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The problem
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Given a graph G and an integer k, the feedback vertex set problem
asks for the deletion of at most k vertices to make GG a forest.
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The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.
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The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
© find first a minimum feedback vertex set V_ of the constraint graph,
@ enumerate all possible assignments on them, and
© then solve the remaining instance.

On an instance I on p variables, it takes O(p!/V=! - [I|°() time.

[Pearl 1988]: A similar application for Bayesian inference.
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Low-degree vertices

A vertex of degree 1 can always be safely deleted.
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Low-degree vertices

A degree-2 vertex in a solution can always
be replaced with one of its neighbors.
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Low-degree vertices

If w and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”
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Greed ... is good. Greed is right. Greed works.

Wall street
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Algorithms

[Erd6s Pésa 1962]: A graph of minimum degree > 3 has a cycle of length O(logn).
o A trivial O(logn) approximation: find a shortest cycle, remove all vertices.

@ A nontrivial (log k)°*)-time parameterized algorithm: after a polynomial kernel.

17/62



Algorithms

Small-degree vertices
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Algorithms

Small-degree vertices
[Erd6s Pésa 1962]: A graph of minimum degree > 3 has a cycle of length O(logn).

o A trivial O(logn) approximation: find a shortest cycle, remove all vertices.

@ A nontrivial (log k)°*)-time parameterized algorithm: after a polynomial kernel.

Large-degree vertices

[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local
ratio)

[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation
[Fujito 1996]: Two new primal-dual algorithms
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Parameterized algorithms

Algorithms running in time O(f(k) - n®()), where k is a parameter (the solution size).

20/62



Parameterized algorithms

Algorithms running in time O(f(k) - n®()), where k is a parameter (the solution size).

f (k)
Downey Fellows 1992 (2k + 1)k
Bodlaender 1994 17(k)!

Raman et al. 2002
Kanj et al. 2004

max{12*, (41log k)*}
(2log k + 2loglog k + 18)F

Raman et al. 2006 (121og k/loglog k + 6)*
Dehne et al. 2005 10.6%

Guo et al. 2006 37.7%

Chen et al. 2008 5k

C Chen Liu 2010 3.83F

Kociumaka Pilipczuk 2014 3.62F
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Parameterized algorithms

Algorithms running in time O(f(k) - n®()), where k is a parameter (the solution size).

f (k)
Downey Fellows 1992 (2k + 1)k
Bodlaender 1994 17(k)!

Raman et al. 2002
Kanj et al. 2004

max{12*, (41log k)*}
(2log k + 2loglog k + 18)F

Raman et al. 2006 (121og k/ loglog k + 6)*
Dehne et al. 2005 10.6"
k
SEO et a|.|2§888 227 All ¢* algorithms use technique
en et al X “iterative compression.”
C Chen Liu 2010 3.83
Kociumaka Pilipczuk 2014 3.62F
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vertex cover feedback vertex set
to kill edges cycles
to make independent set (edgeless) forest (acyclic)
treewidth 0 treewidth <1
approx 2 2
parameterized 1.2738F 3.62F

the simplest nontrivial vertex deletion problem
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The Algorithm
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A vertex of the largest degree is highly likely in the solution
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A vertex of the largest degree is highly likely in the solution, but not always.
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A branching algorithm

G, 0 each node has two parts,
° the graph G and the set F' of permanent vertices.
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A branching algorithm

G, 0 left child: the vertex is put into the solution,
hence deleted from G

G—uv,0
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A branching algorithm

G, 0 left child: the vertex is put into the solution,
hence deleted from G
right child: the vertex is not in the solution,
G—v,0 a, {v} hence put into F
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A branching algorithm

We always choose the vertex with
the largest degree in V(G) \ F to branch.
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A branching algorithm

G, 0
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A branching algorithm
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A branching algorithm

G, 0
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A branching algorithm

G, 0

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.
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A branching algorithm

G, 0

We cannot go left more than k times.
We're hence focused on the right steps.
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A branching algorithm

G, 0

Let's fix an execution path.
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The Analysis
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Elementary facts of trees
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Elementary facts of trees

> dlv) = 2/B(T)] = 2V(T)] -2 S
veV(T) T~ -7

[L: leaves; V3: vertices of degree > 3.] v
2= (dv)-2)+ > (dw)-2) =D (=D)+>_(dv)-2) = > (d(v)-2)-|L].
veL veV (T)\L veL veVs veVs
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> dlv) = 2/B(T)] = 2V(T)] -2 S
veV(T) T~ -7

[L: leaves; V3: vertices of degree > 3.] v
2= (d)-2+ > (dv)=2)=> (-D)+>_(dv)=2) = > (d(v)-2)—|L|.
veL veV (T)\L veL veVs veVs
> (d(v) L]~ 2
For each v ¢ V_, vEVR

@ either its degree is decreased from > 3 to < 2,

@ or leaves are produced to “balance the equation.”
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Elementary facts of trees

Y d(v) =2[E(T)| =2|V(T)|-2 o ‘
veV(T) T~ -7

[L: leaves; V3: vertices of degree > 3.] v
2= (d)-2+ > (dv)=2)=> (-D)+>_(dv)=2) = > (d(v)-2)—|L|.
veL veV(T)\L veL veVs veVs
> (d(v) L]~ 2
For each v ¢ V_, vEVR

@ either its degree is decreased from > 3 to < 2,

@ or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.
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The example

the first vertex x1 is put into V_, second w into F,
then the deletion of each xz; decreases its degree by two.

u

€1
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Algorithm invariants

@ During the algorithm, the degree of no vertex can increase.
@ There is no vertex of degree 0 or 1 in the graph when a recursive call is made.
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Key definitions and observations
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Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.
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@ d*(v): the degree of v at the moment it is put into V_ or F. d(v) > d*(v)

o effective decrements of the degree of a vertex u € F: from d*(u) to 2.
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Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.
d(u) =9; d*(u) =8
O(u, 1) =0; 0(u,x2) = 6(u,x3) = 6(u,24) = 2; §(u,25) =0

@ d*(v): the degree of v at the moment it is put into V_ or F. d(v) > d*(v)

o effective decrements of the degree of a vertex u € F: from d*(u) to 2.

@ an effective decrement is incurred by z; € V_ if it is after deleting ;.
d(u, x;): Fteffective decrements of u € F' incurred by z; € V_.
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Key definitions and observations

decision points: 1 — u — T9 — T3 — T4 — Ts.
d(u) =9; d*(u) =8
O0(u,z1) =0; 6(u, x2) = 6(u, x3) = 6(u,x4) = 2; 0(u,25) =0

d*(v): the degree of v at the moment it is put into V_ or F. d(v) > d*(v)

effective decrements of the degree of a vertex u € F: from d*(u) to 2.

an effective decrement is incurred by x; € V_ if it is after deleting x;.
d(u, x;): Fteffective decrements of u € F' incurred by z; € V_.

d(u, ;) may be larger than 1.
O(u,z;) >0 = w € F when z; is deleted..
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Lemmas

Lemma 1: For any u € F and v € V_, if 6(u,v) > 0 then d*(u) > d*(v).
Lemma 2: ) _pd(u,v) < d*(v) for each v € V_.
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Lemmas

Lemma 1: For any u € F and v € V_, if 6(u,v) > 0 then d*(u) > d*(v).
Lemma 2: ) _pd(u,v) < d*(v) for each v € V_.

veV_ veV_ 1}) veV_ d*(v) ucF
d(u, v) 0(u,v) 1
e > —=
22 ) 2 2 2w~ a2 o)
veV_ uelF veV_ ueF uel veV_
g2 1R
d*(u) — 3 3
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veV_ veV_ 1}) veV_ d*(v) ucF
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fry > fry

20 ) 2 2 2 PO
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Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.
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Lemmas

Lemma 1: For any u € F and v € V_, if 6(u,v) > 0 then d*(u) > d*(v).
Lemma 2: ) _pd(u,v) < d*(v) for each v € V_.

veV_ veV_ 1}) veV_ d*(v) ucF
d(u, v) 0(u,v) 1
fry > fry

20 ) 2 2 2 PO

veV_ uelF veV_ ueF uel veV_
A -2 1

d*(u) — 3 3
ueF uel

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

[We terminate all execution paths after 4k steps = O(16* - n?). D]
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Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) < 3 for v € V(G) \ F.

Only put vertices of degree > 4 into F', then

d*(u) — 2 2 F
DY c(l*()u) =y 5=

uel
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Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) < 3 for v € V(G) \ F.

Only put vertices of degree > 4 into F', then

d*(u) — 2 2 F
e RN A

uel

[We terminate all execution paths after 3k steps = O(8* - n2). D]
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Final remark

Beauty is the first test:
there is no permanent place in the world for ugly mathematics..

G. H. Hardy

To theorists:
stop ignoring successful heuristic algorithms by pretending their nonexistence!
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thanks!
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