Subject Description Form

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>COMP 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Title</td>
<td>Data Structures</td>
</tr>
<tr>
<td>Credit Value</td>
<td>3</td>
</tr>
<tr>
<td>Level</td>
<td>2</td>
</tr>
<tr>
<td>Pre-requisite/ Co-requisite/ Exclusion</td>
<td>COMP 1011</td>
</tr>
</tbody>
</table>

Objectives

The objectives of this subject are:

1. To introduce students to basic concepts of data structures and algorithms
2. To teach students to apply simple data structures and algorithms in developing computer programs

Intended Learning Outcomes

Upon completion of the subject, students will be able to:

(a) understand the properties of basic data structures;
(b) identify the strengths and weaknesses of different data structures;
(c) possess the knowledge of various common algorithms;
(d) design and employ appropriate data structures and algorithms for developing computer applications;
(e) think critically for improvement in the solutions.

Subject Synopsis/Indicative Syllabus

1. **Programming and algorithms**
 - Computer algorithms; types of algorithms; data structures; abstract data types.

2. **Data structures: representation and algorithms**
 - Linear structures: linked-lists, stacks, queues; tree structures: binary trees, balanced trees, tree traversals; other common data structures: priority queues, heaps.

3. **Sorting**
 - Common sorting algorithms: bubble sort, insertion sort, selection sort; optimal-time sorting algorithms: quick sort, merge sort, heap sort.

4. **Searching**
 - Common searching algorithms: sequential search, binary search; advanced searching algorithms: tree search, dictionary and hashing.

5. **Applications**
 - Practical program development using combination of various
data structures and algorithms, e.g. friends-book; efficiency of the various approaches.

Teaching/Learning Methodology
The course material will be delivered as a combination of mass lectures and small group supervised tutorial and laboratory sessions. Lectures will provide the required knowledge while tutorials and laboratory sessions allow students to acquire hands-on experience on programming with different algorithms. Programming project provides students with a chance to integrate their knowledge on applying appropriate data structures and algorithms to solve practical problems.

Assessment Methods in Alignment with Intended Learning Outcomes

<table>
<thead>
<tr>
<th>Specific assessment methods/tasks</th>
<th>% weight</th>
<th>Intended subject learning outcomes to be assessed (Please tick as appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Laboratory Exercises</td>
<td>20</td>
<td>a X X X</td>
</tr>
<tr>
<td>2. Programming Project</td>
<td>20</td>
<td>X X X X X</td>
</tr>
<tr>
<td>3. Test</td>
<td>20</td>
<td>X X X X</td>
</tr>
<tr>
<td>4. Examination</td>
<td>40</td>
<td>X X X X X</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
<td></td>
</tr>
</tbody>
</table>

Student study effort expected

- **Class Contact:**
 - Lecture: 39 hours
 - Tutorial/Lab: 13 hours

- **Other student study effort:**
 - Assignments, Quizzes, Projects, Self-study: 55 hours

- **Total student study effort:** 107 hours

Reading list and references