Subject Description Form

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>COMP 5422</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Title</td>
<td>Multimedia Computing, Systems and Applications</td>
</tr>
<tr>
<td>Credit Value</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>5</td>
</tr>
<tr>
<td>Pre-requisite/Exclusion</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Objectives
The objectives of this subject are to:

1. To provide students with knowledge in fundamentals of multimedia, e.g. compression standards, data formats, media characteristics, storage and transmission requirements;
2. To provide students with knowledge of a wide spectrum of multimedia information processing techniques;
3. To train students with the ability to apply the knowledge in multimedia system and application development;
4. To equip students with the ability to appreciate new and innovative solutions of multimedia systems and applications.

Intended Learning Outcomes
Upon completion of the subject, students will be able to:

a) understand the various characteristics of different media;
b) understand the requirements and techniques of processing multimedia;
c) generalize the knowledge and skills in problem solving involving multimedia databases; and
d) conduct case study in multimedia applications.

Subject Synopsis/Indicative Syllabus

- **Multimedia System Primer**: Introduction to different multimedia platforms, systems, tools and applications; characteristics of different media and current trend
- **Data Representation, Coding and Compression**: Data representation, processing and analysis for Sound/Audio, Image and Graphics, Video and Animation; Coding requirements, Entropy and Hybrid Coding, Compression techniques and standards: JPEG, MPEG, DVI, ASF, etc.
- **Multimedia Content Analysis and Information Retrieval**: Multimedia contents: Color, shape, texture, motion, etc. Content analysis techniques: Color histogram, shape analysis, motion analysis, etc. Retrieval techniques: video segmentation, key frame selection, etc.
- **Multimedia Indexing**: Multidimensional data structures, K-d trees, R-trees, R+ and R* trees, Comparison of different data structures.
- **Multimedia Information Networking**: Video streaming, transmission characteristics, protocol support for multimedia networking, multicast techniques.
- **Selected Topics in Multimedia Computing, Systems and Applications**: Further topics related to multimedia computing, systems, and applications.
Applications: e.g., New MPEG standards, Multimedia Information Hiding and Watermarking, VoiceXML.

Teaching/Learning Methodology

39 hours of class activities including - lecture, tutorial, lab, workshop seminar where applicable

Assessment Methods in Alignment with Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Specific Assessment Methods/Tasks</th>
<th>% weighting</th>
<th>Intended subject learning outcomes to be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments, Tests & Projects</td>
<td>55</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Final Examination</td>
<td>45</td>
<td>✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Student study effort expected

Class Contact:

Class activities (lecture, tutorial, lab) 39 hours

Other student study effort:

Assignments, Quizzes, Projects, Exams 65 hours

Total student study effort 104 hours

Reading list and references

Books

Journals

1. IEEE Multimedia
2. IEEE Trans. on Multimedia
3. ACM SIG Multimedia
4. Multimedia Systems
5. Multimedia Tools & Applications