Subject Description Form

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>COMP 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Title</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td>Credit Value</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>2</td>
</tr>
<tr>
<td>Pre-requisite/ Co-requisite/ Exclusion</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Objectives

The objectives of this subject are:

1. To introduce students to the concepts and applications of discrete mathematical structures
2. To help students attain the fundamental mathematical knowledge and reasoning skills they need to be successful in upper-level computing subjects

Intended Learning Outcomes

Upon completion of the subject, students will be able to:

(a) apply discrete structures knowledge and skills to solve real world problems using computers;
(b) understand the major mathematical knowledge in computer systems;
(c) apply the computer programming techniques to solve practical engineering problems;
(d) acquire mathematical knowledge and skills required to further study other more advanced computing-related subjects;
(e) relate learned mathematical knowledge to other computing subjects.

Subject Synopsis/Indicative Syllabus

1. Set, relations and functions
 Sets, relations and functions, equivalence, cardinality, order relations.

2. Propositional and predicate logic
 Logical expressions; truth tables; tautologies; formal reasoning; predicates; quantifiers; proof system; soundness and completeness.

3. Discrete Mathematical skills
 Mathematical induction; counting techniques; inclusion-exclusion principle; pigeonhole principle.

4. Graphs and trees
 Graph, digraph, isomorphism; connectivity; Euler and Hamilton path; shortest path problems; planar graphs; graph coloring; trees and tree traversal; spanning trees and minimum
spanning trees; decision tree and isomorphism of tree.

5. Basic network problems
 Network flows; maximal-flow minimum-cut problem; minimal-cost flow problem; applications, e.g., network design, transportation problem.

6. Boolean algebras and combinatorial circuits
 Combinatorial circuits and its properties, Boolean algebras, Boolean functions and synthesis of circuits.

Teaching/Learning Methodology

A mix of lectures and tutorial sessions is used to deliver the various topics in this subject. Lectures are conducted to initiate students with the discrete structures concepts and knowledge that are reinforced by in-class exercises and quizzes. Tutorial sessions are used to provide more opportunity to understand solutions to the mathematical problems and to gain hands-on experience on solving real world problems by applying learned mathematical knowledge and computing skills.

Assessment Methods in Alignment with Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Specific assessment methods/tasks</th>
<th>% weighting</th>
<th>Intended subject learning outcomes to be assessed (Please tick as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assignments</td>
<td>60%</td>
<td>X a c d e</td>
</tr>
<tr>
<td>2. Exercises</td>
<td></td>
<td>X X X X</td>
</tr>
<tr>
<td>3. Quizzes</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>4. Examination</td>
<td>40%</td>
<td>X X</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Student Study Effort Expected

- **Class Contact:**
 - Lecture: 26 hours
 - Tutorial: 13 hours

- **Other student study effort:**
 - Assignments, Quizzes, Projects, Self-study: 66 hours

- **Total student study effort:** 105 hours

Reading List and References

Reference Books: