
 
 

Abstract 
 

This paper proposes an accurate and generalizable deep 
learning framework for iris recognition. The proposed 
framework is based on a fully convolutional network (FCN), 
which generates spatially corresponding iris feature 
descriptors. A specially designed Extended Triplet Loss 
(ETL) function is introduced to incorporate the bit-shifting 
and non-iris masking, which are found necessary for 
learning discriminative spatial iris features. We also 
developed a sub-network to provide appropriate 
information for identifying meaningful iris regions, which 
serves as essential input for the newly developed ETL. 
Thorough experiments on four publicly available databases 
suggest that the proposed framework consistently 
outperforms several classic and state-of-the-art iris 
recognition approaches. More importantly, our model 
exhibits superior generalization capability as, unlike 
popular methods in the literature, it does not essentially 
require database-specific parameter tuning, which is 
another key advantage over other approaches. 
 

1. Introduction 
Iris recognition has emerged as one of the most accurate 

and reliable biometric approaches for the human 
recognition. Automated iris recognition systems therefore 
have been widely deployed for various applications from 
border control [22], citizen authentication [23], forensic [24] 
to commercial products [25]. The usefulness of iris 
recognition has motivated increasing research effort in the 
past decades for exploring more accurate and robust iris 
matching algorithms under different circumstances [1-6].  
 In recent years, deep learning has gained tremendous 
success especially in the area of computer vision, and 
accomplished state-of-the-art performance for a number of 
tasks such as general image classification [17], object 
detection [18] and face recognition [15] [19]. However, 
unlike face, in the field of iris recognition, in the best of to 
our knowledge, there is almost nil attention to incorporate 
remarkable capabilities of the deep learning and achieve 
superior performance than popular or state-of-the-art iris 
recognition methods. 

 In this paper we propose a new deep learning based iris 
recognition framework which not only achieves 
satisfactory matching accuracy but also exhibits 
outstanding generalization capability to different databases. 
With the design of effective fully convolutional network, 
our model is able to significantly reduce parameter space 
and learn comprehensive iris features which generalize well 
on different datasets. A newly developed Extended Triplet 
Loss (ETL) function provides meaningful and extensive 
supervision to the iris feature learning process with limited 
size of training data.  

The main contributions of this paper can be summarized 
as follows: (i) We develop a new deep learning based iris 
recognition framework which can be highly generalized for 
operating on different databases that represent diverse 
deployment environments. A new Extended Triplet Loss 
function has been developed to successfully address the 
nature of iris pattern for learning comprehensive iris 
features (more details in Section 2.2 and 3). Significant 
advancement therefore has been made to bridge the gap 
between deep learning and iris recognition. (ii) Under fair 
comparison, our approach consistently outperforms several 
state-of-the-art methods on different datasets. Even under 
challenging scenario that without having any parameter 
tuning on the target dataset, our model can still achieve 
superior performance over state-of-the-art methods that 
have been extensively tuned. 

1.1. Related Work 
One of the most classic and effective approaches for 

automated iris recognition was proposed by Daugman [1] 
in 2002. In his work, Gabor filter is applied on the 
segmented and normalized iris image, and the responses are 
then binarized as IrisCode. The hamming distance between 
two IrisCodes is used as the dissimilarity score for 
verification. Based on [1], 1D log-Gabor filter was 
proposed in [2] to replace 2D Gabor filter for more efficient 
iris feature extraction. A different approach, developed in 
[3] in 2007, has exploited discrete cosine transforms (DCT) 
for analyzing frequency information of image blocks and 
generating binary iris features. Another frequency 
information based approach was proposed in [5] in 2008, in 
which 2D discrete Fourier transforms (DFT) was employed. 
In 2009, the multi-lobe differential filter (MLDF), which is 
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a specific kind of ordinal filters, was proposed in [4] as an 
alternative to the Gabor/log-Gabor filters for generating iris 
templates.  

Unlike the popularity of deep learning for various 
computer vision tasks, especially for face recognition, the 
literature so far has not yet fully exploited its potential for 
iris recognition. There has been very little attention on 
exploring iris recognition using deep learning. A deep 
representation for iris was proposed in [27] in 2015, but the 
purpose was for spoofing detection instead of iris 
recognition. A recent approach named DeepIrisNet in [28] 
has investigated deep learning based frameworks for 
general iris recognition. This work is essentially a direct 
application of typical convolutional neural networks (CNN) 
without much optimization for iris pattern. Our 
reproducible experimental comparison in section 5.3 
further indicates that under fair comparison, this approach 
[28] cannot deliver superior performance even over other 
popular methods. Another recent work [37] has attempted 
to employ deep belief net (DBN) for iris recognition. Its 
core component, however, is the optimal Gabor filter 
selection, while the DBN is again a simple application on 
the IrisCode without iris-specific optimization. Above 
studies have made preliminary exploration but failed to 
establish substantial connections between iris recognition 
and deep learning. 

1.2. Limitations and Challenges 
Despite the popularity of iris recognition in biometrics, 

conventional iris feature descriptors does have several 
limitations. The summaries of earlier work in [7] and [8] 
reveal that existing methods can achieve satisfactory 
performance, but the performance needs to be further 
improved to meet the expectations for wider range of 
deployments. Besides, traditional iris features, such as 
IrisCode, are mostly based on empirical models which 
apply hand-crafted filters or feature generators. As a result, 
these models rely heavily on parameter selection when 
applied for different databases or imaging environments. 
Although there are some standards on iris image format 
[29], the selection of parameter for feature extraction 
remains empirical, or based on training methods such as 
boosting [30]. This situation can be observed from [4], 
where eight different combinations of parameters for 
ordinal filters delivered varying performance on three 
databases, or from [9] which employed two sets of 
parameters for log-Gabor filter on two databases by 
extensive tuning. Another limitation is that due to the 
simplicity of conventional iris descriptors, they are less 
promising to fully exploit the underlying distribution from 
various types of iris data available today. Learning data 
distribution from large amount of samples to further 
advance performance is one of the key trends nowadays. 

Deep learning has the potential to address the above 

limitations, since the parameters in deep neural networks 
are learned from data instead of being empirically set, and 
deep architectures are known to have good generalization 
capability. However, new challenges emerge while 
incorporating typical deep learning architectures (e.g., 
CNN) for the iris recognition, which can be primarily 
attributed to the nature of iris patterns. Different from face, 
iris pattern is observed to reveal little structural information 
or meaningful hierarchies. Iris texture is believed to be 
random [31]. Earlier promising works on iris recognition 
[1-5] mainly employed small-size filters or block-based 
operations to obtain iris features. Therefore, we can infer 
that the most discriminative information in the iris pattern 
comes from the local intensity distribution of an iris image 
rather than the global features, if any. CNN is known as 
effective for extracting features from low level to high level, 
and from local to global, due to the combination of 
convolutional layers and fully connected layers [20]. 
However, as discussed above, high level and global features 
may not be the optimal for iris representation.   

This paper aims to develop more accurate and robust 
deep learning based iris feature representation framework, 
making solid contributions towards fully discovering the 
potential of deep learning for the iris recognition. Such 
objectives have not yet been pursued in the literature. 
Different from [28] and [37], this paper proposes a novel 
deep network and customized loss function, which are 
highly optimized for extracting discriminative iris features, 
which have been comparatively evaluated with several 
state-of-the-art methods on multiple iris image databases.  

The rest of this paper is organized as follows: Section 2-
4 detail the proposed approach in terms of network 
architecture, improved triplet loss function and feature 
encoding respectively; Section 5 presents the experimental 
configurations, results and analysis; finally, the key 
conclusions from this paper are presented in Section 6. 

2. Network Architecture 
We have developed a highly optimized and unified deep 

learning architecture, referred to as UniNet, for both iris 
region masking and feature extraction, which is based on 
fully convolutional networks (FCN) [15]. A new 

Figure 1: Illustration of key steps for iris image preprocessing. 
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customized loss function, named Extended Triplet Loss 
(ETL), has been developed to accommodate the nature of 
iris texture in supervised learning. The motivations and 
technical details for the proposed approach are explained in 
the following sections. 

2.1. Image Preprocessing 
For all the experiments presented in this paper, we use a 

recent iris segmentation approach [10] for iris detection and 
normalization. The resolution after normalization is 
uniformly set to 64 512× . We then apply a simple contrast 
enhancement process, which adjusts the image intensity so 
that 5% pixels are saturated at low and high intensities. The 
enhanced images are used as input to the deep network for 
training and testing. Figure 1 illustrates the key steps of 
image preprocessing. 

2.2. Fully Convolutional Network 
The proposed unified network (termed as UniNet) is 

composed of two sub-networks, FeatNet and MaskNet, 
whose detailed structures are presented in Figure 2 and 
Table 1. Both of the two sub-networks are based on fully 
convolutional networks (FCN) which is originally 
developed for semantic segmentation [15]. Different from 
common convolutional neural network (CNN), the FCN 
does not have fully connected layer. The major components 
of FCN are convolutional layers, pooling layers, activation 
layers, etc. Since all these layers operate on local regions 
around pixels from their bottom map, the output map can 
preserve spatial correspondence with the original input 
image. By incorporating up-sampling layers, FCN is able to 
perform pixel-to-pixel prediction. In the following we 
detail the two components of UniNet. 

 FeatNet 
FeatNet is designed for extracting discriminative iris 

Table 1: Layer configurations for MaskNet and FeatNet. 

FeatNet 

Layer Type Kernel 
size Stride # Output 

channels  
Conv1 Convolution 3 7×  1 16 
Conv2 Convolution 3 5×  1 24 
Conv3 Convolution 3 3×  1 32 
Conv4 Convolution 3 3×  1 1 

Tanh1, 2, 3 TanH activation / / / 
Pool1, 2, 3 Average pooling 2 2×  2 / 

MaskNet 

Layer Type Kernel 
size Stride # Output 

channels 
Conv1 Convolution 3 3×  1 16 
Conv2 Convolution 3 3×  1 32 

Conv2_s Convolution 1 1×  1 2 
Conv3 Convolution 3 3×  1 64 

Conv3_s Convolution 1 1×  1 2 
Conv4 Convolution 3 3×  1 128 

Conv4_s Convolution 1 1×  1 2 
Pool1, 2 Max pooling 2 2×  2 / 
Pool3 Max pooling 4 4×  4 / 

 

Figure 2: Detailed structures for FeatNet (top) and MaskNet (bottom) respectively. The FeatNet generates a single-channel feature map 
for each sample for matching. The MaskNet outputs a two-channel map, on which the values for each pixel along two channels represent
the probabilities of belonging to iris and non-iris regions, respectively. 
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features which can be used in matching. As shown in Figure 
2, the input iris image is forwarded by several convolutional 
layers, activation layers and pooling layers. The network 
activations at different scales, i.e., TanH1-3, are then up -
sampled if necessary to the size of original input. These 
features form a multi-channel feature stack which contains 
rich information from different scales, and are finally 
convolved again to generate an integrated single-channel 
feature map. 
 The reason for selecting FCN instead of CNN for iris 
feature extraction primarily lies in the previous analysis on 
iris patterns in Section 1.2, i.e., the most discriminative 
information of an iris probably comes from small and local 
patterns. FCN is able to maintain local pixel-to-pixel 
correspondence between input and output, and therefore is 
a better candidate for the iris feature extraction. 

 MaskNet 
MaskNet is set to perform non-iris region masking for 

normalized iris images, which can be regarded as a specific 
problem for the semantic segmentation. It is basically a 
simplified version of the FCNs proposed in [15]. Similar to 
those in [15], MaskNet is supervised by a pixel-wise 
softmax loss, where each pixel is classified into one of two 
classes, i.e., iris or non-iris. In our practice, MaskNet is 
trained with 500 randomly selected samples from the 
training set of ND-IRIS-0405 database, and the ground 
truth masks are manually generated by us. We would like 
to declare that the main focus of this paper is on learning 
effective iris feature representation. MaskNet is developed 
to provide adequate and immediate information for 
masking non-iris regions, which is necessary for the newly 
designed loss function (will be detailed in Section 3) and 
also for the matching process. The placement of MaskNet 
in the unified network also preserves the possibilities that 
iris masks may be jointly optimized/fine-tuned with the 
feature representations, which is one of our future research 
goals. At this stage, however, MaskNet is pre-trained and 
fixed during learning the iris features. A sample evaluation 
for its performance is provided in the supplementary file. 

2.3. Triplet-based Network Architecture 
A triplet network [16] was implemented for learning the 

convolutional kernels in FeatNet. The overall structure for 

the triplet network in the training stage is illustrated in 
Figure 3. As shown in the figure, three identical Uninets, 
whose weights are kept identical during training, are placed 
in parallel to forward and back-propagate the data and 
gradients for anchor, positive and negative samples 
respectively. The anchor-positive (AP) pair should come 
from the same person while the anchor-negative (AN) pair 
comes from different persons. The triplet loss function in 
such architecture attempts to reduce the anchor-positive 
distance and meanwhile increase the anchor-negative 
distance. However, in order to ensure more appropriate and 
effective supervision in the generation of iris features by the 
FCN, we improve the original triplet loss by incorporating 
a bit-shifting operation. The improved loss function is 
referred to as Extended Triplet Loss (ETL), whose 
motivation and mechanism are detailed in Section 3.  

3. Extended Triplet Loss Function 

3.1. Triplet Loss Function Incorporating with 
Masks and Bit-Shifting 

The original loss function for a triplet network is defined 
as follows: 
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where N  is the number of triplet samples in a mini-batch, 
A

if , P
if  and N

if  are the feature maps of anchor, 
positive and negative images in the i-th triplet respectively. 
The symbol +[ ]• is the as same as used in [16] and is 
equivalent to max( , 0)• . α  is a preset parameter to 
control the desired margin between anchor-positive 
distance and anchor-negative distance. Optimizing above 
loss will lead to the anchor-positive distance being reduced 
and anchor-negative distance being enlarged until their 
margin is larger than a certain value. 
 In our case, however, using Euclidean distance as the 
dissimilarity metric is far from sufficient. As discussed 
earlier, we propose using spatial features which have the 
same resolution with the input, the matching process has to 
deal with non-iris region masking and horizontal shifting, 
which are frequently observed in iris samples as illustrated 
in Figure 4. Therefore in the following, we extend the 
original triplet loss function, which we refer to as the 
Extended Triplet Loss (ETL): 
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where 1 2( , )D f f  represents the Minimum Shifted and 
Masked Distance (MMSD) function, defined as follows: 
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Figure 3: Triplet-based network organization for training. 
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where FD is the Fractional Distance which takes feature 
masks into consideration: 
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where 1m  and 2m  are the binary masks for two feature 
maps, in which zero means the current position is non-iris. 
In other words, FD only measures the distances at valid iris 
pixel positions, and normalizes the total distance by the 
number of valid pixels. In (3), the subscript b means the 
feature map has been shifted horizontally by b pixels, i.e., a 
shifted feature map has the following spatial 
correspondence with the original one: 
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where ,x y  are the spatial coordinates and bx  is obtained 
by shifting the pixel to the left by a step of b. Note that when 
x is less than b, the pixel position will be directed to the 
right end of the map, as the iris map is normalized by 
unwrapping the original iris circularly and the left end is 
therefore physically connected with the right end. When b 
is negative, the bit-shifting operation would shift the map 
to the right by –b pixels. The iris feature matching then is 
meaningful by computing the MMSD between feature maps. 
In order to maintain simplicity of the notations for the 
upcoming derivation, we denote the offsets that fulfills the 
MMSD of AP-pair and AN-pair as follows: 
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During the back-propagation (BP) of the training process, 
the gradients (or partial derivatives) of the new loss on the 
anchor, positive and negative feature maps need to be 
computed. For simplicity, let us firstly derive the partial 
derivative w.r.t the positive feature map Pf . From (2) it 
can be derived that for one sample in the batch: 
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Again from (2) we can see that 0ETL = is equivalent to  
( , ) ( , ) 0A P A ND D α− + ≤f f f f . We only need to show 

the derivation when ETL is not 0. Let us define the set of 
common valid iris pixel positions for AP pair as: 
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Similarly, for the partial derivatives on the negative feature 
map, we have: 
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The final step is to calculate the derivatives w.r.t the anchor 
feature map. It can be seen from (3)-(5) that shifting the first 
map to the left by b pixels is equivalent to shifting the 
second map to the right by b pixels. Making use of this 
property, we have ( , ) ( , )

AP AP

A P A P
b bFD FD −=f f f f  and 

( , ) ( , )
AN AN

A N A N
b bFD FD −=f f f f . It is therefore quite 

straightforward to obtain from (2)-(4): 
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After calculating the derivative maps w.r.t Af , Pf and 
Nf  respectively, the rest of the BP process is the same as 

for common convolutional neural networks. Above 
derivation shows that gradients will be computed only for 
pixels that are not masked. In this way, features are learned 
only within valid iris regions, while non-iris regions will be 
ignored since they are not of our interest. After the last 
convolutional layer, a single-channel feature map is 
generated which can be used to measure similarities 
between the iris samples.  

Figure 4: Illustration of occlusions (labeled in blue) and
horizontal translation which usually exist between two
normalized iris images even from a same iris. 
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4. Feature Encoding and Matching 
We perform a simple encoding process for the feature 

map output from UniNet. The feature maps originally 
contain real values, and it is straightforward to measure the 
fractional Euclidean distance between the masked maps for 
matching, as the network is trained in this manner. However, 
binary features are more popular in most of the research 
works on iris recognition (e.g., [1]-[6], [9]), since it is 
widely accepted by the community that binary features are 
more resistant to illumination change, blurring and other 
underlying noise. Besides, binary features consume smaller 
storage and enable faster matching.  Therefore, we also 
investigated the feasibility of binarizing our features with a 
reasonable scheme as described in the following: 
 For each of the output feature map, the mean value of the 
elements within the non-masked iris regions is firstly 
computed as m. This mean value is then used as the 
threshold to binarize the original feature map. In order to 
avoid marginal errors, elements with feature values v close 
to m (i.e., | |v m t− < ) are regarded as less reliable and will be 
masked together with the original mask output by MaskNet. 
Such a further masking step is conceptually similar to 
“Fragile Bits” [12], which discovered that some bits in 
IrisCode, with filtered responses near the axes of the 
complex space, are less consistent or unreliable. The range 
threshold t for masking unreliable bits is uniformly set to 
0.6 for all the experiments. The feature encoding process 
can be demonstrated in Figure 5. For matching, we use the 
fractional Hamming distance [2] from the binarized feature 
maps and extended masks. It is observed that using the 
binary features does not degrade the performance compared 
with using the real-valued features, and even yield slight 
improvements in some cross-dataset scenarios, probably 
due to the factors discussed above. 

5. Experiments and Results 
Thorough experiments were conducted to evaluate the 

performance of the proposed approach from various aspects. 
The following sections detail the experimental settings 
along with the reproducible [38] results. 

5.1. Databases and Protocols 
We employed the following four publicly available 

databases our experiments: 

 ND-IRIS-0405 Iris Image Dataset (ICE 2006) 
This database [32] contains 64,980 iris samples from 356 
subjects and is one of the most popular iris databases in 
the literature. The training set for this database is 
composed of the first 25 left eye images from all the 
subjects, and the test set consists of first 10 right eye 
images from all the subjects. The test set, after removing 
some falsely segmented samples, contains 14,791 
genuine pairs and 5,743,130 imposter pairs.  

 CASIA Iris Image Database V4 – distance  
This database (subset) [33] includes 2,446 samples from 
142 subjects. Each sample captures the upper part of face 
and therefore contain both left and right irises. The 
images were acquired from 3 meters away. An OpenCV-
implemented eye detector [36] was applied to crop the 
eye regions from the original images. The training set 
consists of all the right eye images from all the subjects, 
and the test set comprises all the left eye images. The test 
set generates 20,702 genuine pairs and 2,969,533 
imposter pairs. 

 IITD Iris Database 
The IITD database [34] contains 2,240 image samples 
from 224 subjects. All of the right eye iris images were 
used as training set while the first five left eye images 
were used as test set. The test set contains 2,240 genuine 
pairs and 624,400 imposter pairs. 

 WVU Non-ideal Iris Database – Release 1  
The WVU Non-ideal database [35] (Rel1 subset) 
comprises 3,043 iris samples from 231 subjects which 
were acquired under different extends of off-angle, 
illumination change, occlusions, etc. The training set 
consists of all of the right eye images, and the test set was 
formed by the first five left eye images from all the 
subjects. The test set has 2,251 genuine pairs and 
643,565 imposter pairs. 

From the above introduction we can observe that the 
imaging conditions for these databases are quite different. 
Sample images from the four employed datasets are 
provided in Figure 6, where noticeable variation in image 

Figure 5: Illustration of feature binarization process. 
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quality can be observed. It is therefore judicious to assume 
that these databases can represent diverse deployment 
environments. 

5.2. Test Configurations 
We incorporated following two configurations during the 

test phase for extensive evaluation of the proposed model.  
 CrossDB 

In the CrossDB configuration, we use the ND-IRIS-0405 
as the training set. During testing, the trained model was 
directly applied on CASIA.v4-distance and IITD without 
any further tuning. The purpose of the CrossDB setting 
is to examine the generalization capability of the 
proposed framework under challenging scenario that few 
training samples are available. 

 WithinDB 
In this configuration we use the network trained on ND-
IRIS-0405 as the initial model, then fine-tune it using the 
independent training set from the target database. The 
fine-tuned network is then evaluated on the respective 
test set. Being capable of learning from data is the key 
advantage of deep learning, therefore it is judicious to 
examine the best possible performance from the 
proposed model by fine-tuning it with some samples 
from the target database. The fine-tuned models from the 
WithinDB configuration are expected to perform better 
than the one with CrossDB, due to higher consistency of 
image quality between the training set and test set. 

It should be noted that in both of the above configurations, 
training set and test set are totally separated, i.e., none of 
the iris images are overlapping between the training set and 
test set. All the experimental results were generated under 
all-to-all matching protocol, i.e., the scores of every image 
pair in the test set have been counted. 

5.3. Comparison with Earlier Works 
We present comparative experimental results using 

several highly competitive benchmarks. Gabor filter based 
IrisCode [1] has been the most widely deployed iris feature 
descriptor, largely due to the fact that few alternative iris 
features in the literature are universally accepted as better 
than IrisCodes. Instead, the majority of recent works on iris 
biometrics are more on improving segmentation and/or 
normalization models [10] [11], applying multi-score 
fusion [9] or feature bits selection [12]. In other words, in 
the context of iris feature representations, IrisCode is still 
the most popular and highly competitive approach, and 
therefore is definitely a fair benchmark for the performance 
evaluation. IrisCode has a number of advanced versions.  
From the publicly available ones, we selected OSIRIS [13], 
which is an open source tool for iris recognition. It 
implements a band of multiple tunable 2D Gabor filters that 
can encode iris patterns at different scales, therefore is a 
highly credible competitor. Another classic implementation 
of IrisCode is based on 1D log-Gabor filter(s) [2], which is 
claimed to encode iris patterns more efficiently, and is also 
widely chosen as benchmark in a variety of research works 
(e.g., [6], [10]). Therefore, this approach is also investigated. 
Apart from the Gabor series filters, ordinal filters proposed 
in [4] can serve as a different type of iris feature extractors 
to complement the comparisons. The aforementioned 
benchmarks have been extensively tuned on target 
databases during testing to ensure as good performance as 
possible. For more details on tuning these methods, please 
refer to the attached supplementary file.   

The comparison results are shown in Figure 7 and Table 
2. Consistent improvements from our method over others 
can be observed on all of the four databases, under both 
WithinDB and CrossDB configurations. Such results 
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Figure 7: ROCs for comparison with other state-of-the-art methods on for employed databases. Best viewed in color. 
(a) ND-IRIS-0405                      (b) CASIA.v4-distance                             (c) IITD                                 (d) WVU Non-ideal 
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Table 2: Summary of false reject rates (FRR) at 0.1% false accept rate (FAR) and equal error rates (EER) for the comparison. 

 ND-IRIS-0405 CASIA.v4-distance IITD WVU Non-ideal 
FRR EER FRR EER FRR EER FRR EER 

IrisCode (OSIRIS) 3.73% 1.70% 19.93% 6.39% 1.61% 1.11% 13.70% 4.43% 
IrisCode (log-Gabor) 3.31% 1.88% 20.72% 7.71% 1.81% 1.38% 11.63% 6.82% 

Ordinal 3.22% 1.74% 16.93% 7.89% 1.70% 1.25% 9.89% 5.19% 
Ours-CrossDB / / 13.27% 4.54% 0.82% 0.64% 5.46% 2.83% 

Ours-WithinDB 1.78% 0.99% 11.15% 3.85% 1.19% 0.73% 5.00% 2.28% 



 
 

suggest that the proposed iris feature representation not 
only achieves superior accuracy but also exhibits 
outstanding generalization capability. Even without 
additional parameter tuning, the well-trained model from 
our framework is promising to be directly used in 
deployment environments with varying image qualities. 
The relaxation of parameter tuning is apparently a highly 
desirable property for many real-life applications. An 
interesting finding is that on IITD database, the CrossDB 
model performs better even than the fine-tuned one. This is 
possibly because most of the images in IITD are with high 
qualities and less challenging, and its training set is not 
large enough, which causes slight over-fitting problem. 

We also provide comparison with VeriEye SDK 9.0 [14], 
which is a commercial product for iris recognition and has 
gained considerable popularity due to its effectiveness. 
However, since it is not open source, there may be some 
underlying factors affecting the final results. Despite such 
concern, the comparison may still be interesting, and we 
include such results in our supplementary file. 

5.4. Comparison with Other Deep Learning 
Configurations 

In order to ascertain the effectiveness of the proposed 
network architecture for spatial feature extraction and the 
extended triplet loss, we also compared our method against 
typical deep learning architectures that are widely 
employed in various recognition tasks. The tested 
configurations are introduced in the following: 

(i) CNN+softmax/triplet loss 
CNN+softmax is the most widely employed deep 

learning configurations in the community, such as in [17] 
and [20]. Besides, CNN+triplet loss is gaining increasing 
popularity after it was proposed in [16], and therefore may 
also be interesting and worth evaluating. For the CNN 
model, we have chosen the popular VGG-16 which has 
achieved superior performance in face recognition.  

(ii) FCN+triplet loss 
Comparative evaluation has also been performed on 

using the proposed FCN (FeatNet only) and the original 
triplet loss function without incorporating bit-shifting and 
masking. Such comparison may assert the necessity of 
extending the original triplet loss. 

(iii) DeepIrisNet [28] 
We also compared our method against the recent deep 

learning based iris recognition framework, DeepIrisNet, 
which reports promising results. This architecture actually 
belongs to the CNN+softmax category, but we separately 
inspected it as it is directly proposed for iris recognition.  
Since the original model in their paper is not publicly 
available, we carefully implemented and trained the CNN 
according to all the details in [28].  

 The comparison with aforementioned configurations was 
performed on ND-IRIS-0405 dataset, which has the largest 
number of training images among employed ones. The test 
set is kept consistent during the comparison. Hyper-
parameters of the training processes for above architectures 
have been carefully investigated to achieve best possible 
performance. The results on the same test set are presented 
in Figure 8.  

 It can be observed from Figure 8 that our newly 
developed architecture significantly outperforms other deep 
learning configurations. CNN based configurations have 
failed to deliver satisfactory results especially at lower FAR. 
Such results support our previous analysis that global and 
high level features extracted by CNN may not be suitable 
for iris recognition. The poor performance from 
FCN+triplet loss strongly suggests that it is necessary to 
account for bit-shifting and non-iris region masking when 
learning spatially corresponding features through FCN.  

We also evaluated the computational complexity of the 
proposed model. The results indicate that the execution 
time of our method can meet general real-time requirements, 
which is presented in our supplementary file. 

6. Conclusions 
This paper has developed a novel deep learning based iris 

feature representation which can offer superior matching 
accuracy and generalization capability for the iris 
recognition. The specially designed Extended Triplet Loss 
function can provide effective supervision for learning 
comprehensive and spatially corresponding iris features 
through the fully convolutional network. Further extension 
of this work should focus on learning more robust iris mask 
information through the deep networks, which is expected 
to further exploit the spatially corresponding features for 
more accurate iris recognition.  
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Figure 8: ROC curves for typical deep learning architectures
available in the literature and our method on ND-IRIS-0405. 
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This supplementary file aims to provide more details on the experimental configurations 
which could not be included in the paper due to space limitation.  

1. Details on Training/Test Set Composition 

The details on the division of the training set and the test set on the four employed 
databases are provided in Table S1. Both the training set and the test set are formed with the 
first X ( X = 25, 10 or 5, shown in Table S1) or all of the left/right eye images from each of the 
subjects. If a subject has less than X images in the respective database, then all images from 
this subject will be included. 

Table S1: Summary of the division for training set and test set on the employed databases. 

Database 
Training Set Test Set 

#subjects #images/subject side #images #subjects #images/subject side #images 

ND-IRIS-0405 all 356 first 25 left 9,301 all 356 first 10 right 3,394 

CASIA.v4-distance all 411 first 25 left 6,840 all 411 first 10 right 3,939 

IITD all 224 all right 1,052 all 224 first 5 left 1,120 

WVU Non-ideal all 231 all right 1,511 all 231 first 5 left 1,137 

During the training phase, the triplet-based architecture introduced in Section 2 requires 
the input data to be triplet sets (anchor-positive-negative entries) instead of single images. 
Therefore the training images in each of the databases need to be presented as triplet entries 
which are generated from the combinations of images. However, enumerating all the possible 
triplet combinations in the training set will lead to high storage and computational complexity, 
we therefore selectively generate part of the possible triplet entries for training, as described 
in the following: For each training set, we firstly enumerate all the possible anchor-positive 
(genuine) pairs, since the numbers of available genuine pairs are relatively small; for each 
anchor-positive pair, we randomly select five negative samples that are from different subjects 
than the anchor subject, and form the anchor-positive-negative triplet. In other words, each 
genuine pair in the training set will generate five triplet entries for training.  

2. Details on Tuning Comparative Methods 

We have extensively tuned the benchmarking methods (i.e., OSIRIS [13], 1D log-Gabor 
[2] and ordinal [4]) to ensure that their best possible performances are used for the fair 
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comparisons. We iteratively adopted possible combinations of the parameters for these 
approaches on each of the training sets within the empirically selected ranges, similar to as in 
many references (e.g., [2], [4] and [9]). The best performing parameters on the training sets 
were then employed on the respective test sets for the performance evaluation. 

 Parameters for IrisCode (OSIRIS 2D Gabor filters): 
A Gabor filter band containing six filters is provided in the original OSIRIS 
implementation [13]. In addition to the default one, we generated five Gabor filter bands 
for tuning this tool to obtain the best performance. Based on [1], a 2D Gabor filter for 
generating IrisCode can be formulated as: 

22

2 2( )
( , )

yx
i xg x y e e ωα β

− +
−=                          (1) 

Each set of parameters ( , , )α β ω  can be used to produce two filters which are the real 
and imaginary parts of the complex filter kernel. We apply three sets of parameters to 
form a band of six filters. The five additional Gabor filter bands are then generated using 
the following parameters: 
(i) ( , , ) {(3, 1.5, 0.4 ), (5, 1.5, 0.2 ), (7, 1.5, 0.1 )}α β ω π π π∈  
(ii) ( , , ) {(3, 1.5, 0.4 ), (5, 1.5, 0.3 ), (7, 1.5, 0.2 )}α β ω π π π∈  
(iii) ( , , ) {(5, 2, 0.3 ), (7, 2, 0.2 ), (9, 2, 0.1 )}α β ω π π π∈  
(iv) ( , , ) {(3, 2, 0.3 ), (6, 2, 0.2 ), (9, 2, 0.1 )}α β ω π π π∈  
(v) ( , , ) {(5, 1.5, 0.3 ), (7, 1.5, 0.2 ), (9, 1.5, 0.1 )}α β ω π π π∈  

 Parameters for IrisCode (1D log-Gabor filter): 
Based on the model presented in [2], two parameters were tuned as follows: ߪ/݂ (bandwidth over frequency): ranges from 0.3 to 0.6, with a step of 0.05. ߣ (wavelength): ranges from 15 to 40, with a step of 1. 
182 combinations in total.  

 Parameters for ordinal filter based method: 
Based on the model presented in [4], four parameters were tuned as follows: 
n (number of lobes): ranges between {2, 3}. 
s (size of each lobe): ranges among {5, 7, 9}. 
d (distance between lobes): ranges among {5, 9, 13, 17}. ߪ (standard deviation of each lobe): ranges among {1.5, 1.7, 1.9}. 
72 combinations in total. 

The best parameters automatically selected using the above detailed steps are provided in 
Table S2. It can be observed that such optimal parameters vary for one dataset to another, 
which underlines the need for selecting parameters for conventional methods according to the 
imaging environments and the quality of images for different databases. In contrast, our 
CrossDB model is able to deliver stable and satisfactory performance on the four public 
databases without any tuning, as shown in Figure 7 and Table 2 in the paper. 
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Table S2: Best performing parameters for IrisCode [2] [13] and Ordinal filters [4] on four 
employed databases. 

Method Parameter ND-IRIS-0405 CASIA.v4- 
distance IITD WVU 

Non-ideal 
IrisCode  

(2D Gabor - OSIRIS) config. default (iii) (ii) (i) 

IrisCode  
(1D log-Gabor) 

 ߣ ݂/ߪ
18 

0.45 
24 

0.35 
18 
0.4 

15 
0.55 

Ordinal filter 

n 
s 
d ߪ 

3 
5 
9 

1.9 

3 
9 

13 
1.7 

2 
7 
5 

1.9 

3 
9 
5 

1.9 
 

It is worth mentioning that we did not use the original or built-in iris 
segmentation/normalization procedures from OSIRIS and Masek’s 1D log-Gabor 
implementation. Iris segmentation has been shown to have significant impact on the 
recognition accuracy. Therefore to ensure the fairness in the evaluation of proposed iris 
feature representation, we uniformly adopt [10] for iris detection and normalization (as [10] 
has shown superior results on multiple public databases and also provides implementation 
codes), and use the output of MaskNet as the iris masks for our method and other investigated 
methods in this paper. 

3. Analysis on Complexity 

The computational complexity of our model has been evaluated in order to address the 
potential concerns on the feasibility for the deployment. Since our FCN does not employ fully 
connected layers, the number of parameters is significantly reduced and therefore it is much 
spatially simpler than conventional CNN based architectures. Table S3 summaries the 
computational time for feature extration and the storage required by our model, as compared 
with the CNN based approach in [28]. It can be noted that the space and time complexities for 
our approach are quite small. 

Table S3: Summary of number of parameters, model storage size and feature extraction time 
per image, run with Matlab wrapper and C++ implementation, on Intel i7-4770 CPU, 16G 
RAM and Nvidia GTX670 GPU. 

Approach #Parameters 
Model Size 

(Byte) 
Feature Extraction Time 

GPU CPU 
Ours ~ 110.7 K 1.5 M 7.6 ms 236 ms 

DeepIrisNet [28] ~55,420 K 289.0 M 12.7 ms 335 ms 

4. Comparison with VeriEye SDK 9.0 

In this paper we have provided reproducible performance comparison with the IrisCode 
[2] [13] and ordinal filter based method [4]. Although these methods are widely cited and 
have shown to offer competitive performance in the literature, it can be interesting to provide 
comparison with some commercial solutions for iris recognition, as they are considered to be 
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more suitable and optimized for real-life deployment. We therefore performed comparative 
evaluation using a popular commercial product, VeriEye iris recognition SDK from 
Neurotechnology [14], which released the latest version 9.0 in October 2016 and is available 
with us. The VeriEye SDK accepts original eye images (without normalization) as input and 
has its built-in iris segmentation components. Since this software is not open-source for its 
core functions, we are not able to interference its iris segmentation process. Therefore, the 
comparison results presented in this section may not be fully representing the effectiveness of 
iris feature representation, which is the key focus of this paper. Instead, it can be a sample 
reference for overall performance evaluation. The results for the comparison are shown in 
Figure S1. 

 
Figure S1: Receiver operating characteristic (ROC) curves from our approaches and the 
commercial product VeriEye SDK on four databases. 

As shown in the figure, on ND-IRIS-0405 and WVU Non-ideal databases, VeriEye has 
better genuine accept rates (GAR) at lower false accept rates (FAR), while our approach 
consistently outperforms VeriEye on CASIA.v4-distance and IITD datasets. As discussed 
earlier, the difference in the segmentation process may have certain impact on the presented 
recognition results. Besides, VeryEye has a built-in quality assessment function that it does 
not match images with low quality, which may improve its overall performance to a certain 
extent, while our approach does not evaluate image quality at the current stage. Considering 
above factors, it is judicious to believe that our prototype model can already offer highly 
competitive performance compared with the well optimized commercial system. 
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5. Sample Evaluation for MaskNet 

As mentioned in the paper, our key focus is on learning more effective iris feature 
representation. MaskNet is an essential component of UniNet for providing immediate and 
appropriate non-iris masking information to the proposed Extended Triplet Loss (ETL) 
function. In order to assert the adequateness of the masking information during the feature 
learning process, we have performed a sample evaluation of MaskNet. For the evaluation 
benchmark, we use more recent and advanced iris segmentation approach [10] as this method 
has already provided comparison with other promising methods in the literature. Similar to as 
used in [10], the average segmentation error is defined as follows: 

1 1 1

1e [ , ] [ , ]
N w h

i i
i x y

x y x y
N w h = = =

= ⊕
× × M G                   (2) 

where N is the number of test images, w and h are the weight and height of each image 
respectively, Mi is the i-th computed mask and Gi is the corresponding ground truth mask that 
should be manually generated. ⊕  is the exclusive-OR (XOR) operation for two binary 
values. This error rate measures the level of disagreement between the computed mask and 
the ground truth. The difference with [10] is that we measure the segmentation error after iris 
normalization.  

The MaskNet employed in our experiments was trained with 500 randomly selected left 
eye images from ND-IRIS-0405 database, with manually labeled iris masks as the ground 
truth. The test sets for its evaluation are also generated from the same database, excluding the 
training samples. We used the following two sets for the testing: (a) 100 randomly selected 
samples and their ground truth masks manually created by us; (b) 792 samples and their 
ground truth masks which are available from a public iris segmentation ground truth database, 
IRISSEG-EP [H. Hofbauer, F. Alonso-Fernandez, P. Wild, J. Bigun and A. Uhl, “A ground 
truth for iris segmentation”. ICPR, 2014]. The average segmentation errors of MaskNet and 
[10] are shown in Table S4. 
 

Table S4: Comparison of average segmentation errors from MaskNet and [10]. 

Approach 
Average Segmentation Error 

Set (a) Set (b) 
MaskNet 5.89% 9.00% 

ICCV [10] 6.73% 11.83% 
 
The results shown in Table S4 suggest that for both test sets, the developed MaskNet can 
achieve superior segmentation accuracy compared with state-of-the-art iris segmentation 
approach. It is therefore reasonable to conclude that MaskNet is able to provide appropriate 
information for identifying valid iris region during the feature learning process via ETL. 
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