Subject Description Form

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>COMP 5228</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Title</td>
<td>Embedded Software Engineering</td>
</tr>
<tr>
<td>Credit Value</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>5</td>
</tr>
<tr>
<td>Pre-requisite/ Exclusion</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Objectives
This subject aims to provide students with comprehensive knowledge on embedded software design, modelling, implementation, simulation, testing, and verification.

Intended Learning Outcomes
After completing this subject, the students should be able to:

- (a) have an understanding of definitions, scope and common properties of embedded systems from a variety of embedded applications in different industrial domains;
- (b) possess the ability to represent behaviour of embedded applications with computation models;
- (c) possess the knowledge of basic organization and architecture of embedded systems;
- (d) have an understanding of basic design flows for implementing embedded systems with hardware/software co-design;
- (e) have an understanding of pros and cons of major programming languages for embedded systems;
- (f) design and implement embedded software for application-specific systems by utilizing specialized compilers, real-time operating systems, and application software development platforms; and
- (g) design and conduct experiments with basic simulation, testing and verification techniques for embedded systems.

Subject Synopsis/Indicative Syllabus
- Introduction to embedded systems.
- Introduction to models of computation for representing behaviours for embedded applications.
- Organizations and architectures of embedded systems.
- Implementation of embedded systems with hardware/software codesign.
- Introduction to programming languages for embedded systems.
- Design and optimization for embedded software.
- Simulation, testing and verification.

Teaching/Learning Methodology
Class activities including lecture, tutorial, lab, workshop seminar where applicable.

Assessment Methods in Alignment with Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Specific Assessment Methods/Tasks</th>
<th>% Weighting</th>
<th>Intended subject learning outcomes to be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c d e f g</td>
</tr>
<tr>
<td>Assignments, Tests & Projects</td>
<td>55</td>
<td>✔️</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Final Examination</td>
<td>45</td>
<td>✔️</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Student study effort expected

Class Contact:
Class activities (lecture, tutorial, lab) 39 hours

Other student study effort:
Assignments, Quizzes, Projects, Exams 65 hours

Total student study effort 104 hours

Reading list and references

