SUBJECT DESCRIPTION FORM

Subject Title: Operating Systems
Subject Code: COMP 304

Number of Credits: 3
Hours Assigned: Lecture 35 hours
 Tutorial/Lab 21 hours

Pre-requisite: COMP 201
Co-requisite: Nil
Exclusion: Nil

Objectives:
This subject provides students knowledge on:
• resource management provided by operating systems;
• concepts and theories of operating systems;
• implementation issues of operating systems.

Student Learning Outcomes:
After taking this subject, the students should be able to:
Professional/academic knowledge and skills
(1) identify the services provided by operating systems;
(2) understand the internal structure of an operating system and be able to write programs using
 system calls;
(3) understand and solve problems involving process control, mutual exclusion, deadlock and
 synchronization.

Attributes for all-roundedness
(4) develop skills in problem solving using systematic approaches;
(5) solve complex problems in groups and develop group work.

Alignment of Programme Outcomes:
Programme Outcome 1: This subject contributes to having students practice their writing skills
with project document and report writing.
Programme Outcome 4: This subject contributes to developing student critical thinking through
tutorial and lab exercises on solving problems. They will also practice more in written
assignments, programming exercises, and project.
Programme Outcome 5: This subject contributes to problem solving with programming skills
through lab exercise and project with proper design and implementation.
Programme Outcome 7: This subject contributes to team work with group-based project for
students to practice team spirit.

Syllabus:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to operating systems</td>
<td>2.5</td>
</tr>
<tr>
<td>Types and functionalities of operating systems; system components and services; resource management.</td>
<td></td>
</tr>
</tbody>
</table>
2. **Unix and Linux**
 Usage of Unix and Linux; shell and commands; scripts; system calls.
 5

3. **Process management**
 Process concepts; process manipulation; asynchronous concurrent processes; mutual exclusion; synchronization; deadlock; scheduling algorithms.
 12.5

4. **Memory and secondary storage management**
 Virtual memory; paging and segmentation system; secondary storage allocation; directory and file system structure.
 10

5. **Protection and security**
 Protection and access control; capabilities; security and cryptography.
 2.5

6. **Case studies on operating systems**
 Structure of Unix, Windows NT, etc.
 2.5

| Total | 35 |

Laboratory Experiment:
Unix environment, shell scripts, system calls.

Case Study:
Contemporary OS like Unix, Linux, Windows.

Method of Assessment for Learning Outcomes:

<table>
<thead>
<tr>
<th>Assessment method / task</th>
<th>% weighting</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>55</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab exercises</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mid-term</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>45</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Textbooks:

Reference Books: