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ABSTRACT

Location-based social media (e.g., Twitter, Foursquare) have been

generating massive amount of geo-textual data. In this paper, we

represent the spatial distribution of a keyword by the group of

locations tagged with such keyword. Given a query keyword, our

problem is to find k keywords with the most similar distribution of

locations. Such query finds applications in targeted marketing and

recommendation. The performance of existing solutions degrade

when different point groups have significant overlapping, which

happens rather frequently in real data. We propose efficient tech-

niques to process similarity search on point groups. Experimental

results on Twitter data demonstrate that our solution is faster than

the state-of-the-art by up to 6 times.
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1 INTRODUCTION

In this era of smart phones, massive amount of geo-textual data

are being continuously produced by end-users. For instance, each

tweet
1
contains a text message (up to 140 characters) as well as a

location. Social photo sharing websites (e.g. Flickr)
2
contain photos

with both descriptive tags and locations. Foursquare,
3
a location-

based social network, provides the “check-in” function for end-user

to share a message tagged with a location.

With the above geo-tagged messages, we propose the concept

of keyword-induced point group. Given a keyword key, we form a

1
https://twitter.com/

2
https://www.flickr.com/

3
https://foursquare.com/
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Figure 1: Keyword-induced point groups in Washington

point group Gkey as the set of locations such that their messages

contain the keyword key. To illustrate this concept, we extract all

tweets located in Washington, and then visualize the point groups

of different keywords. For the keyword “flower”, we obtain the

point group Gf lower and then plot its distribution in Figure 1a.

Similarly, for the keyword “love", its point group Glove is shown

in Figure 1b.

We are interested in comparing the spatial distributions between

two keyword-induced point groups. By displaying both Gf lower
and Glove in the same map (in Figure 1c), we observe that most

of the tweets containing “flower” are close to some tweets con-

taining “love”. That would reveal certain connection between the

keywords “flower” and “love”. Such information can be exploited

in applications like targeted marketing and recommendation. For

instance, a flower shop may wish to show advertisements (e.g.,

Twitter Ads) to nearby users who have just posted tweets about

“love”. Alternatively, when a user posts a tweet about “flower”, the

systemmay recommend a nearby tweet about “love”. According to a

survey [5], some works have considered using location information

to recommend geo-tagged messages. We are the first to consider

the similarity of location distribution in tweet recommendation.

In this paper, we study the similarity search problem on

keyword-induced point groups. Given a query point group Q ,
we wish to find K point groups such that they are the most

https://doi.org/10.1145/3274895.3274920
https://doi.org/10.1145/3274895.3274920
https://doi.org/10.1145/3274895.3274920
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Table 1: Top-10 search results on point groups in Washington (under different similarity measures)

Q : point group of “flower”

distH (Q,G) love > u > time > lol > today > life > good > day > night > girl

distSH (Q,G) yep > perform > art > dj > noticed > easter > chicago > lay > downtown > hide

distcen (Q,G) jw > nr > npr > dual > puck > reuter > exhibiting > swarmin > stroll > ajc

Q : point group of “president”

distH (Q,G) time > love > people > night > day > u > good > life > school > great

distSH (Q,G) pain > lose > send > j > tweeting > set > mile > type > smile > office

distcen (Q,G) place > infinitely > seewhy > cannot > suite > credible > regency > odd > frap > toomuch

similar to Q with respect to a similarity measure. Following

the literature [2], we consider both the Hausdorff distance

distH (Q,G) and the symmetric Hausdorff distance distSH (Q,G)
as distance measures between two point groups Q and G. As
a baseline for comparison, we also consider the Euclidean

distance between the centroids of point groups distcen (Q,G).
The equations for these distance measures are given below:

Hausdorff distance: distH (Q,G) = maxqi ∈Q minpj ∈G dist(qi ,pj )

Symmetric distSH (Q,G) = max{distH (Q,G),distH (G,Q)}
Hausdorff distance:

Euclidean distance distcen (Q,G) = dist(qc ,pc )
between centroids:

where dist(q,p) denotes the Euclidean distance between two

points, and qc , pc are the center locations of Q and G, respectively.
To understand the quality of the above distance measures, we

conduct a case study on keyword-induced point groups derived

from Twitter data located in Washington. We consider two query

keywords “flower” and “president”, and show their top-10 simi-

larity search results (for each distance measure) in Table 1. The

result keywords (in bold) are viewed to be meaningful for human

users. Observe that the results found by distcen (Q,G) are not mean-

ingful. Both distH (Q,G) and distSH (Q,G) can lead to some mean-

ingful results. Thus, in this paper, we take the Hausdorff distance

distH (Q,G) as the distance measure by default. We will also extend

our techniques for the symmetric Hausdorff distance distSH (Q,G).
The state-of-the-art solution for our problem is [2]. Assume that

all data point groups have been indexed by R-trees. At query time, it

builds an R-tree for the query point groupQ , then utilizes minimum

bounding rectangles (MBRs) to derive lower bound distance for

distH (Q,G) and attempt pruning unpromising data point groups.

Nevertheless, the solution in [2] has not taken the characteristics

of keyword-induced point groups into account. Figure 2 demon-

strates two keyword-induced point groups in Washington, again

extracted from Twitter data. Gkid denotes the point group for the

keyword “kid” and Gpresident represents the point group for the

keyword “president”. Observe that regions covered by two point

groups overlap heavily, thus rendering MBR-based lower bound

distances loose.

In this paper, we take the above characteristics into careful con-

sideration when designing our techniques. First, we propose a

representative-based lower bound for pruning. The idea is to extract

a representative subset Q ′ ⊆ Q such that its distribution is similar

to Q , and then compute distH (Q
′,G) as the lower bound distance
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Figure 2: Two point groups in Washington

of distH (Q,G). We present a greedy approach to select a represen-

tative subset Q ′ that yields tighter lower bound. Another merit

is that the above lower bound supports incremental computation.

Even if the pruning is not successful, the computation effort can be

recycled in computing the exact distance distH (Q,G). Furthermore,

we design a technique to filter out unpromising data point groups

early in order to achieve further speedup. Experimental results

on Twitter data demonstrate that our solution is faster than the

state-of-the-art by up to 6 times.

The remaining of this paper is organized as follows. Section 2

defines our problem formally. Section 3 presents our proposed

techniques. Section 4 evaluates the efficiency of our techniques on

Twitter data. Section 5 reviews related work. Finally we conclude

with future research directions in Section 6.

2 PROBLEM STATEMENT

We are given a raw datasetDraw of messages, where each message

is associated with a location (i.e., point) and a set of keywords. An

example of the raw dataset is shown in Table 2. We ignore other

attributes (e.g., user ID, timestamp) in this paper.

Based on the raw dataset, we define the concept of keyword-
induced point group as follows.

Definition 1 (Keyword-induced point group). Given a key-
word key, the point group Gkey is defined as the set of all locations
(in the raw dataset Draw ) that share the same keyword.

For example, the keyword “park” corresponds to the point group

Gpark , which contains four locations: p1,p2,p3,p4.
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Table 2: Example of raw dataset Draw

Message ID Location Keywords Other attributes

1 p1 park · · ·

2 p2 park, animal · · ·

3 p3 park, lake · · ·

4 p4 park · · ·

5 p5 mountain, animal · · ·

6 p6 mountain, lake · · ·

7 p7 mountain · · ·

In this paper, we adopt the Hausdorff distance to measure the

distance between two point groups.

Definition 2 (Hausdorff distance). Given two point groups Q
and G, the Hausdorff distance from Q to G is defined as:

distH (Q,G) = max

qi ∈Q
min

pj ∈G
dist(qi ,pj )

where dist(qi ,pj ) denotes the Euclidean distance between two points.

As an example, we are given two point groups Q =

{q1,q2,q3,q4} and G = {p1,p2,p3,p4} in Figure 3. Each dashed

line indicates the minimum distance from a query point qi ∈ Q
to group G. Thus, the Hausdorff distance distH (Q,G) equals to
max{2.8, 2.5, 1.4, 1} = 2.8.

1
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𝑞ସ

𝑝ଵ 𝑝ଶ
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Q:

G:

Figure 3: Hausdorff distance distH (Q,G)

Definition 3 (Similarity search). Let Dдroups be the collec-
tion of point groups (derived from the raw dataset Draw ). Given
a query point group Q and the number K of results, the similarity
search problem retrieves point groupsG ∈ Dдroups havingK smallest
distH (Q,G).

Our problem definition focuses on point groups that are formed

by locations of text messages sharing a common keyword. This is

also the main difference from the problem definition in [2].

We illustrate an example of similarity search in Figure 4. The

dataset Dдroups contains four point groups: Gpark , Ganimal ,

Gmountain ,Glake . Each line indicates the Hausdorff distance from

the query point group Q to a point group in Dдroups . Assuming

K = 1, the result is the point group Gpark .

Table 3 summarizes the list of symbols used in this paper.

3 OUR SOLUTION

We first present our techniques for bounding the Hausdorff distance.

Next we develop a technique to filter candidates. Then we combine

our techniques into a similarity search algorithm. Finally, we extend

our techniques for the symmetric Hausdorff distance.

 2.8 
𝑝𝑎𝑟𝑘

𝑝ଵ{𝑝𝑎𝑟𝑘}

𝑝଺{𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛, 𝑙𝑎𝑘𝑒}

𝑞ଷ

𝑝ହ{𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛, 𝑎𝑛𝑖𝑚𝑎𝑙}𝑝଻{𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛}

𝑝ଶ{𝑝𝑎𝑟𝑘, 𝑎𝑛𝑖𝑚𝑎𝑙}

𝑝ସ{𝑝𝑎𝑟𝑘}

𝑝ଷ{𝑝𝑎𝑟𝑘, 𝑙𝑎𝑘𝑒}

𝑞ସ

𝑞ଵ 𝑞ଶ

    4.1
𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛

5.1
𝑙𝑎𝑘𝑒

   4.1
𝑎𝑛𝑖𝑚𝑎𝑙

Q:

G:

Gpark = {p1,p2,p3,p4}, Ganimal = {p2,p5},
Gmountain = {p5,p6,p7}, Glake = {p3,p6}

Figure 4: Example of similarity search

Table 3: List of symbols

Symbol Meaning

qi a query point

pj a location (i.e., data point)

Q the query point group

G a point group

Dдroups a collection of point groups

dist(qi ,pj ) Euclidean distance between two points

distH (Q,G) Hausdorff distance from Q to G

3.1 Representative-based Lower Bound

The Hausdorff distance distH (Q,Gkey ) is expensive to compute,

incurring O(|Q | · |Gkey |) time. To skip such expensive computa-

tion, we will develop a fast lower bound function LB(Q,Gkey )

so that LB(Q,Gkey ) ≤ distH (Q,Gkey ). During similarity search,

we maintain the threshold distkBest for the best k Hausdorff dis-

tance of point groups examined so far. If a point group satisfies

LB(Q,Gkey ) ≥ distkBest , thenGkey can be safely pruned without

computing distH (Q,Gkey ).

Our idea is to pick a representative subset Q ′ of the query point

group Q . Then we propose the following lower bound function:

LBr ep (Q,Gkey ) = distH (Q
′,Gkey ) (1)

To facilitate fast lower bound computation, we introduce a parame-

ter α and require that Q ′ contains exactly α points. The following

lemma establishes the lower bound property of LBr ep (Q,Gkey ).

Lemma 3.1. LetQ ′ be a subset of the query point groupQ . For any
point group Gkey , it holds that:

LBr ep (Q,Gkey ) ≤ distH (Q,Gkey )

Proof. Since Q = Q ′ ∪ (Q −Q ′), we obtain:

distH (Q,Gkey ) = max{ max

qi ∈Q ′
min

pj ∈G
dist(qi ,pj ),

max

qi ∈(Q−Q ′)
min

pj ∈G
dist(qi ,pj )} (2)
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Thus we get: distH (Q,Gkey ) ≥ maxqi ∈Q ′ minpj ∈G dist(qi ,pj ),
then the lemma is proved. □

We demonstrate the pruning power of this lower bound function

in Figure 5. We are given two point groups: Q = {q1,q2, · · · ,q7}
and Gkey = {p1,p2,p3,p4}. Let the representative subset be Q

′ =

{q1,q2,q3} and the threshold be distkBest = 1.8. The lower bound

LBr ep (Q,Gkey ) = distH (Q
′,Gkey ) = max{1.5, 2, 2.1} equals to 2.1.

Since distH (Q
′,Gkey ) > distkBest , we prune the point groupGkey

without having to compute the exact distH (Q,Gkey ).

2𝑞ଶ 𝑝ଵ

𝑞ସ 2.2

𝑞ଷ

𝑞ଵ
𝑞ହ

𝑞଺

𝑞଻

𝑝ଶ

𝑝ଷ
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2.1

1.5
1

1.1

Q:

G:

Q’:

Figure 5: Pruning

The tightness of the lower bound depends on the choice of the

subset Q ′. Continuing with the example in Figure 5, if we pick the

representative subset as Q ′ = {q1,q5,q7}, then the lower bound

becomes max{1.5, 1.4, 1.1} = 1.5, which is looser than before (2.1).

Intuitively, the lower bound can be tightened by selecting a sub-

set Q ′ whose distribution is similar to that of Q ′. We propose a

greedy algorithm to achieve this (see Algorithm 1). The parameter

α indicates the number of representatives to be chosen. First, we

compute the centroid of Q and then select the closest point from

Q to the centroid as the first representative. For each query point

qi ∈ Q , we keep track of its distance to the nearest representative

RepDist(qi ). The query point with the largest RepDist(qi ) is cho-
sen as the next representative. This procedure is repeated until α
representatives have been chosen from Q .

Algorithm 1 Greedy representatives

Require: query point group Q , number of representatives α
1: Q ′ ← ∅
2: qr ep ← the point in Q nearest to the centroid of Q
3: append qr ep to Q ′; remove qr ep from Q
4: for each point qi ∈ Q do

5: RepDist(qi ) ← ∞

6: while |Q ′ | < α do

7: for each point qi ∈ Q do

8: RepDist(qi ) ← min{dist(qi ,qr ep ),RepDist(qi )}

9: qr ep ← the point in Q with the lowest RepDist(qi )
10: append qr ep to Q ′; remove qr ep from Q

11: return Q ′

With the example in Figure 5, we illustrate how the above al-

gorithm works. Assume that α = 3. First, the point q1 is chosen
as the first representative. In the second iteration, the point q2 is
chosen because it is the furthest from q1. In the third iteration,

the point q3 is chosen because it yields the largest distance of

min{dist(qi ,q1),dist(qi ,q2)}.
The time complexity of Algorithm 1 is O(α · |Q |). Observe that

the subset Q ′ is independent of the point group Gkey . Thus, it

suffices to execute Algorithm 1 once, regardless of the number of

point groups in the dataset Dдroups .

3.2 Incremental Lower Bound Computation

The lower bound function LBr ep (Q,Gkey ) exhibits the decompos-

able property, namely that:

distH (Q
′,Gkey ) = max{ distH (Q

′−{qi },Gkey ), min

pj ∈Gkey
dist(qi ,pj ) }

We exploit this property to compute the lower bound in incre-

mental fashion. To illustrate this idea, we consider the example in

Figure 5 and show the computation steps in Table 4. We maintain

the running lower bound by the variable L̂B and initialize it to 0.

In each iteration, we compute the term minpj ∈Gkey dist(qi ,pj ) for

the current query point qi , then update L̂B (if L̂B is smaller), and

attempt pruning by comparing L̂B with the threshold distkBest .
For example, given that distkBest = 1.8, we terminate in the sec-

ond iteration because the lower bound (2) is already higher than

distkBest . This technique would further reduce the computation

cost of the lower bound function. Notice in this example we have

brought representatives (i.e.,Q ′) to the front and keep their original
chosen order.

Table 4: Example of incremental lower bound computation

Iteration Current point Subset Q ′ Lower bound L̂B

1 q1 {q1} 1.5

2 q2 {q1,q2} max{1.5, 2} = 2

3 q3 {q1,q2,q3} max{2, 2.1} = 2.1

· · · · · · · · · · · ·

7 q7 {q1,q2, · · · ,q7} 2.2

In addition, even if the pruning is not successful, the computation

effort is not wasted. It suffices to examine the remaining points inQ
and then update the lower bound in incremental fashion, as shown

in Table 4. Upon examining all query points (i.e., reaching iteration

7 in Table 4), the lower bound becomes the exact Hausdorff distance

distH (Q,Gkey ).

We demonstrate the effect of incremental lower bound compu-

tation on Twitter data below, using two sample point groups for

Q and G respectively. In this test, we compare two methods for

obtaining the subset Q ′: (i) our method for placing representatives

of Q into Q ′, (ii) randomly placing points of Q into Q ′. Figure 6
plots the lower bound value of each method with respect to the

number of processed query points. Clearly, our method yields much

tighter lower bound than random.

3.3 Optimization in Lower Bound Computation

Recall from the previous subsection that we compute the term

minpj ∈Gkey dist(qi ,pj ) in each iteration, and then update the run-

ning lower bound L̂B.
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Surprisingly, it is possible to maintain L̂B correctly without com-

puting the exact value of minpj ∈Gkey dist(qi ,pj ). Observe that L̂B

is updated only when minpj ∈Gkey dist(qi ,pj ) exceeds L̂B. If there

exists a point pj ∈ Gkey such that dist(qi ,pj ) < L̂B, then it means

the term minpj ∈Gkey dist(qi ,pj ) cannot further increase the value

of L̂B.
To fully exploit the above observation, we need to quickly find

a point pj ∈ Gkey such that dist(qi ,pj ) is as low as possible, and

then test whether dist(qi ,pj ) < L̂B. Our heuristic is:

(1) first find a nearby query point (say, qnear ) from qi (among

the examined query points),

(2) then retrieve a data point pj close to qnear .

For example, in Figure 7, suppose that we have examined the first

query point q1 and get a nearby point from Gkey (e.g., point p1).
Upon processing the second query point q2, we identify a nearby

query point (i.e., q1) and retrieve its corresponding data point (i.e.,

p1). Then, we test whether dist(q2,p1) < L̂B; if yes, then we skip

the computation of minpj ∈Gkey dist(q2,pj ).

2
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Figure 7: Upper bound

We proceed to discuss efficient implementation of the above

technique. In particular, both Steps 1 and 2 can be computed in

amortizedO(1) time. Step 1 depends only on the points inQ , but not

on the points inGkey . To support this step, it suffices to precompute

a nearby query point for each qi ∈ Q , before processing any point

group in the dataset Dдroups . Step 2 takes O(1) time because we

should have processed the query point qnear before considering
the current query point qi .

3.4 Candidate Retrieval

The techniques in previous subsections attempt to evaluate the test

distH (Q,Gkey ) ≥ distkBest quickly, without invoking the exact

Hausdorff distance computation if possible.

In this subsection, we present an orthogonal technique to reduce

the number of times to execute the test distH (Q,Gkey ) ≥ distkBest .
The idea is to retrieve candidate point groups (from the dataset

Dдroups ) that can potentially enter into the best k query results.

This technique consists of three steps:

(1) first sample β (≥ k) point groups to obtain the threshold

distkBest ,
(2) then retrieve candidate point groups,

(3) finally process the candidate point groups to get the final

query results.

We call the parameter β to be the sampling ratio. Our experimental

study shows that the performance remains stable when β grows

larger than 10% of dataset; hence we set β to 10% of the number

of point groups by default. Observe that both Steps 1 and 3 can be

accelerated by using our techniques proposed in previous subsec-

tions.

We elaborate how to retrieve candidate point groups efficiently

(Step 2). This step requires a parameter γ , which denotes the num-

ber of probing query points. First, we choose γ query points from

Q . Then, for each chosen query point qi , we issue a range search at

qi with radius as distkBest to retrieve the collection of keywords

within the range. Next, we compute the intersection of such collec-

tions in order to obtain the candidate keywords (i.e., candidate point

groups). We establish the correctness of computing the intersection

in the following lemma.

Lemma 3.2. If distH (Q,Gkey ) ≤ distkBest , then for every query
point qi ∈ Q there exists a point pj ∈ Gkey such that dist(qi ,pj ) ≤
distkBest .

An optimization is to remove candidate point groups that have

been processed in Step 1.

Figure 8 illustrates an example and Table 5 depicts how our idea

works. Suppose that the chosen query points are q1,q2. After per-
forming range search at q1, we obtain four keywords (k1,k2,k3,k4)
as well as their distances to q1. In case a keyword occurs multi-

ple times (e.g., k2), it suffices to keep its closest distance to q1 (i.e.,
1.1). Similarly, we execute range search at q2 and retrieve three

keywords (k2,k3,k5). Then, we compute the intersection between

these collection of keywords and obtain k2,k3. During this process,

we obtain lower bound values for the point groups of these key-

words for free. For example, the lower bound of k3 is taken as the

maximum distance seen from q1,q2, i.e., max{1.8, 1.0} = 1.8.

We note that the choice of chosen query points may affect the

filtering power of the above step. If the chosen query points are too

near, then their range results tend to have significant overlap and

thus degrade the filtering power. We recommend to choose such

query points based on Algorithm 1, as the first few query points

selected in Algorithm 1 tend to be far apart.

3.5 Our Algorithms

In this section, we combine our proposed techniques and present

our similarity search algorithm (as Algorithm 2). We denote the
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Figure 8: Computing candidate point groups

Table 5: Example of computing candidates

Candidates

In the range of q1 (k2, 1.1) (k1, 1.5) (k3, 1.8) (k4, 1.8)
In the range of q2 (k3, 1.0) (k5, 1.0) (k2, 1.3)

Combined list (k2, 1.3) (k3, 1.8)

result set by resultSet and the best k Hausdorff distances by the

threshold distkBest . The techniques applied in statements are in-

dicated clearly in the algorithm. For example, the techniques for

representative-based lower bound (cf. Section 3.1) are applied at

lines 4 and 10, and candidate retrieval (cf. Section 3.4) is applied at

line 5.

The incremental distance computation module (Algorithm 3) is

used to compute the Hausdorff distance between two point groups

Q and G. It utilizes the threshold distkBest for early pruning. In

Algorithm 2, the above module is used to compute lower bound

distance (at line 10) as well as the remaining terms for the exact

distance (at line 13).

Regarding the optimization technique in Section 3.3, it is effective

only when the data point groupGkey contains many points. When

Gkey is large (say, containing more than 10 points), we apply the

above optimization technique at line 15.

3.6 Extensions

In this section, we consider the symmetric variant of the Hausdorff

distance, as defined below.

Definition 4 (Symmetric Hausdorff distance). The symmet-
ric Hausdorff distance between point groups Q and Gkey is:

distSH (Q,Gkey ) = max{distH (Q,Gkey ),distH (Gkey ,Q)}

We illustrate an example for the symmetric Hausdorff distance

in Figure 9, which contains two groups: Q = {q1,q2,q3,q4} and
G = {p1,p2,p3,p4}. Each dashed line indicates the closest dis-

tance from qi ∈ Q to G, or the closest distance from pi ∈ G
to Q . Thus, we get distH (Q,G) = max{2.8, 2.5, 1.4, 1} = 2.8

and distH (G,Q) = max{1.4, 1, 2, 1.4} = 2. Finally, we obtain

distSH (Q,G) = max{2.8, 2} = 2.8.

Then we discuss the extensions of our techniques for similarity

search on point groups under the symmetric Hausdorff distance.

First, consider the representative-based lower bound technique in

Algorithm 2 Similarity search

Require: query point groupQ , datasetDдroups , number of results

K , parameters α , β ,γ
1: resultSet ← ∅
2: distkBest ←∞
3: candSet ← Dдroups
4: Q ′ ← Greedy-Representatives(Q,α) ▷ Section 3.1

5: candSet ← Find-Candidates(Dдroups , β,γ ) ▷ Section 3.4

6: sort candSet in ascending order of lower bound values

7: for each point group Gkey ∈ candSet do
8: if Gkey .LB ≥ distkBest then
9: break

10: Gkey .LB ← IncDistH (Q
′,Gkey ,distkBest ) ▷ Section 3.1

11: if Gkey .LB < distkBest then
12: if |Gkey | ≤ 10 then

13: temp ← IncDistH (Q −Q
′,Gkey ,distkBest )

▷ Section 3.2

14: else

15: temp ← Opt-IncDistH (Q −Q
′,Gkey ,distkBest )
▷ Sections 3.2, 3.3

16: Gkey .dist ← max{Gkey .LB, temp}
17: if Gkey .dist < distkBest then
18: update distkBest and resultSet

19: return resultSet

Algorithm 3 IncDistH

Require: query point groupQ , point groupG , threshold distkBest
1: dmax ← 0

2: for each point qi ∈ Q do

3: dj ← minpj ∈G dist(qi ,pj )
4: if dj ≥ dmax then

5: dmax ← dj
6: if dmax ≥ distkBest then
7: return dmax

8: return dmax

1

1.4

2.8

2.5

𝑞ଵ

𝑞ଶ

𝑞ଷ

𝑞ସ

𝑝ଵ 𝑝ଶ

𝑝ଷ

𝑝ସ

Q:

G:

21.4

Figure 9: Symmetric Hausdorff distance

Section 3.1. The lower bound function becomes:

LBr ep (Q,Gkey ) = max{distH (Q
′,Gkey ),distH (G

′
key ,Q)} (3)

whereQ ′ is a representative subset ofQ andG ′key is a representative

subset of Gkey . This requires us to obtain representatives for each

point group in the dataset Dдroups . Fortunately, this task could be

done in the preprocessing stage because the representatives of data

point groups are independent of the query point group.
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Second, we adapt the incremental computation technique in

Section 3.2. The straightforward way is to first apply incremental

computation on distH (Q
′,Gkey ) and then apply incremental com-

putation on distH (G
′
key ,Q). However, this may prevent us from

getting a tight bound early, if the larger value is contributed by the

second term. To resolve this issue, our idea is to interleave the in-

cremental computation of distH (Q
′,Gkey ) and distH (G

′
key ,Q). For

example, we run the first iteration indistH (Q
′,Gkey ) (by processing

the first point in Q ′), then run the first iteration in distH (G
′
key ,Q),

then run the second iteration in distH (Q
′,Gkey ), etc.

The candidate retrieval technique in Section 3.4 is directly appli-

cable. To adapt the optimization technique in Section 3.3, we also

consider pruning opportunities within the incremental computation

of distH (G
′
key ,Q). For example, given the current point pj ∈ G

′
key ,

we need to quickly find a point qi ∈ Q such that dist(pj ,qi ) is as
small as possible.

4 EXPERIMENTAL STUDY

We conducted all the experiments on MacOS platform, with Intel

I7-6920HQ processor and 16GBmemory. In the experiments, we use

the Twitter dataset [9] that contains 40million tweets collected from

April to October in 2012. Each tweet in the dataset [9] consists of five

attributes including date, time, keyword-list, longitude and latitude.
In order to obtain keyword-induced point groups, we first remove

all non-character keywords (e.g. “??”) and transform all remaining

ones into lower case. Then, for a tweet represented as < date, time,
keyword-list, longitude, latitude >, we insert a point p(longitude,
latitude) into the point groups corresponding to each keyword in

keyword-list. In this way, we get 1,783,340 point groups from the

dataset and each group corresponds to exactly one keyword. The

average number of points contained in each point group is 62 and

the distribution of group size is shown below:

Table 6: Distribution of the point group size

range of group size number of point groups percentage

[1, 9] 1,638,758 91.89%

[10, 99] 109,544 6.14%

[100, 999] 25,942 1.45%

[1000, 9999] 7,368 0.41%

[10000, 99999] 1,579 0.09%

[100000, 999999] 149 0.01%

To generate the query point groups, we extract 50 point groups

belonging to five different types (i.e., Q1,Q2,Q3,Q4,Q5), and each

type consists of 10 point groups. We ensure that, for each query

point group of type Qi , its size is within the range [10i−1, 10i ). We

measure the response time of type Qi as the average response time

of each query point group belonging to type Qi .

Note that in the experimental setting of [2], a simple nested

for-loop is used for exact Hausdorff distance calculation. For the

sake of fairness, we use a more efficient method proposed in [20] to

calculate exact Hausdorff distance in both [2] and our methods. We

denote this optimized competitor as GIS2011. The preprocessing

time (e.g., the time for building R-tree and generating MBRs in [2])

is not included in the response time.

As shown in Table 7, we consider variants of our proposed tech-

niques to measure their effectiveness. We vary parameters to test

the performance of different methods, and Table 8 illustrates the

involved parameters and their default values. Those default values

are obtained through experimental tests, which will be discussed

in Section 4.1.

Table 7: Competitors

method meaning

GIS2011 the state-of-the-art method

RepLB representative lower bound only (Sections 3.1, 3.2)

Opt-RepLB optimized RepLB (Section 3.3)

Cand-RepLB RepLB + candidate retrieval (Section 3.4)

Comb-RepLB all proposed techniques (Section 3.5)

Table 8: Experimental parameters

parameter meaning default value

K number of nearest neighbors 10

α
number of representatives

size of query point group
5%

β
number of sample point groups

|Dдroups |
10%

γ number of filtering points 2

4.1 Robustness Experiments

In this section, we examine the robustness of our proposed methods

and we tune the values of parameters α , β,γ . In general, we achieve

reasonable good performance with a wide range of parameter val-

ues. For example, α within 1% to 30%, β within 5% to 50% and γ
within 2 to 5. During tuning each parameter, we follow the default

settings for other parameters.

Tuning α . Figure 10 depicts the performance of RepLB over differ-

ent values of α . In the beginning, when α is smaller than 5% , the

response time drops dramatically with the increase of α . After α
reaches 5%, that is, at least 5% of the query points are selected as

representatives, the response time changes slightly as α increases

further. The reason is that, our greedy selection method can find

effective representatives of the query point group, rendering the

lower bounds for data point groups quite tight even in the very

beginning. Therefore, we use 5% as the default value of α .

Tuning β . We evaluate both the size of the candidate set and the

response time for the effect of β . The size of candidate set drops
almost linearly as the value of β increases (Figure 11a), while the

response time changes slightly after β reaches 10% (Figure 11b).

The reason is that, with the increase of β , the filtering threshold

distkBest decreases, which means the range used to retrieve can-

didate sets shrinks, leading to the drop of the candidate set size

(see Section 3.4). But for the response time, large data point groups

cover large regions such that they are difficult to be pruned even

with large β , and the response time is dominated by those large

point groups. Therefore, the response time changes slightly after β
reaches 10%. To this end, we set the default value of β as 10%.
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Tuning γ . In the beginning, both the size of candidate set and the

response time drop dramatically with the increase of γ (Figure 12).

But after γ reaches 2, the remaining candidate point groups are

large enough to be included within the search range from most

points in the query point group. Therefore, the candidate set size

remains stable after γ reaches 2. When γ increases from 1 to 2, the

response time decreases as the candidate size shrinks. However,

when γ further increases, the overhead in retrieving candidate

groups becomes higher. Therefore, we set the default value of γ as

2.
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Figure 12: Tuning γ

Effect of proposed techniques. Figure 13 depicts the effect of

our proposed techniques in terms of response time. RepLB can solve

the similarity search queries within less than 3 and 12 seconds for

small (query typeQ1) and large (query typeQ5) query point groups,

respectively. Opt-RepLB and Cand-RepLB can achieve faster re-

sponse times with optimization and candidate retrieval techniques.

Specifically, the optimization technique brings a maximum 17%

improvement compared with RepLB (for query type Q3) and candi-

date retrieval technique brings a maximum 40% improvement (for

query type Q1). Finally, Comb-RepLB combines all our proposed

techniques and can achieve the best performance. In the following,

we use Comb-RepLB as our method to compare with GIS2011. And

we set α , β,γ to 5%, 10%, 2 in Comb-RepLB, respectively.
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Figure 13: Effect of proposed techniques

4.2 Tuning the state-of-the-art method

The state-of-the-art method GIS2011 [2] requires to specify the

amount of MBRs for calculating enhanced lower-bound Hausdorff

distances. The number of MBRs affects the tradeoff between tight-

ness of the lower bound and the computation overhead to retrieve

the lower bound. For fairness, we tune the number of MBRs for

GIS2011 in the experiment.
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Figure 14: Tuning the setting for GIS2011

As shown in Figure 14, we test the number of MBRs from 2 to 100,

and find that 20 MBRs could offer the overall best performance for
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GIS2011 method. Thus, we set the number of MBRs in GIS2011 as

20. To verify the correctness of our setting, we check the time spent

on different steps of GIS2011, including lower-bound calculation,

exact distance calculation and time in priority queue. Figure 15

plots the distribution of time for each step, which is consistent to

the result in [2].
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Figure 15: Verifying the setting for GIS2011

4.3 Performance comparison

In this section, we compare our proposed method Comb-RepLB

and GIS2011 under several different settings.

Varying query size. Figure 16 shows that, in terms of response

time, our proposed Comb-RepLB outperforms GIS2011 in all

kinds of query sizes. Specifically, Comb-RepLB is 2.3X to 6.6X

faster than GIS2011. Such speed-up mainly attributes to the tight

representative-based lower bound, which is especially effective in

our scenario of heavy overlapping point groups. In addition, even

if the point group cannot be pruned using our lower bound, unlike

the lower-bound techniques in GIS2011 [2], the calculation of our

lower bound will not be wasted, as it can be recycled to complete

the remaining calculation for the exact Hausdorff distance. More-

over, our proposed optimization technique and candidate retrieval

technique improve the performance of Comb-RepLB further.

Varying K . Figure 17 depicts the effect of K in terms of response

time, and Comb-RepLB outperforms GIS2011 in all test values K .
When K = 1, both methods are very fast because of the small

threshold distance of 1−NN. When K increases to 2, the response

time of GIS2011 increases dramatically, which is caused by the

loose MBR-based lower bound . When K becomes larger than 2, the

response times grow almost linearly to K for both Comb-RepLB

and GIS2011.

Varying |Dдroups |. Figure 18 illustrates the performances of

Comb-RepLB and GIS2011 under different dataset sizes. Comb-

RepLB outperforms GIS2011 in all test sizes |Dдroups |. With the

increase of |Dдroups |, the response time of GIS2011 grows much

faster than Comb-RepLB. This is because our proposed representa-

tive lower-bound, optimization technique and candidate retrieval

technique work effectively.
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5 RELATEDWORK

In this paper, we adopt the Hausdorff distance to measure the dis-

similarity between two point groups. The Hausdorff distance has

been extensively used in various application domains, such as im-

age recognition, model rendering, spatial querying [3, 14, 18, 21].
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Different methods have been proposed to speed up exact Haus-

dorff distance calculation [4, 10, 18–20], for example, by using R-

trees [18] or imposing random ordering within a point group [20].

These works are orthogonal to our problem. We focus on devel-

oping lower bound functions and filtering techniques to prune

unpromising point groups in similarity search.

Similarity search on point groups has been studied in [2], which

is the closest work to our problem. The state-of-the-art solution [2]

employs R-trees for indexing data point groups as well as the query

point group. Then, the solution exploits MBRs in R-trees to com-

pute lower-bound Hausdorff distances for ordering candidate point

groups and pruning unpromising ones. However, unlike [2], our

point groups are defined based on geo-textual data (e.g., Twitter

data) and the locations within the same point group are required

to share the same keyword. As discussed in the introduction, this

setting causes many point groups to span over wide areas, thus

degrading the effectiveness of the MBR-based lower bounds in [2].

As opposed to using MBRs, our solution utilizes a subset of the

query point group to compute lower bound distances.

Processing spatial-keyword queries is a popular research area in

the last two decades. Their approaches can be classified as spatial-
first approaches and keyword-first approaches [17]. Spatial-first ap-
proaches apply spatial predicate on spatial indexes (e.g., R-tree [6])

to obtain candidates, and then filter candidates by the keyword

predicate. Furthermore, spatial indexes can be augmented with key-

word information to improve the effectiveness of pruning [11, 15].

Keyword-first approaches apply inverted file [23] or bitmap [12] to

retrieve candidates by the keyword predicate, and then refine them

by the spatial predicate. Nevertheless, none of the above methods

consider similarity search on point groups.

Many applications on Twitter data have been studied in the liter-

ature. Real-time discovery of local events is useful in crime monitor-

ing, disaster alarming, and activity recommendation. Krumm and

Horvitz [16] conduct time series analysis over geo-tagged tweet

volumes to detect local events accurately. To improve accuracy

and efficiency further, Zhang et al. [22] design a novel authority

measure that captures geo-topic correlations among tweets, and

develop a pivot-based searching algorithm to identify local events.

Bursty words play an important role in social media as it might

reveal important trending topics that may trigger actions. Abdel-

haq et al. [1] propose a sliding window approach to detect bursty

words over continuous streams of Twitter texts. Large volume of

tweets can also be used in recommending topics [8], ranking finan-

cial tweets [7], and classifying a user’s political orientation [13].

The above problems are different from our problem, i.e., similarity

search on keyword-induced point groups.

6 CONCLUSIONS

We propose the concept of keyword-induced point groups and

study the similarity search problem on such point groups under the

Hausdorff distance measure. Although there exists a solution for

our problem, it has not considered the characteristics of keyword-

induced point groups and suffers from overlapping point groups.

The novelty of our solution is that it does not rely on minimum

bounding rectangles. Experimental results on Twitter data demon-

strate that our solution is faster than the state-of-the-art by up to 6

times.

In future, we will study the similarity join problem on keyword-

induced point groups, e.g., finding all pairs of keywords such that

their corresponding point groups have Hausdorff distance below a

given distance threshold.
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