clueweb09

posting lists. Furthermore, the huge capacity of modern hard
disks renders it feasible to replicate inverted indexes. The
maintenance overhead is also not an issue as search engines
are query-intensive and the updates are usually executed in
batches periodically.

1

10
1

10
2

10
3

10
4

10 100 1000 10000 FULL

to
ta

l
d

is
k
 s

p
a

c
e

 (
M

B
)

top-X posting lists

0.5%

99.5%

query broker processing

(a) disk space (b) query time breakdown

Fig. 1: Replication on ClueWeb posting lists

The requirement for high query throughput is becoming
more significant in commercial search engines. In this paper,
we adopt the parallel search architecture with full replica-
tion [10] because (i) the query throughput scales well with
the number of servers, and (ii) it avoids heavy communication
across servers. Our goal is to investigate the effect of caching
on the query throughput under such setting. Let n be the
number of servers, Si be the i-th server, and Ci be the cache
content of Si. Given a query workload Q (i.e., a sequence of
queries), we measure the query throughput of this system as
|Q|

Ttotal(Q) , where the total processing time Ttotal(Q) is defined
as:

Ttotal(Q) = max{ TC1
(Q1), TC2

(Q2), · · · , TCn(Qn) },

with Qi ⊂ Q as a subset of queries assigned to server Si,
and TCi(Qi) as the processing time of Qi by using Ci (on
Si). As shown in Figure 1(b), the majority of time is spent on
processing at servers, rather than at the broker. Thus, we ignore
the broker time in Ttotal(Q). Our objective is to minimize
Ttotal(Q) in order to maximize the query throughput. This
leads to two subproblems: (i) deciding the cache content Ci
of each server, (ii) deciding the subset of workload Qi for
each server.

To our best knowledge, existing caching techniques [4],
[18], [25] have not considered the above architecture and
exploited its optimization opportunities. A simple scheme,

which we call uniform caching, would replicate the cache
content to all servers. Suppose that the cache content are
posting lists for frequently-used terms (e.g., PLipad in Ta-
ble I). Unfortunately, uniform caching does not exploit the
variations of terms among queries, so it may waste memory
space on caching redundant posting lists on multiple servers.
We illustrate this in the following example, and model the
processing time by its dominant factor —— the number of
disk seeks [2].

To tackle the above drawback, we propose a diversi-
fied caching problem, which aims to diversify the types of
queries served by different servers, and maximize the shar-
ing of terms among queries assigned to the same server.

We illustrate our problem as follows. Table I(a) shows a
document collection and the corresponding inverted index [38],
in which each posting list PLj records the IDs of documents
containing term j (see Table I(b)). Suppose that the replicated
system contains two servers (S1, S2); each server stores all
PLj in disk and keeps a cache for PLj (in RAM) with a
fixed capacity (e.g., 3 document IDs). The query workload is
shown in Table I(c).

TABLE I: Example of documents, posting lists, and queries

d1 ipad, apple
d2 galaxy
d3 iphone, galaxy
d4 ipad, apple, gear
d5 ipad

PLiphone d3
PLipad d1, d4, d5
PLapple d1, d4
PLgalaxy d2, d3
PLgear d4

q1 ipad, apple
q2 gear, iphone
q3 galaxy
q4 ipad, iphone

(a) document collection (b) posting lists (c) query workload

TABLE II: Caching schemes for a replicated search system

(a) uniform scheme (b) diversified scheme
Server S1 S2 S1 S2

Cache Ci PLipad 3 PLipad 3 PLipad 3 PLgalaxy 2
(in RAM) PLgear 1

Disk all PL∗ all PL∗ all PL∗ all PL∗
Queries Qi q1: 1 q2: 2 q1: 1 q2: 1
& disk seeks q3: 1 q4: 1 q4: 1 q3: 0
Throughput 1.33 = 4/max{2, 3} 2 = 4/max{2, 1}

This system has 2 servers; cache capacity is 3 (document IDs)

Example for uniform caching: Table II(a) demonstrates the
uniform caching scheme. Since all caches have the same
content, all servers incur the same processing cost for the
same query. In order to reduce Ttotal(Q), we balance TCi(Qi)
among servers by assigning queries to servers in the round-
robin fashion. For instance, server S1 receives a query q1 with
two terms: ‘ipad’ and ‘apple’. Since PLipad is in the cache,
it incurs only 1 disk seek to fetch PLapple from the disk. The
total costs on servers S1 and S2 are 1+1 and 2+1 disk seeks,
respectively. So the query throughput is: 4/max{2, 3} = 1.33.

Example for diversified caching: Table II(b) shows an
example for our scheme. It may cache different posting
lists on different servers. As such, different servers may
incur different processing costs for the same query. For
example, it is cheaper to execute q3 on server S2. Re-
garding the assignment of queries, an intuitive strategy is
to assign each query to the server with the cheapest cost.

Observe that the query throughput is: 4/max{2, 1} =
2, which is better than the uniform caching scheme.

Our research problem is to find the optimal diversified
caching scheme that incurs low Ttotal(Q) (thus providing high
query throughput). We should consider not only the cache
content Ci of each server, but also possible subsets of the
workload Qi assigned to different servers. Current partitioning
techniques [2], [11], [12], [19], [37], either document-wise or
term-wise, are designed to partition documents or the inverted
index in a distributed architecture. They do not examine the
coupling between Ci and Qi as in our scenario. Also, existing
load balancing techniques [23], [30] have not exploited the
cache content Ci to further optimize the assignment of queries
to servers.

Our problem is challenging as the combinations between
Ci and Qi on all n servers lead to a huge search space:
O
(
n|Q|

n! ·
n|W |

n!

)
, where n, |Q|, |W | are the numbers of

servers, queries, and distinct terms, respectively. Nevertheless,
we discover an interesting characteristic in a real query work-
load Q (i.e., in AOL query log) that brings us opportunities
for solving our problem more effectively. Specifically, we
observe that two frequent terms wi, wj in Q may not co-
occur frequently. We verify this on a real query log Q used
in the experimental study. We picked top-8 most frequent
terms (in Q) in descending order, and reported the condi-
tional probability Pr(wi, wj ∈ q|wi ∈ q) for each pair in
Table III. For example, w1 and w5 do not co-occur frequently.
Thus, it is desirable to cache these two frequent terms on
different servers. Unfortunately, existing caching methods fail
to consider relations among terms. In contrast, our proposed
Diversified Caching (DC) schemes can handle such case in a
better way (A more detailed review of this method appears in
Section IV).

TABLE III: Pr(wi, wj ∈ q|wi ∈ q) on AOL query log

wi/wj w2 w3 w4 w5 w6 w7 w8

w1 0.00 0.006 0.27 0.00 0.00 0.00 0.26
w2 0.00 0.00 0.00 0.00 0.48 0.00
w3 0.00 0.00 0.00 0.00 0.00
w4 0.00 0.41 0.00 0.43
w5 0.00 0.00 0.00
w6 0.00 0.54
w7 0.00

We summarize our technical contributions in this paper as
follows.
• We formulate our diversified caching problem on the

replicated search architecture, and prove this problem is
NP-hard (Section III).

• We propose a framework with a suite of techniques and
heuristics for diversified caching (Section IV).

• We evaluate the effectiveness of our proposed solution
through extensive experiments on real datasets (Sec-
tion V).

The rest of the paper is organized as follows. Section II
summarizes the related work. Section III formally defines the

problem and the model in this paper. Section IV presents
our solution. Section V illustrates the experimental results.
Section VI concludes the paper.

II. RELATED WORK

Inverted index organization and replication: There have
been extensive research [9], [11], [19], [29], [31], [37] on orga-
nizing inverted index in distributed or parallel search engines.
These works on sharding inverted lists can be summarized in
two categories: document-wise based [11], [37] and term-wise
based methods [12], [13]. The work by Cambazoglu et al. [12]
presents a comparison between term-wise and document-wise
partitioned indexes using multiple servers. The experimental
results show that, term-wise partitioned indexes give higher
throughput, but also longer query latency. For these inverted
index organization methods, each server only stores a part of
inverted index so that the relevant caching techniques in these
works are not suitable for our problem.

Several works have devoted to replication techniques [7],
[8], [10], [15], [23] in distributed systems. In [10], [23],
replicated inverted lists are used to speedup keyword queries.
Furthermore, Moffat et al. [23] selectively replicate the in-
verted lists of a number of high workload terms, potentially
halving the peak workload associated with each copy of
the list. In [10], the authors compare replicated systems
with sharding systems, and their experimental results show
replicated systems have higher throughput. Nevertheless, these
existing replication papers do not consider the cache content
Ci to further optimize the assignment of queries to servers on
the replicated search systems. In contrast, our work consider
the coupling between cache content Ci and the subset of
workload Qi.

Query assignment: In distributed or parallel systems, we need
to allocate queries to different machines. This process is called
query assignment. For existing query assignment methods,
Puppin et al. [28] first partition queries based on similar query
results. Each group stores the text of each query belonging to
a group, as a single text file. When a new query is submitted,
they use the TF-IDF metric to find the best matches. This
way, each query is assigned to a group based on the scores
computed by TF-IDF metric. In [24], the authors propose
a vertical partitioning of data (i.e., inverted lists) based on
statistics. If two terms co-occur frequently, this method would
put them into a group. Additionally, in replicated databases,
Consens et al. [15] present an effective method to partition
SQL queries. This work uses existing tools (e.g., DB2’s Design
Advisor) to compute the corresponding configurations and
allocate queries to servers based on query costs. This method
can be adapted to our problem setting; however, it does not
achieve a high query throughput in our setting. The reasons
are: (i) their query assignment methods tend to assign each
query to the server with the lowest processing cost, but ignore
the loads of severs; and (ii) they lack an online load balancing
to balance I/O costs on different servers. In contrast, we
consider the loads of servers during query allocation, and we

propose an effective online load balancing method for servers.

III. PROBLEM STATEMENT

We first introduce the architecture of parallel and replicated
search engine [3]. Next, we formulate our diversified caching
problem. Then, we show the hardness of our problem. Table IV
summarizes the symbols to be used in this paper.

TABLE IV: Commonly used symbols

Symbol Description
n number of servers
B cache capacity
ws a term
PLs posting list of ws
Si i-th server
Ci set of terms (posting lists) cached at Si
Q query workload

Qtrain,Qtest training / testing query workload
Qi subset of workload (sub-workload) assigned to Si
qj a query

w(qj) set of terms of qj

A. Replicated Search Engine Architecture

We adopt the architecture of the replicated search engine,
as shown in Figure 2. The broker receives queries and then
assigns them to servers (in the bottom layer) for processing.
Each server Si employs an in-memory cache Ci to reduce the
disk access cost. In this paper, we assume Ci is a posting list
cache (i.e., keeping only posting lists) as this cache type has
been studied extensively [4]–[6]. We leave the extension of our
techniques for other cache types (e.g., intersection cache [20],
document cache [34], snippet cache [14]) as future work.

We illustrate the steps in query processing in Figure 2. Upon
receiving a query qj , the broker forwards it to a server Si based
on an assignment policy [STEP 1©]. The server Si checks
whether the terms of qj (i.e., wj1, wj2, ..., wjm) reside in its
cache [STEP 2©], and then fetches those missing posting list(s)
from the local disk [STEP 3©]. Finally, it can compute the top-
k relevant documents (dj1, dj2, ..., djk) and return them to the
broker [STEP 4©].

In the web search caching literature [4], [6], [10], the
training query workload Qtrain denotes the historical query
log, and the testing query workload Qtest denotes the queries
received online. We observe thatQtrain andQtest have similar
distribution. This is desirable for the static caching policy [5],
[25], i.e., the cache content is determined offline (by using
Qtrain) and it remains unchanged during online operations.
Its advantage is that it avoids the cache maintenance overhead.

Thus, we adopt the static caching policy in this paper.
Specifically, our problems include:

• The (offline) cache admission problem: decide the cache
content of servers by using Qtrain;

• The (online) query assignment problem: assign a query
q (in Qtest) to a server Si.

Broker

fetch posting lists

(Disk)

Posting List Cache(RAM)

miss ... ĂĂ

q1; q2; :::; qj ; :::

1°

...wj2 wjm

qj(wj1; wj2; :::; wjm)

wj1

2°

S1

wj2 wjr

3°
4°

miss

S2
Sn

Posting List Cache(RAM)

miss

Posting List Cache(RAM)

ĂĂ ĂĂ

fetch posting lists

(Disk)
fetch posting lists

(Disk)

fetch dj1; dj2; :::; djk

Fig. 2: Architecture of the replicated search engine

B. Problem Definition

We proceed to review basic concepts for our problem on
the above architecture.

Definition 1 (Cache): Let Ci be the (posting list) cache of
the server Si. We model Ci as a set of terms. The cache size of
Ci is defined as

∑
ws∈Ci |PLws |, where |PLws | is the posting

list size for the term ws.
Definition 2 (Query and Workload): Let qj be a query,

w(qj) denote the set of terms in qj . A query workload Q is
defined as a sequence of queries (in the order of submission
time).

Recall that we use the training workload Qtrain in the
offline problem. We proceed to define the total processing
time for Qtrain. The query broker partitions Qtrain into n
disjoint subsets Q1, Q2, · · · , Qn, where Qi is the sub-workload
assigned to server Si. As in [2], the query processing time is
dominated by the number of disk seeks. Thus, we define the
processing time for Qi on server Si as:

TCi(Qi) =
∑
qj∈Qi

|w(qj)− Ci| (1)

where w(qj)−Ci represents the set of query terms in qj but
not in the cache Ci, leading to disk seeks.

As stated in the introduction, the query throughput can be
expressed as the reciprocal of the total processing time for a
workload. In our replicated architecture, the total processing
time for Qtrain is the maximum processing time among n
servers:

Ttotal({Qtrain}) = max{ TC1(Q1), TC2(Q2), · · · , TCn(Qn) }.
(2)

The rationale of diversified caching (DC) is to allow each
server’s cache to have different cache contents, tailored to
a particular subset of the query workload. Our diversified
caching problem consists of the following two subproblems.

Problem 1 (DC: Offline Cache Admission): Given a
training set Qtrain, the cache capacity B, and the number of
servers n, the cache admission problem is to find a set of
pairs

{〈Q1, C1〉, 〈Q2, C2〉, · · · , 〈Qn, Cn〉}

such that the value Ttotal({Qtrain}) is minimized, and each
cache size is bounded by B, i.e.,

∑
ws∈Ci |PLws | ≤ B.

Problem 2 (DC: Online Query Assignment): Given a test-
ing set Qtest, the number of servers n, and their caches
C1, C2, · · · , Cn, the query assignment problem is to assign
each query q ∈ Qtest to a server such that the value
Ttotal({Qtest}) is minimized, where Qi denotes i-th subset
of Qtest assigned to server Si.

For the online query assignment problem, the broker is
not allowed to examine queries in future. Thus, it may only
process queries in Qtest one-by-one.

C. Hardness of the Cache Admission Problem

First, we show that our offline cache admission problem is
NP-hard.

Lemma 1: Our offline cache admission problem is NP-hard.
Proof: We prove this lemma by reducing the n-

PARTITION problem [16] to our problem.

n-PARTITION problem [16]: A problem instance is 〈U , n〉,
where U is a set of positive integers, and n is an inte-
ger. This problem asks whether there exists a partitioning
{U1, U2, ..., Un} of U , such that ∀1 ≤ i ≤ n,

∑
e∈Ui e = X ,

where X = (
∑
e∈U e)/n. This problem is shown to be NP-

hard [16].

Our simplified problem (n-CACHE): For the sake of NP
reduction, we consider the decision version of our problem in
Definition 1, and simplify it by fixing: (i) B = 0 (i.e., each
cache Ci is empty), and (ii) |PLs| = 1. A problem instance
is 〈Qtrain, n〉, where Qtrain is query workload, and n is the
number of servers. This problem (the decision version) asks for
a partitioning {Q1, Q2, ..., Qn} of Qtrain, such that all T (Qi)
(=
∑
qj∈Qi |w(qj)|) are identical. Given an instance 〈U , n〉

of the n-PARTITION problem, we construct the instance
〈Qtrain, n〉 of the n-CACHE problem as follows: for each
e ∈ U , insert a query qj with |w(qj)| = e into Qtrain. With
this construction, the n-PARTITION problem is equivalent to
the n-CACHE problem. Thus, the n-CACHE problem is also
NP-hard.

As shown in the proof, our problem is NP-hard even with
the simplest setting, i.e., all caches are empty.

To make matters worse, in our general problem, different
servers can have different cache contents, thus they may
incur different processing costs for the same query. Also, the
partitioning of Qtrain depends on the content of caches Ci.
This renders the approximate solutions for the n-PARTITION
problem unsuitable to our problem.

D. Baseline Solutions

In this subsection, we demonstrate two baseline solutions
(local frequency-based solution (LocalF) and Divgdesign-
based solution (DIVG)) for our problem.

Heuristic Solution (LocalF): The idea of LocalF is that:
first partition a query workload Qtrain into n sub-workloads
({Q1, Q2, ..., Qn}) in a round-robin fashion [32], and then fill

TABLE V: Example for baseline solutions

q1 gear, galaxy
q2 galaxy, apple, iphone
q3 apple, iphone, ipad
q4 gear, iphone, apple

Server Sub-workload Qi Cache Ci Disk Seeks Throughput

LocalF S1 {q1, q3} {gear, galaxy} 0+3=3 4
max{3,2} = 1.33

S2 {q2, q4} {iphone, apple} 1+1=2

DIVG S1 {q1} {gear, galaxy} 0 4
max{0,3} = 1.33

S2 {q2, q3, q4} {apple, iphone} 1+1+1=3

Better solution S1 {q1, q4} {gear, iphone} 1+1=2 4
max{2,2} = 2

S2 {q2, q3} {apple, iphone} 1+1=2
(a) query workload (b) comparison of different solutions

cache Ci with posting lists for most frequent terms in each
sub-workload Qi (i ∈ [1, 2, ..., n]).

Adaptation Solution [15] (DIVG): Another existing tech-
nique Divgdesign [15] in replicated databases is developed to
handle SQL queries with different physical configurations. It
can be converted to a solution of our problem, (termed DIVG
in our work). The key procedure is that:

1) Initialization do the same work as LocalF;
2) Re-assignment re-assign queries to servers based on the

lowest query costs (i.e., number of disk seeks) and
update cache contents correspondingly;

3) Iteration repeat step 2) until cache contents reach a
stable state.

Example: Table V illustrates the efficiency of the above

baseline solutions in our problem. We assume that there are 2
servers (S1 and S2) and each server’s cache capacity is 2. The
query workload Qtrain contains 4 queries (see Table V(a)).

For LoaclF, Qtrain is divided into Q1 = {q1, q3} and Q2 =
{q2, q4} in a round-robin manner. Based on frequencies of
terms in Q1 and Q2, {gear, galaxy} and {iphone, apple} are
put into C1 and C2. Thus, the costs on servers S1 and S2 are
evaluated as 0 + 3 = 3 and 1 + 1 = 2 disk seeks respectively.
The query throughput is: 4/max{3, 2} = 1.33.

For simplicity, we do not illustrate the running steps for
DIVG to compute Ci and Qi. After the cache contents of C1

and C2 become stable, the total costs are evaluated as 0 and
1 + 1 + 1 = 3 disk seeks. Accordingly, the query throughput
is: 4/max{3, 0} = 1.33.

However, both LoaclF and DIVG are not good enough. A
better solution is shown in the last row of Table V(b). In such
case, the costs on servers are 1 + 1 = 2 and 1 + 1 = 2
disk seeks so that the query throughput is: 4/max{2, 2} = 2.

Inspired by the unsatisfied solutions, we will propose di-
versified caching schemes to solve our problem in a better
way.

IV. DIVERSIFIED CACHING (DC)

Our proposed solution DC consists of two methods. At of-
fline time, the cache admission method utilizes the training set
Qtrain to decide each server’s cache content (cf. Sections IV-
A, IV-B, IV-C). Upon receiving queries online, the online
query assignment method examines them one-by-one and

assigns each query to a server for execution (cf. Section IV-
D). For each method, we will explore various implementation
options and study their effect on the performance.

A. Framework for Offline Cache Admission

We present our framework for cache admission in Algo-
rithm 1. The first four input parameters, namely (i) the training
set Qtrain, (ii) the posting lists’ sizes |PL∗|, (iii) the number
of servers n, and (iv) the cache capacity B, have been intro-
duced in Problem 1. We employ two additional parameters α
and #iter. Our framework consists of a clustering phase and
a merging phase.

The objective of the clustering phase is to partition Qtrain
into groups such that queries within the same group share as
many terms as possible. We illustrate this phase in Figure 3(a).
Note that it is not desirable to obtain exactly n groups in
this phase. We may suffer from load balancing (during online
querying) since different groups of queries may have different
query costs. Thus, we suggest to obtain much more than n
groups (e.g., 2αn groups) in order to give more flexibility for
load balancing.

The merging phase is designed to achieve better load
balancing. It would merge the above 2αn groups into n groups
such that the deviation of query costs among different groups
would be small. We illustrate this phase in Figure 3(b).

Algorithm 1 Diversified Caching: cache admission (offline)

Input: training set Qtrain, posting lists’ sizes |PL∗|,
#servers n, cache capacity B, parameter α, parameter
#iter

1: {〈Qi〉1..2αn} := Clustering(Qtrain, |PL∗|, n,B, α,#iter)
. for reducing query cost

2: {〈Qi, Ci〉1..n} := Merging({〈Qi〉1..2αn}, |PL∗|, n,B, α)
. for load balancing

3: return {〈Qi, Ci〉1..n}

B. Offline: The Clustering Phase

Our clustering phase would invoke an existing static caching
algorithm for posting lists [4], [5]. We denote this operation as
Static-Caching (Qtrain, |PL∗|,B), which picks a set
of terms C from the training set Qtrain, such that the total
size of the corresponding posting lists

∑
w∈C |PLw| is within

the cache capacity B. There are two typical implementations
for Static-Caching.

(3) q1…4 (7) q5…8

(8) q13…16

(4) q33…36

S
1

q1…4 q5…8

q13…16

q33…36

S
2

(b) the merging phase, query costs in brackets

(6) q9…12

(2) q17…20

(5) q21…24

(1) q25…28

(a) clustering phase

q9…12

q17…20

q21…24

q25…28

(b) the merging phase, query costs in brackets(a) clustering phase

Fig. 3: Solution overview

• Freq: It selects posting lists in descending order of query
frequency.

• FreqSize: It selects posting lists in descending order of
the ratio of query frequency to posting list length.

In the following discussion, we use C to represent the set of
terms selected by Static-Caching.

We sketch our method for the clustering phase in Algo-
rithm 2. First, we select a set of terms Cinit by using the total
cache capacity nB for n servers. Then, we partition Cinit
into 2αn sets by using round-robin. Next, we run an iterative
clustering procedure for #iter iterations. In each iteration,
we assign each query q to a query group Qr (Lines 5–7)
and then update each server’s cache content according to its
query group Qi (Lines 8–9). Finally, we return the set of query
groups {〈Qi〉1..2αn}.

As a remark, our method is similar to the well-known N -
medoids clustering algorithm [27], except that we select Ci
by using static caching and assign queries to servers based on
their cache content.

Algorithm 2 DC: the clustering phase (offline)

Input: training set Qtrain, posting lists’ sizes |PL∗|,
#servers n, cache capacity B, parameter α, parameter
#iter

1: set Cinit := Static-Caching (Qtrain, |PL∗|, nB)
2: assign terms in Cinit to the caches C1, C2, · · · , C2αn in a

round-robin manner
3: for #iter iterations do
4: clear all Qi for i = 1..2αn
5: for each q ∈ Qtrain do

. implementation options for Line 6
6: let r ∈ [1..2αn] be the best cache Cr for q
7: insert q into Qr
8: for i := 1 to 2αn do
9: Ci := Static-Caching (Qi, |PL∗|, B2α)

10: return the set of query groups {〈Qi〉1..2αn}

Implementation Options:
In the above algorithm, there are different options for

assigning q to the query group Qr.

• Miss: It finds the group with the lowest cache misses
Miss(q, Cr) = |w(q) − Cr|, i.e., the number of disk
seeks.

• Dist: It finds the group with the smallest Jaccard dis-
tance [1] DistJ(q, Cr) = 1− |w(q)∩Cr|

|w(q)∪Cr| .
In practice, q contains a few terms but Cr may contain

a large number of terms. To speedup the computation of
Miss(q, Cr) and DistJ(q, Cr), we suggest to store Cr in a
hash table so that we can compute expressions like |w(q)−Cr|,
|w(q) ∩ Cr|, |w(q) ∪ Cr| in O(|w(q)|) time. This technique
enables us to compute Miss(q, Cr) and DistJ(q, Cr) in
O(|w(q)|) time, regardless of the number of terms in Cr.

Example: Figure 4(a) shows the training set Qtrain. Suppose
that there are 2 servers (S1 and S2), α = 1, and each server’s
cache can hold 6 posting lists. In the clustering phase, we
cluster similar queries (e.g., q7 and q8) to the same query
group. Figure 4(b) shows the result after the clustering phase;
there are 2α · n = 21 · 2 = 4 query groups, each group can
hold 6/(21) = 3 posting lists.

q1 iphone, galaxy
q2 ipod, apple, ipad
q3 iMac, note
q4 iMac, gear, iphone
q5 galaxy, gear
q6 ipod, ipad
q7 ipad, note, apple
q8 ipad, apple

i Cache Ci Group Qi

1 galaxy, gear, iphone q1, q5
2 ipad, ipod, apple q2, q6
3 iMac, note, gear q3, q4
4 apple, ipad, note q7, q8

(a) training set Qtrain (b) after clustering: 2αn groups

Server Group Qi Cache Ci

S1 {q1, q3, q4, q5} {gear, galaxy, iMac, iphone, note}
S2 {q2, q6, q7, q8} {ipad, ipod, apple, note}

(c) after merging: n groups

Fig. 4: Example for Diversified Caching, n = 2, α = 1

Time Complexity Analysis:
Let tall be the number of posting lists and tq be the

maximum number of terms for queries in Qtrain. The time
complexity of the clustering phase (Algorithm 2) is:

O(#iter · 2αn · (tq|Qtrain|+ tall log tall)).

In practice, both α and tq are small constant values. Thus,
the time complexity is linear to the number of servers n and
the training set size |Qtrain|.

C. Offline: The Merging Phase

We present our method for the merging phase in Algo-
rithm 3. It takes the 2αn query groups from the clustering
phase as input. In each iteration (Lines 1–8), it halves the num-
ber of groups by merging groups in pairs. To achieve better
load balancing, we prefer merging a small query group with a
large query group, rather than merging two large query groups
together. We will explore different implementation options for
merging shortly. The above procedure is repeated until n query

groups remain. Finally, we invoke the Static-Caching
operation for each query group Qi to pick a corresponding set
of terms Ci for caching.

Algorithm 3 DC: the merging phase (offline)

Input: set of query groups {〈Qi〉1..2αn}, posting lists’
sizes |PL∗|, #servers n, cache capacity B, parameter α

1: while α > 0 do
. implementation options for Lines 2 and 4

2: sort Qi in ascending size and rename as
Q′1, Q

′
2, · · · , Q′2αn

3: for i := 1 to 2α−1n do
4: find two remaining groups for merging, say Q′j and
Q′k

5: merge Q′j and Q′k into a group Q(i)

6: remove the groups Q′j and Q′k
7: rename each group Q(i) to Qi for i = 1..2α−1

8: α := α− 1

9: for each i from 1 to n do
10: Ci := Static-Caching (Qi, |PL∗|,B)
11: return the set of pairs {〈Qi, Ci〉1..n}

Implementation Options:
Intuitively, it is beneficial to group queries into clusters,

such that queries within the same cluster tend to access similar
terms. If a server caches the frequent terms of this cluster, the
hit ratio of this server to process queries can be improved.

In the above algorithm, there are different options for
pairing the groups for merging.
• Fold-by-#query: First, it sorts the groups in ascend-

ing order of the number of queries |Qi|, as shown in
Figure 5(a). Then, it iteratively merges the i-th smallest
group with the i-th largest group. For example, in Fig-
ure 5(a), we merge Q1 and Q8, merge Q2 and Q7, merge
Q3 and Q6, and merge Q4 and Q5.

• Fold-by-#term: This option is similar to fold-by-
#query, except that it sorts the groups in ascending order
of the number of distinct terms in Qi, i.e., |

⋃
q∈Qi w(q)|.

• Search-by-distance: It merges each group with the clos-
est remaining group in terms of the Jaccard distance
DistJ(q, Ci). We depict this option in Figure 5(b).

• Search-by-union: This option is similar to search-by-
distance, except that it merges each group with the
remaining group such that the merged group contains the
least number of distinct terms.

(a) folding

Q1 Q3Q2 Q7Q6Q5Q4 Q8 Q1 Q3Q2 Q7Q6Q5Q4 Q8

(b) search by the smallest distance

Fig. 5: Implementation options for merging

Continuing with the previous example in Figure 4(b), after
the clustering phase, we would need to merge those 2αn query
groups to n query groups. Suppose that we merge groups
by using search-by-distance. The Jaccard distance of closest
pairs among these groups are DistJ(Q1, Q3) = 1 − 1

5 = 4
5

and DistJ(Q2, Q4) = 1 − 2
4 = 1

2 . Figure 4(c) shows the n
result groups after merging query groups.

Time Complexity Analysis:
Let tall be the number of posting lists and tq be the

maximum number of terms for queries in Qtrain. Lines 9–
10 take O(tq|Qtrain|+ tall log tall) time.

In addition, the time complexity of merging (Lines 1–8)
depends on the implementation option discussed above. It
takes O((2αn) log(2αn)) for ‘fold-by’ options, but O((2αn)2)
for ‘search-by’ options. Since α is a small constant in practice,
it is feasible to run the merging phase.

D. Online Query Assignment

We proceed to investigate how the broker assigns queries
to servers during online time. In order to maximize the query
throughput, the broker should (i) assign each query to a server
with low query cost, and (ii) balance the load among different
servers.

We propose our online query assignment method for the
broker in Algorithm 4. To facilitate load balancing, the broker
employs a load counter loadi for each server Si to accumulate
its total estimated query processing cost so far. In order to
estimate the query cost on servers, the broker keeps the infor-
mation of cached terms C1, C2, · · · , Cn and posting lists’ sizes
|PL∗| in hash tables. This requires only O(ntall) memory
space, where tall is the number of posting lists.

The algorithm processes queries in the incoming stream
Qtest one-by-one. For the current query q, the algorithm first
estimates the query cost of q and then picks the server with
the smallest estimated query cost. Then, it refines the server
choice according to the loads of servers. Finally, it forwards
q to the chosen server Sr for processing, and then increases
the load counter of Sr by the estimated query cost.

Algorithm 4 DC: query assignment (online)

Input: a stream of queries Qtest
Internal values: #servers n, posting lists’ sizes |PL∗|,
the cached terms and the load of each server Si
{〈Ci, loadi〉1..n}

1: for each q in Qtest do
2: for each i from 1 to n do
3: estimate Cost (q, Ci) by using Ci, |PL∗|
4: refine the server choice according to loadi
5: forward q to the chosen server Sr for processing
6: loadr ← loadr+ Cost (q, Sr)

Estimating the query cost:
We focus on estimating the I/O cost for query q on server

Si.

A simple way is to estimate the query cost on Si by using
the number of cache misses on Ci:

Miss(q, Ci) = |w(q)− Ci|. (3)

because each cache miss incurs a disk seek. As mentioned be-
fore, the function Miss(q, Ci) takes only |w(q)| computation
time.

Nevertheless, the above equation may not be accurate. A
more accurate equation would consider the number of disk
pages accessed by random read and sequential read. When a
server reads a posting list from the disk, it retrieves the first
disk page by random read and the subsequent disk pages by
sequential read. Thus, we obtain the following cost equation:

DiskCost(q, Ci) =
∑

w∈w(q)−Ci

1 + round(φ · |PLw|
d

) (4)

where d is the number of posting list entries per disk page,
and φ is the ratio of sequential disk read time to random disk
read time. The typical value of φ is 1

100 [36].

Load balancing: We propose two load balancing heuristics:
tie-based heuristic and score-based heuristic.

Since the above cost equations return integer values, it is
possible to have ties, i.e., more than one servers have the
lowest query cost for q. The tie-based heuristic detects such
scenario and chooses the server with the smallest load loadi
among the ties.

The score-based heuristic combines both the query cost
Cost(q, Ci) and the load loadi of server Si into the following
equation:

Score(q, Si) =
Cost(q, Ci)

maxni=1 Cost(q, Ci)
−1

δ
·
(
1− loadi

maxni=1 loadi

)
where the parameter δ determines the weight of load bal-
ancing. The broker will choose the server with the smallest
Score(q, Si) for q. According to this equation, a server with
smaller Cost(q, Ci) or smaller loadi is more likely to be
chosen. The term (1− loadi

maxni=1 loadi
) represents the imbalance

ratio of Si compared to the highest loaded server. In our
experiments, the typical value of (1− loadi

maxni=1 loadi
) ranges from

5% to 30%. Thus, we recommend setting δ between 5–30%
for normalization.

Heuristics for online query assignment: As a result, we have
four combinations for online query assignment.
• Miss and tie-based balancing (M+T)
• Miss and score-based balancing (M+S)
• DiskCost and tie-based balancing (D+T)
• DiskCost and score-based balancing (D+S)
We will examine the effectiveness of the above heuristics

for online query assignment in Section V.

V. EXPERIMENTS

In this section, we experimentally evaluate the performance
of our proposed solution and competitors on a real dataset.
Section V-A introduces the experimental setting. Section V-B
explores the effectiveness of caching policies on the solutions.

TABLE VI: Statistics of data and queries

Query Log Statistics
Total data size 76 GB

Inverted index size 6.5 GB
Number of queries 1,000,000

Number of distinct queries 495,073

Section V-C examines the effectiveness of various options in
our proposed solution. Section V-D compares the performance
of the solutions with respect to various parameters.

A. Experimental settings

All the experiments are conducted on a cluster of 9 com-
modity machines. We use 1 machine as the query broker and
the rest machines as servers. Each machine has a Intel i5-
3570 3.4GHz processor and a 1TB SATA disk. We deploy a
Lucene2 based search implementation in each machine.so

We use the ClueWeb web data3, which is a real collection
of web pages crawled in 2009. Also, we use the AOL query
log4, which is a real collection of queries submitted to the
AOL search engine. To ensure replaying queries on Lucene in
a manageable time, we draw a random sample of 76 GB data
as the dataset and 1 million queries as the query workload.
Then, we replicate this dataset and its inverted index on each
server. Table VI summaries the characteristics of our dataset
and query set.

For other experimental settings, we follow the typical op-
tions in the literature. We divide the real query log into two
halves, as setting in [26], [36]: (i) the first half (500,000
queries) as the training set Qtrain (for building cache content),
and (ii) the second half (500,000 queries) as the testing set
Qtest (for the replay). The page (block) size in the system is
4KB [17], [33]. Table VII shows our parameter settings.

In the following experiments, we focus on the efficiency
of online query processing rather than offline pre-processing.
For search engines, the online query throughput and query
response time are the most important measurement for effi-
ciency, whereas the offline pre-processing time is not observed
by users. Besides, we measure (i) the query throughput (in
number of queries answered per second) as

throughput =
|Qtest|

maxni=1 TCi(Qi)

and (ii) the imbalance ratio as

imbalance ratio =

(
1−

minni=1 TCi′ (Qi′)

maxni=1 TCi(Qi)

)
× 100%

Regarding these two metrics, the ideal solution should achieve
high throughput and low imbalance ratio.

Methods for Comparison:
We call our solution as DC and name its variants in later

subsections. We adapt existing methods in the literature as
competitor methods (cf. Table VIII).

2http://lucene.apache.org
3http://lemurproject.org/clueweb09
4http://www.gregsadetsky.com/aol-data

TABLE VII: Parameter settings

Parameter Value range Default
Number of servers n [2, 8] 8

Cache size (GB) [0.5, 2] 1
Load-balancing factor α [0, 5] 2
the number of iterations [1, 100] 10

TABLE VIII: Competitor methods

Method Offline Online
Uniform static caching on round-robin

the global training set
LocalF static caching on round-robin

local training sets
DIVG [15] lowest miss, tie-breaking

Uniform: In the offline phase, it fills all caches with same
content (cf. Section I);

LocalF: In the offline phase, it partitions queries in a
round-robin manner and then fills each cache according to
its assigned query workload (stated in Section III-D);

DIVG: In the offline phase, this method adapts the
divergent-design-based solution (stated in Section III-D). In
the online phase, the broker assigns each query to a server
with the lowest misses (i.e., number of disk seeks).

B. Effect of Static Caching Policies

We first evaluate the effect of static caching policies used
in the methods. As stated in Section III, each server employs
a posting list cache and uses a static caching policy. We test
with two classic static caching policies [4], [5]: (i) Freq, which
fills the cache by posting lists with high access frequency, and
(ii) FreqSize, which fills the cache by posting lists with high
frequency to posting list length ratio.

Figure 6 shows the performance of Uniform under different
static caching policies. Freq achieves a better throughput than
FreqSize, although FreqSize has a higher hit ratio than Freq.
Since FreqSize favors caching shorter posting lists than Freq, a
cache hit in FreqSize would save less I/O cost when compared
to Freq. We have also repeated this experiment for other
methods (LocalF, DIVG, DC) and obtained similar trends.
Therefore, we set Freq as default static caching policy in the
remaining experiments.

C. Effect of Options and Parameters on Diversified Caching

We proceed to investigate the effect of various options (e.g.,
clustering options, merging options, query assignment options)
and parameters (e.g., α,#iter) on the performance of our
proposed Diversified Caching solution.

Figure 7 plots the performance of Diversified Caching with
respect to different combinations of clustering and merging
options. In this experiment, we fix the online query assignment
option to: MISS and tie-based balancing. The labels on the
x-axis indicate options in the clustering phase (cf. Section IV-
B), e.g., MISS, DIST. The option NO refers to the case of
disabling the iterative clustering procedure (for-loop). Within
each group of bars, the bars are shown according to their
options in the merging phase (cf. Section IV-C). We represent

 0

 3000

 6000

 9000

 12000

 15000

0.5 1.0 1.5 2.0

th
ro

u
g
h
p
u

t
(#

 q
u

e
ri
e
s
/s

e
c
)

cache size (GB)

Freq
FreqSize

(a) throughput

 0

 20

 40

 60

 80

 100

0.5 1.0 1.5 2.0

h
it
 r

a
ti
o

 (
%

)

cache size (GB)

Freq
FreqSize

(b) hit ratio

Fig. 6: Effectiveness of static caching policy on Uniform

 10000

 11000

 12000

 13000

 14000

NO MISS DIST

th
ro

u
g
h
p
u
t
(#

 q
u
e
ri
e
s
/s

e
c
)

clustering options

merging options: #Q
#T

DIST
UNION

(a) throughput

 0

 20

 40

 60

 80

NO MISS DIST

h
it
 r

a
ti
o
 (

%
)

clustering options

merging options: #Q
#T

DIST
UNION

(b) hit ratio

Fig. 7: Effectiveness of clustering and merging options on
our solution

the options fold-by-#query, fold-by-#term, search-by-distance,
search-by-union by using #Q, #T, DIST, UNION, respectively.
Clearly, it is not desirable to disable the iterative clustering
procedure; the bars in the group NO cannot achieve high
throughput. Within the group MISS, the best merging option is
#T. Within the group DIST, the best merging option is DIST.
We denote these two methods as MT-DC (meaning MISS+#T)
and D2-DC (meaning DIST+DIST) and then use them in the
subsequent experiments.

 11000

 12000

 13000

 14000

 15000

 0 1 2 3 4

th
ro

u
g

h
p

u
t

(#
 q

u
e

ri
e

s
/s

e
c
)

α

MT-DC
D

2
-DC

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4

im
b

a
la

n
c
e

 r
a

ti
o

 (
%

)

α

MT-DC
D

2
-DC

(a) throughput (b) imbalance ratio

Fig. 8: Performance vs. α

Figure 8 shows the performance of our methods as a
function of α. The performance remains stable across a range
of α values (from 2 to 4). The best performance is obtained
when α = 2. Thus, we fix α = 2 in subsequent experiments.

Figure 9 plots the performance of our methods with respect
to the number of iterations. The throughput of MT-DC is
insensitive to the number of iterations. D2-DC performs better
than MT-DC when the number of iterations is sufficiently high.
In the remaining experiments, we set the number of iterations
to 10.

 11000

 12000

 13000

 14000

 15000

1 5 10 20 100

th
ro

u
g

h
p

u
t

(#
 q

u
e

ri
e

s
/s

e
c
)

of iteration

MT-DC
D

2
-DC

 0

 5

 10

 15

 20

 25

 30

1 5 10 20 100

im
b

a
la

n
c
e

 r
a

ti
o

 (
%

)

of iteration

MT-DC
D

2
-DC

(a) throughput (b) imbalance ratio

Fig. 9: Performance vs. # iterations

Next, we examine the effect of online query assignment
options on our methods MT-DC and D2-DC. Each combina-
tion is labeled with two letters, where the first letter denotes
the query cost equation (M for Miss, D for DiskCost) and
the second letter denotes the load balancing option (T for tie-
based, S for score-based). For score-based balancing (S), we
set the parameter δ to 0.05. A more accurate cost equation (D)
helps improving the throughput. Thus, D+T and D+S perform
better than M+S and M+T, respectively. Since D+S achieves
the best throughput, we use this setting in the following
experiments.

 10000

 11000

 12000

 13000

 14000

 15000

M+T M+S D+T D+S

th
ro

u
g
h
p
u

t
(#

 q
u

e
ri
e
s
/s

e
c
)

online query assignment

MT-DC
D

2
-DC

(a) throughput

 0

 3

 6

 9

 12

 15

M+T M+S D+T D+S

im
b
a
la

n
c
e
 r

a
ti
o

 (
%

)

online query assignment

MT-DC
D

2
-DC

(b) imbalance ratio

Fig. 10: Effectiveness of online query assignment options on
our solution

D. Performance Comparisons

We compare the performance of our proposed methods
(MT-DC and D2-DC) with competitors (Uniform, LocalF, and
DIVG).

First, we plot the experimental results in Figure 11, while
fixing the parameters to their default values. Our methods
achieve better throughput than DIVG and outperform baseline
solutions (Uniform and LocalF) significantly, as shown in
Figure 11(a). In terms of the imbalance ratio, our methods
perform much better than DIVG (cf. Figure 11(b)).

Since LocalF and Uniform have similar performance, we
ignore Uniform in the following experiments.

We proceed to test the scalability of the methods with
respect to the cache size, the number of servers, and the data
size.

Effect of cache size: First, we test the performance of the
methods by varying the cache size (of each server) from 0.5
GB to 2.0 GB. Figures 12(a)(b)(c) show the query throughput,
the cache hit ratio, and the imbalance ratio of the methods. In
general, the query throughput of all methods rises with the
cache size. Our methods (MT-DC and D2-DC) achieve better
throughput than the competitors (DIVG and LocalF), and their
performance gap widens as the cache size increases.

Effect of number of servers: Next, we examine the perfor-
mance of the methods with respect to the number of servers
n (from 2 to 8). As illustrated in Figure 13, the throughput

 3000

 6000

 9000

 12000

 15000

Uniform LocalF DIVG MT-DC D
2
-DC

th
ro

u
g
h

p
u
t
(#

 q
u
e
ri
e

s
/s

e
c
)

(a) throughput

 0

 5

 10

 15

 20

Uniform LocalF DIVG MT-DC D
2
-DC

im
b
a
la

n
c
e
 r

a
ti
o
 (

%
)

(b) imbalance ratio

Fig. 11: Overall performance comparison

of each method increases proportionally with n. When n
increases, the total cache capacity (of n servers) increases, thus
the hit ratio also increases. On the other hand, it becomes more
difficult to balance the load across servers when n is large.

Effect of data size: Finally, we evaluate the scalability of our
methods by varying data size from 15GB to 76GB.

We obtain smaller datasets by sampling from the default 76
GB dataset. For each dataset, we set its cache size proportion-
ally based on its data size. Figures 14(a)(b)(c) show that our
proposed methods achieve higher throughput, higher hit ratio,
and lower imbalance ratio than competitors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel caching problem for
parallel search engines that employ replication on inverted
index. We showed that the problem is computationally hard,
and hence designed a diversified caching framework with
various implementation options. Experimental results demon-
strated that our methods achieved high throughput and low
imbalance ratio.

As future work, we will focus on studying the diversified
caching problem for other types of caching policies and caches
(e.g., document cache [34], snippet cache [14]) in document
servers.

Acknowledgments The research is supported by grant GRF
152201/14E from Hong Kong RGC.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In VLDB, pages 918–929, 2006.

[2] C. S. Badue, R. A. Barbosa, P. B. Golgher, B. A. Ribeiro-Neto, and
N. Ziviani. Basic issues on the processing of web queries. In SIGIR,
pages 577–578, 2005.

[3] R. A. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Sil-
vestri. Challenges on distributed web retrieval. In ICDE, pages 6–20,
2007.

[4] R. A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras,
and F. Silvestri. The impact of caching on search engines. In SIGIR,
pages 183–190, 2007.

[5] R. A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras,
and F. Silvestri. Design trade-offs for search engine caching. TWEB,
2(4), 2008.

[6] R. A. Baeza-Yates and F. Saint-Jean. A three level search engine index
based in query log distribution. In SPIRE, pages 56–65, 2003.

[7] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The
google cluster architecture. IEEE Micro, 23(2):22–28, 2003.

[8] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya,
D. B. Lomet, R. Manne, L. Novik, and T. Talius. Adapting microsoft
sql server for cloud computing. In ICDE, pages 1255–1263, 2011.

[9] D. Broccolo, C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri,
and N. Tonellotto. Load-sensitive selective pruning for distributed
search. In CIKM, pages 379–388, 2013.

[10] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis. Performance
comparison of clustered and replicated information retrieval systems.
In ECIR, pages 124–135, 2007.

[11] F. Cacheda, V. Plachouras, and I. Ounis. A case study of distributed
information retrieval architectures to index one terabyte of text. Inf.
Process. Manage., 41(5):1141–1161, 2005.

[12] B. B. Cambazoglu, A. Catal, and C. Aykanat. Effect of inverted index
partitioning schemes on performance of query processing in parallel text
retrieval systems. In ISCIS, pages 717–725, 2006.

[13] B. B. Cambazoglu, E. Kayaaslan, S. Jonassen, and C. Aykanat. A term-
based inverted index partitioning model for efficient distributed query
processing. TWEB, 7(3):15, 2013.

[14] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and F. Silvestri.
Caching query-biased snippets for efficient retrieval. In EDBT, pages
93–104, 2011.

[15] M. P. Consens, K. Ioannidou, J. LeFevre, and N. Polyzotis. Divergent
physical design tuning for replicated databases. In SIGMOD Conference,
pages 49–60, 2012.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

[17] B. K. Debnath, S. Sengupta, and J. Li. Flashstore: High throughput
persistent key-value store. PVLDB, 3(2):1414–1425, 2010.

[18] Q. Gan and T. Suel. Improved techniques for result caching in web
search engines. In WWW, pages 431–440, 2009.

[19] B.-S. Jeong and E. Omiecinski. Inverted file partitioning schemes in
multiple disk systems. IEEE Trans. Parallel Distrib. Syst., 6(2):142–
153, 1995.

[20] X. Long and T. Suel. Three-level caching for efficient query processing
in large web search engines. World Wide Web, 9(4):369–395, 2006.

[21] R. Ma. Baidu distributed database. In SACC, pages 426–435, 2010.
[22] M. Marı́n, V. G. Costa, and C. Gómez-Pantoja. New caching techniques

for web search engines. In HPDC, pages 215–226, 2010.
[23] A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed

parallel retrieval. In SIGIR, pages 348–355, 2006.
[24] S. B. Navathe and M. Ra. Vertical partitioning for database design: A

graphical algorithm. In SIGMOD Conference, pages 440–450, 1989.
[25] R. Ozcan, I. S. Altingövde, and Ö. Ulusoy. Static query result caching

revisited. In WWW, pages 1169–1170, 2008.
[26] R. Ozcan, I. S. Altingövde, and Ö. Ulusoy. Cost-aware strategies for

query result caching in web search engines. TWEB, 5(2):9, 2011.
[27] H.-S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids

clustering. Expert Syst. Appl., 36(2):3336–3341, 2009.
[28] D. Puppin, F. Silvestri, and D. Laforenza. Query-driven document

partitioning and collection selection. In Infoscale, page 34, 2006.
[29] D. Puppin, F. Silvestri, R. Perego, and R. A. Baeza-Yates. Load-

balancing and caching for collection selection architectures. In Infoscale,
page 2, 2007.

LocalF MT-DC

2

DIVG D
2
-DC

 6000

 10000

 14000

 18000

 22000

 26000

0.5 1.0 1.5 2.0

th
ro

u
g
h
p
u
t
(#

 q
u
e
ri
e
s
/s

e
c
)

cache size (GB)

 0

 20

 40

 60

 80

0.5 1.0 1.5 2.0

h
it
 r

a
ti
o
 (

%
)

cache size (GB)

 0

 5

 10

 15

 20

 25

 30

0.5 1.0 1.5 2.0

im
b
a
la

n
c
e
 r

a
ti
o
 (

%
)

cache size (GB)

(a) throughput (b) hit ratio (c) imbalance ratio

Fig. 12: Performance vs. cache size

 0

 3000

 6000

 9000

 12000

 15000

2 4 6 8

th
ro

u
g
h
p
u
t
(#

 q
u
e
ri
e
s
/s

e
c
)

of servers

 35

 40

 45

 50

 55

2 4 6 8

h
it
 r

a
ti
o
 (

%
)

of servers

 0

 3

 6

 9

 12

2 4 6 8

im
b
a
la

n
c
e
 r

a
ti
o
 (

%
)

of servers

(a) throughput (b) hit ratio (c) imbalance ratio

Fig. 13: Performance vs. number of servers

 0

 10000

 20000

 30000

 40000

 50000

15 30 45 60 76

th
ro

u
g
h
p
u
t
(#

 q
u
e
ri
e
s
/s

e
c
)

data size (GB)

 35

 40

 45

 50

 55

15 30 45 60 76

h
it
 r

a
ti
o
 (

%
)

data size (GB)

 0

 5

 10

 15

 20

15 30 45 60 76

im
b
a
la

n
c
e
 r

a
ti
o
 (

%
)

data size (GB)

(a) throughput (b) hit ratio (c) imbalance ratio

Fig. 14: Performance vs. data size

[30] Z. Shang and J. X. Yu. Catch the wind: Graph workload balancing on
cloud. In ICDE, pages 553–564, 2013.

[31] A. Y. Teymorian, O. Frieder, and M. A. Maloof. Rank-energy selective
query forwarding for distributed search systems. In CIKM, pages 389–
398, 2013.

[32] A. Tomasic and H. Garcia-Molina. Performance of inverted indices in
distributed text document retrieval systems. In PDIS, pages 8–17, 1993.

[33] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener, and
G. Graefe. Query processing techniques for solid state drives. In
SIGMOD Conference, pages 59–72, 2009.

[34] A. Turpin, Y. Tsegay, D. Hawking, and H. E. Williams. Fast generation
of result snippets in web search. In SIGIR, pages 127–134, 2007.

[35] A. P. U. Manber and J. Robison. Yahoo! In Communications of the
ACM, volume 43, pages 124–135, 2000.

[36] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and X. Liu. The impact of
solid state drive on search engine cache management. In SIGIR, pages

693–702, 2013.
[37] J. Xu and W. B. Croft. Cluster-based language models for distributed

retrieval. In SIGIR, pages 254–261. ACM, 1999.
[38] J. Zobel and A. Moffat. Inverted files for text search engines. ACM

Comput. Surv., 38(2), 2006.

