
A Naive Algorithm for Feedback Vertex Set

Yixin Cao（操宜新）

Department of Computing, Hong Kong Polytechnic University

香港理工大學 電子計算學系

Symposium on Simplicity in Algorithms
New Orleans, LA January 10, 2018

1 / 62

http://www.polyu.edu.hk/
http://www.comp.polyu.edu.hk/

The problem

Given a graph G and an integer k, the feedback vertex set problem
asks for the deletion of at most k vertices to make G a forest.

2 / 62

The problem

Given a graph G and an integer k, the feedback vertex set problem
asks for the deletion of at most k vertices to make G a forest.

3 / 62

Origin

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
1 find first a minimum feedback vertex set V− of the constraint graph,
2 enumerate all possible assignments on them, and
3 then solve the remaining instance.

On an instance I on p variables, it takes O(p|V−| · |I|O(1)) time.

[Pearl 1988]: A similar application for Bayesian inference.

4 / 62

Origin

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
1 find first a minimum feedback vertex set V− of the constraint graph,
2 enumerate all possible assignments on them, and
3 then solve the remaining instance.

On an instance I on p variables, it takes O(p|V−| · |I|O(1)) time.

[Pearl 1988]: A similar application for Bayesian inference.

5 / 62

Origin

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
1 find first a minimum feedback vertex set V− of the constraint graph,
2 enumerate all possible assignments on them, and
3 then solve the remaining instance.

On an instance I on p variables, it takes O(p|V−| · |I|O(1)) time.

[Pearl 1988]: A similar application for Bayesian inference.

6 / 62

Origin

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
1 find first a minimum feedback vertex set V− of the constraint graph,
2 enumerate all possible assignments on them, and
3 then solve the remaining instance.

On an instance I on p variables, it takes O(p|V−| · |I|O(1)) time.

[Pearl 1988]: A similar application for Bayesian inference.

7 / 62

Origin

The constraint satisfaction problem (CSP) asks for the assignment of values to
variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to
1 find first a minimum feedback vertex set V− of the constraint graph,
2 enumerate all possible assignments on them, and
3 then solve the remaining instance.

On an instance I on p variables, it takes O(p|V−| · |I|O(1)) time.

[Pearl 1988]: A similar application for Bayesian inference.

8 / 62

Low-degree vertices

u w

x

v

A vertex of degree 1 can always be safely deleted.A degree-2 vertex in a solution can always
be replaced with one of its neighbors.
If u and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

9 / 62

Low-degree vertices

u w

x

v

A vertex of degree 1 can always be safely deleted.A degree-2 vertex in a solution can always
be replaced with one of its neighbors.
If u and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

10 / 62

Low-degree vertices

u w

x

A vertex of degree 1 can always be safely deleted.A degree-2 vertex in a solution can always
be replaced with one of its neighbors.
If u and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

11 / 62

Low-degree vertices

u w

x

A vertex of degree 1 can always be safely deleted.A degree-2 vertex in a solution can always
be replaced with one of its neighbors.
If u and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

12 / 62

Low-degree vertices

u w

x

A vertex of degree 1 can always be safely deleted.A degree-2 vertex in a solution can always
be replaced with one of its neighbors.
If u and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

13 / 62

Low-degree vertices

u w

x

A vertex of degree 1 can always be safely deleted.A degree-2 vertex in a solution can always
be replaced with one of its neighbors.
If u and w are not adjacent,
then we can delete v and add edge uw.

this operation is called “smoothen.”

14 / 62

15 / 62

Greed ... is good. Greed is right. Greed works.

Wall street

16 / 62

Algorithms

[Erdős Pósa 1962]: A graph of minimum degree ≥ 3 has a cycle of length O(log n).
A trivial O(log n) approximation: find a shortest cycle, remove all vertices.
A nontrivial (log k)O(k)-time parameterized algorithm: after a polynomial kernel.

Large-degree vertices
[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local
ratio)
[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation
[Fujito 1996]: Two new primal-dual algorithms

17 / 62

Algorithms

Small-degree vertices
[Erdős Pósa 1962]: A graph of minimum degree ≥ 3 has a cycle of length O(log n).

A trivial O(log n) approximation: find a shortest cycle, remove all vertices.
A nontrivial (log k)O(k)-time parameterized algorithm: after a polynomial kernel.

Large-degree vertices
[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local
ratio)
[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation
[Fujito 1996]: Two new primal-dual algorithms

18 / 62

Algorithms

Small-degree vertices
[Erdős Pósa 1962]: A graph of minimum degree ≥ 3 has a cycle of length O(log n).

A trivial O(log n) approximation: find a shortest cycle, remove all vertices.
A nontrivial (log k)O(k)-time parameterized algorithm: after a polynomial kernel.

Large-degree vertices
[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local
ratio)
[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation
[Fujito 1996]: Two new primal-dual algorithms

19 / 62

Parameterized algorithms

Algorithms running in time O(f(k) · nO(1)), where k is a parameter (the solution size).

f(k)

Downey Fellows 1992 (2k + 1)k

Bodlaender 1994 17(k4)!
Raman et al. 2002 max{12k, (4 log k)k}
Kanj et al. 2004 (2 log k + 2 log log k + 18)k

Raman et al. 2006 (12 log k/ log log k + 6)k

Dehne et al. 2005 10.6k

Guo et al. 2006 37.7k

Chen et al. 2008 5k

C Chen Liu 2010 3.83k

Kociumaka Pilipczuk 2014 3.62k

All ck algorithms use technique
“iterative compression.”

20 / 62

Parameterized algorithms

Algorithms running in time O(f(k) · nO(1)), where k is a parameter (the solution size).

f(k)

Downey Fellows 1992 (2k + 1)k

Bodlaender 1994 17(k4)!
Raman et al. 2002 max{12k, (4 log k)k}
Kanj et al. 2004 (2 log k + 2 log log k + 18)k

Raman et al. 2006 (12 log k/ log log k + 6)k

Dehne et al. 2005 10.6k

Guo et al. 2006 37.7k

Chen et al. 2008 5k

C Chen Liu 2010 3.83k

Kociumaka Pilipczuk 2014 3.62k

All ck algorithms use technique
“iterative compression.”

21 / 62

Parameterized algorithms

Algorithms running in time O(f(k) · nO(1)), where k is a parameter (the solution size).

f(k)

Downey Fellows 1992 (2k + 1)k

Bodlaender 1994 17(k4)!
Raman et al. 2002 max{12k, (4 log k)k}
Kanj et al. 2004 (2 log k + 2 log log k + 18)k

Raman et al. 2006 (12 log k/ log log k + 6)k

Dehne et al. 2005 10.6k

Guo et al. 2006 37.7k

Chen et al. 2008 5k

C Chen Liu 2010 3.83k

Kociumaka Pilipczuk 2014 3.62k

All ck algorithms use technique
“iterative compression.”

22 / 62

Context

vertex cover feedback vertex set

to kill edges cycles
to make independent set (edgeless) forest (acyclic)

treewidth 0 treewidth ≤ 1
approx 2 2
parameterized 1.2738k 3.62k

the simplest nontrivial vertex deletion problem

23 / 62

The Algorithm

24 / 62

A vertex of the largest degree is highly likely in the solution

v

25 / 62

A vertex of the largest degree is highly likely in the solution, but not always.

v

26 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

27 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

28 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
right child: the vertex is not in the solution,

hence put into F

We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

29 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

30 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

31 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

32 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

33 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

34 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

35 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

36 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

37 / 62

A branching algorithm

G, ∅

G− v, ∅

G− {v,u}, ∅ G− v, {u}

G, {v}

G− w, {u} G, {v,w}

each node has two parts,
the graph G and the set F of permanent vertices.
left child: the vertex is put into the solution,

hence deleted from G
We always choose the vertex with
the largest degree in V (G) \ F to branch.

The key of the analysis is to bound the number of nodes,
which boils down to bouding the depth.

We cannot go left more than k times.
We’re hence focused on the right steps.
Let’s fix an execution path.

38 / 62

The Analysis

39 / 62

Elementary facts of trees

v

∑
v∈V (T)

d(v) = 2|E(T)| = 2|V (T)|−2

L: leaves; V3: vertices of degree ≥ 3.

−2 =
∑
v∈L

(d(v)−2)+
∑

v∈V (T)\L

(d(v)−2) =
∑
v∈L

(−1)+
∑
v∈V3

(d(v)−2) =
∑
v∈V3

(d(v)−2)−|L|.

∑
v∈V3

(d(v)− 2) = |L| − 2.

For each v 6∈ V−,
either its degree is decreased from ≥ 3 to ≤ 2,
or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.
40 / 62

Elementary facts of trees

v

∑
v∈V (T)

d(v) = 2|E(T)| = 2|V (T)|−2

L: leaves; V3: vertices of degree ≥ 3.

−2 =
∑
v∈L

(d(v)−2)+
∑

v∈V (T)\L

(d(v)−2) =
∑
v∈L

(−1)+
∑
v∈V3

(d(v)−2) =
∑
v∈V3

(d(v)−2)−|L|.

∑
v∈V3

(d(v)− 2) = |L| − 2.

For each v 6∈ V−,
either its degree is decreased from ≥ 3 to ≤ 2,
or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.
41 / 62

Elementary facts of trees

v

∑
v∈V (T)

d(v) = 2|E(T)| = 2|V (T)|−2

L: leaves; V3: vertices of degree ≥ 3.

−2 =
∑
v∈L

(d(v)−2)+
∑

v∈V (T)\L

(d(v)−2) =
∑
v∈L

(−1)+
∑
v∈V3

(d(v)−2) =
∑
v∈V3

(d(v)−2)−|L|.

∑
v∈V3

(d(v)− 2) = |L| − 2.

For each v 6∈ V−,
either its degree is decreased from ≥ 3 to ≤ 2,
or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.
42 / 62

Elementary facts of trees

v

∑
v∈V (T)

d(v) = 2|E(T)| = 2|V (T)|−2

L: leaves; V3: vertices of degree ≥ 3.

−2 =
∑
v∈L

(d(v)−2)+
∑

v∈V (T)\L

(d(v)−2) =
∑
v∈L

(−1)+
∑
v∈V3

(d(v)−2) =
∑
v∈V3

(d(v)−2)−|L|.

∑
v∈V3

(d(v)− 2) = |L| − 2.

For each v 6∈ V−,
either its degree is decreased from ≥ 3 to ≤ 2,
or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.
43 / 62

Elementary facts of trees

v

∑
v∈V (T)

d(v) = 2|E(T)| = 2|V (T)|−2

L: leaves; V3: vertices of degree ≥ 3.

−2 =
∑
v∈L

(d(v)−2)+
∑

v∈V (T)\L

(d(v)−2) =
∑
v∈L

(−1)+
∑
v∈V3

(d(v)−2) =
∑
v∈V3

(d(v)−2)−|L|.

∑
v∈V3

(d(v)− 2) = |L| − 2.

For each v 6∈ V−,
either its degree is decreased from ≥ 3 to ≤ 2,
or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.
44 / 62

Elementary facts of trees

v

∑
v∈V (T)

d(v) = 2|E(T)| = 2|V (T)|−2

L: leaves; V3: vertices of degree ≥ 3.

−2 =
∑
v∈L

(d(v)−2)+
∑

v∈V (T)\L

(d(v)−2) =
∑
v∈L

(−1)+
∑
v∈V3

(d(v)−2) =
∑
v∈V3

(d(v)−2)−|L|.

∑
v∈V3

(d(v)− 2) = |L| − 2.

For each v 6∈ V−,
either its degree is decreased from ≥ 3 to ≤ 2,
or leaves are produced to “balance the equation.”

This correlates deleted vertices and permanent vertices.
45 / 62

The example

the first vertex x1 is put into V−, second u into F ,
then the deletion of each xi decreases its degree by two.

u

x1

x2 x3 x4 x5 x6 x7 x8

46 / 62

Algorithm invariants

1 During the algorithm, the degree of no vertex can increase.
2 There is no vertex of degree 0 or 1 in the graph when a recursive call is made.

47 / 62

Key definitions and observations

u

x1

x2 x3 x4 x5

decision points: x1 → u→ x2 → x3 → x4 → x5.
d(u) = 9; d∗(u) = 8

δ(u, x1) = 0; δ(u, x2) = δ(u, x3) = δ(u, x4) = 2; δ(u, x5) = 0

d∗(v): the degree of v at the moment it is put into V− or F . d(v) ≥ d∗(v)
effective decrements of the degree of a vertex u ∈ F : from d∗(u) to 2.

an effective decrement is incurred by xi ∈ V− if it is after deleting xi.
δ(u, xi): #effective decrements of u ∈ F incurred by xi ∈ V−.
δ(u, xi) may be larger than 1.
δ(u, xi) > 0 ⇒ u ∈ F when xi is deleted..

48 / 62

Key definitions and observations

u

x1

x2 x3 x4 x5

decision points: x1 → u→ x2 → x3 → x4 → x5.
d(u) = 9; d∗(u) = 8

δ(u, x1) = 0; δ(u, x2) = δ(u, x3) = δ(u, x4) = 2; δ(u, x5) = 0

d∗(v): the degree of v at the moment it is put into V− or F . d(v) ≥ d∗(v)
effective decrements of the degree of a vertex u ∈ F : from d∗(u) to 2.

an effective decrement is incurred by xi ∈ V− if it is after deleting xi.
δ(u, xi): #effective decrements of u ∈ F incurred by xi ∈ V−.
δ(u, xi) may be larger than 1.
δ(u, xi) > 0 ⇒ u ∈ F when xi is deleted..

49 / 62

Key definitions and observations

u

x1

x2 x3 x4 x5

decision points: x1 → u→ x2 → x3 → x4 → x5.
d(u) = 9; d∗(u) = 8

δ(u, x1) = 0; δ(u, x2) = δ(u, x3) = δ(u, x4) = 2; δ(u, x5) = 0

d∗(v): the degree of v at the moment it is put into V− or F . d(v) ≥ d∗(v)
effective decrements of the degree of a vertex u ∈ F : from d∗(u) to 2.

an effective decrement is incurred by xi ∈ V− if it is after deleting xi.
δ(u, xi): #effective decrements of u ∈ F incurred by xi ∈ V−.
δ(u, xi) may be larger than 1.
δ(u, xi) > 0 ⇒ u ∈ F when xi is deleted. ⇒ d∗(u) ≥ d∗(xi).

50 / 62

Key definitions and observations

u

x1

x2 x3 x4 x5

decision points: x1 → u→ x2 → x3 → x4 → x5.
d(u) = 9; d∗(u) = 8

δ(u, x1) = 0; δ(u, x2) = δ(u, x3) = δ(u, x4) = 2; δ(u, x5) = 0

d∗(v): the degree of v at the moment it is put into V− or F . d(v) ≥ d∗(v)
effective decrements of the degree of a vertex u ∈ F : from d∗(u) to 2.

an effective decrement is incurred by xi ∈ V− if it is after deleting xi.
δ(u, xi): #effective decrements of u ∈ F incurred by xi ∈ V−.
δ(u, xi) may be larger than 1.
δ(u, xi) > 0 ⇒ u ∈ F when xi is deleted..

51 / 62

Key definitions and observations

u

x1

x2 x3 x4 x5

decision points: x1 → u→ x2 → x3 → x4 → x5.
d(u) = 9; d∗(u) = 8

δ(u, x1) = 0; δ(u, x2) = δ(u, x3) = δ(u, x4) = 2; δ(u, x5) = 0

d∗(v): the degree of v at the moment it is put into V− or F . d(v) ≥ d∗(v)
effective decrements of the degree of a vertex u ∈ F : from d∗(u) to 2.

an effective decrement is incurred by xi ∈ V− if it is after deleting xi.
δ(u, xi): #effective decrements of u ∈ F incurred by xi ∈ V−.
δ(u, xi) may be larger than 1.
δ(u, xi) > 0 ⇒ u ∈ F when xi is deleted..

52 / 62

Key definitions and observations

u

x1

x2 x3 x4 x5

decision points: x1 → u→ x2 → x3 → x4 → x5.
d(u) = 9; d∗(u) = 8

δ(u, x1) = 0; δ(u, x2) = δ(u, x3) = δ(u, x4) = 2; δ(u, x5) = 0

d∗(v): the degree of v at the moment it is put into V− or F . d(v) ≥ d∗(v)
effective decrements of the degree of a vertex u ∈ F : from d∗(u) to 2.

an effective decrement is incurred by xi ∈ V− if it is after deleting xi.
δ(u, xi): #effective decrements of u ∈ F incurred by xi ∈ V−.
δ(u, xi) may be larger than 1.
δ(u, xi) > 0 ⇒ u ∈ F when xi is deleted..

53 / 62

Lemmas

Lemma 1: For any u ∈ F and v ∈ V−, if δ(u, v) > 0 then d∗(u) ≥ d∗(v).
Lemma 2:

∑
u∈F δ(u, v) ≤ d∗(v) for each v ∈ V−.

|V−| =
∑
v∈V−

1 =
∑
v∈V−

d∗(v)

d∗(v)
≥

∑
v∈V−

1

d∗(v)

∑
u∈F

δ(u, v)

=
∑
v∈V−

∑
u∈F

δ(u, v)

d∗(v)
≥

∑
v∈V−

∑
u∈F

δ(u, v)

d∗(u)
=

∑
u∈F

1

d∗(u)

∑
v∈V−

δ(u, v)

=
∑
u∈F

d∗(u)− 2

d∗(u)
≥

∑
u∈F

1

3
=
|F |
3
,

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

We terminate all execution paths after 4k steps ⇒ O(16k · n2).
54 / 62

Lemmas

Lemma 1: For any u ∈ F and v ∈ V−, if δ(u, v) > 0 then d∗(u) ≥ d∗(v).
Lemma 2:

∑
u∈F δ(u, v) ≤ d∗(v) for each v ∈ V−.

|V−| =
∑
v∈V−

1 =
∑
v∈V−

d∗(v)

d∗(v)
≥

∑
v∈V−

1

d∗(v)

∑
u∈F

δ(u, v)

=
∑
v∈V−

∑
u∈F

δ(u, v)

d∗(v)
≥

∑
v∈V−

∑
u∈F

δ(u, v)

d∗(u)
=

∑
u∈F

1

d∗(u)

∑
v∈V−

δ(u, v)

=
∑
u∈F

d∗(u)− 2

d∗(u)
≥

∑
u∈F

1

3
=
|F |
3
,

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

We terminate all execution paths after 4k steps ⇒ O(16k · n2).
55 / 62

Lemmas

Lemma 1: For any u ∈ F and v ∈ V−, if δ(u, v) > 0 then d∗(u) ≥ d∗(v).
Lemma 2:

∑
u∈F δ(u, v) ≤ d∗(v) for each v ∈ V−.

|V−| =
∑
v∈V−

1 =
∑
v∈V−

d∗(v)

d∗(v)
≥

∑
v∈V−

1

d∗(v)

∑
u∈F

δ(u, v)

=
∑
v∈V−

∑
u∈F

δ(u, v)

d∗(v)
≥

∑
v∈V−

∑
u∈F

δ(u, v)

d∗(u)
=

∑
u∈F

1

d∗(u)

∑
v∈V−

δ(u, v)

=
∑
u∈F

d∗(u)− 2

d∗(u)
≥

∑
u∈F

1

3
=
|F |
3
,

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

We terminate all execution paths after 4k steps ⇒ O(16k · n2).
56 / 62

Lemmas

Lemma 1: For any u ∈ F and v ∈ V−, if δ(u, v) > 0 then d∗(u) ≥ d∗(v).
Lemma 2:

∑
u∈F δ(u, v) ≤ d∗(v) for each v ∈ V−.

|V−| =
∑
v∈V−

1 =
∑
v∈V−

d∗(v)

d∗(v)
≥

∑
v∈V−

1

d∗(v)

∑
u∈F

δ(u, v)

=
∑
v∈V−

∑
u∈F

δ(u, v)

d∗(v)
≥

∑
v∈V−

∑
u∈F

δ(u, v)

d∗(u)
=

∑
u∈F

1

d∗(u)

∑
v∈V−

δ(u, v)

=
∑
u∈F

d∗(u)− 2

d∗(u)
≥

∑
u∈F

1

3
=
|F |
3
,

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

We terminate all execution paths after 4k steps ⇒ O(16k · n2).
57 / 62

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) ≤ 3 for v ∈ V (G) \ F .

Only put vertices of degree ≥ 4 into F , then

|V−| ≥
∑
u∈F

d∗(u)− 2

d∗(u)
≥

∑
u∈F

2

4
=
|F |
2
.

We terminate all execution paths after 3k steps ⇒ O(8k · n2).

58 / 62

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) ≤ 3 for v ∈ V (G) \ F .

Only put vertices of degree ≥ 4 into F , then

|V−| ≥
∑
u∈F

d∗(u)− 2

d∗(u)
≥

∑
u∈F

2

4
=
|F |
2
.

We terminate all execution paths after 3k steps ⇒ O(8k · n2).

59 / 62

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P.
[C. Chen Liu 2010] This can be extended to the setting d(v) ≤ 3 for v ∈ V (G) \ F .

Only put vertices of degree ≥ 4 into F , then

|V−| ≥
∑
u∈F

d∗(u)− 2

d∗(u)
≥

∑
u∈F

2

4
=
|F |
2
.

We terminate all execution paths after 3k steps ⇒ O(8k · n2).

60 / 62

Final remark

Beauty is the first test:
there is no permanent place in the world for ugly mathematics..

G. H. Hardy

To theorists:
stop ignoring successful heuristic algorithms by pretending their nonexistence!

61 / 62

thanks!
62 / 62

	The Algorithm
	The Analysis

