
Efficient Notification of Meeting Points for Moving
Groups via Independent Safe Regions

Jing Li #, Man Lung Yiu ∗, Nikos Mamoulis #

#Department of Computer Science, The University of Hong Kong
{jli, nikos}@cs.hku.hk

∗Department of Computing, Hong Kong Polytechnic University
csmlyiu@comp.polyu.edu.hk

Abstract— In applications like social networking services and
online games, multiple moving users form a group and wish
to be continuously notified with the best meeting point from
their locations. To reduce the communication frequency of the
application server, a promising technique is to apply safe regions,
which capture the validity of query results with respect to the
users’ locations. Unfortunately, the safe regions in our problem
exhibit characteristics such as irregular shapes and dependency
among multiple safe regions. These unique characteristics render
existing safe region methods that focus on a single safe region
inapplicable to our problem. To tackle these challenges, we first
examine the shapes of safe regions in our problem context and
propose feasible approximations for them. We design efficient
algorithms for computing these safe regions, as well as de-
velop compression techniques for representing safe regions in
a compact manner. Experiments with both real and synthetic
data demonstrate the efficiency of our proposal in terms of
computation and communication costs.

I. INTRODUCTION

Recently, social networking services in the ad-hoc mobile
environment have attracted lots of attention [1], [2]. Such
services exist in many popular social websites including Face-
book and Foursquare1. Managing the moving data arising from
such services brings new challenges due to both spatial and
social constraints.

In this paper, we propose a novel monitoring problem,
Efficient Notification of Meeting Points (ENMP) for multiple
moving users: given a group of moving users U , a set of points
of interest (POI) P , ENMP continuously reports the optimal
meeting point po ∈ P to users in U such that their maximum
distance toward po is minimized. ENMP is motivated by
many applications in social networks, location-based games
and massively multi-player on-line games [3], [4].

A real application relevant to ENMP is EchoEcho2, in-
vented by Google Venture. EchoEcho assists users to browse
their friends’ real-time locations and share their own. As a
highlight feature, EchoEcho allows a user to continuously
observe his/her friends’ locations regarding to a predetermined
meeting point. Mobile users with such interests have also been
investigated in the collaborative system research [5].

Jing Li and Nikos Mamoulis were supported by grant HKU 715711E from
Hong Kong RGC. Man Lung Yiu was supported by grant PolyU 5302/12E
from Hong Kong RGC.

1www.foursquare.com
2www.echoecho.me

Furthermore, many popular social networking applications,
e.g., event calendar in Facebook3, assist users to share and
synchronize event updates. These applications are designed
to detect updates and suggest the necessary rearrangements
automatically. As an example, consider a new event created
in the event calendar, e.g., enjoying Italian food together. A
group of users {u1, u2, u3} are interested and participate in
it (see Figure 1(a) for illustration). Event calender initially
recommends a restaurant, i.e., p1, based on current location
statuses of these users at time-stamp t1. However, due to
unpredictable traffic, the speeds of different users may change
and thus the optimal meeting point may also change. In
Figure 1(a), the locations of users change from ui(t1) to
ui(t2). Due to traffic jams, user u1 advances toward p1 with
low speed and reaches u1(t2). Thus, at time stamp t2, the
according optimal meeting point changes to p2. With the help
of ENMP, such a change of the optimal meeting point can be
quickly detected and thus, the subsequent events in the event
calendar can be rearranged in advance.

 !"#!$

 %"#!$

 &"#!$

'!
'%

 !"#%$
 %"#%$

 &"#%$

(a) Auto-detection

 !

 %

 &

'!
'%

()*+,-+./01

2!

2&

2%

(b) Irregular safe regions

Fig. 1. Motivation

Besides social networking services, ENMP also finds appli-
cations in location-based games. As a famous outdoor GPS
game, Tourality4 organizes games for teams with distributed
players. To win a Tourality game, the distributed players of a
team should reach one of geographically defined spots (POIs)
by running, biking or driving as fast as possible. By using
ENMP in this scenario, it can dynamically adjust the first
meeting spot based on real-time locations of players and thus

3apps.facebook.com
4www.tourality.com

shorten the meeting time. ENMP has similar applications in
massively multi-player online (MMO) games.

Limitations of bandwidth and battery power raise challenges
for mobile applications, including ENMP. Thus, the essen-
tial optimization goal for these applications is to minimize
communication cost [6]–[10]. Such an optimization goal also
reduces unnecessary computational workload in the server
because the communication frequency between the clients and
the server is alleviated. We consider communication cost in
two aspects: (i) update frequency (communication frequency),
which measures the frequency for users to issue update mes-
sages to the server; (ii) packet count [11], which is the total
number of TCP packets sent between the server and the clients.

A straightforward solution is to force each client (i.e.,
user) to communicate with the server periodically (e.g., every
second). Such a brute force solution incurs huge computation
and communication costs at the server side. Therefore, it is
important to develop an efficient solution that reduces the
communication cost between the server and the users. Previous
work [12], that considers similar applications under road
networks, only develops several methods for reducing road
network distance computations but none for the optimization
of communication cost. Thus, their solutions are inapplicable
to our problem.

Motivated by this, we propose novel solutions based on safe
region technique. Safe regions are a set of geographical regions
such that if each user stays inside his/her own, the query
result will remain the same, thus avoiding communication
between users and the server. For instance, in Figure 1(b)
the optimal meeting is p1 if all users stay in their own safe
regions (R1, R2, R3). The usage of safe regions for multiple
users raises several challenges. Firstly, existing safe region
computation techniques apply to only one user while our work
needs to compute safe regions for multiple users. Secondly,
the safe regions have irregular shapes (to be demonstrated in
Section III-B), unlike previous work that have a simple-shaped
safe region (e.g., Voronoi cell [13]). Thirdly, it is infeasible
to pre-compute the safe regions for multiple users because
multiple safe regions depend on the locations of moving users,
which are unpredictable.

In this paper, we first propose circular safe regions that
represent each safe region as a circle and are easy to compute.
To further reduce communication frequency (i), we propose
tile-based safe regions that utilize squares (i.e., tiles) to as-
semble large regions and approximate maximal safe regions
better. We utilize a novel compression technique to alleviate
representative bits incurred by irregular shape of safe regions
and thus minimize packet cost (ii).

Contributions:

• We propose a new problem ENMP with broad applica-
tions and aim at minimizing the communication cost.

• We design circular safe regions which are efficient to
compute.

• We develop tile-based safe regions that focus on mini-
mizing communication cost.

• We discuss several optimizations to enhance the effi-
ciency of the computation.

• We introduce novel compression techniques for repre-
senting irregular safe regions in order to reduce their
communication frequencies.

• We demonstrate effectiveness and efficiency of our meth-
ods by extensive experiments.

The paper is organized as follows. First, we review the related
work in Section II. Then, we introduce our notations and
define the problem formally in Section III. Next, we present
our solutions in Section IV and Section V, together with
their optimizations. We evaluate our methods on real and
synthetic data in Section VI. Finally, we conclude our paper
in Section VII.

II. RELATED WORK

Previous work on moving query processing can be classified
into two categories: (i) report query results to a single user
continuously, e.g. kNN [6], [13]–[18], circular range queries
[19], moving window(rectangle range) queries [6], [20]; (ii)
detect relationships among moving objects, e.g., proximity
detection [1], [10], [21], [22], constraints monitoring [23].

The safe region has been widely used in moving query
processing. When the future movement of a user is unknown,
the safe region helps alleviate the communication cost between
clients and servers. When a user registers a continuous query,
the server will return points of interest along with a safe
region. Query result remains the same if the user stays inside
current safe region. When leaving the safe region, the user
requests from the server a updated result together with a new
safe region. The shape of the safe region depends on the
query type; it is an order-k Voronoi cell for a kNN query
[20] or a region formed by intersections and unions of circles
for a range query [19]. All these methods are not applicable
to our problem since: 1) multiple safe regions are irregular,
which are hard to compute comparing with a single safe
region; 2) multiple users change their locations dynamically
and unpredictably and thus multiple safe regions cannot be
pre-computed as Voronoi cell [24].

Proximity detection [10] helps a user to maintain a list of
friends who are within a distance threshold of this user. Since
both the user and his/her friends are moving, [10] proposes
self-tuning policies to automatically assign an adjustable circle
shape safe region for each user. However, their work does not
consider POIs where the users are supposed to meet.

The snapshot version of our problem is equivalent to the
group nearest neighbor query (GNN) proposed in [25]. It
attempts to find a point of interest p that minimizes total
distance between p and users’ locations. Algorithms in [25]
use an R-tree to index points of interest and filter MBRs
that contain no better points than the current optimal point.
They handle similar queries which minimize the maximum (or
minimum) distance among a point of interest and users. Group
Enclosing Query [26] is a specified GNN, which requires the
maximum distance among a point of interest and users to
be minimized. [26] indexes the user set U by using furthest

Voronoi diagrams, reducing the distance computation between
MBRs of points of interest and the user points. However,
our problem emphasizes on response for continuous queries
of this type and computing the safe regions to minimize
communication cost.

The most related work is [12] which focuses on monitoring
GNN in road networks. Their work is different from ours
in two aspects: 1) our problem does not consider the road
network; 2) their solutions are proposed to optimize the road
network distance computation in the server side and thus are
not applicable in our work. [27] continuously maintains a
moving object from a set of moving objects, which is best
according to its aggregate distance toward a set of selected
POIs. In our problem, we retrieve a point of interest according
to the locations of moving objects dynamically. Therefore, [27]
is fundamentally different from our work.

III. PROBLEM SETTING

We first introduce the preliminary concepts and the system
architecture. Then, we illustrate the unique characteristics in
the search space and safe regions in our problem. At the end,
we state our main objectives in this paper.

A. Preliminaries & System Architecture

We first provide the definitions for distances, the optimal
meeting point, and safe regions. Unless otherwise stated, we
denote both a user and his location by ui. Table I summarizes
the notations to be used throughout the paper.

DEFINITION 1 (DISTANCES): Let ∥p, l∥ be the Euclidean
distance between points p and l. The minimum distance and
the maximum distance from a point p to a set/region S are:

∥p, S∥min = min
l∈S
∥p, l∥ (1)

∥p, S∥max = max
l∈S
∥p, l∥ (2)

DEFINITION 2 (OPTIMAL MEETING POINT): Given
a group of users U and a dataset of points P , the
optimal meeting point po is a point in P that satisfies
∥po, U∥max ≤ ∥p′, U∥max for any other point p′ ∈ P −{po}.

DEFINITION 3 (INDEPENDENT SAFE REGIONS): Let m be
the number of users in U . A set of regions R = { Ri|mi=1 } is
said to be a set of independent safe regions if the optimal
meeting point po is the same for every instance of user
locations ∀ ⟨l1, l2, · · · , lm⟩ ∈ R1 ×R2 × · · · ×Rm.

DEFINITION 4 (MAXIMAL SAFE REGIONS): R∗ =
{ R∗

i |mi=1 } is said to be a set of maximal safe regions if no
other (independent) safe regions R′ = { R′

i|mi=1 } satisfies:
R′ ̸= R∗ and R∗

i ⊆ R′
i ∀ i = 1 · · ·m.

As an example, Figure 2(a) illustrates the minimum dis-
tances (from p1 to a circle, and from p2 to a square) and the
maximum distances (from p3 to the circle, and from p2 to
the square). At time-stamp t1 (t2) in Figure 1(a), the optimal
meeting point with the regarding locations of u1-u3 is p1 (p2).
As shown in Figure 1(b), the independent safe regions for
three users u1-u3 are R1-R3. Note that the safe regions (for
the optimal meeting point) can have irregular shapes and we
will elaborate this issue shortly.

p1
p2

p3
c

r

max dist

min dist

(a) max-min distance

u1 u2

u3

p2
p1

||p1, R||
┬

||p2, R||
┴

R1

R2

R3

(b) dominant distance

Fig. 2. Distance

In this paper, we adopt the client-server architecture which
is widely used in moving query processing [8], [19], [20].
Figure 3 illustrates this architecture. The server manages a
dataset P of points-of-interest (e.g., restaurants, cafes) and
indexes it by an R-tree. A group of users U wishes to receive
notifications of their optimal meeting point po ∈ P from
the server continuously. Besides the result po, the server also
reports a safe region Ri to each user ui ∈ U . By Definition 3,
the optimal meeting point remains unchanged if every user
ui moves within his safe region Ri. Therefore, these safe
regions serve to reduce the communication frequency (and
computation effort) of the server significantly.

The system is triggered when a user ui ∈ U leaves his safe
region Ri. Then, ui sends his current location to the server
(Step 1). Next, the server probes the current locations of other
users in the group U (Step 2). Having received replies from
all users in U , the server recomputes and notifies each user
ui about the optimal meeting point po and a corresponding
safe region Ri (Step 3). In summary, the server and users
communicate via three types of messages. 5

Group of users Server

1. leaves safe region

 updates location

3. notifies meeting point po

and safe region Ri

2. probes for loc. updates Points of

interests P

Fig. 3. System architecture

B. Characteristics of the Search Space and Safe Regions

This section describes the unique characteristics exhibited
by the safe regions in our problem.

By Definition 3, the combinations of safe regions indeed
form a huge search space: m·d dimensional space, where m is
the number of users and d is the number of spatial dimensions.

5An alternative approach is only to notify the user who moves out of its
safe region. We found experimentally that it incurs a larger communication
cost due to the moving-out user’s relatively smaller new safe region which is
restricted by the others’ previous large safe regions.

TABLE I
NOTATION

Notation Meaning
U a group of users
ui a user or its location
P points of interest

∥p, u∥ Euclidean dist. from p to u
∥p, S∥max max. dist. from p to a set S, i.e., S is R or U
∥p, S∥min min. dist. from p to a set S, i.e., S is R or U

po the current optimal meeting point
∥p, U∥† the dominant distance under U
∥p,R∥⊤ the dominant max. distance under R
∥p,R∥⊥ the dominant min. distance under R

u⊤
p the dominant user that contributes to ∥p,R∥⊤

u⊥
p the dominant user that contributes to ∥p,R∥⊥
R a set of safe regions for U
R∗ a set of maximal safe regions

For example, for two users (m = 2) and the planar space
(d = 2), the search space becomes 4-dimensional.

We first conduct a case study to visualize the search space
for the case m = 2 and d = 1 (i.e, each user location is just
a single value). Figure 4a shows the locations of two users
u, v and three points-of-interest a, b, c. Figure 4b illustrates
the optimal meeting point for every combination of locations
for user u, v. Each cell (at i-th column, j-th row) contains the
optimal meeting point when u = i and v = j. For instance,
the current user locations are u = 3 and v = 6, so the current
optimal meeting point is a (see the cell at 3-rd column, 6-
th row). For readability, the cells are colored based on their
optimal meeting points (see Figure 4b). It appears that the cells
with the same color form a connected ‘hyper-region’ in the
high-dimensional search space, e.g., the diamond-like ‘hyper-
region’ for point a. Unfortunately, we are unable to decompose
such a high-dimensional ‘hyper-region’ into independent safe
regions { Ri|mi=1 } for the users. First, two cells with the
same color are not necessarily connected in the spatial domain.
For instance, both combinations ⟨3, 9⟩ and ⟨5, 0⟩ for ⟨u, v⟩
take a as the optimal meeting point. However, user v cannot
travel from location 9 to 0 directly without visiting locations
1-4, which have other optimal meeting points. Second, the
maximal safe region of a user is restricted by that of another
user. For instance, if the safe region for v is the interval 5-9,
the safe region for u can only be the interval 0-4. Otherwise,
if u = 5 but v = 9, the optimal meeting point is no longer
a. Third, the combinations of maximal safe regions obtained
from the search space are not unique. For instance, consider
two combinations of safe regions: (i) ⟨2-4, 3-9⟩, and (ii) ⟨0-
4, 5-9⟩. Both combinations are valid and they take a as the
optimal meeting point. Finally, the safe regions have irregular
shapes, which we will elaborate shortly.

All these are unique characteristics in our problem, render-
ing existing safe region techniques [8], [19], [20] inapplicable
to our problem.

Shapes of maximal safe regions. We proceed to illustrate the
fact that the maximal safe regions in our problem have irreg-
ular shapes. Figure 5 shows an example in the 2-dimensional

Users u v
Objects b a c
Location 0 1 2 3 4 5 6 7 8 9

(a) locations of users and objects in 1D space

9 a a a a a c c c c c
8 a a a a a a c c c c
7 a a a a a a a c c c
6 a a a a a a a a c c
5 a a a a a a a a a c
4 b a a a a a a a a a
3 b b a a a a a a a a
2 b b b a a a a a a a
1 b b b b a a a a a a
0 b b b b b a a a a a

v\u 0 1 2 3 4 5 6 7 8 9

(b) optimal meeting point for each combination of user locations

Fig. 4. Optimal meeting point combinations, 1D example

space (d = 2) with two users ui (m = 2) and three data points.
The current optimal meeting point is marked as po.

We are unable to visualize the entire search space here as it
has m · d = 2 · 2 = 4 dimensions. For the sake of illustration,
we consider the special case that u1 has a fixed location and
then we attempt to find the maximal safe region of user u2.

Let’s examine how the point p1 affects the safe region of
u2 (see Figure 5(a)). Specially, we consider (i) the bisector
line between points p1 and po, and (ii) the circle at center p1
with radius ∥u1, p

o∥. If u2 moves across the bisector line in
(i), then both u1 and u2 become closer to p1 than to po. If u2

moves inside the circle in (ii), then the optimal meeting point
will be decided by the ‘further-away’ u1, who is closer to p1
than po. Thus, the safe region (in gray color) is bounded by
the shapes (i) and (ii).

Following similar argument, we can derive the boundaries of
the safe region of u2 with respect to the point p2. The maximal
safe region of u2 is restricted by both p1 and p2. Figure 5(b)
shows that this region (in gray color) has an irregular shape.

In general, the maximal safe regions in our problem have
irregular shapes, especially in typical applications which in-
volve many more users and data points than in the above
example. These irregular safe regions raise two challenges:
(i) they are time-consuming to compute, and (ii) they are hard
to be represented in a concise manner.

C. Objectives

As discussed above, maximal safe regions have irregular
shapes and raise challenges in computation and representation.
In subsequent sections, we will investigate some conservative
approximations for maximal safe regions. Specifically, we will
study circular safe regions in Section IV and tile-based safe
regions in Section V. Our objectives are as follows:

1) Develop efficient algorithms for computing these safe
regions;

2) Design concise representations for safe regions.

"
'

 !

"!

##"
'
% !##&

"$

 $

(a) 1-point partition

 !

"!

##"$%& !##&

"$

 $

"
'

(b) 2-point partition

Fig. 5. Safe Region Example

IV. COMPUTING CIRCULAR SAFE REGIONS

In this section, we approximate the maximal safe regions
of users by circles due to simplicity. We first study the
condition for verifying a set of safe regions. Then, we design
an algorithm for computing circular safe regions.

A. Verification of Safe Regions

An essential task in our problem is to verify whether a set
of regions {Ri|mi=1} satisfies Definition 3. By definition, there
are infinitely many instances of user locations in those regions.
Thus, it is infeasible to test all the instances one-by-one.

In this section, we plan to establish a conservative condition
for verifying safe regions in an efficient manner. Before that,
we first define dominant distances and dominant user:

DEFINITION 5: Given a data point p ∈ P and a user set U ,
the dominant distance is defined as

∥p, U∥† = max
ui∈U

∥p, ui∥

Given a data point p ∈ P and a set of safe regions R, the
dominant minimum and maximum distances are defined as:

∥p,R∥⊥ = max
Ri∈R

∥p,Ri∥min (3)

∥p,R∥⊤ = max
Ri∈R

∥p,Ri∥max (4)

A user is denoted as u†
p if he contributes to the dominant

distance with respect to point p.
Observe that the optimal meeting point is the point with the

smallest dominant distance ∥p, U∥†. Regardless of the actual
locations of users (in their safe regions), ∥p,R∥⊥ serves as
an lower-bound of ∥p, U∥†, and ∥p,R∥⊤ serves as an upper-
bound of ∥p, U∥†. As an example in Figure 2(b), ∥p2,R∥⊥
is the maximum over the minimum distances from p2 to each
region (corner in black), and ∥p1,R∥⊤ is the maximum over
the maximum distances from p1 to each region (corner in
gray).

We then establish a conservative test (Lemma 1) for ver-
ifying a set of safe regions with respect to a given data
point p ∈ P and the optimal meeting point po. This test is
conservative in the sense that it has no false positives but it
may have false negatives, i.e., (i) if the test returns true, then
po is definitely optimal when the users remain in R; (ii) if
the test returns false, then po may not be optimal. We denote

this test as Verify(R, po, p) throughout the paper. This test is
efficient as its time complexity is O(m).

LEMMA 1 (CONSERVATIVE VERIFICATION): Given a set
of regions R = {Ri|mi=1}, if for a point p ∈ P and p ̸= po

∥po,R∥⊤ ≤ ∥p,R∥⊥ (5)

then the dominant distance of po must be smaller than or equal
to that of p.

Proof: For any instance {li|mi=1} of R, by definition of
dominant max. (min.) distance, we have

∥po, {li|mi=1}∥† ≤ ∥po,R∥⊤

and
∥p,R∥⊥ ≤ ∥p, {li|mi=1}∥†

Combining these two equations with Equation (5), we derive:

∥po, {li|mi=1}∥† ≤ ∥p, {li|mi=1}∥†

which means all instances in R are valid.
As an example, Figure 6(a) shows 2 data points and 3 users

(with their safe regions). Note that ∥po,R∥⊤ = ∥po, R2∥max

and ∥p1,R∥⊥ = ∥p1, R1∥min. Since ∥po, R2∥max <
∥p1, R1∥min, by Lemma 1, we conclude that p1 cannot replace
po as the optimal meeting point (and thus the safe regions are
valid).

 !

 "

#
$

#!

 %

&$'()*)+,&(-+*)./

1! 1%

1"

(a) conservative verification

 %

 !

 "

#
$

#!

01!2,1%2,1"3

01!2,1%
*2,1"3

01!2,1%
&2,1"3

1!

1"

1%

1%
* 1%

4

1%
. 1%

&

(b) divide-and-conquer

Fig. 6. Verifications of safe regions

B. Algorithm

Although maximal safe regions have irregular shapes, they
can be conservatively approximated as circles. We now assign
each user ui a circular safe region Ri = ⊙(ui, r), where ui

is the current user location and r is the radius. Note that the
same radius r is used across different Ri.

To reduce the communication cost between the server and
the users, the value r should be as large as possible. The
following theorem decides the maximum radius r such that
the safe regions remain valid.

THEOREM 1 (MAXIMAL CIRCLES): The maximum radius
of circles for safe regions is:

rmax =
minp∈P−{po}(∥p, U∥max)− ∥po, U∥max

2
(6)

Proof: Let Ri = ⊙(ui, r), a circle with radius r and
center as the current user location ui. We have: ∥p,Ri∥max =
∥p, ui∥+ r and ∥p,Ri∥min = ∥p, ui∥ − r.

By substituting these equations into Equation (5) in
Lemma 1, for any point p ∈ P − {po}, we have

max
ui∈U

(∥po, Ri∥max) ≤ max
uj∈U

(∥p,Rj∥min)

max
ui∈U

(∥po, ui∥+ r) ≤ max
uj∈U

(∥p, uj∥ − r)

By rearranging the terms, we obtain:

r ≤
maxuj∈U (∥p, uj∥)−maxui∈U (∥po, ui∥)

2

which is equivalent to

r ≤ ∥p, U∥max − ∥po, U∥max

2
(7)

Note that Equation (7) must hold for any point p ∈ P −
{po}. Taking the minimum value of all ∥p, U∥max, we obtain:
rmax =

minp∈P−{po}(∥p,U∥max)−∥po,U∥max

2 .
Algorithm 1 is the pseudo-code for computing circular safe

regions for users. Assume that the dataset set P is indexed
by an R-tree. First, the algorithm finds the best two meeting
points by calling an existing algorithm [28] on the R-tree of
P . Note that the second best meeting point is the point p that
contributes to minp∈P−{po}(∥p, U∥max). Then, it computes
the maximum radius rmax by Equation (6) and returns the
corresponding circular safe regions to the users.

Algorithm 1 Circle-MSR (Set of users U , Dataset P)
1: po, p← FindMaxGNN(U , P , 2) ◃ apply algo. in [28]
2: compute the radius rmax ◃ apply Equation (6)
3: for each user ui ∈ U do
4: return the safe region ⊙(ui, rmax) to ui

Discussion. The advantage of circular safe regions is that
they can be computed efficiently. However, they suffer from
the drawback that they cannot serve as tight approximations
of maximal safe regions. For instance Figure 7(a) contains
two users u1-u2 and three points p1-p2 and po. Since p1 is
the next optimal meeting point, according to Equation (6), the
radius for circles are determined by two distances ∥po, u1∥
and ∥p1, u2∥. Thus, the circular safe regions are depicted
in Figure 7(a). In the next section, we propose a tighter
approximation of maximal safe regions, named the tile-based
safe regions. As illustrated in Figure 7(b), the tile-based safe
regions are much more tighter than the circular safe regions
in Figure 7(a).

V. COMPUTING TILE-BASED SAFE REGIONS

In this section, we study a tighter approximation of maximal
safe regions by using tiles. A tile, as its name implies, is a
square region (with side-length δ). Tiles can be assembled
to represent an irregular shape and thus serve as a tighter
approximation of maximal safe regions.

First, we develop a tighter verification method for tiles.
Next, we design an algorithm for computing such tile-based
safe regions. Then, we propose techniques to optimize the

 !

"!

"#

"
$

 #

%!

%#

(a) circular safe regions

 !

"!
"#

"
$

 #

%#
%!

(b) tiled-based safe regions

Fig. 7. Comparisons of safe regions

efficiency of the algorithm. Finally, we develop techniques
for compressing tile-based safe regions in order to reduce
the number of packets communicated between clients and the
server.

A. Divide-and-Conquer Verification for Tiles

First, we demonstrate that the verification condition in
Lemma 1 is not tight. Then, we propose a divide-and-conquer
method for verifying a tile precisely.

Figure 6(b) shows three users u1, u2, u3 and two data points
po and p1. Here, u2 is the dominant user for both points po and
p1. Consider the safe region set R = {R1, R2, R3}. As de-
picted in Figure 6(b), the max. distance for po (∥po, R2∥max)
is larger than the min. distance for p1 (∥p1, R2∥min). By
Lemma 1, R cannot be verified. This phenomenon happens
due to the dominant min. and max. distances for the same
dominant user (e.g., u2), yet they are contributed by two
different locations inside R2.

On the other hand, if we divide R2 into four smaller tiles
(Ra

2 , R
b
2, R

c
2, R

d
2) as shown in Figure 6(b), then R can pass the

verification. Consider the safe region set R′ = {R1, R
a
2 , R3}

for example. R′ passes the verification since ∥po,R′∥max is
less than ∥p1,R′∥min. Similarly, the safe region set R′′ =
{R1, R

d
2, R3} passes the verification since ∥po,R′′∥max ≤

∥p1,R′′∥min. After applying Lemma 1 to the remaining
two groups of safe regions ({R1, R

b
2, R3}, {R1, R

c
2, R3}), we

conclude that R is valid.
Our next question is how to determine a suitable size δ for

a tile s. If δ is too small, then many tiny tiles are examined
and incur significant computation cost. If δ is too large, then
R may not be able to pass the verification.

To tackle this problem, we propose a divide-and-conquer
method for verification (Algorithm 2). The initial size of
the tile s will be discussed in the next section. The pa-
rameter L is used to control the number of recursion lev-
els (and thus the computation cost). Suppose that R =
{R1, R2, · · · , Ri, · · · , Rm} is a valid safe region set (i.e.,
passed the verification). The algorithm aims to check whether
s is a valid safe region for user ui with respect to the existing
safe regions R1, · · · , Ri−1, Ri+1, · · · , Rm of other users in
R. If yes, then we can guarantee that Ri ∪ {s} is also a valid
safe region for user ui.

At Lines 1–3, we apply a function Tile-Verify to verify the
tile s for the user ui with respect to the safe regions of other
users in R. Efficient implementations of Tile-Verify, and index

pruning techniques (on R-tree), will be studied in Section V-C.
If s passes the verification, then we add it into the safe region
of ui. Otherwise, we divide s into four sub-tiles s′, and then
call the method recursively on s′ (see Lines 5–8). Note that
recursion stops when the recursion level L reaches 0.

Algorithm 2 Divide-Verify (Safe region set R, User ui, Tile
s, Optimal point po, Dataset P , Level L)

1: if ∀ p ∈ P − {po}, Tile-Verify (R, ui, s, p, p
o) is true then

2: Ri ← Ri ∪ {s}
3: return true
4: flag ← false
5: if L > 0 then ◃ control the recursion level
6: divide s into four sub-tiles
7: for each sub-tile s′ of s do
8: if Divide-Verify (R, ui, s

′, po, P, L− 1) then
9: flag ← true

10: return flag

B. Algorithm

Having introduced a divide-and-conquer verification method
Divide-Verify, we are ready to present an algorithm for com-
puting tile-based safe regions (Algorithm 3). Each safe region
Ri is modeled as a set of tiles, so it can be used to approximate
an irregular shape (as discussed in Figure 11 later). The main
idea of the algorithm is to browse the tiles around each user
ui in a systematic way, apply verification on them, and then
add valid tiles into a safe region Ri.

Recall that Algorithm 1 computes the safe region of each
user ui as a circle ⊙(ui, rmax). The maximal tile (square)
in each circle must also be a valid safe region. Thus, we set
the tile size δ =

√
2 · rmax and add a tile �(ui, δ) into its

corresponding safe region Ri (Lines 1–4).
The parameter α specifies the (maximum) number of tiles to

be assigned to each safe region Ri. It can also be used to bound
the number of iterations in Lines 5–11. In each iteration, the
algorithm examines the safe regions of users in a round-robin
manner.

We call a function Next-Tile to get the next tile s for user
ui. The implementation of Next-Tile will be discussed shortly.
Then, it tests the new tile s with other users’ safe regions by
calling Divide-Verify (Line 9). The loop terminates either when
(i) the test returns true, or (ii) s is empty, i.e., Next-Tile has
exhausted all tiles for ui.. At the end, the algorithm returns a
safe region Ri to each user ui.

We proceed to clarify two possible orderings for NextTile
to select the next tile. In the example of Figure 8, the tiles are
numbered by the their adding orders. The first tile centered at
ui is numbered as 0.

Undirected ordering. This approach picks the next tile based
on the anti-clockwise order as shown in Figure 8. When
all tiles in the current layer have been exhausted, it checks
whether some tile in the current layer has been inserted in
the safe region. If yes, then it picks the next tile in an outer
layer and repeats the process. Otherwise, it returns a null

Algorithm 3 Tile-MSR (Set of users U , Dataset P , Tile limit
α, Split level L)

1: compute po and rmax ◃ apply Algorithm 1
2: δ ←

√
2 · rmax ◃ initial tile size

3: for each user ui in U do
4: Ri ← { �(ui, δ) } ◃ initial safe region
5: for τ ← 1 to α do ◃ control running time
6: for each user ui ∈ U do ◃ round robin
7: repeat
8: s←Next-Tile (ui, δ)
9: flag ← Divide-Verify (R, ui, s, p

o, P, L)
10: until flag =true or s = ∅
11: for each user ui ∈ U do
12: return the safe region Ri to ui

tile, meaning that any subsequent tile cannot become a valid
tile for the user.

Directed ordering. Existing studies [29] show that the travel
direction of a user ui in the near future has a limited angle
deviation θ from his current one. θ is learned from ui’s recent
travel directions. We can exploit this feature and examine only
the tiles whose subtended angles at ui deviate by less than θ.
By incorporating this idea into the above undirected ordering,
we are able to select more tiles that are likely to cover the
future locations of ui. Figure 8 shows an example of this
directed ordering.

6

/143708$09:3;5 /143708$09:3;5

! " ? !@"@

!A !! !" !?B

C A @ !D"?

E F D !F""

"A !B !C !E"!

0 ++514'

8/G5+

$ 45+'

8/G5+

A ! @

? " D

C E F

#+ 152

Fig. 8. Ordering for tiles

C. Efficiency Optimizations for Verifications

The running time of our Algorithm 3 is dominated by the
the time for verifying tiles, i.e., the recursive Divide-Verify
function. This function needs to invoke the Tile-Verify function
for every point p ∈ P − {po} (Line 1). In this section,
we optimize this step in order to reduce the running time
significantly.

We first study efficient implementations of the Tile-Verify
function. Then, we propose a technique for pruning a large
portion of points in P − {po} without processing them one-
by-one.

Individual Tile Verification (IT-Verify). This is a basic
technique for verifying a new tile s to be allocated to user
ui. We are given that a valid safe region set {Ri|mi=1} of all
users. Let’s consider a tile combination {s1 ∈ R1, . . . , si =
s, . . . , sm ∈ Rm} contains a tile sj from each user, where (i)
si = s, and (ii) sj is a tile from Rj for any other user uj ̸= ui.

The goal of IT-Verify is to check all possible tile combi-
nations as defined above. If any combination fails, then s is
not valid as part of safe region of user ui. We present the
component IT-Verify in Algorithm 4. However, this method
suffers from high computation cost due to the huge number
of tile combinations formed by the safe regions of other users
uj ̸= ui. The number of such combinations is O(Πm

i=1|Ri|),
where |Ri| is the number of tiles in the safe region Ri.

Algorithm 4 IT-Verify (Safe region set R, User ui, Tile s,
Point p, Optimal point po)

1: for any R′ = {s1 ∈ R1, . . . , si = s, . . . , sm ∈ Rm} do
2: if Verify(R′, po, p) = false then
3: return false
4: return true

Group Tile Verification (GT-Verify). This is an optimized
verification method for the new tile s. Instead of testing each
tile combination one-by-one, the main idea of GT-Verify is to
group tile combinations and perform testings on these groups
directly. This helps reduce the number of testings significantly.

 !

 "

#"
#$

%&'()*#+,&()

-- !.(/).()")$0--1

-- ".(/).()"0--2

)")$

-- ".(/).()$0--2

(a) dominant min. dist.

 !

 "

#"
#$%&'()*#+,&()

)")$

-- ".(/).()")$0--2

-- !.(/).()"0--1

-- !.(/).()$0--1

(b) dominant max. dist.

Fig. 9. Examples of GT-Verify

We illustrate two main types of grouping strategies. Figure 9
depicts two users u1 and u2, the optimal meeting point po,
and a candidate point p1. The new tile s is colored in gray.
In Figure 9(a), the maximum distance between the new tile
and po (∥po, s∥max) is the dominant max. distance for two
tile combinations {s, s1} and {s, s2}. {s, s1} ({s, s2}) has the
dominant min. distance to p1 incident to s1 (s2). If {s, s2} fails
in the verification test, so does {s, s1} since ∥p1, {s, s1}∥⊥ <
∥p1, {s, s2}∥⊥ < ∥po, s∥max. Thus, we can group s1 and
s2 and test {s, s1 ∪ s2} instead of testing each combination
individually. In Figure 9(b), the minimum distance between the
new tile and p1 (∥p1, s∥min) is the dominant min. distance for
two tile combinations {s1, s} and {s2, s}. {s1, s} ({s2, s})
has the dominant max. distance to po incident to s1 (s2).
If {s2, s} fails the verification test, so does {s1, s} since
∥po, {s1, s}∥⊤ > ∥po, {s2, s}∥⊤ > ∥p1, s∥min. Thus, we can
group s1 and s2 and test {s1 ∪ s2, s} instead of testing each
combination individually.

The key observation is that we can categorize tile combi-
nations involving s based on two dominant distances: do =
∥po, s∥max and dp = ∥p, s∥min. Using these distances, the
tiles inside a safe region Rj are partitioned into four groups

as shown below.

G↓↓
j = {s′ ∈ Rj | ∥po, s′∥max < do ∧ ∥p, s′∥min < dp} (8)

G↑↓
j = {s′ ∈ Rj | ∥po, s′∥max ≥ do ∧ ∥p, s′∥min < dp} (9)

G↓↑
j = {s′ ∈ Rj | ∥po, s′∥max < do ∧ ∥p, s′∥min ≥ dp} (10)

G↑↑
j = {s′ ∈ Rj | ∥po, s′∥max ≥ do ∧ ∥p, s′∥min ≥ dp} (11)

The following theorem establishes test conditions for these
groups and ensures that they cover all possible tile combina-
tions.

THEOREM 2: Let u⊤
po and u⊥

p be the users that realize the
dominant max. distance of po and the dominant min. distance
of p, respectively. Let {s}i be the new tile s to be allocated
as the safe region of user ui. If all tile combinations are valid,
then the testing for the following safe region sets must be
valid:

1) Safe region set R′ = {G↓↓
1 , . . . , {s}i, G↓↓

m }. ui is u⊤
po and

also u⊥
p .

2) Safe region set R′ = {G↓↓
1 ∪ G↑↓

1 , . . . , {s}i, . . . , G↓↓
m ∪

G↑↓
m }. ui is u⊥

p and another user uj (ui ̸= uj) is u⊤
po .

3) Safe region set R′ = {G↓↓
1 ∪ G↓↑

1 , . . . , {s}i, . . . , G↓↓
m ∪

G↓↑
m }. ui is u⊤

po and another user uj (ui ̸= uj) is u⊥
p .

4) If ui is not a dominant user and s′ ∈ Ri exists such
that ∥po, s′∥max ≤ do and ∥p, s′∥min ≤ dp, then all
the tile combinations R′′ that are not covered in above
safe region set are valid. Otherwise, test all these R′′ by
calling Verify(R′′, po, p).
Proof: It is easy to see that each tile combination is

included in the four types. We prove the converse-negative
proposition of this theorem.

If 1) fails the verification, there exists a tile combination
{s1 ∈ G↓↓

j , . . . , si = s, . . . , sm ∈ G↓↓
m } that have user ui as

the dominant users, which fails the verification.
If 2) fails, there exists s′ ∈ G↑↓

j for a tile combination {s1 ∈
G↓↓

1 ∪ G↑↓
j , . . . , si = s, . . . , sj = s′, . . . , sm ∈ G↓↓

m ∪ G↑↓
m } (

ui as u⊥
p and user uj as u⊤

po), which fails the verification.
If 3) fails, there exists s′ ∈ G↓↑

j for a tile combination {s1 ∈
G↓↓

1 ∪G
↓↑
1 , . . . , si = s, . . . , sj = s′, . . . , sm ∈ G↓↓

m ∪G↓↑
m } (ui

as u⊤
po and user uj as u⊥

p), which fails the verification.
For 4), all tile combinations R′′ involving uj and uk (j ̸= i

and k ̸= i) as the dominant users share the same verifications.
If there exists a tile s′ ∈ Ri s.t. ∥po, s′∥max ≤ do and
∥p, s′∥min ≤ dp, the combination R′′ with s′ as the safe region
for user ui is valid in the previous verifications. Thus, R′′ with
s as the safe region for user ui is valid as well. Otherwise,
we check these remaining tile combinations R′′ by calling
Verify(R′′, po, p).

Based on the above theorem, we design the GT-Verify (Al-
gorithm 5) that applies the grouping strategy. First, GT-Verify
directly call Verify(R′, po, p) to verify the new tile s together
with all other users’ safe regions in Line 1-2. Otherwise,
it partitions each safe region Rj ∈ R into four groups as
described previously (Line 3). From Line 4-15, GT-Verify

behaves as described in Theorem 2 by calling Verify(R′, po, p)
on the grouped combination.

Algorithm 5 GT-Verify(Safe region set R, User ui, Tile s,
Point p, Optimal point po)

1: if R′ = {R1, . . . , {s}i, . . . , Rm} is valid then
2: return True
3: partition each safe region Rj ∈ R into four groups
4: if {G↓↓

1 , . . . , s, G↓↓
m } is not valid then

5: return false
6: if {G↓↓

1 ∪G↑↓
1 , . . . , {s}i, . . . , G↓↓

m ∪G↑↓
m } is not valid then

7: return false
8: if {G↓↓

1 ∪G↓↑
1 , . . . , {s}i, . . . , G↓↓

m ∪G↓↑
m } is not valid then

9: return false
10: if ∃s′ ∈ Ri s.t. ∥po, s′∥max ≤ do and ∥p, s′∥min ≤ dp then
11: return true
12: for combination R′′ not covered in above groups do
13: if Verify(R′′, po, p)=false then
14: return false
15: return true

Index Pruning. Recall that the Divide-Verify function invokes
the Tile-Verify function (e.g., IT-Verify or GT-Verify) for every
point p ∈ P − {po} (Line 1). In fact, many of such point
p cannot become candidates to replace the optimal meeting
point po.

Motivated by this, we formulate the following theorem to
detect unpromising points that cannot become candidates.

THEOREM 3: Given a safe region set R, a point p cannot
yield better dominant distance than po if for any ui ∈ U ,

∥p, ui∥ > ∥po,R∥⊤ + r†i (12)

where r†i is the maximum distance between user ui’s current
location and its safe region boundary.

Proof: By Equation (12), we have

∥p,R∥⊥ = maxRi∈R ∥p,Ri∥min by Equation (3)
> maxui∈U (∥p, ui∥ − r†i)
> maxui∈U (∥po,R∥⊤) by Equation (12)
= ∥po,R∥⊤

By Lemma 1, we conclude that p cannot replace po as the
optimal meeting point.

 !
 "

#"

#
$

#!

%%#$&'(%%)''*'+,!
%%#$&'(%%)''*'+,"

-.(!

-.("

/'0/1232/45

1$4'/'0/1232/45

Fig. 10. Index Pruning

In order to retrieve the candidates from P , we traverse the
R-tree (of P) while pruning unqualified candidates by the

above theorem. For example, in Figure 10, p2 is a candidate
but p1 is not a candidate. Similarly, the pruning technique
can be extended to the MBRs in the R-tree. For instance,
MBR2 can be pruned since its min. distance to u1 is larger
than ∥po,R∥⊤ + r†1. On the other hand, MBR1 contains the
potential points since it overlaps the circle with the radius
∥po,R∥⊤ + r†1 and that with radius ∥po,R∥⊤ + r†2.

D. Compression of Safe Regions

A tile-based safe region Ri may contain a large number of
tiles, thus incurring significant communication cost to report
it to the user. For example, Figure 11a shows a region that
contains 15 large tiles and 32 small tiles. In this section, we
investigate techniques that compress the description of Ri in
order to reduce its packets for communication.

Loseless compression. First, we propose a lossless com-
pression technique that reduces the description of Ri while
preserving the exact area covered by Ri. The idea is to
combine adjacent tiles together to form a rectangle, as shown
in Figure 11(b). Interestingly, by allowing overlaps among
rectangles, we are able to reduce the total number of rectangles
for describing Ri. In this example, Ri can be compressed into
7 rectangles. This lossless compression can be implemented
by adapting a greedy algorithm for the set-cover problem.

Lossy compression. We then study a lossy compression
technique that offers a trade-off between the the description of
Ri and the area covered by Ri. While it is able to shrink the
description of Ri aggressively, it may slightly reduce the area
covered by Ri and increase the communication frequency.

This compression technique offers the aforementioned
trade-off via a parameter γ. It attempts to represent Ri by using
a polygon formed by γ boundary points of Ri. Figure 11(c)
illustrates an example with γ = 4 boundary points. We
choose the first two boundary points based on the user’s
travel direction: b1 and b2. Next, we find a boundary point b′′

such that (i) the polygon formed by b′ and chosen boundary
points is covered by Ri, and (ii) the area of such polygon is
maximized. For example, in Figure 11(c), b4 is not considered
because the polygon formed by b1, b2, b4 is not covered by the
safe region. On the other hand, b3 and b5 are considered as
potential boundary points. This procedure is repeated until γ
boundary points are chosen. In this example, the region Ri is
approximated by the polygon formed by the boundary points
b1, b2, b3, b5.

VI. EXPERIMENTS

A. Settings

In this section, we experimentally evaluate the performance
of our proposed techniques. All methods were implemented
in C++ and the experiments were performed on an Intel
Core2Duo 2.66GHz CPU machine with 8 GBytes memory,
running on Ubuntu 10.04.

Dataset and Query Workload. We obtain a real dataset
from www.pocketgpsworld.com, which consists of N =
21, 287 POIs. We simulate the movement of query users

$*&,-+*!#

/%.,(&,0*!#

!8,&9%)

 !"#$%&'()!*#+

$*&,-+*!#

!"+(!.(/%.,(

&,0*!#

%))&12(/%.,(

&,0*!#
(3

(4

(5

(6
(7

(a) original Ri (b) loseless comp. (c) lossy comp.

Fig. 11. Compression for tile-based safe region

by using both synthetic and real trajectories: (i) GeoLife,
a real trajectory set of taxi drivers released by Microsoft6;
(ii) Oldenburg, a synthetic trajectory set generated from
Brinkhoff’s generator [30]. Each trajectory set consists of 60
trajectories that have above 10,000 timestamps. We partition
each trajectory set into 10 groups and then report the average
performance on these groups.

Measures. We evaluate our performance in three aspects:
(i) update frequency, (ii) packet count, (iii) average running
time. Update frequency reflects the frequency for users to
issue update messages to the server. Packet count measures
the number TCP packets for three types of messages be-
tween the server and the clients. A package contains at most
(576− 40)/8 = 67 (double-precision) values since the typical
Maximum Transmission Unit (MTU) over a network is 576
bytes and a packet has a 40-byte header7. To represent a shape,
we use 3 values per a circle, 3 values per a square, and 4 values
per a rectangle. Average running time is the time to compute
safe regions when a necessary notification is triggered.

Configurations. We study our proposed solutions with
different variations. Circle represents Circle-MSR proposed in
Section IV; Tile represents Tile-MSR proposed in Section V;
it applies undirected order and lossless compression; Tile-D
is an extension of Tile with directed order; Tile+ (Tile-D+) is
an extension of Tile (Tile-D) with lossy compression. Except
for Circle all our methods are equipped with GT-test and
index pruning. The default values and ranges of parameters
are presented in Table II.

TABLE II
PARAMETER VALUES IN EXPERIMENTS

Parameter Default Range
of users m 3 2, 3, 4, 5, 6
of POIs n N 0.25N, 0.5N, 0.75N,N

Speed V (speed limit) 0.25V, 0.5V, 0.75V, V
Tile limit α 30 10, 20, 30, 40, 50

of boundary pt. γ 16 4, 8, 16, 32, 64
Split level L 2 1, 2, 3, 4

B. Effect of system parameters
We first investigate the effect of system parameters (α, γ, L)

on the performance of our methods. We only present the ex-

6www.microsoft.com
7http://tools.ietf.org/html/rfc879

perimental results on Geolife in this section as the experiments
on Oldenburg have similar trends.

Effect of tile limit α. We present the experimental results
by varying α in Figure 12. As α increases, i.e., more tiles are
added into the safe regions, users obtain larger safe regions
and thus all the tile-based methods incur fewer updates as
depicted in Figure 12(a). Tile-D and Tile-D+ approach stable
update frequency when α ≥ 30. Figure 12(b) shows the packet
count of our methods. Tile and Tile-D, which adopt lossless
compression, increase the count slightly as α approaches 50
due to more tiles for compression. However, Tile+ and Tile-
D+ decrease the packet count significantly as α increases to
30 since fewer packets are required to communicate and the
lossy compression compresses a set of tiles by fixed number of
boundary points (controlled by γ). On the other hand, more
tiles are added into the safe regions, more running time is
required to verify the safe regions. Thus, the running time
increases as α becomes larger as shown in Figure 12(c). When
α = 30, the running time for all these methods is 0.3s.

10 20 30 40 50

α

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Tile

Tile

+

Tile−D Tile−D

+

(a)

10 20 30 40 50

α

4

5

6

7

8

9

P
a
c
k
a
g
e

c
o
u
n
t

(
×

1
0

3

)

Tile

Tile

+

Tile−D

Tile−D

+

(b)

10 20 30 40 50

α

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
g
.

r
u
n
n
i
n
g

t
i
m
e

(
s
e
c
)

Tile

Tile

+

Tile−D

Tile−D

+

(c)

Fig. 12. Vary tile limit α

1 2 3 4

L

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Tile

Tile

+

Tile−D

Tile−D

+

(a)

1 2 3 4

L

3

4

5

6

7

8

9

10

11

P
a
c
k
a
g
e

c
o
u
n
t

(
×

1
0

3

)

Tile

Tile

+

Tile−D

Tile−D

+

(b)

1 2 3 4

L

0

2

4

6

8

10

A
v
g
.

r
u
n
n
i
n
g

t
i
m
e

(
s
e
c
)

Tile

Tile

+

Tile−D

Tile−D

+

(c)

Fig. 13. Vary split limit L

Effects of split limit L. We illustrate the results by varying
the split limit L in Figure 13. As demonstrated in Figure 13(a),
larger the split limit is, less the update frequency becomes
because a larger split limit helps represent the irregular safe
region better. Tile-D+ benefits the most from L = 1 to
L = 2. When L is larger than 2, the performance gap among
these methods shrink. In Figure 13(b), both Tile and Tile-
D decrease the packet count (at L = 2) because larger L
provides good approximations of safe region and reduces the

update frequency. When L is too large (L > 2) and many
smaller tiles are added into the safe regions, the packet count
increases for Tile and Tile-D because the lossless compression
has to compress large amounts of tiles. However, Tile+ and
Tile-D+ which utilize the lossy compression, always decreases
the packet count since they use fixed number of boundary
points to represent safe regions approximately. In terms of
running time, a large split limit results in large amounts of
smaller tiles and incurs many verification tests. As shown in
Figure 13(c), the running time grows rapidly when L > 3.

Effects of boundary point number γ. We illustrate the
results by varying γ in Figure 14. As γ changes, the running
time varies slightly; thus we ignore the figure for the running
time. As shown in Figure 14(a), more boundary points in
the lossy compression approximate to the safe regions better.
Specifically, when γ varies from 4 to 8, the update frequency
for both Tile+ and Tile-D+ are reduced significantly. After γ >
16, the benefits become negligible. Interestingly, the similar
trend happens to the packet count as shown in Figure 14(b).
This is because: 1) the update frequency is reduced and
thus less packets are required to communicate; 2) among the
boundary points of the approximate safe regions, consecutive
points that in a line are compressed into a line segment which
results in a more compact representation.

4 8 16 32 64

γ

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Tile

+

Tile−D

+

(a) Geolife

4 8 16 32 64

γ

4

6

8

10

14

P
a
c
k
a
g
e

c
o
u
n
t

(
×

1
0

3

)

Tile

+

Tile−D

+

(b) Geolife

Fig. 14. Vary the number of boundary point γ

Effects of group testing. We demonstrate our optimizations
for speeding up the verification of safe regions in Figure 15.
The effectiveness of index pruning is not presented because
without it all methods to compute tile-based safe region exam
all the points and cause a long running time (can not finish
within the limit time). As depicted in Figure 15(a), when
the number of user m increases, the running time for IT-
Verify grows especially when m > 4. Even when m = 6,
IT-Verify can not finish within the limit time. However, GT-
Verify only changes slightly. In Figure 15(b), we observe that
the running time of IT-Verify increases exponentially as more
tiles are added into the safe regions. GT-Verify only varies
slightly comparing to IT-Verify. Thus, GT-Test is efficient.

C. Scalability experiments

In this section, we compare the circle-based safe regions
and the tile-based safe regions.

Effects of user number m. We provide experiments on
both Geolife (in Figure 16) and Oldenburg (in Figure 17)
by varying m. Since the safe regions depend on the relative
positions of users, no clear trends for the update frequency

2 3 4 5 6

m

0

1

2

3

4

5

A
v
g
.

r
u
n
n
i
n
g

t
i
m
e

(
×

1
0

3

s
e
c
)

G−Test

I−Test

(a) Geolife

10 20 30 40 50

α

0

5

10

15

20

25

30

35

40

A
v
g
.

r
u
n
n
i
n
g

t
i
m
e

(
s
e
c
)

G−Test

I−Test

(b) Geolife

Fig. 15. Validation evaluation time

2 3 4 5 6

m

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(a) Geolife

2 3 4 5 6

m

2

4

6

8

10

12

14

16

18

P
a
c
k
a
g
e

c
o
u
n
t

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(b) Geolife

2 3 4 5 6

m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
g
.

r
u
n
n
i
n
g

t
i
m
e

(
s
e
c
)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(c) Geolife

Fig. 16. Vary user number m

2 3 4 5 6

m

0.5

1

1.5

2

2.5

3

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(a) Oldenburg

2 3 4 5 6

m

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
a
c
k
a
g
e

c
o
u
n
t

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(b) Oldenburg

2 3 4 5 6

m

0.0

0.2

0.4

0.6

0.8

A
v
g
.

r
u
n
n
i
n
g

t
i
m
e

(
s
e
c
)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(c) Oldenburg

Fig. 17. Vary user number m

exist as m varies as shown in Figure 16(a) and Figure 17(a).
Tile and Tile+ have less than half of the update frequency
than Circle for all m. Tile-D and Tile-D+ reduce the update
frequency further, since they adopt the directed ordering
and cover more future possible locations. Comparing with
Tile(Tile-D), Tile+(Tile-D+) obtains a small increase in the
update frequency because it utilizes the lossy compression and
has approximate safe regions but its packet count is reduced
accordingly as illustrated in Figure 16(b), 17(b). In terms of
running time, due to the high complexity of computation of the
tile-based safe regions, we observe an increase of the running
time when m grows in both Figure 16(c), 17(c). Circle is
efficient to compute but has a larger update frequency and
a larger packet count than those of tile-based safe regions;
thus, our tile-based safe regions are effective for optimizing
the communication cost. Among these methods, Tile-D is the
best in terms of update frequency and Tile-D+ is the best in
terms of packet count.

Effects of POI number n. We vary the number of POIs
in Figure 18. As depicted in both data sets, all the methods
increase the update frequency because more POIs exist as the
candidates for the optimal points. Besides, Circle has a larger
increase than those of methods based on the tile-based safe
regions.

25%N 50%N 75%N N

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(a) Geolife

25%N 50%N 75%N N

n

0

0.5

1

1.5

2

2.5

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(b) Oldenburg
Fig. 18. Vary POI number n

Effects of speed. We show the results by varying the speeds
of users on the synthetic data set Oldenburg in Figure 19. To
run this experiment, we need trajectories with similar path but
different speeds. Thus, a sampling approach is adopted: given
a trajectory with 10, 000 time stamps and speed V , we pick the
locations under the first 5, 000 time stamps; from the trajectory
segments connecting these 5,000 locations, we sample 10,000
locations uniformly. Thus, we obtain a trajectory with similar
path but only half speed, i.e., 0.5V . Similarly, we have
trajectories with 0.25V and 0.75V . Intuitively, as users move
faster, they escape their safe regions quickly. All the methods
have a larger update frequency (Figure 19(a)) and a larger
packet count (Figure 19(b)) during the same time interval when
their velocities are high.

0.25 0.5 0.75 1

speed

0

0.5

1

1.5

2

2.5

U
p
d
a
t
e

f
r
e
q
u
e
n
c
y

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(a) Oldenburg

0.25 0.5 0.75 1

speed

0

5

10

15

P
a
c
k
a
g
e

c
o
u
n
t

(
×

1
0

3

)

Circle

Tile

Tile

+

Tile−D

Tile−D

+

(b) Oldenburg
Fig. 19. Vary speed

VII. CONCLUSION

In this paper, we propose a novel problem, efficient notifi-
cation of meeting points, aiming at minimizing the communi-
cation cost. We adopt multi-user safe regions, which is unique
in our problem, to alleviate unnecessary communications.
As discussed, such multi-user safe regions are difficult to
compute since the inherent search space is high-dimensional.
To conquer this difficulty, we propose efficient (including
GT-Verify and index pruning) and effective (including lossy
compression and lossy compression) algorithms, and evaluate
them by extensive experiments. In the future work, we will
investigate other aggregate functions [25] for defining the
optimal meeting point.

REFERENCES

[1] A. Efrat and A. Amir, “Buddy tracking - efficient proximity detection
among mobile friends,” in INFOCOM, 2004.

[2] E. Sarigöl, O. Riva, P. Stuedi, and G. Alonso, “Enabling social net-
working in ad hoc networks of mobile phones,” PVLDB, vol. 2, no. 2,
2009.

[3] N. Gupta, A. J. Demers, and J. Gehrke, “Semmo: a scalable engine for
massively multiplayer online games,” in SIGMOD, 2008.

[4] A. J. Demers, J. Gehrke, C. Koch, B. Sowell, and W. M. White,
“Database research in computer games,” in SIGMOD, 2009.

[5] C. Lampe, N. B. Ellison, and C. Steinfield, “A face(book) in the crowd:
social searching vs. social browsing,” in CSCW, 2006.

[6] H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring
continuous spatial queries over moving objects,” in SIGMOD, 2005.

[7] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao, “A threshold-based
algorithm for continuous monitoring of k nearest neighbors,” TKDE,
vol. 17, no. 11, 2005.

[8] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The v*-diagram: a
query-dependent approach to moving knn queries,” PVLDB, vol. 1, no. 1,
2008.

[9] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-based
spatial queries,” in SIGMOD, 2003.

[10] M. L. Yiu, L. H. U, S. Saltenis, and K. Tzoumas, “Efficient proximity
detection among mobile users via self-tuning policies,” PVLDB, vol. 3,
no. 1, 2010.

[11] P. Engel, F. Gschwandtner, J. Martens, F. Fuchs, and G. Treu, “Opti-
mizing position updates for knn - is it worth it?” in IFIP International
Conference on New Technologies, Mobility and Security (NTMS), 2011.

[12] L. Qin, J. X. Yu, B. Ding, and Y. Ishikawa, “Monitoring aggregate k-nn
objects in road networks,” in SSDBM, 2008.

[13] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,”
in VLDB, 2002.

[14] G. S. Iwerks, H. Samet, and K. P. Smith, “Continuous k-nearest neighbor
queries for continuously moving points with updates,” in VLDB, 2003.

[15] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
partitioning: An efficient method for continuous nearest neighbor mon-
itoring,” in SIGMOD Conference, 2005.

[16] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao, “A threshold-based
algorithm for continuous monitoring of k nearest neighbors,” TKDE,
vol. 17, no. 11, 2005.

[17] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries
over moving objects,” in ICDE, 2005.

[18] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases,”
in ICDE, 2005.

[19] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Multi-
guarded safe zone: An effective technique to monitor moving circular
range queries,” in ICDE, 2010.

[20] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-based
spatial queries,” in SIGMOD Conference, 2003.

[21] A. Küpper and G. Treu, “Efficient proximity and separation detection
among mobile targets for supporting location-based community ser-
vices,” Mobile Computing and Communications Review, vol. 10, no. 3,
pp. 1–12, 2006.

[22] G. Treu, T. Wilder, and A. Küpper, “Efficient proximity detection among
mobile targets with dead reckoning,” in MOBIWAC, 2006.

[23] Z. Xu and H.-A. Jacobsen, “Adaptive location constraint processing,” in
SIGMOD, 2007, pp. 581–592.

[24] B. Zheng and D. L. Lee, “Semantic caching in location-dependent query
processing,” in SSTD, 2001.

[25] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest
neighbor queries in spatial databases,” TODS, vol. 30, no. 2, 2005.

[26] F. Li, B. Yao, and P. Kumar, “Group enclosing queries,” TKDE, 2010.
[27] H. G. Elmongui, M. F. Mokbel, and W. G. Aref, “Continuous aggregate

nearest neighbor queries,” GeoInformatica, vol. 17, 2011.
[28] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest

neighbor queries,” in ICDE, 2004.
[29] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu, “Prediction and indexing

of moving objects with unknown motion patterns,” in SIGMOD, 2004.
[30] T. Brinkhoff, “A framework for generating network-based moving ob-

jects,” GeoInformatica, vol. 6, no. 2, 2002.

