A Naive Algorithm for Feedback Vertex Set

Yixin Cao (IZEH)

Department of Computing, Hong Kong Polytechnic University
BEEEIARE BETHHEZER

Symposium on Simplicity in Algorithms
New Orleans, LA January 10, 2018

ZR\ THE HONG KONG
?b POLYTECHNIC UNIVERSITY ‘@ m Department of Computing

B T K& EEE T LY 1/62

http://www.polyu.edu.hk/
http://www.comp.polyu.edu.hk/

The problem

A2
JAUNRYVY

Given a graph G and an integer k, the feedback vertex set problem
asks for the deletion of at most k vertices to make GG a forest.

2/62

The problem

Given a graph G and an integer k, the feedback vertex set problem
asks for the deletion of at most k vertices to make GG a forest.

3/62

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

4/62

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

5/62

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
© find first a minimum feedback vertex set V_ of the constraint graph,
@ enumerate all possible assignments on them, and
© then solve the remaining instance.

6/62

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
© find first a minimum feedback vertex set V_ of the constraint graph,
@ enumerate all possible assignments on them, and
© then solve the remaining instance.

On an instance I on p variables, it takes O(p!/V=! - [I|°() time.

7/62

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
© find first a minimum feedback vertex set V_ of the constraint graph,
@ enumerate all possible assignments on them, and
© then solve the remaining instance.

On an instance I on p variables, it takes O(p!/V=! - [I|°() time.

[Pearl 1988]: A similar application for Bayesian inference.

8/62

Low-degree vertices

A vertex of degree 1 can always be safely deleted.

9/62

Low-degree vertices

A degree-2 vertex in a solution can always
be replaced with one of its neighbors.

10/62

Low-degree vertices

If w and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

11/62

Low-degree vertices

If w and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

12/62

Low-degree vertices

If w and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

13/62

Low-degree vertices

If w and w are not adjacent,

then we can delete v and add edge uw.

this operation is called “smoothen.”

14/62

15/62

PRy T

Greed ... is good. Greed is right. Greed works.

Wall street

16 /62

Algorithms

[Erd6s Pésa 1962]: A graph of minimum degree > 3 has a cycle of length O(logn).
o A trivial O(logn) approximation: find a shortest cycle, remove all vertices.

@ A nontrivial (log k)°*)-time parameterized algorithm: after a polynomial kernel.

17/62

Algorithms

Small-degree vertices
[Erd6s Pésa 1962]: A graph of minimum degree > 3 has a cycle of length O(logn).

o A trivial O(logn) approximation: find a shortest cycle, remove all vertices.

@ A nontrivial (log k)°*)-time parameterized algorithm: after a polynomial kernel.

18/62

Algorithms

Small-degree vertices
[Erd6s Pésa 1962]: A graph of minimum degree > 3 has a cycle of length O(logn).

o A trivial O(logn) approximation: find a shortest cycle, remove all vertices.

@ A nontrivial (log k)°*)-time parameterized algorithm: after a polynomial kernel.

Large-degree vertices

[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local
ratio)

[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation
[Fujito 1996]: Two new primal-dual algorithms

19/62

Parameterized algorithms

Algorithms running in time O(f(k) - n®()), where k is a parameter (the solution size).

20/62

Parameterized algorithms

Algorithms running in time O(f(k) - n®()), where k is a parameter (the solution size).

f (k)
Downey Fellows 1992 (2k + 1)k
Bodlaender 1994 17(k)!

Raman et al. 2002
Kanj et al. 2004

max{12*, (41log k)*}
(2log k + 2loglog k + 18)F

Raman et al. 2006 (121og k/loglog k + 6)*
Dehne et al. 2005 10.6%

Guo et al. 2006 37.7%

Chen et al. 2008 5k

C Chen Liu 2010 3.83F

Kociumaka Pilipczuk 2014 3.62F

21/62

Parameterized algorithms

Algorithms running in time O(f(k) - n®()), where k is a parameter (the solution size).

f (k)
Downey Fellows 1992 (2k + 1)k
Bodlaender 1994 17(k)!

Raman et al. 2002
Kanj et al. 2004

max{12*, (41log k)*}
(2log k + 2loglog k + 18)F

Raman et al. 2006 (121og k/ loglog k + 6)*
Dehne et al. 2005 10.6"
k
SEO et a|.|2§888 227 All ¢* algorithms use technique
en et al X “iterative compression.”
C Chen Liu 2010 3.83
Kociumaka Pilipczuk 2014 3.62F

22/62

vertex cover feedback vertex set
to kill edges cycles
to make independent set (edgeless) forest (acyclic)
treewidth 0 treewidth <1
approx 2 2
parameterized 1.2738F 3.62F

the simplest nontrivial vertex deletion problem

23/62

The Algorithm

24/62

A vertex of the largest degree is highly likely in the solution

25 /62

A vertex of the largest degree is highly likely in the solution, but not always.

26 /62

A branching algorithm

G, 0 each node has two parts,
° the graph G and the set F' of permanent vertices.

27/62

A branching algorithm

G, 0 left child: the vertex is put into the solution,
hence deleted from G

G—uv,0

28/62

A branching algorithm

G, 0 left child: the vertex is put into the solution,
hence deleted from G
right child: the vertex is not in the solution,
G—v,0 a, {v} hence put into F

29/62

A branching algorithm

We always choose the vertex with
the largest degree in V(G) \ F to branch.

30/62

A branching algorithm

We always choose the vertex with
the largest degree in V(G) \ F to branch.

31/62

A branching algorithm

G, 0

32/62

A branching algorithm

G, 0

33/62

A branching algorithm

G, 0

34/62

A branching algorithm

G, 0

35/62

A branching algorithm

G, 0

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

36/62

A branching algorithm

G, 0

We cannot go left more than k times.
We're hence focused on the right steps.

37/62

A branching algorithm

G, 0

Let's fix an execution path.

38/62

The Analysis

39/62

Elementary facts of trees

40/62

Elementary facts of trees

Y d(v) =2[E(T)| =2|V(T)|-2 o ‘
veV(T) T~ -7

41/62

Elementary facts of trees

Y d(v) =2[E(T)| =2|V(T)|-2 o ‘
veV(T) T~ -7

[L: leaves; V3: vertices of degree > 3.] v

42/62

Elementary facts of trees

> dlv) = 2/B(T)] = 2V(T)] -2 S
veV(T) T~ -7

[L: leaves; V3: vertices of degree > 3.] v
2= (dv)-2)+ > (dw)-2) =D (=D)+>_(dv)-2) = > (d(v)-2)-|L].
veL veV (T)\L veL veVs veVs

43/62

Elementary facts of trees

> dlv) = 2/B(T)] = 2V(T)] -2 S
veV(T) T~ -7

[L: leaves; V3: vertices of degree > 3.] v
2= (d)-2+ > (dv)=2)=> (-D)+>_(dv)=2) = > (d(v)-2)—|L|.
veL veV (T)\L veL veVs veVs
> (d(v) L]~ 2
For each v ¢ V_, vEVR

@ either its degree is decreased from > 3 to < 2,

@ or leaves are produced to “balance the equation.”

4462

Elementary facts of trees

Y d(v) =2[E(T)| =2|V(T)|-2 o ‘
veV(T) T~ -7

[L: leaves; V3: vertices of degree > 3.] v
2= (d)-2+ > (dv)=2)=> (-D)+>_(dv)=2) = > (d(v)-2)—|L|.
veL veV(T)\L veL veVs veVs
> (d(v) L]~ 2
For each v ¢ V_, vEVR

@ either its degree is decreased from > 3 to < 2,

@ or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.

45/62

The example

the first vertex x1 is put into V_, second w into F,
then the deletion of each xz; decreases its degree by two.

u

€1
46 /62

Algorithm invariants

@ During the algorithm, the degree of no vertex can increase.
@ There is no vertex of degree 0 or 1 in the graph when a recursive call is made.

47/62

Key definitions and observations

48/62

Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.

49/62

Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.
d(u) =9; d*(u) =8

@ d*(v): the degree of v at the moment it is put into V_ or F. d(v) > d*(v)

o effective decrements of the degree of a vertex u € F: from d*(u) to 2.

50 /62

Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.
d(u) =9; d*(u) =8
O(u, 1) =0; 0(u,x2) = 6(u,x3) = 6(u,24) = 2; §(u,25) =0

@ d*(v): the degree of v at the moment it is put into V_ or F. d(v) > d*(v)

o effective decrements of the degree of a vertex u € F: from d*(u) to 2.

@ an effective decrement is incurred by z; € V_ if it is after deleting ;.
d(u, x;): Fteffective decrements of u € F' incurred by z; € V_.

51/62

Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.
d(u) =9; d*(u) =8
O0(u,z1) =0; 6(u, x2) = 6(u, x3) = 6(u,x4) = 2; 0(u,25) =0

@ d*(v): the degree of v at the moment it is put into V_ or F. d(v) > d*(v)

o effective decrements of the degree of a vertex u € F: from d*(u) to 2.

@ an effective decrement is incurred by z; € V_ if it is after deleting ;.
d(u, x;): Fteffective decrements of u € F' incurred by z; € V_.

52/62

Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.
d(u) =9; d*(u) =8
O0(u,z1) =0; 6(u, x2) = 6(u, x3) = 6(u,x4) = 2; 0(u,25) =0

d*(v): the degree of v at the moment it is put into V_ or F. d(v) > d*(v)

effective decrements of the degree of a vertex u € F: from d*(u) to 2.

an effective decrement is incurred by x; € V_ if it is after deleting x;.
d(u, x;): Fteffective decrements of u € F' incurred by z; € V_.

d(u, ;) may be larger than 1.
O(u,z;) >0 = w € F when z; is deleted..

53/62

Lemmas

Lemma 1: For any u € F and v € V_, if 6(u,v) > 0 then d*(u) > d*(v).
Lemma 2:) _pd(u,v) < d*(v) for each v € V_.

54 /62

Lemmas

Lemma 1: For any u € F and v € V_, if 6(u,v) > 0 then d*(u) > d*(v).
Lemma 2:) _pd(u,v) < d*(v) for each v € V_.

veV_ veV_ 1}) veV_ d*(v) ucF
d(u, v) 0(u,v) 1
e > —=
22) 2 2 2w~ a2 o)
veV_ uelF veV_ ueF uel veV_
g2 1R
d*(u) — 3 3

55 /62

Lemmas

Lemma 1: For any u € F and v € V_, if 6(u,v) > 0 then d*(u) > d*(v).
Lemma 2:) _pd(u,v) < d*(v) for each v € V_.

veV_ veV_ 1}) veV_ d*(v) ucF
d(u, v) 0(u,v) 1
fry > fry

20) 2 2 2 PO

veV_ uelF veV_ ueF uel veV_
A -2 1

d*(u) — 3 3
ueF uel

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

56 /62

Lemmas

Lemma 1: For any u € F and v € V_, if 6(u,v) > 0 then d*(u) > d*(v).
Lemma 2:) _pd(u,v) < d*(v) for each v € V_.

veV_ veV_ 1}) veV_ d*(v) ucF
d(u, v) 0(u,v) 1
fry > fry

20) 2 2 2 PO

veV_ uelF veV_ ueF uel veV_
A -2 1

d*(u) — 3 3
ueF uel

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

[We terminate all execution paths after 4k steps = O(16* - n?). D]

57/62

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) < 3 for v € V(G) \ F.

Only put vertices of degree > 4 into F', then

d*(u) — 2 2 F
DY c(l*()u) =y 5=

uel

58/62

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) < 3 for v € V(G) \ F.

Only put vertices of degree > 4 into F', then

d*(u) — 2 2 F
DY c(l*()u) =y 5=

uel

59 /62

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) < 3 for v € V(G) \ F.

Only put vertices of degree > 4 into F', then

d*(u) — 2 2 F
e RN A

uel

[We terminate all execution paths after 3k steps = O(8* - n2). D]

60/62

Final remark

Beauty is the first test:
there is no permanent place in the world for ugly mathematics..

G. H. Hardy

To theorists:
stop ignoring successful heuristic algorithms by pretending their nonexistence!

61/62

thanks!

	The Algorithm
	The Analysis

