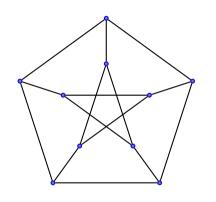
A Naive Algorithm for Feedback Vertex Set

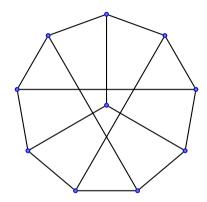
Yixin Cao (操宜新)

Department of Computing, Hong Kong Polytechnic University 香港理工大學 電子計算學系

> Symposium on Simplicity in Algorithms New Orleans, LA January 10, 2018

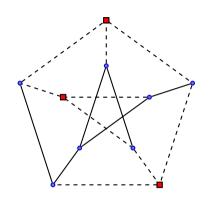
The problem

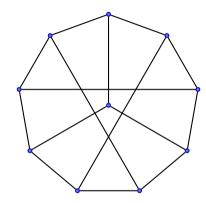




Given a graph G and an integer k, the feedback vertex set problem asks for the deletion of at most k vertices to make G a forest.

The problem





Given a graph G and an integer k, the feedback vertex set problem asks for the deletion of at most k vertices to make G a forest.

The constraint satisfaction problem (CSP) asks for the assignment of values to variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to

- lacksquare find first a minimum feedback vertex set V_- of the constraint graph,
- enumerate all possible assignments on them, and
- then solve the remaining instance.

On an instance I on p variables, it takes $O(p^{|V_-|} \cdot |I|^{O(1)})$ time.

[Pearl 1988]: A similar application for Bayesian inference.

The constraint satisfaction problem (CSP) asks for the assignment of values to variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is t

- lacksquare find first a minimum feedback vertex set V_- of the constraint graph,
- enumerate all possible assignments on them, and
- then solve the remaining instance.

On an instance I on p variables, it takes $O(p^{|V_-|} \cdot |I|^{O(1)})$ time.

[Pearl 1988]: A similar application for Bayesian inference

The constraint satisfaction problem (CSP) asks for the assignment of values to variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to

- lacktriangledown find first a minimum feedback vertex set V_- of the constraint graph,
- enumerate all possible assignments on them, and
- 3 then solve the remaining instance.

On an instance I on p variables, it takes $O(p^{|V_-|} \cdot |I|^{O(1)})$ time.

[Pearl 1988]: A similar application for Bayesian inference

The constraint satisfaction problem (CSP) asks for the assignment of values to variables to satisfy a set of constraints.

[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to

- lacktriangledown find first a minimum feedback vertex set V_{-} of the constraint graph,
- enumerate all possible assignments on them, and
- 3 then solve the remaining instance.

On an instance I on p variables, it takes $O(p^{|V_-|} \cdot |I|^{O(1)})$ time.

[Pearl 1988]: A similar application for Bayesian inference.

The constraint satisfaction problem (CSP) asks for the assignment of values to variables to satisfy a set of constraints.

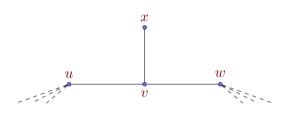
[Freuder 1982]: can be solved in P-time when the constraint graph is a forest.

[Dechter Pearl 1987]: one way to solve the constraint satisfaction problem is to

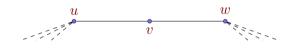
- lacktriangledown find first a minimum feedback vertex set V_{-} of the constraint graph,
- enumerate all possible assignments on them, and
- 3 then solve the remaining instance.

On an instance I on p variables, it takes $O(p^{|V_-|} \cdot |I|^{O(1)})$ time.

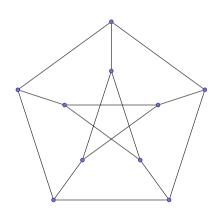
[Pearl 1988]: A similar application for Bayesian inference.

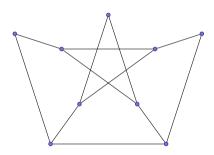


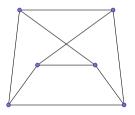
A vertex of degree 1 can always be safely deleted.



A degree-2 vertex in a solution can always be replaced with one of its neighbors.







Greed ... is good. Greed is right. Greed works.

Wall street

Algorithms

[Erdős Pósa 1962]: A graph of minimum degree ≥ 3 has a cycle of length $O(\log n)$.

- A trivial $O(\log n)$ approximation: find a shortest cycle, remove all vertices.
- A nontrivial $(\log k)^{O(k)}$ -time parameterized algorithm: after a polynomial kernel.

Large-degree vertices

[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local ratio)

[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation [Fujito 1996]: Two new primal-dual algorithms

Algorithms

Small-degree vertices

[Erdős Pósa 1962]: A graph of minimum degree ≥ 3 has a cycle of length $O(\log n)$.

- A trivial $O(\log n)$ approximation: find a shortest cycle, remove all vertices.
- ullet A nontrivial $(\log k)^{O(k)}$ -time parameterized algorithm: after a polynomial kernel.

Large-degree vertices

[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local ratio)

[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation [Fujito 1996]: Two new primal-dual algorithms

Algorithms

Small-degree vertices

[Erdős Pósa 1962]: A graph of minimum degree ≥ 3 has a cycle of length $O(\log n)$.

- A trivial $O(\log n)$ approximation: find a shortest cycle, remove all vertices.
- A nontrivial $(\log k)^{O(k)}$ -time parameterized algorithm: after a polynomial kernel.

Large-degree vertices

[Becker Geiger 1996] [Bafna Berman Fujito 1999]: A greedy 2-approximation (Local ratio)

[Chudak Goemans Hochbaum Williamson 1998]: A primal-dual interpretation [Fujito 1996]: Two new primal-dual algorithms

Parameterized algorithms

Algorithms running in time $O(f(k) \cdot n^{O(1)})$, where k is a parameter (the solution size).

Downey Fellows 1992		
Bodlaender 1994	$17(k^4)!$	
Raman et al. 2002	$\max\{12^k, (4\log k)^k\}$	
Kanj et al. 2004		
Raman et al. 2006	$(12\log k/\log\log k + 6)^k$	
Dehne et al. 2005		
Guo et al. 2006	37.7^{k}	
Chen et al. 2008	5^k	
C Chen Liu 2010	3.83^{k}	
Kociumaka Pilipczuk 2014	3.62^k	

Parameterized algorithms

Algorithms running in time $O(f(k) \cdot n^{O(1)})$, where k is a parameter (the solution size).

	f(k)
Downey Fellows 1992	$(2k+1)^k$
Bodlaender 1994	$17(k^4)!$
Raman et al. 2002	$\max\{12^k, (4\log k)^k\}$
Kanj et al. 2004	$(2\log k + 2\log\log k + 18)^k$
Raman et al. 2006	$(12\log k/\log\log k + 6)^k$
Dehne et al. 2005	10.6^{k}
Guo et al. 2006	37.7^k
Chen et al. 2008	5^k
C Chen Liu 2010	3.83^k
Kociumaka Pilipczuk 2014	3.62^k

Parameterized algorithms

Algorithms running in time $O(f(k) \cdot n^{O(1)})$, where k is a parameter (the solution size).

	f(k)	
Downey Fellows 1992	$(2k+1)^k$	
Bodlaender 1994	$17(k^4)!$	
Raman et al. 2002	$\max\{12^k, (4\log k)^k\}$	
Kanj et al. 2004	$(2\log k + 2\log\log k + 18)^k$	
Raman et al. 2006	$(12\log k/\log\log k+6)^k$	
Dehne et al. 2005	10.6^{k}	
Guo et al. 2006	37.7 ^k	
Chen et al. 2008	All c^k algorithms use technique "iterative compression."	
C Chen Liu 2010	3.83^k	
Kociumaka Pilipczuk 2014	3.62^{k}	

Context

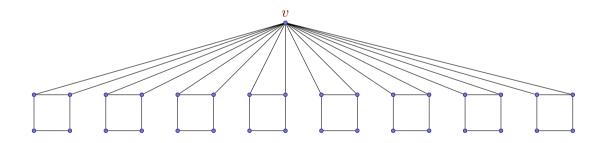
	vertex cover	feedback vertex set
to kill	edges	cycles
to make	independent set (edgeless) treewidth 0	forest (acyclic) treewidth ≤ 1
approx	2	2
parameterized	1.2738^{k}	3.62^{k}

the *simplest nontrivial* vertex deletion problem

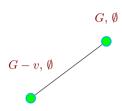
The Algorithm

A vertex of the largest degree is highly likely in the solution

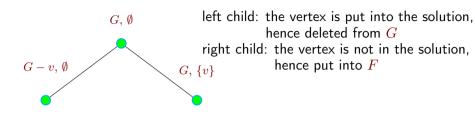
A vertex of the largest degree is highly likely in the solution, but *not* always.

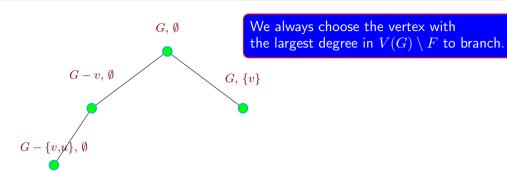


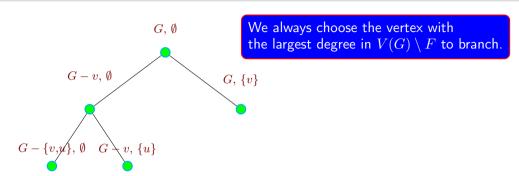
each node has two parts, the graph ${\it G}$ and the set ${\it F}$ of ${\it permanent}$ vertices.

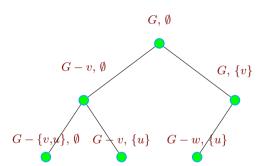


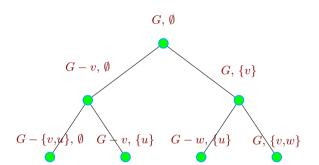
left child: the vertex is put into the solution, hence deleted from G

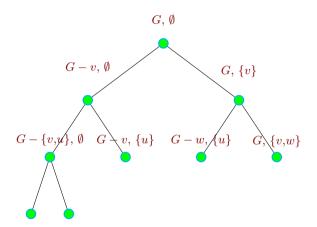


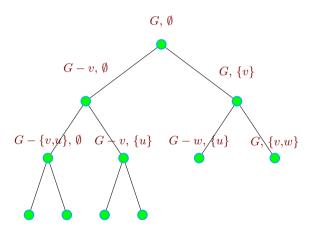


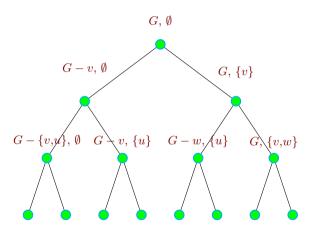






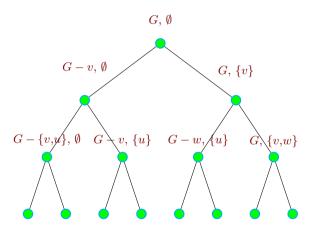






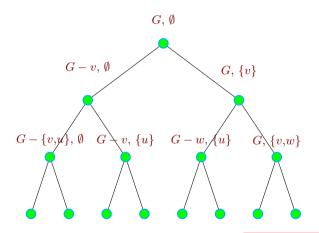
The key of the analysis is to bound the number of nodes, which boils down to bouding the depth.

A branching algorithm



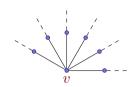
We cannot go left more than k times. We're hence focused on the right steps.

A branching algorithm

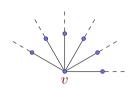


Let's fix an execution path.

The Analysis

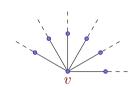


$$\sum_{v \in V(T)} d(v) = 2|E(T)| = 2|V(T)| - 2$$



$$\sum_{v \in V(T)} d(v) = 2|E(T)| = 2|V(T)| - 2$$

L: leaves; V_3 : vertices of degree ≥ 3 .



$$\sum_{v \in V(T)} d(v) = 2|E(T)| = 2|V(T)| - 2$$

L: leaves; V_3 : vertices of degree ≥ 3 .

$$-2 = \sum_{v \in L} (d(v) - 2) + \sum_{v \in V(T) \backslash L} (d(v) - 2) = \sum_{v \in L} (-1) + \sum_{v \in V_3} (d(v) - 2) = \sum_{v \in V_3} (d(v) - 2) - |L|.$$

$$\sum_{v \in V(T)} d(v) = 2|E(T)| = 2|V(T)| - 2$$

v

L: leaves; V_3 : vertices of degree ≥ 3 .

$$-2 = \sum_{v \in L} (d(v) - 2) + \sum_{v \in V(T) \backslash L} (d(v) - 2) = \sum_{v \in L} (-1) + \sum_{v \in V_3} (d(v) - 2) = \sum_{v \in V_3} (d(v) - 2) - |L|.$$

$$\sum_{v \in V_3} (d(v) - 2) = |L| - 2.$$

For each $v \notin V_{-}$,

- ullet either its degree is decreased from ≥ 3 to ≤ 2 ,
- or leaves are produced to "balance the equation."

$$\sum_{v \in V(T)} d(v) = 2|E(T)| = 2|V(T)| - 2$$

v

L: leaves; V_3 : vertices of degree ≥ 3 .

$$-2 = \sum_{v \in L} (d(v) - 2) + \sum_{v \in V(T) \backslash L} (d(v) - 2) = \sum_{v \in L} (-1) + \sum_{v \in V_3} (d(v) - 2) = \sum_{v \in V_3} (d(v) - 2) - |L|.$$

$$\sum_{v \in V_3} (d(v) - 2) = |L| - 2.$$

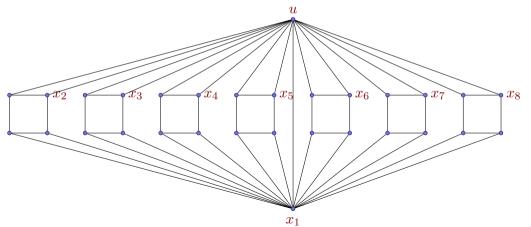
For each $v \notin V_-$,

- ullet either its degree is decreased from ≥ 3 to ≤ 2 ,
- or leaves are produced to "balance the equation."

This correlates deleted vertices and permanent vertices.

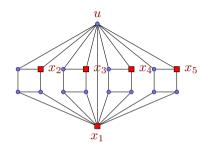
The example

the first vertex x_1 is put into V_- , second u into F, then the deletion of each x_i decreases its degree by two.

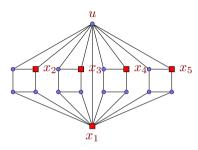


Algorithm invariants

- During the algorithm, the degree of no vertex can increase.
- ② There is no vertex of degree 0 or 1 in the graph when a recursive call is made.

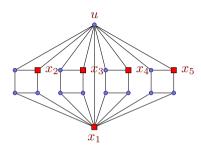


- $d^*(v)$: the degree of v at the moment it is put into V_- or $F_ d(v) \ge d^*(v)$ • effective decrements of the degree of a vertex $u \in F$: from $d^*(u)$ to 2.
- an effective decrement is incurred by $x_i \in V_-$ if it is after deleting x_i . $\delta(u, x_i)$: #effective decrements of $u \in F$ incurred by $x_i \in V_-$.
- $\delta(u, x_i)$ may be larger than 1.
- $\delta(u, x_i) > 0 \quad \Rightarrow \quad u \in F \text{ when } x_i \text{ is deleted.}$



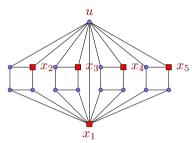
decision points: $x_1 \rightarrow u \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5$.

- $d^*(v)$: the degree of v at the moment it is put into V_- or F. $d(v) \ge d^*(v)$
- effective decrements of the degree of a vertex $u \in F$: from $d^*(u)$ to 2.
- an effective decrement is incurred by $x_i \in V_-$ if it is after deleting x_i . $\delta(u,x_i)$: #effective decrements of $u \in F$ incurred by $x_i \in V_-$.
- $\delta(u, x_i)$ may be larger than 1.
- $\delta(u, x_i) > 0 \implies u \in F$ when x_i is deleted..



decision points: $x_1 \rightarrow u \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5$. d(u) = 9; $d^*(u) = 8$

- $d^*(v)$: the degree of v at the moment it is put into V_- or F. $d(v) \ge d^*(v)$
- effective decrements of the degree of a vertex $u \in F$: from $d^*(u)$ to 2.
- an effective decrement is incurred by $x_i \in V_-$ if it is after deleting x_i . $\delta(u,x_i)$: #effective decrements of $u \in F$ incurred by $x_i \in V_-$.
- $\delta(u, x_i)$ may be larger than 1.
- $\delta(u, x_i) > 0 \implies u \in F$ when x_i is deleted. $\Rightarrow d^*(u) \ge d^*(x_i)$.



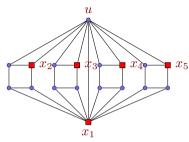
decision points:
$$x_1 \to u \to x_2 \to x_3 \to x_4 \to x_5$$
. $d(u) = 9$; $d^*(u) = 8$ $\delta(u, x_1) = 0$; $\delta(u, x_2) = \delta(u, x_3) = \delta(u, x_4) = 2$; $\delta(u, x_5) = 0$

- $d^*(v)$: the degree of v at the moment it is put into V_- or F. $d(v) \ge d^*(v)$
- effective decrements of the degree of a vertex $u \in F$: from $d^*(u)$ to 2.
- an effective decrement is incurred by $x_i \in V_-$ if it is after deleting x_i . $\delta(u, x_i)$: #effective decrements of $u \in F$ incurred by $x_i \in V_-$.
- $\delta(u, x_i)$ may be larger than 1.
- $\delta(u, x_i) > 0 \implies u \in F$ when x_i is deleted..



```
decision points: x_1 \to u \to x_2 \to x_3 \to x_4 \to x_5. d(u) = 9; d^*(u) = 8 \delta(u, x_1) = 0; \delta(u, x_2) = \delta(u, x_3) = \delta(u, x_4) = 2; \delta(u, x_5) = 0
```

- $d^*(v)$: the degree of v at the moment it is put into V_- or F. $d(v) \ge d^*(v)$
- effective decrements of the degree of a vertex $u \in F$: from $d^*(u)$ to 2.
- an effective decrement is incurred by $x_i \in V_-$ if it is after deleting x_i . $\delta(u, x_i)$: #effective decrements of $u \in F$ incurred by $x_i \in V_-$.
- $\delta(u, x_i)$ may be larger than 1.
- $\delta(u, x_i) > 0 \implies u \in F$ when x_i is deleted..



decision points: $x_1 \to u \to x_2 \to x_3 \to x_4 \to x_5$. d(u) = 9; $d^*(u) = 8$ $\delta(u, x_1) = 0$; $\delta(u, x_2) = \delta(u, x_3) = \delta(u, x_4) = 2$; $\delta(u, x_5) = 0$

- $d^*(v)$: the degree of v at the moment it is put into V_- or F. $d(v) \ge d^*(v)$
- effective decrements of the degree of a vertex $u \in F$: from $d^*(u)$ to 2.
- an effective decrement is incurred by $x_i \in V_-$ if it is after deleting x_i . $\delta(u, x_i)$: #effective decrements of $u \in F$ incurred by $x_i \in V_-$.
- $\delta(u, x_i)$ may be larger than 1.
- $\delta(u, x_i) > 0 \implies u \in F$ when x_i is deleted..

Lemma 1: For any $u \in F$ and $v \in V_-$, if $\delta(u,v) > 0$ then $d^*(u) \ge d^*(v)$. Lemma 2: $\sum_{u \in F} \delta(u,v) \le d^*(v)$ for each $v \in V_-$.

$$|V_{-}| = \sum_{v \in V_{-}} 1 = \sum_{v \in V_{-}} \frac{d^{*}(v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \frac{1}{d^{*}(v)} \sum_{u \in F} \delta(u, v)$$

$$= \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(u)} = \sum_{u \in F} \frac{1}{d^{*}(u)} \sum_{v \in V_{-}} \delta(u, v)$$

$$= \sum_{u \in F} \frac{d^{*}(u) - 2}{d^{*}(u)} \ge \sum_{v \in F} \frac{1}{3} = \frac{|F|}{3}$$

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

Lemma 1: For any $u\in F$ and $v\in V_-$, if $\delta(u,v)>0$ then $d^*(u)\geq d^*(v)$. Lemma 2: $\sum_{u\in F}\delta(u,v)\leq d^*(v)$ for each $v\in V_-$.

$$|V_{-}| = \sum_{v \in V_{-}} 1 = \sum_{v \in V_{-}} \frac{d^{*}(v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \frac{1}{d^{*}(v)} \sum_{u \in F} \delta(u, v)$$

$$= \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(u)} = \sum_{u \in F} \frac{1}{d^{*}(u)} \sum_{v \in V_{-}} \delta(u, v)$$

$$= \sum_{u \in F} \frac{d^{*}(u) - 2}{d^{*}(u)} \ge \sum_{u \in F} \frac{1}{3} = \frac{|F|}{3},$$

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

Lemma 1: For any $u \in F$ and $v \in V_-$, if $\delta(u,v) > 0$ then $d^*(u) \ge d^*(v)$. Lemma 2: $\sum_{u \in F} \delta(u,v) \le d^*(v)$ for each $v \in V_-$.

$$|V_{-}| = \sum_{v \in V_{-}} 1 = \sum_{v \in V_{-}} \frac{d^{*}(v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \frac{1}{d^{*}(v)} \sum_{u \in F} \delta(u, v)$$

$$= \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(u)} = \sum_{u \in F} \frac{1}{d^{*}(u)} \sum_{v \in V_{-}} \delta(u, v)$$

$$= \sum_{v \in F} \frac{d^{*}(u) - 2}{d^{*}(u)} \ge \sum_{v \in F} \frac{1}{3} = \frac{|F|}{3},$$

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

Lemmas

Lemma 1: For any $u\in F$ and $v\in V_-$, if $\delta(u,v)>0$ then $d^*(u)\geq d^*(v)$. Lemma 2: $\sum_{u\in F}\delta(u,v)\leq d^*(v)$ for each $v\in V_-$.

$$|V_{-}| = \sum_{v \in V_{-}} 1 = \sum_{v \in V_{-}} \frac{d^{*}(v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \frac{1}{d^{*}(v)} \sum_{u \in F} \delta(u, v)$$

$$= \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(v)} \ge \sum_{v \in V_{-}} \sum_{u \in F} \frac{\delta(u, v)}{d^{*}(u)} = \sum_{u \in F} \frac{1}{d^{*}(u)} \sum_{v \in V_{-}} \delta(u, v)$$

$$= \sum_{v \in F} \frac{d^{*}(u) - 2}{d^{*}(u)} \ge \sum_{v \in F} \frac{1}{3} = \frac{|F|}{3},$$

Lemma 3: Therefore, an execution path leading to a solution has depth at most 4k.

We terminate all execution paths after 4k steps $\Rightarrow O(16^k \cdot n^2)$.

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P. [C. Chen Liu 2010] This can be extended to the setting $d(v) \leq 3$ for $v \in V(G) \setminus F$.

Only put vertices of degree ≥ 4 into F, then

$$|V_-| \ge \sum_{u \in F} \frac{d^*(u) - 2}{d^*(u)} \ge \sum_{u \in F} \frac{2}{4} = \frac{|F|}{2}.$$

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P. [C. Chen Liu 2010] This can be extended to the setting $d(v) \leq 3$ for $v \in V(G) \setminus F$.

Only put vertices of degree ≥ 4 into F, then

$$|V_-| \ge \sum_{u \in F} \frac{d^*(u) - 2}{d^*(u)} \ge \sum_{u \in F} \frac{2}{4} = \frac{|F|}{2}.$$

Epilogue

[Furst Gross McGeoch 1988] feedback vertex set on subcubic graphs is in P. [C. Chen Liu 2010] This can be extended to the setting $d(v) \leq 3$ for $v \in V(G) \setminus F$.

Only put vertices of degree ≥ 4 into F, then

$$|V_-| \ge \sum_{u \in F} \frac{d^*(u) - 2}{d^*(u)} \ge \sum_{u \in F} \frac{2}{4} = \frac{|F|}{2}.$$

We terminate all execution paths after 3k steps $\Rightarrow O(8^k \cdot n^2)$. \square

Final remark

Beauty is the first test: there is no permanent place in the world for ugly mathematics..

G. H. Hardy

To theorists: stop ignoring successful heuristic algorithms by pretending their nonexistence!

