Chordal Editing is Fixed-Parameter Tractable

Yixin CAO Dániel MARX

Institute for Computer Science and Control Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

STACS 2014 Lyon, Frace

March 7, 2014

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Graph modification problems

For every graph class \mathcal{G} (planar, chordal, interval, etc.), we can study:

Definition (\mathcal{G} -graph modification problem)

Input: a graph G of size *n* and a nonnegative integer *k* **Task:** find $\leq k$ modifications that transform G into a graph in G?

Typical modification operations:

- removing edges,
- adding edges, or
- removing vertices.

Graph modification problems

For every graph class \mathcal{G} (planar, chordal, interval, etc.), we can study:

Definition (\mathcal{G} -graph modification problem)

Input: a graph G of size *n* and a nonnegative integer *k* **Task:** find $\leq k$ modifications that transform G into a graph in G?

In other words, the question is if G belongs to the class

- $\mathcal{G} + ke$: a graph from \mathcal{G} with k extra edges;
- $\mathcal{G} ke$: a graph from \mathcal{G} with k missing edges;
- $\mathcal{G} + kv$: a graph from \mathcal{G} with k extra vertices.

All of them can be solved in time $n^{O(k)}$;

3

(日) (同) (三) (三)

All of them can be solved in time $n^{O(k)}$;

Can we solve it in time $f(k) \cdot n^{O(1)}$ (i.e., FPT time)?

but *n* is big!

(日) (同) (三) (三)

All of them can be solved in time $n^{O(k)}$; but *n* is big!

Can we solve it in time $f(k) \cdot n^{O(1)}$ (i.e., FPT time)?

Theorem (Cai, 1996)

All variations are FPT recognizable when \mathcal{G} has a finite set of obstructions.

Theorem (Robertson and Seymour, 1995)

 $\mathcal{G} + kv$ is FPT recognizable when \mathcal{G} is minor closed.

All of them can be solved in time $n^{O(k)}$; but *n* is big!

Can we solve it in time $f(k) \cdot n^{O(1)}$ (i.e., FPT time)?

Theorem (Cai, 1996)

All variations are FPT recognizable when \mathcal{G} has a finite set of obstructions.

Theorem (Robertson and Seymour, 1995)

 $\mathcal{G} + kv$ is FPT recognizable when \mathcal{G} is minor closed.

Other FPT-recognizable classes

bipartite + kv (bipartite + ke) [Reed et al., 2003]; DAG + kv (DAG + ke) [Chen et al., 2008]; interval - ke [Heggernes et al., 2007]; interval + kv [C. & Marx, 2014]; interval + ke [C., 2014].

Cao, Yixin (MTA SzTAKI)

・ロン ・四 ・ ・ ヨン ・ ヨン

Modification to chordal graphs

Theorem (Cai, 1996; Kaplan et al., 1994) Recognizing chordal – ke is FPT.

Theorem (Marx, 2006)

Recognizing chordal + kv and chordal + ke is FPT.

Image: A Image: A

Modification to chordal graphs

Theorem (Cai, 1996; Kaplan et al., 1994) Recognizing chordal – ke is FPT.

Theorem (Marx, 2006) Recognizing chordal + kv and chordal + ke is FPT.

New result

Recognizing chordal $+ k_1v + k_2e - k_3e$ is FPT.

[Implication] The following problem is FPT: at most k edge additions and deletions. Try all combinations of (k_2, k_3) s.t. $k_2 + k_3 = k$ and $k_1 = 0$.

米田 とくほとくほ

Chordal graphs

Definition

a graph is <u>chordal</u> if each of its cycles of four or more vertices has a chord.

 $\underline{chord}: an edge connecting two non-consecutive vertices of the cycle.$

Hole: a cycle of length \geq 4 w/o chords.

Theorem

A chordal graph is the Intersection graph of subtrees in a tree.

interval \subset chordal \subset perfect.

A B A A B A

Techniques employed by previous results

Completion [Cai; Kaplan et al.]

- To fill a hole H, we need at least |H| 3 edges.
- We branch on adding one of |H|(|H| 3)/2 chords.

過す イヨト イヨト

Techniques employed by previous results

Completion [Cai; Kaplan et al.]

- To fill a hole H, we need at least |H| 3 edges.
- We branch on adding one of |H|(|H| 3)/2 chords.

However, the deletion of a single vertex/edge will break a hole of an arbitrary length.

Techniques employed by previous results

Completion [Cai; Kaplan et al.]

- To fill a hole H, we need at least |H| 3 edges.
- We branch on adding one of |H|(|H| 3)/2 chords.

However, the deletion of a single vertex/edge will break a hole of an arbitrary length.

Deletion [Marx]

- If the treewidth of G is large, then we can find an **irrelevant** vertex.
- Otherwise, we can apply **Courcelle's Theorem** to the bounded-treewidth grpah.

(人間) トイヨト イヨト

Chordal editing set

$V_{-} \subseteq V(G)$ and $E_{-} \subseteq E(G)$ and $E_{+} \subseteq V(G)^{2} \setminus E(G)$

Definition

 (V_-, E_-, E_+) is a *chordal editing set* of *G* if the deletion of V_- and E_- and the addition of E_+ , applied successively, make *G* chordal.

- Requirement: $|V_{-}| \le k_1$; $|E_{-}| \le k_2$; $|E_{+}| \le k_3$.
- it does not make sense to ask for |V_−| + |E_−| + |E₊| ≤ k₁ + k₂ + k₃; otherwise, it degenerates to vertex deletion.
- On the other hand, edge addition and edge deletion are incomparable.

Chordal editing set

$V_{-} \subseteq V(G)$ and $E_{-} \subseteq E(G)$ and $E_{+} \subseteq V(G)^{2} \setminus E(G)$

Definition

 (V_-, E_-, E_+) is a *chordal editing set* of *G* if the deletion of V_- and E_- and the addition of E_+ , applied successively, make *G* chordal.

- Requirement: $|V_{-}| \le k_1$; $|E_{-}| \le k_2$; $|E_{+}| \le k_3$.
- it does not make sense to ask for |V_−| + |E_−| + |E₊| ≤ k₁ + k₂ + k₃; otherwise, it degenerates to vertex deletion.
- On the other hand, edge addition and edge deletion are incomparable.

Iterative compression

Instead of solving the problem:

CHORDAL EDITING $(G, (k_1, k_2, k_3))$ Input: A graph G, nonnegative integers (k_1, k_2, k_3) . Task: find a chordal editing set (V_-, E_-, E_+) of size at most (k_1, k_2, k_3) .

- **(())) (())) ())**

Iterative compression

Instead of solving the problem:

CHORDAL EDITING $(G, (k_1, k_2, k_3))$ Input: A graph G, nonnegative integers (k_1, k_2, k_3) . Task: find a chordal editing set (V_-, E_-, E_+) of size at most (k_1, k_2, k_3) .

We solve the disjoint compression problem:

CHORDAL EDITING COMPRESSION $(G, M, (k_1, k_2, k_3))$

- Input: A graph G, nonnegative integers (k_1, k_2, k_3) , a hole cover M of size $\leq k_1 + k_2 + k_3 + 1$.
 - Task: construct a chordal editing set (V_-, E_-, E_+) such that its size is at most (k_1, k_2, k_3) and V_- is disjoint from M.

G - M is chordal.

・ロン ・聞と ・ ほと ・ ほと

A chordal graph

Theorem (Dirac, 1961)

A chordal graph has at most *n* maximal cliques.

Cao, Yixin (MTA SzTAKI)

Chordal Editing

March 7, 2014 10 / 20

Image: A match a ma

Clique tree decomposition

Theorem (Dirac, 1961)

Every bag is a maximal clique of G;

2 the intersection of two adjacent bags is a minimal separator;

3 ×

3

If it looks like a tree, it probably is a tree.

WEIGHTED FEEDBACK VERTEX SET

Delete vertices of degree **1**.

In a chain of degree-2 vertices, only consider the one with min weight.

If it looks like a tree, it probably is a tree.

WEIGHTED FEEDBACK VERTEX SET

Delete vertices of degree 1.

Delete simplicial vertices (N[v] is a leaf in the clique tree).

In a chain of degree-2 vertices, only consider the one with min weight.

In a chain of degree-2 bags in the clique tree, only consider the min separator.

CHORDAL VERTEX DELETION

Chordal Editing

Number of segments

- we assume that w is not a common neighbor of H;
- it cannot be adjacent more than 3 vertices in H; otherwise we can use w to get a shorter hole than H;
- a pair of neighboring blue connections makes a hole;
- these holes share only w;
- we can return "NO" if there are more than k + 1 such holes (recall that $V_{-} \cap M = \emptyset$).

Outline of our algorithm

- **0** return if G is chordal or one of k_1 , k_2 , and k_3 becomes negative;
- find a shortest hole *H*;
- **2** if H is shorter than k + 4 then guess a way to fix it; goto 0.
- else decompose *H* into O(k³) segments; guess a segment and break it;
- goto 0.

Conclusions

- graph modification problem in the most general sense. INTERVAL EDITING? UNIT INTERVAL EDITING?
- Can CHORDAL EDITING be solved in $O(c^k \cdot n^{O(1)})$ time? CHORDAL DELETION?
- **o** does CHORDAL DELETION have a polynomial kernel?
- What the complexity for finding a shortest hole?